Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000F969 ( Pmc/Corpus ); précédent : 000F968; suivant : 000F970 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">UpaG, a New Member of the Trimeric Autotransporter Family of Adhesins in Uropathogenic
<italic>Escherichia coli</italic>
<xref ref-type="fn" rid="fn3"></xref>
<xref ref-type="fn" rid="fn2"></xref>
</title>
<author>
<name sortKey="Valle, Jaione" sort="Valle, Jaione" uniqKey="Valle J" first="Jaione" last="Valle">Jaione Valle</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mabbett, Amanda N" sort="Mabbett, Amanda N" uniqKey="Mabbett A" first="Amanda N." last="Mabbett">Amanda N. Mabbett</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ulett, Glen C" sort="Ulett, Glen C" uniqKey="Ulett G" first="Glen C." last="Ulett">Glen C. Ulett</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Toledo Arana, Alejandro" sort="Toledo Arana, Alejandro" uniqKey="Toledo Arana A" first="Alejandro" last="Toledo-Arana">Alejandro Toledo-Arana</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wecker, Karine" sort="Wecker, Karine" uniqKey="Wecker K" first="Karine" last="Wecker">Karine Wecker</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Totsika, Makrina" sort="Totsika, Makrina" uniqKey="Totsika M" first="Makrina" last="Totsika">Makrina Totsika</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schembri, Mark A" sort="Schembri, Mark A" uniqKey="Schembri M" first="Mark A." last="Schembri">Mark A. Schembri</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ghigo, Jean Marc" sort="Ghigo, Jean Marc" uniqKey="Ghigo J" first="Jean-Marc" last="Ghigo">Jean-Marc Ghigo</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Beloin, Christophe" sort="Beloin, Christophe" uniqKey="Beloin C" first="Christophe" last="Beloin">Christophe Beloin</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">18424525</idno>
<idno type="pmc">2446758</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2446758</idno>
<idno type="RBID">PMC:2446758</idno>
<idno type="doi">10.1128/JB.00122-08</idno>
<date when="2008">2008</date>
<idno type="wicri:Area/Pmc/Corpus">000F96</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000F96</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">UpaG, a New Member of the Trimeric Autotransporter Family of Adhesins in Uropathogenic
<italic>Escherichia coli</italic>
<xref ref-type="fn" rid="fn3"></xref>
<xref ref-type="fn" rid="fn2"></xref>
</title>
<author>
<name sortKey="Valle, Jaione" sort="Valle, Jaione" uniqKey="Valle J" first="Jaione" last="Valle">Jaione Valle</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mabbett, Amanda N" sort="Mabbett, Amanda N" uniqKey="Mabbett A" first="Amanda N." last="Mabbett">Amanda N. Mabbett</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ulett, Glen C" sort="Ulett, Glen C" uniqKey="Ulett G" first="Glen C." last="Ulett">Glen C. Ulett</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Toledo Arana, Alejandro" sort="Toledo Arana, Alejandro" uniqKey="Toledo Arana A" first="Alejandro" last="Toledo-Arana">Alejandro Toledo-Arana</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wecker, Karine" sort="Wecker, Karine" uniqKey="Wecker K" first="Karine" last="Wecker">Karine Wecker</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Totsika, Makrina" sort="Totsika, Makrina" uniqKey="Totsika M" first="Makrina" last="Totsika">Makrina Totsika</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schembri, Mark A" sort="Schembri, Mark A" uniqKey="Schembri M" first="Mark A." last="Schembri">Mark A. Schembri</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ghigo, Jean Marc" sort="Ghigo, Jean Marc" uniqKey="Ghigo J" first="Jean-Marc" last="Ghigo">Jean-Marc Ghigo</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Beloin, Christophe" sort="Beloin, Christophe" uniqKey="Beloin C" first="Christophe" last="Beloin">Christophe Beloin</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Bacteriology</title>
<idno type="ISSN">0021-9193</idno>
<idno type="eISSN">1098-5530</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The ability of
<italic>Escherichia coli</italic>
to colonize both intestinal and extraintestinal sites is driven by the presence of specific virulence factors, among which are the autotransporter (AT) proteins. Members of the trimeric AT adhesin family are important virulence factors for several gram-negative pathogens and mediate adherence to eukaryotic cells and extracellular matrix (ECM) proteins. In this study, we characterized a new trimeric AT adhesin (UpaG) from uropathogenic
<italic>E. coli</italic>
(UPEC). Molecular analysis of UpaG revealed that it is translocated to the cell surface and adopts a multimeric conformation. We demonstrated that UpaG is able to promote cell aggregation and biofilm formation on abiotic surfaces in CFT073 and various UPEC strains. In addition, UpaG expression resulted in the adhesion of CFT073 to human bladder epithelial cells, with specific affinity to fibronectin and laminin. Prevalence analysis revealed that
<italic>upaG</italic>
is strongly associated with
<italic>E. coli</italic>
strains from the B2 and D phylogenetic groups, while deletion of
<italic>upaG</italic>
had no significant effect on the ability of CFT073 to colonize the mouse urinary tract. Thus, UpaG is a novel trimeric AT adhesin from
<italic>E. coli</italic>
that mediates aggregation, biofilm formation, and adhesion to various ECM proteins.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Bacteriol</journal-id>
<journal-id journal-id-type="publisher-id">jb</journal-id>
<journal-title>Journal of Bacteriology</journal-title>
<issn pub-type="ppub">0021-9193</issn>
<issn pub-type="epub">1098-5530</issn>
<publisher>
<publisher-name>American Society for Microbiology (ASM)</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">18424525</article-id>
<article-id pub-id-type="pmc">2446758</article-id>
<article-id pub-id-type="publisher-id">0122-08</article-id>
<article-id pub-id-type="doi">10.1128/JB.00122-08</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Molecular Biology of Pathogens</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>UpaG, a New Member of the Trimeric Autotransporter Family of Adhesins in Uropathogenic
<italic>Escherichia coli</italic>
<xref ref-type="fn" rid="fn3"></xref>
<xref ref-type="fn" rid="fn2"></xref>
</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Valle</surname>
<given-names>Jaione</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="fn" rid="fn1">#</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mabbett</surname>
<given-names>Amanda N.</given-names>
</name>
<xref ref-type="aff" rid="aff1">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ulett</surname>
<given-names>Glen C.</given-names>
</name>
<xref ref-type="aff" rid="aff1">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Toledo-Arana</surname>
<given-names>Alejandro</given-names>
</name>
<xref ref-type="aff" rid="aff1">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wecker</surname>
<given-names>Karine</given-names>
</name>
<xref ref-type="aff" rid="aff1">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Totsika</surname>
<given-names>Makrina</given-names>
</name>
<xref ref-type="aff" rid="aff1">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Schembri</surname>
<given-names>Mark A.</given-names>
</name>
<xref ref-type="aff" rid="aff1">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ghigo</surname>
<given-names>Jean-Marc</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Beloin</surname>
<given-names>Christophe</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="corresp" rid="cor1">*</xref>
</contrib>
</contrib-group>
<aff id="aff1">Institut Pasteur, Unité de Génétique des Biofilms, CNRS URA 2172, 25 Rue du Dr. Roux, F-75015 Paris, France,
<label>1</label>
School of Molecular and Microbial Sciences, University of Queensland, Brisbane QLD 4072, Australia,
<label>2</label>
Institut Pasteur, Unité des Interactions Bactéries-Cellules, 25 Rue du Dr. Roux, F-75015 Paris, France,
<label>3</label>
Institut Pasteur, Unité de Résonance Magnétique Nucléaire des Biomolécules, CNRS URA 2185, 28 Rue du Dr. Roux, F-75015 Paris, France
<label>4</label>
</aff>
<author-notes>
<fn id="cor1">
<label>*</label>
<p>Corresponding author. Mailing address: Institut Pasteur, Unité de Génétique des Biofilms, URA CNRS 2172, 25, Rue du Dr. Roux, 75724 Paris CEDEX 15, France. Phone: 33 140613917. Fax: 33 145688007. E-mail:
<email>cbeloin@pasteur.fr</email>
</p>
</fn>
<fn id="fn1">
<label>#</label>
<p>Present address: Laboratory of Microbial Biofilms, Instituto de Agrobiotecnologia UPNA/CSIC, Carretera Mutilva Baja sn, 31192 Multiva Baja, Spain.</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<month>6</month>
<year>2008</year>
</pub-date>
<pub-date pub-type="epub">
<day>18</day>
<month>4</month>
<year>2008</year>
</pub-date>
<volume>190</volume>
<issue>12</issue>
<fpage>4147</fpage>
<lpage>4161</lpage>
<history>
<date date-type="received">
<day>24</day>
<month>1</month>
<year>2008</year>
</date>
<date date-type="accepted">
<day>8</day>
<month>4</month>
<year>2008</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2008, American Society for Microbiology</copyright-statement>
</permissions>
<self-uri xlink:title="pdf" xlink:href="zjb01208004147.pdf"></self-uri>
<abstract>
<p>The ability of
<italic>Escherichia coli</italic>
to colonize both intestinal and extraintestinal sites is driven by the presence of specific virulence factors, among which are the autotransporter (AT) proteins. Members of the trimeric AT adhesin family are important virulence factors for several gram-negative pathogens and mediate adherence to eukaryotic cells and extracellular matrix (ECM) proteins. In this study, we characterized a new trimeric AT adhesin (UpaG) from uropathogenic
<italic>E. coli</italic>
(UPEC). Molecular analysis of UpaG revealed that it is translocated to the cell surface and adopts a multimeric conformation. We demonstrated that UpaG is able to promote cell aggregation and biofilm formation on abiotic surfaces in CFT073 and various UPEC strains. In addition, UpaG expression resulted in the adhesion of CFT073 to human bladder epithelial cells, with specific affinity to fibronectin and laminin. Prevalence analysis revealed that
<italic>upaG</italic>
is strongly associated with
<italic>E. coli</italic>
strains from the B2 and D phylogenetic groups, while deletion of
<italic>upaG</italic>
had no significant effect on the ability of CFT073 to colonize the mouse urinary tract. Thus, UpaG is a novel trimeric AT adhesin from
<italic>E. coli</italic>
that mediates aggregation, biofilm formation, and adhesion to various ECM proteins.</p>
</abstract>
</article-meta>
</front>
<floats-wrap>
<fig position="float" id="f1">
<label>FIG. 1.</label>
<caption>
<p>In silico analysis of the UpaG protein. (A) Schematic illustration of the domain organization of UpaG from
<italic>E. coli</italic>
CFT073, YadA from
<italic>Yersinia enterocolitica</italic>
, and NhhA from
<italic>Neisseria meningitidis</italic>
. Indicated are the signal peptide (S.P.) and the localizations of the Hep-Hag and Him domains (invasin and hemagglutinin domains). Alignments were generated using Clustal W. (B) Multiple-sequence alignment of the translocation units from UpaG, YadA, and NhhA. Identical residues are indicated by shaded boxes, whereas conservative substitutions are indicated by unshaded boxes. The L2, L1, and β subdomains of UpaG are aligned with the corresponding regions from YadA and NhhA. (C) Computer model of the putative 3D structure of UpaG. (a) Monomeric structure; (b) trimeric structure; (c) upper view. The different subregions are in green (β), red (L1), and yellow (L2).</p>
</caption>
<graphic xlink:href="zjb0120878980001"></graphic>
</fig>
<fig position="float" id="f2">
<label>FIG. 2.</label>
<caption>
<p>Surface localization of the UpaG passenger domain. (A) Western blot analysis of UpaG performed using outer membrane fractions from CFT073, CFT073 Δ
<italic>upaG</italic>
, CFT073 PcL
<italic>upaG</italic>
, and CFT073 RExBAD
<italic>upaG</italic>
in the presence (+) or absence (−) of 0.2% arabinose. Outer membrane fractions were resolved by SDS-PAGE in the presence of 8 M urea. The monomeric form of UpaG is indicated (m), as are possible dimers (d) and trimers (t). (B) Immunofluorescence assays of UpaG from CFT073, CFT073 Δ
<italic>upaG</italic>
, CFT073 PcL
<italic>upaG</italic>
, and CFT073 RExBAD
<italic>upaG</italic>
in the presence (+) or absence (−) of 0.2% arabinose. Overnight cultures were fixed and incubated with anti-UpaG serum, followed by incubation with a secondary polyclonal goat anti-rabbit serum coupled to Alexa 488 and DAPI. (C) Immunogold electron microscopy of cell sections of CFT073 and CFT073 PcL
<italic>upaG</italic>
probed with anti-UpaG and then with gold-labeled anti-rabbit IgG. Anti-UpaG-labeled gold particles were observed on the surface of CFT073 PcL
<italic>upaG</italic>
(but not CFT073) up to a distance of approximately 100 nm (arrows). One CFT073 cell and two individual CFT073 PcL
<italic>upaG</italic>
cells are shown as representatives of the average labeling observed for cells in several fields of view.</p>
</caption>
<graphic xlink:href="zjb0120878980002"></graphic>
</fig>
<fig position="float" id="f3">
<label>FIG. 3.</label>
<caption>
<p>Surface localization of the c-Jun leucine zipper in a c-Jun-UpaG chimeric protein. (A) Schematic illustration of recombinant c-Jun-UpaG proteins constructed in this study. The position of the PelB signal sequence (SS), the E-tag, the leucine zipper of c-Jun (noted as Jun), and the L2, L1, and β subdomains are indicated, as is the
<italic>lac</italic>
promoter (
<italic>plac</italic>
). (B) Immunoblots of whole-cell protein extracts from induced cultures expressing the different chimeric constructions. The blot was probed with anti-E-tag MAb. The UpaG
<sub>L2-L1-β</sub>
protein migrated as a polypeptide of 23 kDa despite its calculated mass of 19.8 kDa. The molecular masses of UpaG
<sub>β</sub>
(14.6 kDa) and UpaG
<sub>L1-β</sub>
(16.3 kDa) were as calculated. (C) Cell-cell aggregation driven by the interaction of the surface-exposed leucine zipper dimerization domain in the different constructions in the presence (black) or absence (gray) of the inducer IPTG.
<italic>E. coli</italic>
UT5600 was used as the control. IPTG-induced and uninduced cultures were left to stand without being shaken. Samples of 100 μl were taken from the top of the cultures (1 cm from the surface) at regular time intervals, and the OD
<sub>600</sub>
was measured. The degree of aggregation is inversely proportional to the turbidity. The OD
<sub>600</sub>
just after the induction was taken as 100%. Data represent the means from three independent experiments. Standard deviations are indicated by error bars. (D) Representative photographs of induced (+) and uninduced (−)
<italic>E. coli</italic>
cultures taken after 120 min without shaking.</p>
</caption>
<graphic xlink:href="zjb0120878980003"></graphic>
</fig>
<fig position="float" id="f4">
<label>FIG. 4.</label>
<caption>
<p>Biofilm formation and aggregation phenotypes. (A) Static biofilm formation in polystyrene microtiter plates by CFT073, UPEC-6, and UPEC-15 (and their
<italic>upaG</italic>
derivatives) in the presence (+) or absence (−) of 0.2% arabinose, where indicated. Biofilm growth was quantified by the solubilization of crystal violet-stained cells with ethanol-acetone and the determination of the absorbance at 570 nm. WT, wild type. (B) Autoaggregation assay demonstrating the settling profiles from liquid suspensions of CFT073/UPEC-6/UPEC-15 (black circles), CFT073/UPEC-6/UPEC-15 PcL
<italic>upaG</italic>
derivatives (gray circles), and CFT073/UPEC-6/UPEC-15 RExBAD
<italic>upaG</italic>
derivatives in the presence (gray triangles) or absence (black triangles) of 0.2% arabinose. Cells were diluted to an OD
<sub>600</sub>
of 2.5 in a 3.0-ml volume. One-hundred-microliter samples were taken from the top of the cultures (1 cm from the surface) at regular time intervals, and the OD
<sub>600</sub>
was measured. (C) Photographs of
<italic>E. coli</italic>
cultures taken after 24 h without shaking.</p>
</caption>
<graphic xlink:href="zjb0120878980004"></graphic>
</fig>
<fig position="float" id="f5">
<label>FIG. 5.</label>
<caption>
<p>Adhesive properties of UpaG. (A) Adherence of CFT073, CFT073 Δ
<italic>upaG</italic>
, and CFT073 PcL
<italic>upaG</italic>
strains to T24, HeLa, and BSC1 epithelial cells. Values correspond to the means ± standard deviations from three independent experiments (*, denotes a
<italic>P</italic>
of <0.01). WT, wild type. (B) Adherence of CFT073 Δ
<italic>upaG</italic>
and CFT073 PcL
<italic>upaG</italic>
cells to a mixed monolayer of T24 cells expressing the red fluorescence protein (red cells) and HeLa cells. Actin was labeled by phalloidin Alexa 647 (in blue), revealing all eukaryotic cells. Bacteria were observed using phase-contrast microscopy and colored green using Adobe Illustrator CS software. CFT073 PcL
<italic>upaG</italic>
adhered in significantly greater numbers to T24 bladder epithelial cells than to HeLa epithelial cells (left panel). In contrast, CFT073 Δ
<italic>upaG</italic>
showed no difference in adherence to T24 bladder epithelial cells and HeLa epithelial cells (right panel).</p>
</caption>
<graphic xlink:href="zjb0120878980005"></graphic>
</fig>
<fig position="float" id="f6">
<label>FIG. 6.</label>
<caption>
<p>Adherence to ECM proteins. Adherence of CFT073, CFT073 Δ
<italic>upaG</italic>
, CFT073 PcL
<italic>upaG</italic>
, and CFT073 RExBAD
<italic>upaG</italic>
in the presence of 0.2% of arabinose (+) or glucose (−) to heparan, laminin, fibronectin, and collagens I, II, and IV. Cells that adhered to ECM proteins were detected with a polyclonal serum raised against
<italic>E. coli</italic>
and quantified by ELISA. Data are means (± standard deviations) from two independent experiments. WT, wild type.</p>
</caption>
<graphic xlink:href="zjb0120878980006"></graphic>
</fig>
<fig position="float" id="f7">
<label>FIG. 7.</label>
<caption>
<p>Role of UpaG in virulence. (A) Persistence of CFT073, CFT073 Δ
<italic>upaG</italic>
, and CFT073 PcL
<italic>upaG</italic>
in the bladders of C57BL/6 mice following intraurethral challenge. At days 1 and 5 following infection, all three strains were recovered in equivalent numbers. (B) Persistence of CFT073, CFT073 Δ
<italic>upaG</italic>
, and CFT073 PcL
<italic>upaG</italic>
in the bladders and kidneys of C3H/HeJ mice following intraurethral challenge. At day 1 and day 5 following infection, there was no significant difference in the abilities of the three strains to colonize the bladder or kidneys.</p>
</caption>
<graphic xlink:href="zjb0120878980007"></graphic>
</fig>
<table-wrap position="float" id="t1">
<label>TABLE 1.</label>
<caption>
<p>Bacterial strains and plasmids used in this study</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th colspan="1" rowspan="1" align="center" valign="bottom">
<italic>E. coli</italic>
strain(s) or plasmid</th>
<th colspan="1" rowspan="1" align="center" valign="bottom">Relevant characteristic(s)</th>
<th colspan="1" rowspan="1" align="center" valign="bottom">Reference or source</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">Strains</td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    OS56</td>
<td colspan="1" rowspan="1" align="left" valign="top">MG1655
<italic>flu</italic>
Gfp
<sup>+</sup>
Amp
<sup>r</sup>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<xref ref-type="bibr" rid="r62">62</xref>
</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    OS56(pBAD/Myc-HisA-Kan)</td>
<td colspan="1" rowspan="1" align="left" valign="top">OS56 with plasmid pBAD/Myc-HisA-Kan, Km
<sup>r</sup>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<xref ref-type="bibr" rid="r71">71</xref>
</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    OS56(p
<italic>upaG</italic>
)</td>
<td colspan="1" rowspan="1" align="left" valign="top">OS56 with plasmid p
<italic>upaG</italic>
, Km
<sup>r</sup>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">This study</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    CFT073</td>
<td colspan="1" rowspan="1" align="left" valign="top">Wild-type UPEC isolate</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<xref ref-type="bibr" rid="r42">42</xref>
</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    CFT073 Δ
<italic>upaG</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">CFT073 Δ
<italic>upaG</italic>
::Cm;
<italic>upaG</italic>
mutant, Cm
<sup>r</sup>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">This study</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    CFT073 PcL
<italic>upaG</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">CFT073 Km PcL
<italic>upaG</italic>
, constitutively expressed
<italic>upaG</italic>
, Km
<sup>r</sup>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">This study</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    CFT073 RExBAD
<italic>upaG</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">CFT073 Cm RExBAD
<italic>upaG</italic>
, arabinose-inducible
<italic>upaG</italic>
, Cm
<sup>r</sup>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">This study</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    UT5600</td>
<td colspan="1" rowspan="1" align="left" valign="top">Δ
<italic>ompT proC leu-6 trpE38 entA</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<xref ref-type="bibr" rid="r21">21</xref>
</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    UT5600(pUpaG
<sub>L2-L1-</sub>
<sub>β</sub>
)</td>
<td colspan="1" rowspan="1" align="left" valign="top">UT5600 with plasmid pUpaG
<sub>L2-L1-</sub>
<sub>β</sub>
, Cm
<sup>r</sup>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">This study</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    UT5600(pUpaG
<sub>L1-</sub>
<sub>β</sub>
)</td>
<td colspan="1" rowspan="1" align="left" valign="top">UT5600 with plasmid pUpaG
<sub>L1-</sub>
<sub>β</sub>
, Cm
<sup>r</sup>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">This study</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    UT5600(pUpaG
<sub>β</sub>
)</td>
<td colspan="1" rowspan="1" align="left" valign="top">UT5600 with plasmid pUpaG
<sub>β</sub>
, Cm
<sup>r</sup>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">This study</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    U6</td>
<td colspan="1" rowspan="1" align="left" valign="top">UPEC</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<xref ref-type="bibr" rid="r73">73</xref>
</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    U15</td>
<td colspan="1" rowspan="1" align="left" valign="top">UPEC</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<xref ref-type="bibr" rid="r73">73</xref>
</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    
<italic>E. coli</italic>
collection</td>
<td colspan="1" rowspan="1" align="left" valign="top">96 commensal
<italic>E. coli</italic>
isolates constituted from several animal populations</td>
<td colspan="1" rowspan="1" align="left" valign="top">Reference
<xref ref-type="bibr" rid="r64">64</xref>
and Table S2 in the supplemental material</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    ECOR collection</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>E. coli</italic>
isolates of different origins</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<xref ref-type="bibr" rid="r45">45</xref>
</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    UPEC collection</td>
<td colspan="1" rowspan="1" align="left" valign="top">UPEC clinical isolates</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<xref ref-type="bibr" rid="r73">73</xref>
</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    1094</td>
<td colspan="1" rowspan="1" align="left" valign="top">Commensal
<italic>E. coli</italic>
isolate from a healthy patient</td>
<td colspan="1" rowspan="1" align="left" valign="top">C. Le Bouguenec</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    1102</td>
<td colspan="1" rowspan="1" align="left" valign="top">Commensal
<italic>E. coli</italic>
isolate from a healthy patient</td>
<td colspan="1" rowspan="1" align="left" valign="top">C. Le Bouguenec</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    1103</td>
<td colspan="1" rowspan="1" align="left" valign="top">Commensal
<italic>E. coli</italic>
isolate from a healthy patient</td>
<td colspan="1" rowspan="1" align="left" valign="top">C. Le Bouguenec</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    1110</td>
<td colspan="1" rowspan="1" align="left" valign="top">Commensal
<italic>E. coli</italic>
isolate from a healthy patient</td>
<td colspan="1" rowspan="1" align="left" valign="top">C. Le Bouguenec</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    1125</td>
<td colspan="1" rowspan="1" align="left" valign="top">Commensal
<italic>E. coli</italic>
isolate from a healthy patient</td>
<td colspan="1" rowspan="1" align="left" valign="top">C. Le Bouguenec</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    1127</td>
<td colspan="1" rowspan="1" align="left" valign="top">Commensal
<italic>E. coli</italic>
isolate from a healthy patient</td>
<td colspan="1" rowspan="1" align="left" valign="top">C. Le Bouguenec</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    536</td>
<td colspan="1" rowspan="1" align="left" valign="top">UPEC isolate (O6:K15:H31)</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<xref ref-type="bibr" rid="r8">8</xref>
</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    J96</td>
<td colspan="1" rowspan="1" align="left" valign="top">UPEC isolate (O4:K6)</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<xref ref-type="bibr" rid="r22">22</xref>
</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    IHE3034</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>E. coli</italic>
isolate (O18:K1:H7/9)</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<xref ref-type="bibr" rid="r32">32</xref>
</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    55989</td>
<td colspan="1" rowspan="1" align="left" valign="top">Enteroaggregative
<italic>E. coli</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">C. Le Bouguenec</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    O42</td>
<td colspan="1" rowspan="1" align="left" valign="top">Enteroaggregative
<italic>E. coli</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<xref ref-type="bibr" rid="r75">75</xref>
</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">Plasmids</td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    pJunβ</td>
<td colspan="1" rowspan="1" align="left" valign="top">Plasmid with a hybrid outer membrane protein containing the β-AT domain of the IgA protease of
<italic>N. gonorrhoeae</italic>
and the leucine zipper of c-Jun, Cm
<sup>r</sup>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<xref ref-type="bibr" rid="r74">74</xref>
</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    pUpaG
<sub>L2-L1-</sub>
<sub>β</sub>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">Plasmid with a hybrid protein containing the leucine zipper of c-Jun and the L2 and L1 linker and β domains of UpaG of
<italic>E. coli</italic>
CFT073, Cm
<sup>r</sup>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">This study</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    pUpaG
<sub>L1-</sub>
<sub>β</sub>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">Plasmid with a hybrid protein containing the leucine zipper of c-Jun and the L1 linker and β domains of UpaG of
<italic>E. coli</italic>
CFT073, Cm
<sup>r</sup>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">This study</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    pUpaG
<sub>β</sub>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">Plasmid with a hybrid protein containing the leucine zipper of c-Jun and the β domain of UpaG of
<italic>E. coli</italic>
CFT073, Cm
<sup>r</sup>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">This study</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    p
<italic>upaG</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>upaG</italic>
gene from CFT073 in pBAD/Myc-HisA-Kan, Km
<sup>r</sup>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">This study</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    pET22b-F2</td>
<td colspan="1" rowspan="1" align="left" valign="top">pET22b with 281 amino acids of the N terminus of UpaG (amino acids 943 to 1224), Amp
<sup>r</sup>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">This study</td>
</tr>
</tbody>
</table>
</table-wrap>
</floats-wrap>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F969 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000F969 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024