Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A new GFP-tagged line reveals unexpected Otx2 protein localization in retinal photoreceptors

Identifieur interne : 001083 ( Pmc/Corpus ); précédent : 001082; suivant : 001084

A new GFP-tagged line reveals unexpected Otx2 protein localization in retinal photoreceptors

Auteurs : Nicolas Fossat ; Coralie Le Greneur ; Francis Béby ; Stéphane Vincent ; Pierre Godement ; Gilles Chatelain ; Thomas Lamonerie

Source :

RBID : PMC:2204009

Abstract

Background

Dynamic monitoring of protein expression and localization is fundamental to the understanding of biological processes. The paired-class homeodomain-containing transcription factor Otx2 is essential for normal head and brain development in vertebrates. Recent conditional knockout studies have pointed to multiple roles of this protein during late development and post-natal life. Yet, later expression and functions remain poorly characterized as specific reagents to detect the protein at any stage of development are still missing.

Results

We generated a new mouse line harbouring an insertion of the GFP gene within the Otx2 coding sequence to monitor the gene activity while preserving most of its functions. Our results demonstrate that this line represents a convenient tool to capture the dynamics of Otx2 gene expression from early embryonic stages to adulthood. In addition, we could visualize the intracellular location of Otx2 protein. In the retina, we reinterpret the former view of protein distribution and show a further level of regulation of intranuclear protein localization, which depends on the cell type.

Conclusion

The GFP-tagged Otx2 mouse line fully recapitulates previously known expression patterns and brings additional accuracy and easiness of detection of Otx2 gene activity. This opens up the way to live imaging of a highly dynamic actor of brain development and can be adapted to any mutant background to probe for genetic interaction between Otx2 and the mutated gene.


Url:
DOI: 10.1186/1471-213X-7-122
PubMed: 17980036
PubMed Central: 2204009

Links to Exploration step

PMC:2204009

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A new GFP-tagged line reveals unexpected Otx2 protein localization in retinal photoreceptors</title>
<author>
<name sortKey="Fossat, Nicolas" sort="Fossat, Nicolas" uniqKey="Fossat N" first="Nicolas" last="Fossat">Nicolas Fossat</name>
<affiliation>
<nlm:aff id="I1">IGFL, UMR CNRS 5242-INRA 1237-ENS, IFR128 Lyon-Gerland, 46 allée d'Italie, 69364 Lyon Cedex 07, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I4">Embryology Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Le Greneur, Coralie" sort="Le Greneur, Coralie" uniqKey="Le Greneur C" first="Coralie" last="Le Greneur">Coralie Le Greneur</name>
<affiliation>
<nlm:aff id="I1">IGFL, UMR CNRS 5242-INRA 1237-ENS, IFR128 Lyon-Gerland, 46 allée d'Italie, 69364 Lyon Cedex 07, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Beby, Francis" sort="Beby, Francis" uniqKey="Beby F" first="Francis" last="Béby">Francis Béby</name>
<affiliation>
<nlm:aff id="I1">IGFL, UMR CNRS 5242-INRA 1237-ENS, IFR128 Lyon-Gerland, 46 allée d'Italie, 69364 Lyon Cedex 07, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vincent, Stephane" sort="Vincent, Stephane" uniqKey="Vincent S" first="Stéphane" last="Vincent">Stéphane Vincent</name>
<affiliation>
<nlm:aff id="I3">Institut Pasteur, CNRS URA 2578, 28 rue du Docteur Roux, 75724 Paris cedex 15, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Godement, Pierre" sort="Godement, Pierre" uniqKey="Godement P" first="Pierre" last="Godement">Pierre Godement</name>
<affiliation>
<nlm:aff id="I1">IGFL, UMR CNRS 5242-INRA 1237-ENS, IFR128 Lyon-Gerland, 46 allée d'Italie, 69364 Lyon Cedex 07, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chatelain, Gilles" sort="Chatelain, Gilles" uniqKey="Chatelain G" first="Gilles" last="Chatelain">Gilles Chatelain</name>
<affiliation>
<nlm:aff id="I2">LBMC, UMR CNRS 5239 -ENS, IFR128 Lyon-Gerland, 46 allée d'Italie, 69364 Lyon Cedex 07, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lamonerie, Thomas" sort="Lamonerie, Thomas" uniqKey="Lamonerie T" first="Thomas" last="Lamonerie">Thomas Lamonerie</name>
<affiliation>
<nlm:aff id="I1">IGFL, UMR CNRS 5242-INRA 1237-ENS, IFR128 Lyon-Gerland, 46 allée d'Italie, 69364 Lyon Cedex 07, France</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">17980036</idno>
<idno type="pmc">2204009</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2204009</idno>
<idno type="RBID">PMC:2204009</idno>
<idno type="doi">10.1186/1471-213X-7-122</idno>
<date when="2007">2007</date>
<idno type="wicri:Area/Pmc/Corpus">001083</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001083</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">A new GFP-tagged line reveals unexpected Otx2 protein localization in retinal photoreceptors</title>
<author>
<name sortKey="Fossat, Nicolas" sort="Fossat, Nicolas" uniqKey="Fossat N" first="Nicolas" last="Fossat">Nicolas Fossat</name>
<affiliation>
<nlm:aff id="I1">IGFL, UMR CNRS 5242-INRA 1237-ENS, IFR128 Lyon-Gerland, 46 allée d'Italie, 69364 Lyon Cedex 07, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I4">Embryology Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Le Greneur, Coralie" sort="Le Greneur, Coralie" uniqKey="Le Greneur C" first="Coralie" last="Le Greneur">Coralie Le Greneur</name>
<affiliation>
<nlm:aff id="I1">IGFL, UMR CNRS 5242-INRA 1237-ENS, IFR128 Lyon-Gerland, 46 allée d'Italie, 69364 Lyon Cedex 07, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Beby, Francis" sort="Beby, Francis" uniqKey="Beby F" first="Francis" last="Béby">Francis Béby</name>
<affiliation>
<nlm:aff id="I1">IGFL, UMR CNRS 5242-INRA 1237-ENS, IFR128 Lyon-Gerland, 46 allée d'Italie, 69364 Lyon Cedex 07, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vincent, Stephane" sort="Vincent, Stephane" uniqKey="Vincent S" first="Stéphane" last="Vincent">Stéphane Vincent</name>
<affiliation>
<nlm:aff id="I3">Institut Pasteur, CNRS URA 2578, 28 rue du Docteur Roux, 75724 Paris cedex 15, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Godement, Pierre" sort="Godement, Pierre" uniqKey="Godement P" first="Pierre" last="Godement">Pierre Godement</name>
<affiliation>
<nlm:aff id="I1">IGFL, UMR CNRS 5242-INRA 1237-ENS, IFR128 Lyon-Gerland, 46 allée d'Italie, 69364 Lyon Cedex 07, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chatelain, Gilles" sort="Chatelain, Gilles" uniqKey="Chatelain G" first="Gilles" last="Chatelain">Gilles Chatelain</name>
<affiliation>
<nlm:aff id="I2">LBMC, UMR CNRS 5239 -ENS, IFR128 Lyon-Gerland, 46 allée d'Italie, 69364 Lyon Cedex 07, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lamonerie, Thomas" sort="Lamonerie, Thomas" uniqKey="Lamonerie T" first="Thomas" last="Lamonerie">Thomas Lamonerie</name>
<affiliation>
<nlm:aff id="I1">IGFL, UMR CNRS 5242-INRA 1237-ENS, IFR128 Lyon-Gerland, 46 allée d'Italie, 69364 Lyon Cedex 07, France</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC Developmental Biology</title>
<idno type="eISSN">1471-213X</idno>
<imprint>
<date when="2007">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background</title>
<p>Dynamic monitoring of protein expression and localization is fundamental to the understanding of biological processes. The paired-class homeodomain-containing transcription factor Otx2 is essential for normal head and brain development in vertebrates. Recent conditional knockout studies have pointed to multiple roles of this protein during late development and post-natal life. Yet, later expression and functions remain poorly characterized as specific reagents to detect the protein at any stage of development are still missing.</p>
</sec>
<sec>
<title>Results</title>
<p>We generated a new mouse line harbouring an insertion of the GFP gene within the Otx2 coding sequence to monitor the gene activity while preserving most of its functions. Our results demonstrate that this line represents a convenient tool to capture the dynamics of
<italic>Otx2 </italic>
gene expression from early embryonic stages to adulthood. In addition, we could visualize the intracellular location of Otx2 protein. In the retina, we reinterpret the former view of protein distribution and show a further level of regulation of intranuclear protein localization, which depends on the cell type.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>The GFP-tagged
<italic>Otx2 </italic>
mouse line fully recapitulates previously known expression patterns and brings additional accuracy and easiness of detection of
<italic>Otx2 </italic>
gene activity. This opens up the way to live imaging of a highly dynamic actor of brain development and can be adapted to any mutant background to probe for genetic interaction between
<italic>Otx2 </italic>
and the mutated gene.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">BMC Dev Biol</journal-id>
<journal-title>BMC Developmental Biology</journal-title>
<issn pub-type="epub">1471-213X</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">17980036</article-id>
<article-id pub-id-type="pmc">2204009</article-id>
<article-id pub-id-type="publisher-id">1471-213X-7-122</article-id>
<article-id pub-id-type="doi">10.1186/1471-213X-7-122</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Methodology Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>A new GFP-tagged line reveals unexpected Otx2 protein localization in retinal photoreceptors</article-title>
</title-group>
<contrib-group>
<contrib id="A1" contrib-type="author">
<name>
<surname>Fossat</surname>
<given-names>Nicolas</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<xref ref-type="aff" rid="I4">4</xref>
<email>nfossat@cmri.com.au</email>
</contrib>
<contrib id="A2" contrib-type="author">
<name>
<surname>Le Greneur</surname>
<given-names>Coralie</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>coralie.le.greneur@ens-lyon.fr</email>
</contrib>
<contrib id="A3" contrib-type="author">
<name>
<surname>Béby</surname>
<given-names>Francis</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>francis.beby@ens-lyon.fr</email>
</contrib>
<contrib id="A4" contrib-type="author">
<name>
<surname>Vincent</surname>
<given-names>Stéphane</given-names>
</name>
<xref ref-type="aff" rid="I3">3</xref>
<email>svincent@pasteur.fr</email>
</contrib>
<contrib id="A5" contrib-type="author">
<name>
<surname>Godement</surname>
<given-names>Pierre</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>pierre.godement@ens-lyon.fr</email>
</contrib>
<contrib id="A6" contrib-type="author">
<name>
<surname>Chatelain</surname>
<given-names>Gilles</given-names>
</name>
<xref ref-type="aff" rid="I2">2</xref>
<email>gchateli@ens-lyon.fr</email>
</contrib>
<contrib id="A7" corresp="yes" contrib-type="author">
<name>
<surname>Lamonerie</surname>
<given-names>Thomas</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>thomas.lamonerie@ens-lyon.fr</email>
</contrib>
</contrib-group>
<aff id="I1">
<label>1</label>
IGFL, UMR CNRS 5242-INRA 1237-ENS, IFR128 Lyon-Gerland, 46 allée d'Italie, 69364 Lyon Cedex 07, France</aff>
<aff id="I2">
<label>2</label>
LBMC, UMR CNRS 5239 -ENS, IFR128 Lyon-Gerland, 46 allée d'Italie, 69364 Lyon Cedex 07, France</aff>
<aff id="I3">
<label>3</label>
Institut Pasteur, CNRS URA 2578, 28 rue du Docteur Roux, 75724 Paris cedex 15, France</aff>
<aff id="I4">
<label>4</label>
Embryology Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia</aff>
<pub-date pub-type="collection">
<year>2007</year>
</pub-date>
<pub-date pub-type="epub">
<day>2</day>
<month>11</month>
<year>2007</year>
</pub-date>
<volume>7</volume>
<fpage>122</fpage>
<lpage>122</lpage>
<ext-link ext-link-type="uri" xlink:href="http://www.biomedcentral.com/1471-213X/7/122"></ext-link>
<history>
<date date-type="received">
<day>28</day>
<month>6</month>
<year>2007</year>
</date>
<date date-type="accepted">
<day>2</day>
<month>11</month>
<year>2007</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2007 Fossat et al; licensee BioMed Central Ltd.</copyright-statement>
<copyright-year>2007</copyright-year>
<copyright-holder>Fossat et al; licensee BioMed Central Ltd.</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/2.0">
<p>This is an Open Access article distributed under the terms of the Creative Commons Attribution License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/2.0"></ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</p>
<pmc-comment> Fossat Nicolas nfossat@cmri.com.au A new GFP-tagged line reveals unexpected Otx2 protein localization in retinal photoreceptors 2007BMC Developmental Biology 7(1): 122-. (2007)1471-213X(2007)7:1<122>urn:ISSN:1471-213X</pmc-comment>
</license>
</permissions>
<abstract>
<sec>
<title>Background</title>
<p>Dynamic monitoring of protein expression and localization is fundamental to the understanding of biological processes. The paired-class homeodomain-containing transcription factor Otx2 is essential for normal head and brain development in vertebrates. Recent conditional knockout studies have pointed to multiple roles of this protein during late development and post-natal life. Yet, later expression and functions remain poorly characterized as specific reagents to detect the protein at any stage of development are still missing.</p>
</sec>
<sec>
<title>Results</title>
<p>We generated a new mouse line harbouring an insertion of the GFP gene within the Otx2 coding sequence to monitor the gene activity while preserving most of its functions. Our results demonstrate that this line represents a convenient tool to capture the dynamics of
<italic>Otx2 </italic>
gene expression from early embryonic stages to adulthood. In addition, we could visualize the intracellular location of Otx2 protein. In the retina, we reinterpret the former view of protein distribution and show a further level of regulation of intranuclear protein localization, which depends on the cell type.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>The GFP-tagged
<italic>Otx2 </italic>
mouse line fully recapitulates previously known expression patterns and brings additional accuracy and easiness of detection of
<italic>Otx2 </italic>
gene activity. This opens up the way to live imaging of a highly dynamic actor of brain development and can be adapted to any mutant background to probe for genetic interaction between
<italic>Otx2 </italic>
and the mutated gene.</p>
</sec>
</abstract>
</article-meta>
</front>
<body>
<sec>
<title>Background</title>
<p>Studying the expression and intracellular localization of transcription factors is a difficult task because both may be highly dynamic. This is precisely the case for Otx2. Mouse
<italic>Otx2 </italic>
is a
<italic>paired-class </italic>
homeobox gene that belongs to a gene family also containing
<italic>Otx1 </italic>
and the more divergent
<italic>Crx </italic>
[
<xref ref-type="bibr" rid="B1">1</xref>
]. It plays critical roles in early brain induction and development [
<xref ref-type="bibr" rid="B2">2</xref>
]. It is expressed in a very dynamic fashion in areas of the central nervous system (CNS) that rapidly change as development proceeds [
<xref ref-type="bibr" rid="B3">3</xref>
-
<xref ref-type="bibr" rid="B5">5</xref>
]. Several germinal and conditional knock-out studies have emphasized its involvement in multiple functions such as head formation [
<xref ref-type="bibr" rid="B6">6</xref>
-
<xref ref-type="bibr" rid="B8">8</xref>
], photoreceptor fate determination [
<xref ref-type="bibr" rid="B9">9</xref>
] or post-natal survival and growth [
<xref ref-type="bibr" rid="B10">10</xref>
].</p>
<p>Despite the great number of genetic models generated to address its activities, there is still a need for tools to study the complex dynamics of expression of this gene in the CNS. Indeed, one major problem is the lack of specific Otx2 antibody. The strong sequence similarity between Otx1 and Otx2 has made it difficult to raise specific sera, the use of which is therefore particularly delicate [
<xref ref-type="bibr" rid="B4">4</xref>
,
<xref ref-type="bibr" rid="B11">11</xref>
]. The distribution of Otx2 protein has been first investigated during mouse development [
<xref ref-type="bibr" rid="B4">4</xref>
] with a polyclonal serum that was later shown to cross react with Otx1 protein [
<xref ref-type="bibr" rid="B12">12</xref>
] and then in newborn rats [
<xref ref-type="bibr" rid="B11">11</xref>
]. In adults, aside from few studies such as in the retina [
<xref ref-type="bibr" rid="B13">13</xref>
], no general study has been carried out. As a result, unambiguous
<italic>Otx2 </italic>
expression data mostly rely on mRNA detection [
<xref ref-type="bibr" rid="B5">5</xref>
,
<xref ref-type="bibr" rid="B14">14</xref>
].
<italic>Otx2 in situ </italic>
hybridization (ISH) is widely used to characterize the patterning and development of anterior neuroectoderm. However, several studies have raised the possibility of translational regulation at gastrula stage [
<xref ref-type="bibr" rid="B15">15</xref>
,
<xref ref-type="bibr" rid="B16">16</xref>
], and recent work suggested that
<italic>Otx2 </italic>
specific miRNA decay might time the generation of retinal neurons [
<xref ref-type="bibr" rid="B17">17</xref>
]. Therefore, true Otx2 expression analysis should rely on protein rather than mRNA detection. Several LacZ reporter lines have been created [
<xref ref-type="bibr" rid="B6">6</xref>
,
<xref ref-type="bibr" rid="B18">18</xref>
] but due to probable deletion of splicing and regulatory sequences [
<xref ref-type="bibr" rid="B19">19</xref>
] or mRNA nonsense mediated decay, none of them allowed the complete monitoring of
<italic>Otx2 </italic>
gene expression. In addition, these models do not allow the precise determination of Otx2 protein intracellular localization. Yet, this appears to be tightly regulated in the developing retina [
<xref ref-type="bibr" rid="B13">13</xref>
,
<xref ref-type="bibr" rid="B20">20</xref>
]. Moreover it would be interesting to be able to examine OTX2 expression and detailed localization, and to identify directly Otx2-expressing cells, in live tissues.</p>
<p>To overcome these difficulties, we have generated a new mouse line harbouring a GFP tag within
<italic>Otx2 </italic>
natural genome context. Genetic modifications were made to ensure as a normal expression as possible. This line allowed to visualize the full Otx2 development pattern and to discover an unexpected control of Otx2 protein subcellular localization.</p>
</sec>
<sec>
<title>Results</title>
<sec>
<title>Generation of an Otx2
<sup>+/Otx2-GFP </sup>
reporter line</title>
<p>In order to clearly identify Otx2 expressing cells during mouse development and throughout life, we created a new allele bearing the MuGFP coding sequence [
<xref ref-type="bibr" rid="B21">21</xref>
] in frame with Otx2 coding sequence (Figure
<xref ref-type="fig" rid="F1">1</xref>
). We had previously shown that fusing the GFP polypeptide both at N- and C-terminus of Otx2 does not modify its
<italic>in vitro </italic>
localization, DNA binding, and transcription properties [
<xref ref-type="bibr" rid="B22">22</xref>
]. We chose a C-terminal GFP fusion, and put an excisable neo selection cassette immediately downstream the GFP stop codon. Since subtle modifications of the Otx2 3'UTR coding region result in impaired mRNA translation in early embryos [
<xref ref-type="bibr" rid="B16">16</xref>
], we took particular care to keep this part of the gene as intact as possible. After homologous recombination of the targeting molecule in ES cells, neo selection cassette was removed by flp recombinase mediated excision, leaving behind a single FRT site between GFP stop codon and
<italic>Otx2 </italic>
3'UTR (Figure
<xref ref-type="fig" rid="F1">1a</xref>
). All steps of homologous recombination and neo excision were monitored by appropriate PCR and southern blot analyses (Figure
<xref ref-type="fig" rid="F1">1b–d</xref>
).</p>
<fig position="float" id="F1">
<label>Figure 1</label>
<caption>
<p>
<bold>Generation of the
<italic>Otx2</italic>
<sup>OG </sup>
allele. a. </bold>
The structure of targeting vector (first line),
<italic>Otx2 </italic>
wild type locus (second line), targeted
<italic>OGN </italic>
allele after homologous recombination (third line) and
<italic>OG </italic>
allele after removal of the
<italic>Neo </italic>
cassette by FLP recombinase (fourth line) is presented. Gray boxes are
<italic>Otx2 </italic>
coding regions, whites boxes are
<italic>Otx2 </italic>
5' and 3' UTR regions, yellow box is
<italic>PGK-Neo </italic>
selection cassette, green box is
<italic>muGFP </italic>
cDNA. Red triangles are
<italic>FRT </italic>
sites. Bent arrows symbolize the three main transcription starts sites known for
<italic>Otx2 </italic>
gene [19, 32]. Dotted lines show BamH I fragments detected by southern blot analysis using probe represented by a thick line. PCR primers used are indicated by arrows. Product obtained with A and B primers is shown. Scale bar and sizes of fragments are indicated.
<bold>b. </bold>
PCR analysis of Neo
<sup>R </sup>
ES clones using primers A and B showing two non-homologous (N) and one homologous (H) recombinants.
<bold>c. </bold>
Southern blot analysis using BamH I digested genomic DNA and probe indicated in
<bold>a </bold>
of wild type and homologous recombinant clones. Genotypes are indicated.
<bold>d. </bold>
PCR genotyping of mice produced from
<italic>Otx2</italic>
<sup>
<italic>+/OG </italic>
</sup>
ES cells. Analyse was done using C, D and E primers. Sizes, schematic representations of amplified fragments (see part
<bold>a </bold>
for legend) and deduced genotypes are indicated.</p>
</caption>
<graphic xlink:href="1471-213X-7-122-1"></graphic>
</fig>
<p>Recombinant ES cells were injected into recipient blastocysts to generate the
<italic>Otx2</italic>
<sup>
<italic>+/Otx2-GFP </italic>
</sup>
transgenic line. Chimaeric males were obtained who transmitted the
<italic>Otx2</italic>
<sup>
<italic>Otx2-GFP </italic>
</sup>
allele (thereafter referred to as
<italic>Otx2</italic>
<sup>
<italic>OG </italic>
</sup>
allele) to their offspring.</p>
</sec>
<sec>
<title>Hypomorphic phenotypes in
<italic>Otx2</italic>
<sup>
<italic>OG/OG </italic>
</sup>
animals</title>
<p>Unexpectedly, the breeding of
<italic>Otx2</italic>
<sup>
<italic>+/OG </italic>
</sup>
mice yielded only 4% living homozygous and fertile
<italic>Otx2</italic>
<sup>
<italic>OG/OG </italic>
</sup>
offspring (Table
<xref ref-type="table" rid="T1">1</xref>
), meaning the
<italic>Otx2</italic>
<sup>
<italic>OG </italic>
</sup>
allele is hypomorphic. This was surprising for two reasons. First, Otx2 and Otx2-GFP protein display identical activities
<italic>in vitro </italic>
[
<xref ref-type="bibr" rid="B22">22</xref>
]. Second,
<italic>Otx2</italic>
<sup>
<italic>OG/+ </italic>
</sup>
×
<italic>Otx2</italic>
<sup>
<italic>+/+ </italic>
</sup>
crosses yielded 50% heterozygous animals (Table
<xref ref-type="table" rid="T1">1</xref>
), whereas in the 129/Sv background, only 30% hemizygous
<italic>Otx2</italic>
<sup>
<italic>+/- </italic>
</sup>
newborn survive [
<xref ref-type="bibr" rid="B10">10</xref>
]. To check for defects in homozygous embryos, mice were sacrificed at various gestational stages. Homozygous embryos were found in mendelian proportions up to birth (see Table
<xref ref-type="table" rid="T1">1</xref>
), but showed variable facial abnormalities (Figure
<xref ref-type="fig" rid="F2">2b</xref>
). This evoked a problem of gene dosage or protein activity. Western blot analysis of E9.5 heterozygous embryos showed comparable amount of Otx2 and Otx2-GFP proteins, indicating a similar expression level of both alleles (Figure
<xref ref-type="fig" rid="F2">2c</xref>
). Thus, activity rather than quantity of Otx2-GFP protein must be rate limiting, though subtly since it is sufficient to achieve complete mouse development in a small proportion of animals.</p>
<fig position="float" id="F2">
<label>Figure 2</label>
<caption>
<p>
<bold>Characterization of
<italic>Otx2</italic>
<sup>
<italic>OG/OG </italic>
</sup>
homozygous embryos. a</bold>
. Morphology of
<italic>Otx2</italic>
<sup>
<italic>OG/OG </italic>
</sup>
and control
<italic>Otx2</italic>
<sup>
<italic>+/OG </italic>
</sup>
animals at E8.5.
<bold>b. </bold>
Analysis of Otx2-GFP and brain markers in
<italic>Otx2</italic>
<sup>
<italic>OG/OG </italic>
</sup>
and control
<italic>Otx2</italic>
<sup>
<italic>+/OG </italic>
</sup>
E9.5 embryos. Otx2-GFP is seen by direct GFP fluorescence visualisation and
<italic>Six3</italic>
,
<italic>En2</italic>
,
<italic>Gbx2 </italic>
and
<italic>Fgf8 </italic>
mRNAs are detected by whole-mount
<italic>in situ </italic>
hybridization. For E9.5
<italic>Otx2</italic>
<sup>
<italic>OG/OG </italic>
</sup>
animals, upper and lower panels show embryos with weak and strong abnormalities respectively. Anterior is leftward. Scale bar: 500 μm.
<bold>c. </bold>
Detection of Otx2, Otx2-GFP and Otx1 proteins by western blot analysis of nuclear extracts from tails and heads of
<italic>Otx2</italic>
<sup>
<italic>+/+ </italic>
</sup>
and
<italic>Otx2</italic>
<sup>
<italic>+/OG </italic>
</sup>
E9.5 embryos using an anti-Otx antibody.
<bold>d. </bold>
Normal structure of the retina in surviving
<italic>Otx2</italic>
<sup>
<italic>OG/OG </italic>
</sup>
adults. Comparison of bright field (BF left panels), GFP fluorescence (middle panels) and GFAP expression (right panels) in adult retinas of the indicated genotype. Scale bars : 50 μm.</p>
</caption>
<graphic xlink:href="1471-213X-7-122-2"></graphic>
</fig>
<table-wrap position="float" id="T1">
<label>Table 1</label>
<caption>
<p>Genotypes of offspring obtained from Otx2
<sup>+/OG </sup>
× Otx2
<sup>+/+ </sup>
and Otx2
<sup>+/OG </sup>
× Otx2
<sup>+/OG </sup>
intercrosses at various stages of development.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<td></td>
<td align="center">
<bold>Genotype</bold>
</td>
<td align="center">
<bold>+/+</bold>
</td>
<td align="center">
<bold>+/OG</bold>
</td>
<td align="center">
<bold>OG/OG</bold>
</td>
<td align="center">
<bold>Total</bold>
</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left">
<bold>Intercrosses</bold>
</td>
<td align="left">
<bold>Stage</bold>
</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td align="left">
<bold>+/OG × +/+</bold>
</td>
<td align="left">Post-natal</td>
<td align="center">149</td>
<td align="center">146</td>
<td></td>
<td align="center">295</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>%</italic>
</td>
<td align="center">
<italic>50,5</italic>
</td>
<td align="center">
<italic>49,5</italic>
</td>
<td></td>
<td></td>
</tr>
<tr>
<td align="left">
<bold>+/OG × +/OG</bold>
</td>
<td align="left">E7.5</td>
<td align="center">0</td>
<td align="center">2</td>
<td align="center">5</td>
<td></td>
</tr>
<tr>
<td></td>
<td align="left">E8.5</td>
<td align="center">11</td>
<td align="center">23</td>
<td align="center">16</td>
<td></td>
</tr>
<tr>
<td></td>
<td align="left">E9.5</td>
<td align="center">23</td>
<td align="center">56</td>
<td align="center">17</td>
<td></td>
</tr>
<tr>
<td></td>
<td align="left">E13.5</td>
<td align="center">3</td>
<td align="center">4</td>
<td align="center">3</td>
<td></td>
</tr>
<tr>
<td></td>
<td align="left">E15.5</td>
<td align="center">1</td>
<td align="center">6</td>
<td align="center">1</td>
<td></td>
</tr>
<tr>
<td></td>
<td align="left">E17.5</td>
<td align="center">2</td>
<td align="center">5</td>
<td align="center">4</td>
<td></td>
</tr>
<tr>
<td></td>
<td align="left">E18.5</td>
<td align="center">4</td>
<td align="center">2</td>
<td align="center">1</td>
<td></td>
</tr>
<tr>
<td></td>
<td align="left">Ante natal</td>
<td align="center">44</td>
<td align="center">98</td>
<td align="center">47</td>
<td align="center">189</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>%</italic>
</td>
<td align="center">
<italic>23,3</italic>
</td>
<td align="center">
<italic>51,9</italic>
</td>
<td align="center">
<italic>24,9</italic>
</td>
<td></td>
</tr>
<tr>
<td></td>
<td align="left">Post-natal (P10–P15)</td>
<td align="center">28</td>
<td align="center">47</td>
<td align="center">3</td>
<td align="center">78</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>%</italic>
</td>
<td align="center">
<italic>35,9</italic>
</td>
<td align="center">
<italic>60,3</italic>
</td>
<td align="center">
<italic>3,8</italic>
</td>
<td></td>
</tr>
</tbody>
</table>
</table-wrap>
<p>To understand in which manner and when this activity could be limiting, we explored the major early functions of
<italic>Otx2 </italic>
in homozygous
<italic>Otx2</italic>
<sup>
<italic>OG/OG </italic>
</sup>
embryos. It is known that this gene controls anterior visceral endoderm (AVE) movement and subsequent gastrulation [
<xref ref-type="bibr" rid="B18">18</xref>
], but morphological examination showed no obvious difference between
<italic>Otx2</italic>
<sup>
<italic>OG/OG </italic>
</sup>
and
<italic>Otx2</italic>
<sup>
<italic>OG/+ </italic>
</sup>
embryos up to E8.5 (Figure
<xref ref-type="fig" rid="F2">2a</xref>
). This indicates that AVE migration and gastrulation proceeded normally. By contrast, we could observe variable brain reduction from E9.5 on (Figure
<xref ref-type="fig" rid="F2">2b</xref>
).
<italic>Otx2 </italic>
is required in the anterior neuroectoderm to properly receive signals from the anterior neural ridge (ANR) and to maintain forebrain development [
<xref ref-type="bibr" rid="B23">23</xref>
].
<italic>Six3 </italic>
is a good indicator of forebrain response to ANR induction. In E9.5
<italic>Otx2</italic>
<sup>
<italic>OG/OG </italic>
</sup>
embryos of mild or strong phenotype,
<italic>Six3 </italic>
was expressed, confirming normal forebrain induction and maintenance (Figure
<xref ref-type="fig" rid="F2">2b</xref>
). As
<italic>Otx2 </italic>
itself monitors forebrain maintenance, Otx2-GFP fluorescence present in every phenotype confirmed an established forebrain identity. It is well known that
<italic>Otx2 </italic>
controls the compartmentalization and maturation of the forebrain and midbrain [
<xref ref-type="bibr" rid="B24">24</xref>
]. In particular, it is necessary to set the midbrain-hindbrain boundary (MHB). Although a slight anterior shift of Fgf8 expression could not be completely excluded,
<italic>Fgf8 </italic>
and
<italic>Gbx2 </italic>
pattern showed no obvious alteration (Figure
<xref ref-type="fig" rid="F2">2b</xref>
), indicating that the MHB was correctly established. On the contrary, the
<italic>En2 </italic>
domain, which normally labels mesencephalon, appeared shifted close to the telencephalon and was reduced in strong phenotypes, showing partial or complete disappearance of diencephalon and mesencephalon respectively – in all cases, however,
<italic>Six3 </italic>
expression showed that telencephalon developed normally (Figure
<xref ref-type="fig" rid="F2">2b</xref>
). Altogether, these data demonstrate that Otx2-GFP protein activity possesses most essential activities of native Otx2, but that it may in some instances be rate limiting for diencephalon and mesencephalon maturation. Interestingly, analysis of surviving homozygous
<italic>Otx2</italic>
<sup>
<italic>OG/OG </italic>
</sup>
adults showed no obvious difference with heterozygous animals. For instance photoreceptor cells of the retina, which are highly sensitive to
<italic>Otx2 </italic>
expression [
<xref ref-type="bibr" rid="B9">9</xref>
], appeared normal in
<italic>Otx2</italic>
<sup>
<italic>OG/OG </italic>
</sup>
adults (Figure
<xref ref-type="fig" rid="F2">2d</xref>
). To assay for photoreceptor cells health status, we performed immunostaining of the glial fibrillary acidic protein (GFAP) in glial Müller cells. This protein is up regulated in Müller cells in a variety of degenerative conditions [
<xref ref-type="bibr" rid="B25">25</xref>
]. The absence of marked GFAP induction in
<italic>Otx2</italic>
<sup>
<italic>OG/OG </italic>
</sup>
retina confirmed that photoreceptors were healthy thus demonstrating the functionality of Otx2-GFP protein in these neurons. For the sake of animal care simplicity, heterozygous animals were used for the continuation of this study.</p>
</sec>
<sec>
<title>Expression pattern in
<italic>Otx2</italic>
<sup>
<italic>+/OG </italic>
</sup>
animals</title>
<p>To test whether the Otx2
<sup>
<italic>+/OG </italic>
</sup>
mouse line is an accurate reporter of
<italic>Otx2 </italic>
gene activity, we analyzed Otx2-GFP expression pattern. First, early expression of the transgenic allele was studied by direct fluorescence observation of E6.5 and E7.5 embryos. As expected, strong GFP fluorescence was detected in the embryonic part of E6.5 Otx2
<sup>
<italic>+/OG </italic>
</sup>
embryos and became regionalized toward the anterior pole in E7.5 embryos (Figure
<xref ref-type="fig" rid="F3">3a</xref>
). As Otx2 translation in epiblast has been shown to be very sensitive to locus modification [
<xref ref-type="bibr" rid="B16">16</xref>
], we wondered whether Otx2-GFP was correctly expressed both in epiblast and anterior visceral endoderm (AVE). To verify this, we observed sections of E6.5 embryos. Indeed, nuclear Otx2-GFP was found in both layers (Figure
<xref ref-type="fig" rid="F3">3b</xref>
). This expression pattern matches exactly the one described for endogenous
<italic>Otx2 </italic>
gene [
<xref ref-type="bibr" rid="B6">6</xref>
].</p>
<fig position="float" id="F3">
<label>Figure 3</label>
<caption>
<p>
<bold>Early
<italic>Otx2-GFP </italic>
expression in epiblast and AVE. a. </bold>
GFP fluorescence and transmission observations of
<italic>Otx2</italic>
<sup>
<italic>+/OG </italic>
</sup>
and control
<italic>Otx2</italic>
<sup>
<italic>+/+ </italic>
</sup>
embryos at E6.5 and E7.5. Anterior is leftward. Scale bars: 100 μm.
<bold>b. </bold>
Direct visualisation of GFP fluorescence (green) and immunofluorescent staining of F-actin (Phalloidin – red) and DNA (Hoechst – blue) on 10 μm thin uterus sections containing E6.5
<italic>Otx2</italic>
<sup>
<italic>+/OG </italic>
</sup>
embryo. Green staining in and around the extraembryonic part of the conceptus is not due to GFP fluorescence but to autofluorescence of decidual and blood cells that are present in the tissue. Images on the right correspond to magnification of white box. Arrow indicates the boundary between embryonic and extra-embryonic part of the conceptus. Dotted line delimits the frontier between anterior visceral endoderm (ave) and epiblast (ep). Anterior is leftward. Scale bars: 50 μm.</p>
</caption>
<graphic xlink:href="1471-213X-7-122-3"></graphic>
</fig>
<p>Otx2-GFP protein was then analyzed in developing heterozygous embryos between E8.5 and E12.5 (Figure
<xref ref-type="fig" rid="F4">4</xref>
) and compared to
<italic>Otx2 </italic>
mRNA pattern. Again, the dynamics of Otx2-GFP protein expression paralleled that of
<italic>Otx2 </italic>
mRNA at all stages. In line with this, we noticed at E10.5 and E11.5 a rapid decrease of Otx2-GFP protein in telencephalic areas where mRNA was down-regulated. Transverse sections across developing sensory organs of E12.5 embryos show GFP signals in olfactory epithelium, eye and inner ear (Figure
<xref ref-type="fig" rid="F4">4i–k</xref>
) that are characteristic of Otx2 pattern, indicating that Otx2-GFP products recapitulate endogenous Otx2 expression.</p>
<fig position="float" id="F4">
<label>Figure 4</label>
<caption>
<p>
<bold>Dynamics of
<italic>Otx2-GFP </italic>
expression at mid-gestation</bold>
. Direct visualisation of GFP fluorescence of
<italic>Otx2</italic>
<sup>
<italic>+/OG </italic>
</sup>
embryos and one control
<italic>Otx2</italic>
<sup>
<italic>+/+ </italic>
</sup>
E11.5 embryo (
<bold>a-d</bold>
) versus
<italic>Otx2 </italic>
mRNA localisation detected by whole-mount
<italic>in situ </italic>
hybridization on
<italic>Otx2</italic>
<sup>
<italic>+/+</italic>
</sup>
animals (
<bold>e-h</bold>
) at indicated stages. Anterior is leftward. The arrow indicates the position of the midbrain-hindbrain boundary. Lower right panels: direct detection of GFP fluorescence of transverse sections of E12.5
<italic>Otx2</italic>
<sup>
<italic>+/OG </italic>
</sup>
embryo at the level of nasal cavities (
<bold>i</bold>
), eyecup (
<bold>j</bold>
) and inner ear (
<bold>k</bold>
). di, diencephalon; mes, mesencephalon; oe, olfactory epithelium; ov, optic vesicle; tel, telencephalon. Scale bars: 500 μm in
<bold>a-d</bold>
, 100 μm in
<bold>i-l</bold>
.</p>
</caption>
<graphic xlink:href="1471-213X-7-122-4"></graphic>
</fig>
<p>We then addressed Otx2-GFP expression at later stages. This was of particular importance because a previous reporter line failed to express ß-galactosidase beyond E12.5 [
<xref ref-type="bibr" rid="B6">6</xref>
]. In E16.5 sections, as expected again, expression was found in olfactory epithelium, diencephalon, roof of mesencephalon, and choroid plexuses (Figure
<xref ref-type="fig" rid="F5">5a–d</xref>
). In P2 brain sections, this expression was maintained. We also identified a diffuse group of Otx2-GFP positive cells in the basal telencephalon (Figure
<xref ref-type="fig" rid="F5">5f</xref>
). Furthermore, our line allowed to easily visualize gradients of
<italic>Otx2 </italic>
expression: such was the case in superior colliculus (SC), where superficial optic layers showed stronger labelling than deep layers, and in cerebellum with high posterior to low anterior labelling of the external granular layer (Figure
<xref ref-type="fig" rid="F5">5g, h</xref>
). In adults, very strong labelling could still be seen, among other locations, in choroids plexuses, thalamus as well as SC (Figure
<xref ref-type="fig" rid="F5">5i–m</xref>
). Thus, the
<italic>Otx2</italic>
<sup>OG </sup>
allele appears to be functional from early development till adulthood. To evaluate the sensitivity of detection of the Otx2-GFP protein based on the direct fluorescence emitted by GFP, we compared it with that based on immunostaining using an anti-GFP antibody and a secondary fluorescent antibody. As shown in Figure
<xref ref-type="fig" rid="F5">5k–m</xref>
for neurons in the thalamus (ventral lateral geniculate nucleus), both methods detect the same number of Otx2-GFP positive neurons. Similar observations were made in the retina and superior colliculus (not shown). We conclude that virtually all sites of Otx2 protein expression can be recorded by direct observation of the GFP fluorescence in the
<italic>Otx2</italic>
<sup>
<italic>+/OG </italic>
</sup>
mouse line. Use of amplification reactions might of course further reveal sites of Otx2 expression, particularly at the subcellular level.</p>
<fig position="float" id="F5">
<label>Figure 5</label>
<caption>
<p>
<bold>Efficient
<italic>Otx2-GFP </italic>
detection during late-development and in adults. a-j. </bold>
Direct visualisation of GFP fluorescence on 10μm thin section of E16.5 (
<bold>a-d</bold>
), P2 (
<bold>e-h</bold>
) and adult (
<bold>i-j</bold>
)
<italic>Otx2</italic>
<sup>
<italic>+/OG </italic>
</sup>
animals.
<bold>b-d. </bold>
Magnifications of part delimitated by the corresponding red boxes in image
<bold>a</bold>
.
<bold>f-h. </bold>
Magnifications of part delimitated by the corresponding red boxes in image
<bold>e</bold>
. Insets in
<bold>a </bold>
and
<bold>e </bold>
are Hoechst staining of the same sections (left) or control fluorescence of 10 μm thin sections of
<italic>Otx2</italic>
<sup>
<italic>+/+ </italic>
</sup>
animals (right). Anterior is leftward.
<bold>k-m. </bold>
Comparison of Otx2-GFP detection by anti-GFP antibody (
<bold>k</bold>
) or direct GFP fluorescence (
<bold>l</bold>
) in the ventral lateral geniculate nucleus of adult
<italic>Otx2</italic>
<sup>
<italic>+/OG </italic>
</sup>
animals. cb, cerebellum; cp, choroid plexus; cx, cortex; di, diencephalon; ic, inferior colliculus; mes, mesencephalon; oe, olfactory epithelium; sc, superior colliculus. Scale bars: 500 μm (a, e, i, j) and 10 μm (k-m).</p>
</caption>
<graphic xlink:href="1471-213X-7-122-5"></graphic>
</fig>
</sec>
<sec>
<title>Otx2 is located at the inner face of nuclear envelope in retinal photoreceptors</title>
<p>We then wondered whether Otx2-GFP intracellular localization exhibits a regulation similar to the one of native Otx2 protein. In adult mouse retina, a previous study using immunofluorescence with an Otx2 antibody described the protein as nuclear in retinal pigment (RPE) and bipolar cells, but cytoplasmic in photoreceptor (PR) cells [
<xref ref-type="bibr" rid="B13">13</xref>
]. In embryonic chick retina, the protein was found in the nuclei of photoreceptor cells [
<xref ref-type="bibr" rid="B26">26</xref>
]. We therefore used Otx2-GFP to carefully examine cellular localization of Otx2 protein in the retina of adult mice using confocal microscopy. As expected, Otx2-GFP was distributed throughout the nuclear space in RPE cells and in cells located at the outermost part of the internal nuclear layer (INL) (Figure
<xref ref-type="fig" rid="F6">6a, b</xref>
), which correspond to bipolar cells [
<xref ref-type="bibr" rid="B13">13</xref>
]. In photoreceptor cells, which have very little cytoplasm around their soma, Otx2-GFP appeared to surround the PR nuclei, but we could not determine whether it was excluded or not from the nucleus. To resolve this issue, we labelled the nuclear envelope with lamin-B and lamin A/C antibodies (Figure
<xref ref-type="fig" rid="F6">6</xref>
and data not shown). This showed diffuse strictly nuclear localization for Otx2-GFP in RPE cells and bipolar cells (Figure
<xref ref-type="fig" rid="F6">6c, d</xref>
), but also in PRs – in these cells, the protein concentrated at the periphery of the nuclei, facing the inner nuclear envelope (Figure
<xref ref-type="fig" rid="F6">6e–e"</xref>
). To rule out the possibility of an artefact due to GFP as the cause of this unexpected protein distribution in PR cells, we analyzed native Otx2 localization in PRs of wild type mice by immunofluorescence using an anti-Otx antibody (which reacts against both Otx1 and Otx2) together with an anti-lamin-B antibody. As there is no reported
<italic>Otx1 </italic>
gene expression in PRs, we interpret the anti-Otx signal as the detection of Otx2 protein. We obtained the same result as with Otx2-GFP (Figure
<xref ref-type="fig" rid="F6">6f–f"</xref>
), demonstrating that Otx2 protein definitely adopts a perinuclear location in photoreceptors.</p>
<fig position="float" id="F6">
<label>Figure 6</label>
<caption>
<p>
<bold>Regulated Otx2-GFP nuclear localization in adult retina. Confocal microscopy analysis. a, b. </bold>
Direct visualisation of GFP fluorescence (green) and propidium iodide staining of DNA (red) on 10 μm thin section of
<italic>Otx2</italic>
<sup>
<italic>+/OG </italic>
</sup>
(
<bold>a</bold>
) and control
<italic>Otx2</italic>
<sup>
<italic>+/+ </italic>
</sup>
(
<bold>b</bold>
) adult retina.
<bold>c-f". </bold>
Localisation of Otx2-GFP (direct visualisation of GFP fluorescence – green,
<bold>c,d,e',e"</bold>
), immunofluorescent staining of nuclear envelope (lamin B – red,
<bold>c,d,e,e", f, f"</bold>
) and immunofluorescent staining of Otx2 (green –
<bold>f', f"</bold>
) on 10 μm thin section of
<italic>Otx2</italic>
<sup>
<italic>+/OG </italic>
</sup>
and wild type adult retina showing retinal pigment epithelium cells (RPE,
<bold>c</bold>
), outer cells of the inner nuclear layer (INL,
<bold>d</bold>
) and photoreceptor cells of the outer nuclear layer (ONL,
<bold>e-f"</bold>
). Image
<bold>e" </bold>
and
<bold>f" </bold>
are overlays of images
<bold>e </bold>
and
<bold>e'</bold>
and of images
<bold>f </bold>
and
<bold>f' </bold>
respectively. Scale bars: 10 μm.</p>
</caption>
<graphic xlink:href="1471-213X-7-122-6"></graphic>
</fig>
</sec>
</sec>
<sec>
<title>Discussion</title>
<p>We have generated a new mouse line which is unique for direct visualisation of
<italic>Otx2 </italic>
gene activity. Until now, no other reporter line existed that sustains
<italic>Otx2 </italic>
driven expression from early embryonic stages to adulthood. As a result of the knock-in fusion strategy in the mouse
<italic>Otx2</italic>
<sup>
<italic>OG/+ </italic>
</sup>
line, the Otx2-GFP protein is expressed at physiological levels and appears to display most activities and subcellular localization as normal Otx2 protein. In addition, it provides a straightforward mean to discriminate Otx2- from Otx1-expressing cells throughout the mouse brain. Homozygous
<italic>Otx2</italic>
<sup>
<italic>OG/OG </italic>
</sup>
animals may develop normally but often show mild diencephalic and mesencephalic maturation defects. Interestingly, this reveals that these structures are the most demanding ones for
<italic>Otx2 </italic>
activity, in line with the frequent ocular and brain defects found in heterozygous mice and human mutants [
<xref ref-type="bibr" rid="B8">8</xref>
,
<xref ref-type="bibr" rid="B27">27</xref>
]. The strong signal to noise ratio of the GFP provides a convenient readout of the
<italic>Otx2 </italic>
gene dynamics of expression even in living animals. Furthermore, using the
<italic>Otx2</italic>
<sup>
<italic>OG </italic>
</sup>
allele in combination with modified versions of genes controlling anterior neuroectoderm patterning and development will provide a simple way to monitor normal and perturbed cellular movements.</p>
<p>There is increasing evidence that beyond elaborated control of expression through regulation of transcription by complex enhancers, developmental genes may see their function further modulated by other posttranscriptional mechanisms. Here, the expression of GFP-tagged Otx2 from its endogenous locus helped us to unravel cell-specific control of protein localization within the retina. Using the mouse
<italic>Otx2</italic>
<sup>
<italic>OG/+ </italic>
</sup>
line, we disclosed that in adult PR cells, Otx2 protein is not cytoplasmic as previously thought, but restricted to a small volume at the inner periphery of nuclei. Interestingly, similar tight regulation of localization was found for the rod photoreceptor specific nuclear receptor Nr2e3 [
<xref ref-type="bibr" rid="B28">28</xref>
]. The significance of such an unusual location for a transcription factor is presently mysterious. The inner face of nuclear envelope gathers silent heterochromatin but also highly expressed DNA domains at the vicinity of nuclear pores [
<xref ref-type="bibr" rid="B29">29</xref>
]. The protein could be sequestrated at the periphery of the PR nucleus in order to regulate the amount of free active Otx2 in the nucleoplasm. Alternatively, all Otx2 proteins at the periphery of the nucleus could be transcriptionally active, bringing loops of DNA containing Otx2-regulated genes to the vicinity of nuclear pores to facilitate mRNA export. Indeed, the chromatin appears to be least condensed at the nuclear periphery of photoreceptor cells [
<xref ref-type="bibr" rid="B30">30</xref>
]. Fish analysis of Otx2 target gene should test this hypothesis. Another possibility is that a specific fraction of chromatin resides at the edge of the nucleus, to which Otx2 and other transcription factors, such as Nr2e3 would be associated. Among the questions raised by this study are the following: when does this pattern take place during PR differentiation and does it have a specific role in PR genetic expression and function ? Conditional ablation of Otx2 function in mature PR will certainly bring interesting answers to these questions.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>The methodology presented here describes the GFP tagging of an important transcription factor from its own gene locus. This leads to the creation of transgenic animals where both tissue and cell specific gene expression as well as precise intracellular protein localization can be easily followed. The established line allows to monitor the complete expression pattern of
<italic>Otx2 </italic>
gene during mouse life without any interference from
<italic>Otx1 </italic>
gene products. Its sensitivity leads us to identify peculiar aspects of Otx2 protein expression and cellular localization. This last aspect reveals a new level of regulation for developmental gene products – cell-type dependent control of intra-nuclear distribution – which should be taken into account in future studies.</p>
</sec>
<sec sec-type="methods">
<title>Methods</title>
<sec>
<title>Generation of the targeting vector, mouse lines production and genotyping</title>
<p>For
<italic>Otx2</italic>
<sup>
<italic>OG </italic>
</sup>
targeting molecule, a 2.5 kb genomic fragment encompassing the full 3'UTR of
<italic>Otx2 </italic>
gene and 1.5 kb downstream sequence was amplified using primers 5'-ACGTACTAGTagacctgtagaagctat and 5'-ACGTACTAGTaagtcttgactaggagt and inserted after Spe I-Nhe I restriction into the Spe I site of pOtx2-GFP plasmid [
<xref ref-type="bibr" rid="B22">22</xref>
], immediately downstream the BamHI site at the 3' end of GFP sequence. A BamH I-Bgl II PGK-neo cassette flanked by FRT sites [
<xref ref-type="bibr" rid="B10">10</xref>
] was inserted into the above BamH I site, resulting in pOtx-GFP-neo-3' plasmid. A 3.3 kb EcoR I – Aat II
<italic>Otx2 </italic>
genomic fragment encompassing
<italic>Otx2 </italic>
exon 2 and part of exon 3 was then substituted to the 5'
<italic>Otx2 </italic>
cDNA EcoR I-Aat II fragment of pOtx-GFP-neo-3' plasmid. The 5' homology region was further extended by inserting a neighbouring 2.3 kb EcoRI
<italic>Otx2 </italic>
genomic fragment encompassing
<italic>Otx2 </italic>
exon 1C, into the unique EcoR I site of the above plasmid. The Not I linearized targeting plasmid was electroporated into ENS ES cells [
<xref ref-type="bibr" rid="B31">31</xref>
], homologous recombinant clones were identified by PCR using primers A and B and confirmed by southern blot analysis of BamH I digested genomic DNA with the indicated probe (Figure
<xref ref-type="fig" rid="F1">1c</xref>
). One positive clone was transfected with a plasmid (pFlp-puro) expressing the flp recombinase to remove the neo cassette. Mice were produced by standard blastocyst injection procedure. Genotypes were assessed by PCR using the primers C, D and E (Figure
<xref ref-type="fig" rid="F1">1d</xref>
). Animals were maintained in the 129/Sv background. Day of vaginal plug was taken as E0.5. All animals were handled in accordance with French regulation. Protocols were approved by CREEA, the local ethic committee for animal experimentation.</p>
</sec>
<sec>
<title>Primers</title>
<p>A : 5'- CCTACCCGGTAGAATTGAC</p>
<p>B : 5'- ACTAGGAGTGGCCATCAGA</p>
<p>C : 5'- GCTGGCTCAACTTCCTACT</p>
<p>D : 5'- TTGGTTGCATGTCGCTAGAA</p>
<p>E : 5'- ACCCTCTCCACTGACAGAA</p>
</sec>
<sec>
<title>Analyses of embryos, brains and retinas</title>
<p>For whole mount analyses, samples were dissected in PBS and directly visualised for GFP fluorescence or fixed in 4% paraformaldehyde (PFA) for
<italic>in situ </italic>
analyses. For sections analyses, samples were dissected in PBS, directly frozen on dry ice for E6.5 or fixed 1 hour in 4% PFA at 4°C, rinsed 3 times in PBS, protected over-night in 30% sucrose and frozen in cryomount. 10 μm section were made, fixed 10 minutes in 4% PFA for E6.5, rinsed 3 times in PBS and mounted in Gel/Mount (Biomeda, CA, USA) or processed before with Hoechst (Ref. 33258, Sigma-Aldrich, Saint Louis, USA) staining (1:200, 5 minutes), Phalloidin (Ref. A34055, Molecular Probes, OR, USA) staining (1:50, 1 hour), Propidium Iodide (Ref. P4170, Sigma-Aldrich, Saint Louis, USA) staining (1:10000, 15 minutes) or Immunostaining followed by 3 times rinsed in PBS.
<italic>In situ </italic>
hybridization and Immunofluorescence were done as previously described [
<xref ref-type="bibr" rid="B10">10</xref>
]. Probes for
<italic>in situ </italic>
hybridization are: 0.15 kb
<italic>Otx2 </italic>
exon2;
<italic>Otx2</italic>
,
<italic>Six3</italic>
,
<italic>En2</italic>
,
<italic>Fgf8 </italic>
and
<italic>Gbx2 </italic>
probes were gifts from S.L. Ang, A.P. McMahon, E.J. Robertson, G. Martin and A. Joyner, respectively. Primary antibodies used: 1:100 Goat anti-lamin B (M-20): sc-6217 (Santa Cruz Biotechnology, Santa Cruz, USA), 1:300 Rat polyclonal anti-Otx (gift from M. Wassef), 1:500 Rabbit anti-GFP (Invitrogen, Carlsbad CA, USA) and 1:200 Goat anti-GFAP (Santa Cruz Biotechnology).</p>
</sec>
<sec>
<title>Microscope analysis</title>
<p>Images were done with fluorescent stereomicroscope "Lumar", wide field microscope "Axioplan" or "Axiovert" and confocal microscope "LSM 510" from Zeiss, Jena, Germany.</p>
</sec>
<sec>
<title>Western blot analysis</title>
<p>Extraction of nuclear proteins from E9.5 head (Region in front of MHB) and tail (Region of the most posterior part of the embryo in volume equivalent of the region of the head) was done as previously described [
<xref ref-type="bibr" rid="B22">22</xref>
]. Extracts (15 μg) were subjected to electrophoresis on 6 to 18% gradient gel and transferred to nitrocellulose according to standard protocol. Rat anti-Otx antibody was used at 1:2000 dilution.</p>
</sec>
</sec>
<sec>
<title>Abbreviations</title>
<p>ANR: anterior neural ridge. AVE: anterior visceral endoderm. CNS: central nervous system. E: Embryonic day. ES: Embryonic Stem Cells. GFP: green fluorescent protein. INL: inner nuclear layer. ISH:
<italic>in situ </italic>
hybridization. MHB: midbrain-hindbrain boundary. ONL: outer nuclear layer. PR: photoreceptor. RPE: retinal pigment epithelium. SC: superior colliculus.</p>
</sec>
<sec>
<title>Authors' contributions</title>
<p>NF was involved in designing the study, performed microscopy, histology, ISH, western blot analysis and helped to draft the manuscript. CLG and FB raised the line and performed genotyping, statistics and microscopy. PG did the vLGN immunostaining and improved the manuscript. SV performed the homologous recombination of targeting molecule in ES cells and neo cassette excision. GC started to raise the line and performed initial fluorescence analyses. TL conceived and supervised the study, generated the constructs, performed genotyping, statistics and microscopy and drafted the manuscript. All authors have read and approved the final manuscript.</p>
</sec>
</body>
<back>
<ack>
<sec>
<title>Acknowledgements</title>
<p>Authors thank the PBES crew for injection of ES cells into blastocysts and expert handling of mice, A. Ottaviani for anti-lamin antibodies, M. Wassef and A. Prochiantz for anti-Otx antibody, C. Medina-Palazon and F. Mure for assistance with the gradient gel system and many other colleagues for plasmids and reagents. Claire Lionnet and Fabienne Simian from PLATIM gave us decisive help for microscopy. Lotty Moon kindly proofread the article. This work was supported by grants from the CNRS and Retina France to TL. NF received a postdoctoral fellowship from Retina France.</p>
</sec>
</ack>
<ref-list>
<ref id="B1">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Germot</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Lecointre</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Plouhinec</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Le Mentec</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Girardot</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Mazan</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Structural evolution of Otx genes in craniates</article-title>
<source>Mol Biol Evol</source>
<year>2001</year>
<volume>18</volume>
<fpage>1668</fpage>
<lpage>78</lpage>
<pub-id pub-id-type="pmid">11504847</pub-id>
</citation>
</ref>
<ref id="B2">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rhinn</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Dierich</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Shawlot</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Behringer</surname>
<given-names>RR</given-names>
</name>
<name>
<surname>Le Meur</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ang</surname>
<given-names>SL</given-names>
</name>
</person-group>
<article-title>Sequential roles for Otx2 in visceral endoderm and neuroectoderm for forebrain and midbrain induction and specification</article-title>
<source>Development</source>
<year>1998</year>
<volume>125</volume>
<fpage>845</fpage>
<lpage>56</lpage>
<pub-id pub-id-type="pmid">9449667</pub-id>
</citation>
</ref>
<ref id="B3">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Frantz</surname>
<given-names>GD</given-names>
</name>
<name>
<surname>Weimann</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Levin</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>McConnell</surname>
<given-names>SK</given-names>
</name>
</person-group>
<article-title>Otx1 and Otx2 define layers and regions in developing cerebral cortex and cerebellum</article-title>
<source>J Neurosci</source>
<year>1994</year>
<volume>14</volume>
<fpage>5725</fpage>
<lpage>5740</lpage>
<pub-id pub-id-type="pmid">7931541</pub-id>
</citation>
</ref>
<ref id="B4">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mallamaci</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Di Blas</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Briata</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Boncinelli</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Corte</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>OTX2 homeoprotein in the developing central nervous system and migratory cells of the olfactory area</article-title>
<source>Mech Dev</source>
<year>1996</year>
<volume>58</volume>
<fpage>165</fpage>
<lpage>78</lpage>
<pub-id pub-id-type="pmid">8887325</pub-id>
<pub-id pub-id-type="doi">10.1016/S0925-4773(96)00571-0</pub-id>
</citation>
</ref>
<ref id="B5">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Simeone</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Acampora</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Mallamaci</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Stornaiuolo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>D'Apice</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Nigro</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Boncinelli</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo</article-title>
<source>Embo J</source>
<year>1993</year>
<volume>12</volume>
<fpage>2735</fpage>
<lpage>47</lpage>
<pub-id pub-id-type="pmid">8101484</pub-id>
</citation>
</ref>
<ref id="B6">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Acampora</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Mazan</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lallemand</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Avantaggiato</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Maury</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Simeone</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Brulet</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Forebrain and midbrain regions are deleted in Otx2-/- mutants due to a defective anterior neuroectoderm specification during gastrulation</article-title>
<source>Development</source>
<year>1995</year>
<volume>121</volume>
<fpage>3279</fpage>
<lpage>3290</lpage>
<pub-id pub-id-type="pmid">7588062</pub-id>
</citation>
</ref>
<ref id="B7">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ang</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Rhinn</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Daigle</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Stevenson</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Rossant</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>A targeted mouse Otx2 mutation leads to severe defects in gastrulation and formation of axial mesoderm and to deletion of rostral brain</article-title>
<source>Development</source>
<year>1996</year>
<volume>122</volume>
<fpage>243</fpage>
<lpage>252</lpage>
<pub-id pub-id-type="pmid">8565836</pub-id>
</citation>
</ref>
<ref id="B8">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matsuo</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Kuratani</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kimura</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Takeda</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Aizawa</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Mouse Otx2 functions in the formation and patterning of rostral head</article-title>
<source>Genes Dev</source>
<year>1995</year>
<volume>9</volume>
<fpage>2646</fpage>
<lpage>2658</lpage>
<pub-id pub-id-type="pmid">7590242</pub-id>
<pub-id pub-id-type="doi">10.1101/gad.9.21.2646</pub-id>
</citation>
</ref>
<ref id="B9">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nishida</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Furukawa</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Koike</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Tano</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Aizawa</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Matsuo</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Furukawa</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development</article-title>
<source>Nat Neurosci</source>
<year>2003</year>
<volume>6</volume>
<fpage>1255</fpage>
<lpage>63</lpage>
<pub-id pub-id-type="pmid">14625556</pub-id>
<pub-id pub-id-type="doi">10.1038/nn1155</pub-id>
</citation>
</ref>
<ref id="B10">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fossat</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Chatelain</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Brun</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Lamonerie</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Temporal and spatial delineation of mouse Otx2 functions by conditional self-knockout</article-title>
<source>EMBO Rep</source>
<year>2006</year>
<volume>7</volume>
<fpage>824</fpage>
<lpage>30</lpage>
<pub-id pub-id-type="pmid">16845372</pub-id>
</citation>
</ref>
<ref id="B11">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nothias</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Fishell</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Ruiz i Altaba</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Cooperation of intrinsic and extrinsic signals in the elaboration of regional identity in the posterior cerebral cortex</article-title>
<source>Curr Biol</source>
<year>1998</year>
<volume>8</volume>
<fpage>459</fpage>
<lpage>62</lpage>
<pub-id pub-id-type="pmid">9550705</pub-id>
<pub-id pub-id-type="doi">10.1016/S0960-9822(98)70189-7</pub-id>
</citation>
</ref>
<ref id="B12">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Acampora</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Avantaggiato</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Tuorto</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Briata</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Corte</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Simeone</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Visceral endoderm-restricted translation of Otx1 mediates recovery of Otx2 requirements for specification of anterior neural plate and normal gastrulation</article-title>
<source>Development</source>
<year>1998</year>
<volume>125</volume>
<fpage>5091</fpage>
<lpage>104</lpage>
<pub-id pub-id-type="pmid">9811592</pub-id>
</citation>
</ref>
<ref id="B13">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baas</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Bumsted</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Martinez</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Vaccarino</surname>
<given-names>FM</given-names>
</name>
<name>
<surname>Wikler</surname>
<given-names>KC</given-names>
</name>
<name>
<surname>Barnstable</surname>
<given-names>CJ</given-names>
</name>
</person-group>
<article-title>The subcellular localization of Otx2 is cell-type specific and developmentally regulated in the mouse retina</article-title>
<source>Brain Res Mol Brain Res</source>
<year>2000</year>
<volume>78</volume>
<fpage>26</fpage>
<lpage>37</lpage>
<pub-id pub-id-type="pmid">10891582</pub-id>
<pub-id pub-id-type="doi">10.1016/S0169-328X(00)00060-7</pub-id>
</citation>
</ref>
<ref id="B14">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rath</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Munoz</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Ganguly</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Morin</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Klein</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Moller</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Expression of the Otx2 homeobox gene in the developing mammalian brain: embryonic and adult expression in the pineal gland</article-title>
<source>J Neurochem</source>
<year>2006</year>
<volume>97</volume>
<fpage>556</fpage>
<lpage>66</lpage>
<pub-id pub-id-type="pmid">16539656</pub-id>
<pub-id pub-id-type="doi">10.1111/j.1471-4159.2006.03773.x</pub-id>
</citation>
</ref>
<ref id="B15">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Acampora</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Boyl</surname>
<given-names>PP</given-names>
</name>
<name>
<surname>Signore</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Martinez-Barbera</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Ilengo</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Puelles</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Annino</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Reichert</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Corte</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Simeone</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>OTD/OTX2 functional equivalence depends on 5' and 3' UTR-mediated control of Otx2 mRNA for nucleo-cytoplasmic export and epiblast-restricted translation</article-title>
<source>Development</source>
<year>2001</year>
<volume>128</volume>
<fpage>4801</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="pmid">11731460</pub-id>
</citation>
</ref>
<ref id="B16">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boyl</surname>
<given-names>PP</given-names>
</name>
<name>
<surname>Signore</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Acampora</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Martinez-Barbera</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Ilengo</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Annino</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Corte</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Simeone</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Forebrain and midbrain development requires epiblast-restricted Otx2 translational control mediated by its 3' UTR</article-title>
<source>Development</source>
<year>2001</year>
<volume>128</volume>
<fpage>2989</fpage>
<lpage>3000</lpage>
<pub-id pub-id-type="pmid">11532921</pub-id>
</citation>
</ref>
<ref id="B17">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Decembrini</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Andreazzoli</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Vignali</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Barsacchi</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Cremisi</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Timing the generation of distinct retinal cells by homeobox proteins</article-title>
<source>PLoS Biol</source>
<year>2006</year>
<volume>4</volume>
<fpage>e272</fpage>
<pub-id pub-id-type="pmid">16903786</pub-id>
<pub-id pub-id-type="doi">10.1371/journal.pbio.0040272</pub-id>
</citation>
</ref>
<ref id="B18">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kimura</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Yoshinaga</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Tian</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Aizawa</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Matsuo</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Visceral endoderm mediates forebrain development by suppressing posteriorizing signals</article-title>
<source>Dev Biol</source>
<year>2000</year>
<volume>225</volume>
<fpage>304</fpage>
<lpage>21</lpage>
<pub-id pub-id-type="pmid">10985852</pub-id>
<pub-id pub-id-type="doi">10.1006/dbio.2000.9835</pub-id>
</citation>
</ref>
<ref id="B19">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Courtois</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Chatelain</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>ZY</given-names>
</name>
<name>
<surname>Le Novere</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Brun</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Lamonerie</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>New Otx2 mRNA isoforms expressed in the mouse brain</article-title>
<source>J Neurochem</source>
<year>2003</year>
<volume>84</volume>
<fpage>840</fpage>
<lpage>53</lpage>
<pub-id pub-id-type="pmid">12562527</pub-id>
<pub-id pub-id-type="doi">10.1046/j.1471-4159.2003.01583.x</pub-id>
</citation>
</ref>
<ref id="B20">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rath</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Morin</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Klein</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Moller</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Ontogenetic expression of the Otx2 and Crx homeobox genes in the retina of the rat</article-title>
<source>Exp Eye Res</source>
<year>2007</year>
<pub-id pub-id-type="pmid">17467693</pub-id>
</citation>
</ref>
<ref id="B21">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zernicka-Goetz</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Pines</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ryan</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Siemering</surname>
<given-names>KR</given-names>
</name>
<name>
<surname>Haseloff</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Evans</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Gurdon</surname>
<given-names>JB</given-names>
</name>
</person-group>
<article-title>An indelible lineage marker for Xenopus using a mutated green fluorescent protein</article-title>
<source>Development</source>
<year>1996</year>
<volume>122</volume>
<fpage>3719</fpage>
<lpage>24</lpage>
<pub-id pub-id-type="pmid">9012493</pub-id>
</citation>
</ref>
<ref id="B22">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chatelain</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Fossat</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Brun</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Lamonerie</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Molecular dissection reveals decreased activity and not dominant negative effect in human OTX2 mutants</article-title>
<source>J Mol Med</source>
<year>2006</year>
<volume>84</volume>
<fpage>604</fpage>
<lpage>15</lpage>
<pub-id pub-id-type="pmid">16607563</pub-id>
<pub-id pub-id-type="doi">10.1007/s00109-006-0048-2</pub-id>
</citation>
</ref>
<ref id="B23">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tian</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Kimura</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Takeda</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Aizawa</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Matsuo</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Otx2 is required to respond to signals from anterior neural ridge for forebrain specification</article-title>
<source>Dev Biol</source>
<year>2002</year>
<volume>242</volume>
<fpage>204</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="pmid">11820816</pub-id>
<pub-id pub-id-type="doi">10.1006/dbio.2001.0531</pub-id>
</citation>
</ref>
<ref id="B24">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kurokawa</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Kiyonari</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Nakayama</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kimura-Yoshida</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Matsuo</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Aizawa</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Regulation of Otx2 expression and its functions in mouse forebrain and midbrain</article-title>
<source>Development</source>
<year>2004</year>
<volume>131</volume>
<fpage>3319</fpage>
<lpage>31</lpage>
<pub-id pub-id-type="pmid">15201224</pub-id>
<pub-id pub-id-type="doi">10.1242/dev.01220</pub-id>
</citation>
</ref>
<ref id="B25">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eisenfeld</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Bunt-Milam</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Sarthy</surname>
<given-names>PV</given-names>
</name>
</person-group>
<article-title>Muller cell expression of glial fibrillary acidic protein after genetic and experimental photoreceptor degeneration in the rat retina</article-title>
<source>Invest Ophthalmol Vis Sci</source>
<year>1984</year>
<volume>25</volume>
<fpage>1321</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">6386743</pub-id>
</citation>
</ref>
<ref id="B26">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bovolenta</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Mallamaci</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Briata</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Corte</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Boncinelli</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Implication of OTX2 in pigment epithelium determination and neural retina differentiation</article-title>
<source>J Neurosci</source>
<year>1997</year>
<volume>17</volume>
<fpage>4243</fpage>
<lpage>52</lpage>
<pub-id pub-id-type="pmid">9151741</pub-id>
</citation>
</ref>
<ref id="B27">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ragge</surname>
<given-names>NK</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>AG</given-names>
</name>
<name>
<surname>Poloschek</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Lorenz</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Henderson</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Clarke</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Russell-Eggitt</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Fielder</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gerrelli</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Martinez-Barbera</surname>
<given-names>JP</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Heterozygous Mutations of OTX2 Cause Severe Ocular Malformations</article-title>
<source>Am J Hum Genet</source>
<year>2005</year>
<volume>76</volume>
<pub-id pub-id-type="pmid">15846561</pub-id>
</citation>
</ref>
<ref id="B28">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Rattner</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Nathans</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>The rod photoreceptor-specific nuclear receptor Nr2e3 represses transcription of multiple cone-specific genes</article-title>
<source>J Neurosci</source>
<year>2005</year>
<volume>25</volume>
<fpage>118</fpage>
<lpage>29</lpage>
<pub-id pub-id-type="pmid">15634773</pub-id>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.3571-04.2005</pub-id>
</citation>
</ref>
<ref id="B29">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Akhtar</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gasser</surname>
<given-names>SM</given-names>
</name>
</person-group>
<article-title>The nuclear envelope and transcriptional control</article-title>
<source>Nat Rev Genet</source>
<year>2007</year>
<volume>8</volume>
<fpage>507</fpage>
<lpage>17</lpage>
<pub-id pub-id-type="pmid">17549064</pub-id>
<pub-id pub-id-type="doi">10.1038/nrg2122</pub-id>
</citation>
</ref>
<ref id="B30">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carter-Dawson</surname>
<given-names>LD</given-names>
</name>
<name>
<surname>LaVail</surname>
<given-names>MM</given-names>
</name>
</person-group>
<article-title>Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy</article-title>
<source>J Comp Neurol</source>
<year>1979</year>
<volume>188</volume>
<fpage>245</fpage>
<lpage>62</lpage>
<pub-id pub-id-type="pmid">500858</pub-id>
<pub-id pub-id-type="doi">10.1002/cne.901880204</pub-id>
</citation>
</ref>
<ref id="B31">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gauthier</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Chassande</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Plateroti</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Roux</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Legrand</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Pain</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Rousset</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Weiss</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Trouillas</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Samarut</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Different functions for the thyroid hormone receptors TRalpha and TRbeta in the control of thyroid hormone production and post-natal development</article-title>
<source>Embo J</source>
<year>1999</year>
<volume>18</volume>
<fpage>623</fpage>
<lpage>31</lpage>
<pub-id pub-id-type="pmid">9927422</pub-id>
<pub-id pub-id-type="doi">10.1093/emboj/18.3.623</pub-id>
</citation>
</ref>
<ref id="B32">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fossat</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Courtois</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Chatelain</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Brun</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Lamonerie</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Alternative usage of Otx2 promoters during mouse development</article-title>
<source>Dev Dyn</source>
<year>2005</year>
<volume>233</volume>
<fpage>154</fpage>
<lpage>60</lpage>
<pub-id pub-id-type="pmid">15759271</pub-id>
<pub-id pub-id-type="doi">10.1002/dvdy.20287</pub-id>
</citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001083 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 001083 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:2204009
   |texte=   A new GFP-tagged line reveals unexpected Otx2 protein localization in retinal photoreceptors
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:17980036" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024