Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A Redox Basis for Metronidazole Resistance in Helicobacter pylori▿

Identifieur interne : 000F46 ( Pmc/Corpus ); précédent : 000F45; suivant : 000F47

A Redox Basis for Metronidazole Resistance in Helicobacter pylori▿

Auteurs : N. O. Kaakoush ; C. Asencio ; F. Mégraud ; G. L. Mendz

Source :

RBID : PMC:2681531

Abstract

Metronidazole resistance in Helicobacter pylori has been attributed to mutations in rdxA or frxA. Insufficient data correlating RdxA and/or FrxA with the resistant phenotype, and the emergence of resistant strains with no mutations in either rdxA or frxA, indicated that the molecular basis of H. pylori resistance to metronidazole required further characterization. The rdxA and frxA genes of four matched pairs of metronidazole-susceptible and -resistant strains were sequenced. The resistant strains had mutations in either rdxA, frxA, neither gene, or both genes. The reduction rates of five substrates suggested that metabolic differences between susceptible and resistant strains cannot be explained only by mutations in rdxA and/or frxA. A more global approach to understanding the resistance phenotype was taken by employing two-dimensional gel electrophoresis combined with tandem mass spectrometry analyses to identify proteins differentially expressed by the matched pair of strains with no mutations in rdxA or frxA. Proteins involved in the oxireduction of ferredoxin were downregulated in the resistant strain. Other redox enzymes, such as thioredoxin reductase, alkyl hydroperoxide reductase, and superoxide dismutase, showed a pI change in the resistant strain. The data suggested that metronidazole resistance involved more complex metabolic changes than specific gene mutations, and they provided evidence of a role for the intracellular redox potential in the development of resistance.


Url:
DOI: 10.1128/AAC.01449-08
PubMed: 19223619
PubMed Central: 2681531

Links to Exploration step

PMC:2681531

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A Redox Basis for Metronidazole Resistance in
<italic>Helicobacter pylori</italic>
<xref ref-type="fn" rid="fn1"></xref>
</title>
<author>
<name sortKey="Kaakoush, N O" sort="Kaakoush, N O" uniqKey="Kaakoush N" first="N. O." last="Kaakoush">N. O. Kaakoush</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Asencio, C" sort="Asencio, C" uniqKey="Asencio C" first="C." last="Asencio">C. Asencio</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Megraud, F" sort="Megraud, F" uniqKey="Megraud F" first="F." last="Mégraud">F. Mégraud</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mendz, G L" sort="Mendz, G L" uniqKey="Mendz G" first="G. L." last="Mendz">G. L. Mendz</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">19223619</idno>
<idno type="pmc">2681531</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2681531</idno>
<idno type="RBID">PMC:2681531</idno>
<idno type="doi">10.1128/AAC.01449-08</idno>
<date when="2009">2009</date>
<idno type="wicri:Area/Pmc/Corpus">000F46</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000F46</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">A Redox Basis for Metronidazole Resistance in
<italic>Helicobacter pylori</italic>
<xref ref-type="fn" rid="fn1"></xref>
</title>
<author>
<name sortKey="Kaakoush, N O" sort="Kaakoush, N O" uniqKey="Kaakoush N" first="N. O." last="Kaakoush">N. O. Kaakoush</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Asencio, C" sort="Asencio, C" uniqKey="Asencio C" first="C." last="Asencio">C. Asencio</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Megraud, F" sort="Megraud, F" uniqKey="Megraud F" first="F." last="Mégraud">F. Mégraud</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mendz, G L" sort="Mendz, G L" uniqKey="Mendz G" first="G. L." last="Mendz">G. L. Mendz</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Antimicrobial Agents and Chemotherapy</title>
<idno type="ISSN">0066-4804</idno>
<idno type="eISSN">1098-6596</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Metronidazole resistance in
<italic>Helicobacter pylori</italic>
has been attributed to mutations in
<italic>rdxA</italic>
or
<italic>frxA</italic>
. Insufficient data correlating RdxA and/or FrxA with the resistant phenotype, and the emergence of resistant strains with no mutations in either
<italic>rdxA</italic>
or
<italic>frxA</italic>
, indicated that the molecular basis of
<italic>H. pylori</italic>
resistance to metronidazole required further characterization. The
<italic>rdxA</italic>
and
<italic>frxA</italic>
genes of four matched pairs of metronidazole-susceptible and -resistant strains were sequenced. The resistant strains had mutations in either
<italic>rdxA</italic>
,
<italic>frxA</italic>
, neither gene, or both genes. The reduction rates of five substrates suggested that metabolic differences between susceptible and resistant strains cannot be explained only by mutations in
<italic>rdxA</italic>
and/or
<italic>frxA</italic>
. A more global approach to understanding the resistance phenotype was taken by employing two-dimensional gel electrophoresis combined with tandem mass spectrometry analyses to identify proteins differentially expressed by the matched pair of strains with no mutations in
<italic>rdxA</italic>
or
<italic>frxA</italic>
. Proteins involved in the oxireduction of ferredoxin were downregulated in the resistant strain. Other redox enzymes, such as thioredoxin reductase, alkyl hydroperoxide reductase, and superoxide dismutase, showed a pI change in the resistant strain. The data suggested that metronidazole resistance involved more complex metabolic changes than specific gene mutations, and they provided evidence of a role for the intracellular redox potential in the development of resistance.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Antimicrob Agents Chemother</journal-id>
<journal-id journal-id-type="publisher-id">aac</journal-id>
<journal-title>Antimicrobial Agents and Chemotherapy</journal-title>
<issn pub-type="ppub">0066-4804</issn>
<issn pub-type="epub">1098-6596</issn>
<publisher>
<publisher-name>American Society for Microbiology (ASM)</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">19223619</article-id>
<article-id pub-id-type="pmc">2681531</article-id>
<article-id pub-id-type="publisher-id">1449-08</article-id>
<article-id pub-id-type="doi">10.1128/AAC.01449-08</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Mechanisms of Resistance</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>A Redox Basis for Metronidazole Resistance in
<italic>Helicobacter pylori</italic>
<xref ref-type="fn" rid="fn1"></xref>
</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Kaakoush</surname>
<given-names>N. O.</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Asencio</surname>
<given-names>C.</given-names>
</name>
<xref ref-type="aff" rid="aff1">2</xref>
<xref ref-type="aff" rid="aff1">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mégraud</surname>
<given-names>F.</given-names>
</name>
<xref ref-type="aff" rid="aff1">2</xref>
<xref ref-type="aff" rid="aff1">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mendz</surname>
<given-names>G. L.</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="aff" rid="aff1">4</xref>
<xref ref-type="corresp" rid="cor1">*</xref>
</contrib>
</contrib-group>
<aff id="aff1">School of Medical Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia,
<label>1</label>
INSERM U853, 33076 Bordeaux Cedex, France,
<label>2</label>
Université Victor Segalen Bordeaux II, Laboratoire de Bacteriologie, 146 rue Leo Saignat, 33076 Bordeaux Cedex, France,
<label>3</label>
School of Medicine Sydney, The University of Notre Dame Australia, Sydney, New South Wales 2007, Australia
<label>4</label>
</aff>
<author-notes>
<fn id="cor1">
<label>*</label>
<p>Corresponding author. Mailing address: School of Medicine, Sydney, The University of Notre Dame Australia, 160 Oxford St., Sydney, New South Wales 2010, Australia. Phone: 61282044457. Fax: 61293577680. E-mail:
<email>GMendz@nd.edu.au</email>
</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<month>5</month>
<year>2009</year>
</pub-date>
<pub-date pub-type="epub">
<day>17</day>
<month>2</month>
<year>2009</year>
</pub-date>
<volume>53</volume>
<issue>5</issue>
<fpage>1884</fpage>
<lpage>1891</lpage>
<history>
<date date-type="received">
<day>29</day>
<month>10</month>
<year>2008</year>
</date>
<date date-type="rev-recd">
<day>29</day>
<month>11</month>
<year>2008</year>
</date>
<date date-type="accepted">
<day>7</day>
<month>2</month>
<year>2009</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2009, American Society for Microbiology</copyright-statement>
</permissions>
<self-uri xlink:title="pdf" xlink:href="zac00509001884.pdf"></self-uri>
<abstract>
<p>Metronidazole resistance in
<italic>Helicobacter pylori</italic>
has been attributed to mutations in
<italic>rdxA</italic>
or
<italic>frxA</italic>
. Insufficient data correlating RdxA and/or FrxA with the resistant phenotype, and the emergence of resistant strains with no mutations in either
<italic>rdxA</italic>
or
<italic>frxA</italic>
, indicated that the molecular basis of
<italic>H. pylori</italic>
resistance to metronidazole required further characterization. The
<italic>rdxA</italic>
and
<italic>frxA</italic>
genes of four matched pairs of metronidazole-susceptible and -resistant strains were sequenced. The resistant strains had mutations in either
<italic>rdxA</italic>
,
<italic>frxA</italic>
, neither gene, or both genes. The reduction rates of five substrates suggested that metabolic differences between susceptible and resistant strains cannot be explained only by mutations in
<italic>rdxA</italic>
and/or
<italic>frxA</italic>
. A more global approach to understanding the resistance phenotype was taken by employing two-dimensional gel electrophoresis combined with tandem mass spectrometry analyses to identify proteins differentially expressed by the matched pair of strains with no mutations in
<italic>rdxA</italic>
or
<italic>frxA</italic>
. Proteins involved in the oxireduction of ferredoxin were downregulated in the resistant strain. Other redox enzymes, such as thioredoxin reductase, alkyl hydroperoxide reductase, and superoxide dismutase, showed a pI change in the resistant strain. The data suggested that metronidazole resistance involved more complex metabolic changes than specific gene mutations, and they provided evidence of a role for the intracellular redox potential in the development of resistance.</p>
</abstract>
</article-meta>
</front>
<floats-wrap>
<fig position="float" id="f1">
<label>FIG. 1.</label>
<caption>
<p>Two-dimensional proteomes (pI 4 to 7) of (A)
<italic>Helicobacter pylori</italic>
HER 126 V1 (left) and HER 126 V4 (right) and (B)
<italic>Helicobacter pylori</italic>
HER 126 V4 cells grown without Mtr (left) or in the presence of 8 μg ml
<sup>−1</sup>
Mtr (right). Proteins differentially expressed between the two growth conditions are listed on Table
<xref ref-type="table" rid="t5">5</xref>
(A) and Table
<xref ref-type="table" rid="t6">6</xref>
(B). The protein spots labeled in both gels represent (A) thioredoxin reductase and fructose-1,6-bisaldolase; (B) thioredoxin reductase; and (C) fructose-1,6-bisaldolase. Examples of regulated proteins in panel B are shown with arrows.</p>
</caption>
<graphic xlink:href="zac0050980350001"></graphic>
</fig>
<table-wrap position="float" id="t1">
<label>TABLE 1.</label>
<caption>
<p>Status of
<italic>rdxA</italic>
and
<italic>frxA</italic>
genes in four
<italic>H. pylori</italic>
genetic backgrounds with susceptible and resistant matched pairs
<xref ref-type="table-fn" rid="t1fn1">
<italic>a</italic>
</xref>
</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th colspan="1" rowspan="1" align="center" valign="bottom">
<italic>H. pylori</italic>
strain</th>
<th colspan="1" rowspan="1" align="center" valign="bottom">Mtr MIC (mg liter
<sup>−1</sup>
)</th>
<th colspan="1" rowspan="1" align="center" valign="bottom">Mtr-resistant counterpart</th>
<th colspan="1" rowspan="1" align="center" valign="bottom">Mtr MIC (mg liter
<sup>−1</sup>
)</th>
<th colspan="1" rowspan="1" align="center" valign="bottom">Mutation in
<italic>rdxA</italic>
</th>
<th colspan="1" rowspan="1" align="center" valign="bottom">Mutation in
<italic>frxA</italic>
</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">10593/2</td>
<td colspan="1" rowspan="1" align="char" char="." valign="top">2</td>
<td colspan="1" rowspan="1" align="left" valign="top">10593a/2</td>
<td colspan="1" rowspan="1" align="char" char="." valign="top">64</td>
<td colspan="1" rowspan="1" align="left" valign="top">C177stop</td>
<td colspan="1" rowspan="1" align="left" valign="top">None</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">RIG 117 J0</td>
<td colspan="1" rowspan="1" align="char" char="." valign="top">4</td>
<td colspan="1" rowspan="1" align="left" valign="top">RIG 117 J56</td>
<td colspan="1" rowspan="1" align="char" char="." valign="top">32</td>
<td colspan="1" rowspan="1" align="left" valign="top">R16C</td>
<td colspan="1" rowspan="1" align="left" valign="top">A40stop</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">CAS 015 J0</td>
<td colspan="1" rowspan="1" align="char" char="." valign="top">4</td>
<td colspan="1" rowspan="1" align="left" valign="top">CAS 015 J56</td>
<td colspan="1" rowspan="1" align="char" char="." valign="top">32</td>
<td colspan="1" rowspan="1" align="left" valign="top">L132stop</td>
<td colspan="1" rowspan="1" align="left" valign="top">L39stop</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">HER 126 V1</td>
<td colspan="1" rowspan="1" align="char" char="." valign="top">2</td>
<td colspan="1" rowspan="1" align="left" valign="top">HER 126 V4</td>
<td colspan="1" rowspan="1" align="char" char="." valign="top">64</td>
<td colspan="1" rowspan="1" align="left" valign="top">None</td>
<td colspan="1" rowspan="1" align="left" valign="top">None</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="t1fn1">
<label>a</label>
<p>Mtr MICs for the strains were determined using Etests. The
<italic>rdxA</italic>
and
<italic>frxA</italic>
genes of each of the strains were sequenced. Mutations in the Mtr-resistant variant are given with respect to its susceptible counterpart.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap position="float" id="t2">
<label>TABLE 2.</label>
<caption>
<p>Mtr reduction activities of
<italic>H. pylori</italic>
lysates from matched pairs of susceptible and resistant variants prepared from cells grown under microaerobic and aerobic conditions
<xref ref-type="table-fn" rid="t2fn1">
<italic>a</italic>
</xref>
</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th colspan="1" rowspan="3" align="center" valign="middle">
<italic>H. pylori</italic>
strain</th>
<th colspan="4" rowspan="1" align="center" valign="bottom">Mtr reduction velocities (nmol min
<sup>−1</sup>
mg
<sup>−1</sup>
)
<hr></hr>
</th>
</tr>
<tr>
<th colspan="2" rowspan="1" align="center" valign="bottom">Microaerobic
<hr></hr>
</th>
<th colspan="2" rowspan="1" align="center" valign="bottom">Aerobic
<hr></hr>
</th>
</tr>
<tr>
<th colspan="1" rowspan="1" align="center" valign="bottom">Oxygenated</th>
<th colspan="1" rowspan="1" align="center" valign="bottom">Argonized</th>
<th colspan="1" rowspan="1" align="center" valign="bottom">Oxygenated</th>
<th colspan="1" rowspan="1" align="center" valign="bottom">Argonized</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">10593/2</td>
<td colspan="1" rowspan="1" align="center" valign="top">14 ± 2</td>
<td colspan="1" rowspan="1" align="center" valign="top">32 ± 4</td>
<td colspan="1" rowspan="1" align="center" valign="top">16 ± 2</td>
<td colspan="1" rowspan="1" align="center" valign="top">36 ± 4</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">10593a/2</td>
<td colspan="1" rowspan="1" align="center" valign="top">9 ± 1</td>
<td colspan="1" rowspan="1" align="center" valign="top">13 ± 2</td>
<td colspan="1" rowspan="1" align="center" valign="top">10 ± 1</td>
<td colspan="1" rowspan="1" align="center" valign="top">15 ± 2</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">RIG 117 J0</td>
<td colspan="1" rowspan="1" align="center" valign="top">19 ± 2</td>
<td colspan="1" rowspan="1" align="center" valign="top">32 ± 3</td>
<td colspan="1" rowspan="1" align="center" valign="top">27 ± 3</td>
<td colspan="1" rowspan="1" align="center" valign="top">33 ± 4</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">RIG 117 J56</td>
<td colspan="1" rowspan="1" align="center" valign="top">13 ± 1</td>
<td colspan="1" rowspan="1" align="center" valign="top">16 ± 2</td>
<td colspan="1" rowspan="1" align="center" valign="top">19 ± 2</td>
<td colspan="1" rowspan="1" align="center" valign="top">20 ± 2</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">CAS 015 J0</td>
<td colspan="1" rowspan="1" align="center" valign="top">15 ± 2</td>
<td colspan="1" rowspan="1" align="center" valign="top">29 ± 3</td>
<td colspan="1" rowspan="1" align="center" valign="top">18 ± 2</td>
<td colspan="1" rowspan="1" align="center" valign="top">31 ± 3</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">CAS 015 J56</td>
<td colspan="1" rowspan="1" align="center" valign="top">9 ± 1</td>
<td colspan="1" rowspan="1" align="center" valign="top">14 ± 1</td>
<td colspan="1" rowspan="1" align="center" valign="top">13 ± 1</td>
<td colspan="1" rowspan="1" align="center" valign="top">15 ± 1</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">HER 126 V1</td>
<td colspan="1" rowspan="1" align="center" valign="top">18 ± 2</td>
<td colspan="1" rowspan="1" align="center" valign="top">20 ± 2</td>
<td colspan="1" rowspan="1" align="center" valign="top">22 ± 2</td>
<td colspan="1" rowspan="1" align="center" valign="top">25 ± 3</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">HER 126 V4</td>
<td colspan="1" rowspan="1" align="center" valign="top">10 ± 1</td>
<td colspan="1" rowspan="1" align="center" valign="top">11 ± 1</td>
<td colspan="1" rowspan="1" align="center" valign="top">14 ± 1</td>
<td colspan="1" rowspan="1" align="center" valign="top">18 ± 2</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="t2fn1">
<label>a</label>
<p>Lysates were suspended in phosphate buffer and, where stated, subjected to argon treatment for 30 min. Initial substrate concentrations were 12 mM Mtr and 30 mM NADH. Errors were calculated from the straight-line fitting of the values used to determine the Mtr reduction rates.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap position="float" id="t3">
<label>TABLE 3.</label>
<caption>
<p>XTT reduction as a function of bacterial density for each of the four matched pairs of susceptible and resistant variants grown microaerobically and aerobically
<xref ref-type="table-fn" rid="t3fn1">
<italic>a</italic>
</xref>
</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th colspan="1" rowspan="2" align="center" valign="middle">
<italic>H. pylori</italic>
strain</th>
<th colspan="2" rowspan="1" align="center" valign="bottom">XTT reduction as a function of bacterial density (
<italic>R</italic>
<sup>2</sup>
)
<hr></hr>
</th>
</tr>
<tr>
<th colspan="1" rowspan="1" align="center" valign="bottom">Microaerobic</th>
<th colspan="1" rowspan="1" align="center" valign="bottom">Aerobic</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">10593/2</td>
<td colspan="1" rowspan="1" align="center" valign="top">0.08 (0.998)</td>
<td colspan="1" rowspan="1" align="center" valign="top">0.11 (0.997)</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">10593a/2</td>
<td colspan="1" rowspan="1" align="center" valign="top">0.55 (0.997)</td>
<td colspan="1" rowspan="1" align="center" valign="top">0.64 (0.962)</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">RIG 117 J0</td>
<td colspan="1" rowspan="1" align="center" valign="top">0.18 (0.954)</td>
<td colspan="1" rowspan="1" align="center" valign="top">0.21 (0.997)</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">RIG 117 J56</td>
<td colspan="1" rowspan="1" align="center" valign="top">0.24 (0.996)</td>
<td colspan="1" rowspan="1" align="center" valign="top">0.69 (0.999)</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">CAS 015 J0</td>
<td colspan="1" rowspan="1" align="center" valign="top">0.18 (0.996)</td>
<td colspan="1" rowspan="1" align="center" valign="top">0.18 (0.998)</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">CAS 015 J56</td>
<td colspan="1" rowspan="1" align="center" valign="top">0.35 (0.985)</td>
<td colspan="1" rowspan="1" align="center" valign="top">0.55 (0.950)</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">HER 126 V1</td>
<td colspan="1" rowspan="1" align="center" valign="top">0.09 (0.980)</td>
<td colspan="1" rowspan="1" align="center" valign="top">0.13 (0.986)</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">HER 126 V4</td>
<td colspan="1" rowspan="1" align="center" valign="top">0.09 (0.990)</td>
<td colspan="1" rowspan="1" align="center" valign="top">0.18 (0.989)</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="t3fn1">
<label>a</label>
<p>XTT reduction was measured at five different bacterial densities as described by Bensaid et al. (
<xref ref-type="bibr" rid="r3">3</xref>
). The method was validated by measuring the change in absorbance with no bacteria.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap position="float" id="t4">
<label>TABLE 4.</label>
<caption>
<p>Michaelis constants for GSSG, FAD, Fdx, and nitrofurazone reduction activities in
<italic>H. pylori</italic>
Mtr-susceptible and -resistant matched pairs of strains
<xref ref-type="table-fn" rid="t4fn1">
<italic>a</italic>
</xref>
</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th colspan="1" rowspan="2" align="center" valign="middle">
<italic>H. pylori</italic>
strain</th>
<th colspan="4" rowspan="1" align="center" valign="bottom">Michaelis constants for reduction activities
<hr></hr>
</th>
</tr>
<tr>
<th colspan="1" rowspan="1" align="center" valign="bottom">GSSG (mM)</th>
<th colspan="1" rowspan="1" align="center" valign="bottom">FAD (μM)</th>
<th colspan="1" rowspan="1" align="center" valign="bottom">Fdx (μg ml
<sup>−1</sup>
)</th>
<th colspan="1" rowspan="1" align="center" valign="bottom">Nitrofurazone (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">10593/2</td>
<td colspan="1" rowspan="1" align="center" valign="top">2.3 ± 0.2</td>
<td colspan="1" rowspan="1" align="center" valign="top">2.1 ± 0.3</td>
<td colspan="1" rowspan="1" align="center" valign="top">3.0 ± 0.4</td>
<td colspan="1" rowspan="1" align="center" valign="top">2.8 ± 0.3</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">10593a/2</td>
<td colspan="1" rowspan="1" align="center" valign="top">2.8 ± 0.2</td>
<td colspan="1" rowspan="1" align="center" valign="top">95 ± 10</td>
<td colspan="1" rowspan="1" align="center" valign="top">No activity</td>
<td colspan="1" rowspan="1" align="center" valign="top">8.1 ± 1.4</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">RIG 117 J0</td>
<td colspan="1" rowspan="1" align="center" valign="top">4.9 ± 0.4</td>
<td colspan="1" rowspan="1" align="center" valign="top">2.4 ± 0.3</td>
<td colspan="1" rowspan="1" align="center" valign="top">44 ± 5</td>
<td colspan="1" rowspan="1" align="center" valign="top">8.8 ± 1.8</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">RIG 117 J56</td>
<td colspan="1" rowspan="1" align="center" valign="top">4.5 ± 0.5</td>
<td colspan="1" rowspan="1" align="center" valign="top">6 ± 1</td>
<td colspan="1" rowspan="1" align="center" valign="top">24 ± 4</td>
<td colspan="1" rowspan="1" align="center" valign="top">13.1 ± 2.1</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">CAS 015 J0</td>
<td colspan="1" rowspan="1" align="center" valign="top">5.0 ± 0.5</td>
<td colspan="1" rowspan="1" align="center" valign="top">5 ± 1</td>
<td colspan="1" rowspan="1" align="center" valign="top">23 ± 4</td>
<td colspan="1" rowspan="1" align="center" valign="top">6.0 ± 0.9</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">CAS 015 J56</td>
<td colspan="1" rowspan="1" align="center" valign="top">4.7 ± 0.5</td>
<td colspan="1" rowspan="1" align="center" valign="top">11 ± 2</td>
<td colspan="1" rowspan="1" align="center" valign="top">40 ± 5</td>
<td colspan="1" rowspan="1" align="center" valign="top">8.5 ± 2.1</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">HER 126 V1</td>
<td colspan="1" rowspan="1" align="center" valign="top">3.0 ± 0.2</td>
<td colspan="1" rowspan="1" align="center" valign="top">24 ± 2</td>
<td colspan="1" rowspan="1" align="center" valign="top">44 ± 7</td>
<td colspan="1" rowspan="1" align="center" valign="top">3.3 ± 0.6</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">HER 126 V4</td>
<td colspan="1" rowspan="1" align="center" valign="top">5.2 ± 0.6</td>
<td colspan="1" rowspan="1" align="center" valign="top">17 ± 2</td>
<td colspan="1" rowspan="1" align="center" valign="top">11 ± 2</td>
<td colspan="1" rowspan="1" align="center" valign="top">6.8 ± 1.1</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="t4fn1">
<label>a</label>
<p>GSSG concentrations ranged from 0.5 to 70 mM, FAD and nitrofurazone concentrations ranged from 0.5 μM to 100 μM, and Fdx concentrations ranged from 0 to 80 μg ml
<sup>−1</sup>
. NADH concentrations were 0.15 mM for FAD, Fdx, and nitrofurazone assays and 50 mM for GSSG assays. Kinetic fits were performed using 10 to 13 rates. Errors were calculated using the Enzyme Kinetics program from nonlinear regression fits to the data.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap position="float" id="t5">
<label>TABLE 5.</label>
<caption>
<p>Differences in the proteomes of the
<italic>H. pylori</italic>
strains HER 126 V1 and its Mtr-resistant variant HER 126 V4 mapped using two-dimensional gel electrophoresis
<xref ref-type="table-fn" rid="t5fn1">
<italic>a</italic>
</xref>
</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th colspan="1" rowspan="1" align="center" valign="bottom">Gene open reading frame and regulation status</th>
<th colspan="1" rowspan="1" align="center" valign="bottom">Protein name</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">Downregulated</td>
<td colspan="1" rowspan="1" align="center" valign="top"></td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp0500</td>
<td colspan="1" rowspan="1" align="left" valign="top">DNA polymerase III subunit beta</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp0512</td>
<td colspan="1" rowspan="1" align="left" valign="top">Glutamine synthetase</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp0591</td>
<td colspan="1" rowspan="1" align="left" valign="top">Ferredoxin oxidoreductase γ subunit</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp0691</td>
<td colspan="1" rowspan="1" align="left" valign="top">3-Oxoadipate coenzyme A transferase subunit A</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp0695</td>
<td colspan="1" rowspan="1" align="left" valign="top">Hydantoin utilization protein A</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp0697</td>
<td colspan="1" rowspan="1" align="left" valign="top">Hypothetical protein</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp1110</td>
<td colspan="1" rowspan="1" align="left" valign="top">Pyruvate ferredoxin oxidoreductase</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp1293</td>
<td colspan="1" rowspan="1" align="left" valign="top">DNA-directed RNA polymerase, alpha subunit</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">Upregulated</td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp0002</td>
<td colspan="1" rowspan="1" align="left" valign="top">Riboflavin synthase subunit beta</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp0049</td>
<td colspan="1" rowspan="1" align="left" valign="top">Hypothetical protein</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp0105</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>S</italic>
-ribosyl homocysteinase</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp0107</td>
<td colspan="1" rowspan="1" align="left" valign="top">Cysteine synthase</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp0115</td>
<td colspan="1" rowspan="1" align="left" valign="top">Flagellin B</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp0601</td>
<td colspan="1" rowspan="1" align="left" valign="top">Flagellin A</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp0783</td>
<td colspan="1" rowspan="1" align="left" valign="top">Hypothetical protein</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp0870</td>
<td colspan="1" rowspan="1" align="left" valign="top">Flagellar hook protein</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp1046</td>
<td colspan="1" rowspan="1" align="left" valign="top">Hypothetical protein</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp1134</td>
<td colspan="1" rowspan="1" align="left" valign="top">ATP synthase subunit A</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">pI change</td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp0389</td>
<td colspan="1" rowspan="1" align="left" valign="top">Superoxide dismutase</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp0825</td>
<td colspan="1" rowspan="1" align="left" valign="top">Thioredoxin reductase</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp1563</td>
<td colspan="1" rowspan="1" align="left" valign="top">Alkyl hydroperoxide reductase</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="t5fn1">
<label>a</label>
<p>Protein spots with changes in their intensity (≤0.5-fold or ≥2-fold) or in their position along the horizontal axes (pI) were identified by MS analyses.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap position="float" id="t6">
<label>TABLE 6.</label>
<caption>
<p>
<italic>H. pylori</italic>
HER 126 V4 proteins (pI 4 to 7) whose expression is modulated in the presence of 8 μg ml
<sup>−1</sup>
Mtr
<xref ref-type="table-fn" rid="t6fn1">
<italic>a</italic>
</xref>
</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th colspan="1" rowspan="1" align="center" valign="bottom">Gene open reading frame and regulation status</th>
<th colspan="1" rowspan="1" align="center" valign="bottom">Protein name</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">Downregulated</td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp0106</td>
<td colspan="1" rowspan="1" align="left" valign="top">Cystathionine gamma-synthase</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp0152</td>
<td colspan="1" rowspan="1" align="left" valign="top">Hypothetical protein</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp0171</td>
<td colspan="1" rowspan="1" align="left" valign="top">Peptide chain release factor 2</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp0197</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>S</italic>
-adenosylmethionine synthetase</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp0220</td>
<td colspan="1" rowspan="1" align="left" valign="top">Cysteine desulfurase</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp0264</td>
<td colspan="1" rowspan="1" align="left" valign="top">Heat shock protein (ClpB)</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp0589</td>
<td colspan="1" rowspan="1" align="left" valign="top">Fdx oxidoreductase α subunit</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp0795</td>
<td colspan="1" rowspan="1" align="left" valign="top">Trigger factor</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp0900</td>
<td colspan="1" rowspan="1" align="left" valign="top">Hydrogenase expression/formation protein</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp1164</td>
<td colspan="1" rowspan="1" align="left" valign="top">NADPH reductase</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp1495</td>
<td colspan="1" rowspan="1" align="left" valign="top">Transaldolase</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">Upregulated</td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp0072</td>
<td colspan="1" rowspan="1" align="left" valign="top">Urease beta subunit</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp0115</td>
<td colspan="1" rowspan="1" align="left" valign="top">Flagellin B</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp0570</td>
<td colspan="1" rowspan="1" align="left" valign="top">Leucyl aminopeptidase</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp0601</td>
<td colspan="1" rowspan="1" align="left" valign="top">Flagellin A</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp0653</td>
<td colspan="1" rowspan="1" align="left" valign="top">Ferritin</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp0837</td>
<td colspan="1" rowspan="1" align="left" valign="top">Conserved hypothetical protein</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp1134</td>
<td colspan="1" rowspan="1" align="left" valign="top">ATP synthase F1, subunit alpha</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">    hp1563</td>
<td colspan="1" rowspan="1" align="left" valign="top">Alkyl hydroperoxide reductase AhpC</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="t6fn1">
<label>a</label>
<p>Proteins with changes in their intensity (≤0.5-fold or ≥2-fold) were identified by MS analyses.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</floats-wrap>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F46 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000F46 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:2681531
   |texte=   A Redox Basis for Metronidazole Resistance in Helicobacter pylori▿ 
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:19223619" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024