Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nonlinear magnetoelectric effect in paraelectric state of Co4Nb2O9 single crystal

Identifieur interne : 000E44 ( Pmc/Corpus ); précédent : 000E43; suivant : 000E45

Nonlinear magnetoelectric effect in paraelectric state of Co4Nb2O9 single crystal

Auteurs : Yiming Cao ; Guochu Deng ; P Emysl Beran ; Zhenjie Feng ; Baojuan Kang ; Jincang Zhang ; Nicolas Guiblin ; Brahim Dkhil ; Wei Ren ; Shixun Cao

Source :

RBID : PMC:5658408

Abstract

We report the structural, magnetoelectric (ME), magnetic and electric control of magnetic properties in Co4Nb2O9 (CNO) single crystal. A detailed ME measurement reveals a nonlinear ME effect instead of a linear ME effect in CNO single crystal. By fitting the magnetization-electric field (M-E) curve, it can be found that the linear (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha }_{e}$$\end{document}αe) and quadratic (γ) coefficients equal to ~8.27 ps/m and ~−6.46 ps/MV for upper branch, as well as ~8.38 ps/m and ~6.75 ps/MV for the lower branch. More importantly, a pronounced response was observed under a small cooling magnetic field, which cannot even cause the spin flop. This suggests a magnetoelectric effect can occur at paraelectric state for CNO single crystal. Furthermore, we also found that the magnetization of every axis responds to electric field applied along a-axis, but fails to do so when the electric field is applied c-axis. Such findings supply a direct evidence to the magnetic structure and ME coupling mechanism indirectly reflected by our neutron experiment.


Url:
DOI: 10.1038/s41598-017-14169-3
PubMed: 29074870
PubMed Central: 5658408

Links to Exploration step

PMC:5658408

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nonlinear magnetoelectric effect in paraelectric state of Co
<sub>4</sub>
Nb
<sub>2</sub>
O
<sub>9</sub>
single crystal</title>
<author>
<name sortKey="Cao, Yiming" sort="Cao, Yiming" uniqKey="Cao Y" first="Yiming" last="Cao">Yiming Cao</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2323 5732</institution-id>
<institution-id institution-id-type="GRID">grid.39436.3b</institution-id>
<institution>Department of Physics, International Center of Quantum and Molecular Structures, and Materials Genome Institute, Shanghai University,</institution>
</institution-wrap>
Shanghai, 200444 China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1762 8988</institution-id>
<institution-id institution-id-type="GRID">grid.452648.9</institution-id>
<institution>Center for Magnetic Materials and Devices, Key Laboratory for Advanced Functional and Low Dimensional Materials of Yunnan Higher Education Institute, Qujing Normal University,</institution>
</institution-wrap>
Qujing, 655011 China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 4910 6535</institution-id>
<institution-id institution-id-type="GRID">grid.460789.4</institution-id>
<institution>Laboratoire Structures, Propriétés et Modélisation des Solides, CentraleSupélec, CNRS-UMR 8580, Université Paris-Saclay,</institution>
</institution-wrap>
91192 Gif-sur-Yvette, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Deng, Guochu" sort="Deng, Guochu" uniqKey="Deng G" first="Guochu" last="Deng">Guochu Deng</name>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0432 8812</institution-id>
<institution-id institution-id-type="GRID">grid.1089.0</institution-id>
<institution>Australian Nuclear Science and Technology Organisation, New Illawarra Road,</institution>
</institution-wrap>
Lucas Heights, NSW 2234 Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Beran, P Emysl" sort="Beran, P Emysl" uniqKey="Beran P" first="P Emysl" last="Beran">P Emysl Beran</name>
<affiliation>
<nlm:aff id="Aff5">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0000 8965 6073</institution-id>
<institution-id institution-id-type="GRID">grid.425110.3</institution-id>
<institution>Nuclear Physics Institute CAS,</institution>
</institution-wrap>
25068 Rez, Czech Republic</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Feng, Zhenjie" sort="Feng, Zhenjie" uniqKey="Feng Z" first="Zhenjie" last="Feng">Zhenjie Feng</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2323 5732</institution-id>
<institution-id institution-id-type="GRID">grid.39436.3b</institution-id>
<institution>Department of Physics, International Center of Quantum and Molecular Structures, and Materials Genome Institute, Shanghai University,</institution>
</institution-wrap>
Shanghai, 200444 China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kang, Baojuan" sort="Kang, Baojuan" uniqKey="Kang B" first="Baojuan" last="Kang">Baojuan Kang</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2323 5732</institution-id>
<institution-id institution-id-type="GRID">grid.39436.3b</institution-id>
<institution>Department of Physics, International Center of Quantum and Molecular Structures, and Materials Genome Institute, Shanghai University,</institution>
</institution-wrap>
Shanghai, 200444 China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jincang" sort="Zhang, Jincang" uniqKey="Zhang J" first="Jincang" last="Zhang">Jincang Zhang</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2323 5732</institution-id>
<institution-id institution-id-type="GRID">grid.39436.3b</institution-id>
<institution>Department of Physics, International Center of Quantum and Molecular Structures, and Materials Genome Institute, Shanghai University,</institution>
</institution-wrap>
Shanghai, 200444 China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff6">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2323 5732</institution-id>
<institution-id institution-id-type="GRID">grid.39436.3b</institution-id>
<institution>Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University,</institution>
</institution-wrap>
Shanghai, 200444 China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Guiblin, Nicolas" sort="Guiblin, Nicolas" uniqKey="Guiblin N" first="Nicolas" last="Guiblin">Nicolas Guiblin</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 4910 6535</institution-id>
<institution-id institution-id-type="GRID">grid.460789.4</institution-id>
<institution>Laboratoire Structures, Propriétés et Modélisation des Solides, CentraleSupélec, CNRS-UMR 8580, Université Paris-Saclay,</institution>
</institution-wrap>
91192 Gif-sur-Yvette, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dkhil, Brahim" sort="Dkhil, Brahim" uniqKey="Dkhil B" first="Brahim" last="Dkhil">Brahim Dkhil</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 4910 6535</institution-id>
<institution-id institution-id-type="GRID">grid.460789.4</institution-id>
<institution>Laboratoire Structures, Propriétés et Modélisation des Solides, CentraleSupélec, CNRS-UMR 8580, Université Paris-Saclay,</institution>
</institution-wrap>
91192 Gif-sur-Yvette, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ren, Wei" sort="Ren, Wei" uniqKey="Ren W" first="Wei" last="Ren">Wei Ren</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2323 5732</institution-id>
<institution-id institution-id-type="GRID">grid.39436.3b</institution-id>
<institution>Department of Physics, International Center of Quantum and Molecular Structures, and Materials Genome Institute, Shanghai University,</institution>
</institution-wrap>
Shanghai, 200444 China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff6">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2323 5732</institution-id>
<institution-id institution-id-type="GRID">grid.39436.3b</institution-id>
<institution>Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University,</institution>
</institution-wrap>
Shanghai, 200444 China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cao, Shixun" sort="Cao, Shixun" uniqKey="Cao S" first="Shixun" last="Cao">Shixun Cao</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2323 5732</institution-id>
<institution-id institution-id-type="GRID">grid.39436.3b</institution-id>
<institution>Department of Physics, International Center of Quantum and Molecular Structures, and Materials Genome Institute, Shanghai University,</institution>
</institution-wrap>
Shanghai, 200444 China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff6">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2323 5732</institution-id>
<institution-id institution-id-type="GRID">grid.39436.3b</institution-id>
<institution>Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University,</institution>
</institution-wrap>
Shanghai, 200444 China</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">29074870</idno>
<idno type="pmc">5658408</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5658408</idno>
<idno type="RBID">PMC:5658408</idno>
<idno type="doi">10.1038/s41598-017-14169-3</idno>
<date when="2017">2017</date>
<idno type="wicri:Area/Pmc/Corpus">000E44</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000E44</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Nonlinear magnetoelectric effect in paraelectric state of Co
<sub>4</sub>
Nb
<sub>2</sub>
O
<sub>9</sub>
single crystal</title>
<author>
<name sortKey="Cao, Yiming" sort="Cao, Yiming" uniqKey="Cao Y" first="Yiming" last="Cao">Yiming Cao</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2323 5732</institution-id>
<institution-id institution-id-type="GRID">grid.39436.3b</institution-id>
<institution>Department of Physics, International Center of Quantum and Molecular Structures, and Materials Genome Institute, Shanghai University,</institution>
</institution-wrap>
Shanghai, 200444 China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1762 8988</institution-id>
<institution-id institution-id-type="GRID">grid.452648.9</institution-id>
<institution>Center for Magnetic Materials and Devices, Key Laboratory for Advanced Functional and Low Dimensional Materials of Yunnan Higher Education Institute, Qujing Normal University,</institution>
</institution-wrap>
Qujing, 655011 China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 4910 6535</institution-id>
<institution-id institution-id-type="GRID">grid.460789.4</institution-id>
<institution>Laboratoire Structures, Propriétés et Modélisation des Solides, CentraleSupélec, CNRS-UMR 8580, Université Paris-Saclay,</institution>
</institution-wrap>
91192 Gif-sur-Yvette, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Deng, Guochu" sort="Deng, Guochu" uniqKey="Deng G" first="Guochu" last="Deng">Guochu Deng</name>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0432 8812</institution-id>
<institution-id institution-id-type="GRID">grid.1089.0</institution-id>
<institution>Australian Nuclear Science and Technology Organisation, New Illawarra Road,</institution>
</institution-wrap>
Lucas Heights, NSW 2234 Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Beran, P Emysl" sort="Beran, P Emysl" uniqKey="Beran P" first="P Emysl" last="Beran">P Emysl Beran</name>
<affiliation>
<nlm:aff id="Aff5">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0000 8965 6073</institution-id>
<institution-id institution-id-type="GRID">grid.425110.3</institution-id>
<institution>Nuclear Physics Institute CAS,</institution>
</institution-wrap>
25068 Rez, Czech Republic</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Feng, Zhenjie" sort="Feng, Zhenjie" uniqKey="Feng Z" first="Zhenjie" last="Feng">Zhenjie Feng</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2323 5732</institution-id>
<institution-id institution-id-type="GRID">grid.39436.3b</institution-id>
<institution>Department of Physics, International Center of Quantum and Molecular Structures, and Materials Genome Institute, Shanghai University,</institution>
</institution-wrap>
Shanghai, 200444 China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kang, Baojuan" sort="Kang, Baojuan" uniqKey="Kang B" first="Baojuan" last="Kang">Baojuan Kang</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2323 5732</institution-id>
<institution-id institution-id-type="GRID">grid.39436.3b</institution-id>
<institution>Department of Physics, International Center of Quantum and Molecular Structures, and Materials Genome Institute, Shanghai University,</institution>
</institution-wrap>
Shanghai, 200444 China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jincang" sort="Zhang, Jincang" uniqKey="Zhang J" first="Jincang" last="Zhang">Jincang Zhang</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2323 5732</institution-id>
<institution-id institution-id-type="GRID">grid.39436.3b</institution-id>
<institution>Department of Physics, International Center of Quantum and Molecular Structures, and Materials Genome Institute, Shanghai University,</institution>
</institution-wrap>
Shanghai, 200444 China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff6">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2323 5732</institution-id>
<institution-id institution-id-type="GRID">grid.39436.3b</institution-id>
<institution>Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University,</institution>
</institution-wrap>
Shanghai, 200444 China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Guiblin, Nicolas" sort="Guiblin, Nicolas" uniqKey="Guiblin N" first="Nicolas" last="Guiblin">Nicolas Guiblin</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 4910 6535</institution-id>
<institution-id institution-id-type="GRID">grid.460789.4</institution-id>
<institution>Laboratoire Structures, Propriétés et Modélisation des Solides, CentraleSupélec, CNRS-UMR 8580, Université Paris-Saclay,</institution>
</institution-wrap>
91192 Gif-sur-Yvette, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dkhil, Brahim" sort="Dkhil, Brahim" uniqKey="Dkhil B" first="Brahim" last="Dkhil">Brahim Dkhil</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 4910 6535</institution-id>
<institution-id institution-id-type="GRID">grid.460789.4</institution-id>
<institution>Laboratoire Structures, Propriétés et Modélisation des Solides, CentraleSupélec, CNRS-UMR 8580, Université Paris-Saclay,</institution>
</institution-wrap>
91192 Gif-sur-Yvette, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ren, Wei" sort="Ren, Wei" uniqKey="Ren W" first="Wei" last="Ren">Wei Ren</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2323 5732</institution-id>
<institution-id institution-id-type="GRID">grid.39436.3b</institution-id>
<institution>Department of Physics, International Center of Quantum and Molecular Structures, and Materials Genome Institute, Shanghai University,</institution>
</institution-wrap>
Shanghai, 200444 China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff6">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2323 5732</institution-id>
<institution-id institution-id-type="GRID">grid.39436.3b</institution-id>
<institution>Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University,</institution>
</institution-wrap>
Shanghai, 200444 China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cao, Shixun" sort="Cao, Shixun" uniqKey="Cao S" first="Shixun" last="Cao">Shixun Cao</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2323 5732</institution-id>
<institution-id institution-id-type="GRID">grid.39436.3b</institution-id>
<institution>Department of Physics, International Center of Quantum and Molecular Structures, and Materials Genome Institute, Shanghai University,</institution>
</institution-wrap>
Shanghai, 200444 China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff6">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2323 5732</institution-id>
<institution-id institution-id-type="GRID">grid.39436.3b</institution-id>
<institution>Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University,</institution>
</institution-wrap>
Shanghai, 200444 China</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific Reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2017">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="Par1">We report the structural, magnetoelectric (ME), magnetic and electric control of magnetic properties in Co
<sub>4</sub>
Nb
<sub>2</sub>
O
<sub>9</sub>
(CNO) single crystal. A detailed ME measurement reveals a nonlinear ME effect instead of a linear ME effect in CNO single crystal. By fitting the magnetization-electric field (M-E) curve, it can be found that the linear (
<inline-formula id="IEq1">
<alternatives>
<tex-math id="M1">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha }_{e}$$\end{document}</tex-math>
<mml:math id="M2">
<mml:msub>
<mml:mrow>
<mml:mi>α</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>e</mml:mi>
</mml:mrow>
</mml:msub>
</mml:math>
<inline-graphic xlink:href="41598_2017_14169_Article_IEq1.gif"></inline-graphic>
</alternatives>
</inline-formula>
) and quadratic (γ) coefficients equal to ~8.27 ps/m and ~−6.46 ps/MV for upper branch, as well as ~8.38 ps/m and ~6.75 ps/MV for the lower branch. More importantly, a pronounced response was observed under a small cooling magnetic field, which cannot even cause the spin flop. This suggests a magnetoelectric effect can occur at paraelectric state for CNO single crystal. Furthermore, we also found that the magnetization of every axis responds to electric field applied along
<italic>a</italic>
-axis, but fails to do so when the electric field is applied
<italic>c</italic>
-axis. Such findings supply a direct evidence to the magnetic structure and ME coupling mechanism indirectly reflected by our neutron experiment.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Eerenstein, W" uniqKey="Eerenstein W">W Eerenstein</name>
</author>
<author>
<name sortKey="Mathur, Nd" uniqKey="Mathur N">ND Mathur</name>
</author>
<author>
<name sortKey="Scott, Jf" uniqKey="Scott J">JF Scott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheong, S W" uniqKey="Cheong S">S-W Cheong</name>
</author>
<author>
<name sortKey="Mostovoy, M" uniqKey="Mostovoy M">M Mostovoy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rajeswaran, B" uniqKey="Rajeswaran B">B Rajeswaran</name>
</author>
<author>
<name sortKey="Khomskii, Di" uniqKey="Khomskii D">DI Khomskii</name>
</author>
<author>
<name sortKey="Zvezdin, Ak" uniqKey="Zvezdin A">AK Zvezdin</name>
</author>
<author>
<name sortKey="Rao, Cnr" uniqKey="Rao C">CNR Rao</name>
</author>
<author>
<name sortKey="Sundaresan, A" uniqKey="Sundaresan A">A Sundaresan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, M" uniqKey="Liu M">M Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fang, Y" uniqKey="Fang Y">Y Fang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kolodiazhnyi, T" uniqKey="Kolodiazhnyi T">T Kolodiazhnyi</name>
</author>
<author>
<name sortKey="Sakurai, H" uniqKey="Sakurai H">H Sakurai</name>
</author>
<author>
<name sortKey="Vittayakorn, N" uniqKey="Vittayakorn N">N Vittayakorn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cao, Y" uniqKey="Cao Y">Y Cao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khanh, Nd" uniqKey="Khanh N">ND Khanh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Solovyev, Iv" uniqKey="Solovyev I">IV Solovyev</name>
</author>
<author>
<name sortKey="Kolodiazhnyi, Tv" uniqKey="Kolodiazhnyi T">TV Kolodiazhnyi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yin, Lh" uniqKey="Yin L">LH Yin</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Momma, K" uniqKey="Momma K">K Momma</name>
</author>
<author>
<name sortKey="Izumi, F" uniqKey="Izumi F">F Izumi</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Solovyev, Iv" uniqKey="Solovyev I">IV Solovyev</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Belov, Dv" uniqKey="Belov D">DV Belov</name>
</author>
<author>
<name sortKey="Vorob V, Gp" uniqKey="Vorob V G">GP Vorob’ev</name>
</author>
<author>
<name sortKey="Kadomtseva, Am" uniqKey="Kadomtseva A">AM Kadomtseva</name>
</author>
<author>
<name sortKey="Popov, Yf" uniqKey="Popov Y">YF Popov</name>
</author>
<author>
<name sortKey="Zvezdin, Ak" uniqKey="Zvezdin A">AK Zvezdin</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Sci Rep</journal-id>
<journal-id journal-id-type="iso-abbrev">Sci Rep</journal-id>
<journal-title-group>
<journal-title>Scientific Reports</journal-title>
</journal-title-group>
<issn pub-type="epub">2045-2322</issn>
<publisher>
<publisher-name>Nature Publishing Group UK</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">29074870</article-id>
<article-id pub-id-type="pmc">5658408</article-id>
<article-id pub-id-type="publisher-id">14169</article-id>
<article-id pub-id-type="doi">10.1038/s41598-017-14169-3</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Nonlinear magnetoelectric effect in paraelectric state of Co
<sub>4</sub>
Nb
<sub>2</sub>
O
<sub>9</sub>
single crystal</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Cao</surname>
<given-names>Yiming</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
<xref ref-type="aff" rid="Aff2">2</xref>
<xref ref-type="aff" rid="Aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Deng</surname>
<given-names>Guochu</given-names>
</name>
<xref ref-type="aff" rid="Aff4">4</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0002-1217-3131</contrib-id>
<name>
<surname>Beran</surname>
<given-names>Přemysl</given-names>
</name>
<xref ref-type="aff" rid="Aff5">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Feng</surname>
<given-names>Zhenjie</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kang</surname>
<given-names>Baojuan</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhang</surname>
<given-names>Jincang</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
<xref ref-type="aff" rid="Aff6">6</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Guiblin</surname>
<given-names>Nicolas</given-names>
</name>
<xref ref-type="aff" rid="Aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dkhil</surname>
<given-names>Brahim</given-names>
</name>
<xref ref-type="aff" rid="Aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ren</surname>
<given-names>Wei</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
<xref ref-type="aff" rid="Aff6">6</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0002-3915-2621</contrib-id>
<name>
<surname>Cao</surname>
<given-names>Shixun</given-names>
</name>
<address>
<email>sxcao@shu.edu.cn</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
<xref ref-type="aff" rid="Aff6">6</xref>
</contrib>
<aff id="Aff1">
<label>1</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2323 5732</institution-id>
<institution-id institution-id-type="GRID">grid.39436.3b</institution-id>
<institution>Department of Physics, International Center of Quantum and Molecular Structures, and Materials Genome Institute, Shanghai University,</institution>
</institution-wrap>
Shanghai, 200444 China</aff>
<aff id="Aff2">
<label>2</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1762 8988</institution-id>
<institution-id institution-id-type="GRID">grid.452648.9</institution-id>
<institution>Center for Magnetic Materials and Devices, Key Laboratory for Advanced Functional and Low Dimensional Materials of Yunnan Higher Education Institute, Qujing Normal University,</institution>
</institution-wrap>
Qujing, 655011 China</aff>
<aff id="Aff3">
<label>3</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 4910 6535</institution-id>
<institution-id institution-id-type="GRID">grid.460789.4</institution-id>
<institution>Laboratoire Structures, Propriétés et Modélisation des Solides, CentraleSupélec, CNRS-UMR 8580, Université Paris-Saclay,</institution>
</institution-wrap>
91192 Gif-sur-Yvette, France</aff>
<aff id="Aff4">
<label>4</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0432 8812</institution-id>
<institution-id institution-id-type="GRID">grid.1089.0</institution-id>
<institution>Australian Nuclear Science and Technology Organisation, New Illawarra Road,</institution>
</institution-wrap>
Lucas Heights, NSW 2234 Australia</aff>
<aff id="Aff5">
<label>5</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0000 8965 6073</institution-id>
<institution-id institution-id-type="GRID">grid.425110.3</institution-id>
<institution>Nuclear Physics Institute CAS,</institution>
</institution-wrap>
25068 Rez, Czech Republic</aff>
<aff id="Aff6">
<label>6</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2323 5732</institution-id>
<institution-id institution-id-type="GRID">grid.39436.3b</institution-id>
<institution>Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University,</institution>
</institution-wrap>
Shanghai, 200444 China</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>26</day>
<month>10</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>26</day>
<month>10</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="collection">
<year>2017</year>
</pub-date>
<volume>7</volume>
<elocation-id>14079</elocation-id>
<history>
<date date-type="received">
<day>15</day>
<month>6</month>
<year>2017</year>
</date>
<date date-type="accepted">
<day>6</day>
<month>10</month>
<year>2017</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author(s) 2017</copyright-statement>
<license license-type="OpenAccess">
<license-p>
<bold>Open Access</bold>
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<p id="Par1">We report the structural, magnetoelectric (ME), magnetic and electric control of magnetic properties in Co
<sub>4</sub>
Nb
<sub>2</sub>
O
<sub>9</sub>
(CNO) single crystal. A detailed ME measurement reveals a nonlinear ME effect instead of a linear ME effect in CNO single crystal. By fitting the magnetization-electric field (M-E) curve, it can be found that the linear (
<inline-formula id="IEq1">
<alternatives>
<tex-math id="M1">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha }_{e}$$\end{document}</tex-math>
<mml:math id="M2">
<mml:msub>
<mml:mrow>
<mml:mi>α</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>e</mml:mi>
</mml:mrow>
</mml:msub>
</mml:math>
<inline-graphic xlink:href="41598_2017_14169_Article_IEq1.gif"></inline-graphic>
</alternatives>
</inline-formula>
) and quadratic (γ) coefficients equal to ~8.27 ps/m and ~−6.46 ps/MV for upper branch, as well as ~8.38 ps/m and ~6.75 ps/MV for the lower branch. More importantly, a pronounced response was observed under a small cooling magnetic field, which cannot even cause the spin flop. This suggests a magnetoelectric effect can occur at paraelectric state for CNO single crystal. Furthermore, we also found that the magnetization of every axis responds to electric field applied along
<italic>a</italic>
-axis, but fails to do so when the electric field is applied
<italic>c</italic>
-axis. Such findings supply a direct evidence to the magnetic structure and ME coupling mechanism indirectly reflected by our neutron experiment.</p>
</abstract>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© The Author(s) 2017</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1" sec-type="introduction">
<title>Introduction</title>
<p id="Par2">Multiferroics have attracted a lot of attention as they exhibit coexistence of two or more switchable states such as polarization, magnetization or strain
<sup>
<xref ref-type="bibr" rid="CR1">1</xref>
,
<xref ref-type="bibr" rid="CR2">2</xref>
</sup>
rendering them very interesting for both their intriguing fundamental physics and promising applications. Because weak coupling between magnetic moments and electric polarization is usually observed in single-phase materials
<sup>
<xref ref-type="bibr" rid="CR3">3</xref>
</sup>
, there is an important research effort towards novel materials with improved magnetoelectric coupling. Indeed, highly efficient control of magnetism by means of an electric field
<sup>
<xref ref-type="bibr" rid="CR4">4</xref>
</sup>
may find a plethora of applications in magnetic storage and magnetic random-access memory devices.</p>
<p id="Par3">In the route towards materials having strong magnetoelectric (ME) responses, Co
<sub>4</sub>
Nb
<sub>2</sub>
O
<sub>9</sub>
(CNO) is very attractive. In polycrystalline form, it has been shown to display a large linear ME coupling as well as an electric field control of the magnetism
<sup>
<xref ref-type="bibr" rid="CR5">5</xref>
</sup>
, a manipulation which remains quite rarely reported. According to previous report by Kolodiazhnyi
<italic>et al</italic>
.
<sup>
<xref ref-type="bibr" rid="CR6">6</xref>
</sup>
, the structural space group of CNO is
<inline-formula id="IEq2">
<alternatives>
<tex-math id="M3">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P\mathop{3}\limits^{\bar{} }c1$$\end{document}</tex-math>
<mml:math id="M4">
<mml:mrow></mml:mrow>
<mml:mrow>
<mml:mi>P</mml:mi>
</mml:mrow>
<mml:mover accent="true">
<mml:mrow>
<mml:mn>3</mml:mn>
</mml:mrow>
<mml:mo>®</mml:mo>
</mml:mover>
<mml:mrow>
<mml:mi>c</mml:mi>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:math>
<inline-graphic xlink:href="41598_2017_14169_Article_IEq2.gif"></inline-graphic>
</alternatives>
</inline-formula>
. And a magnetodielectric peak attributed to magnetically-driven spin-flop phase transition was observed in polycrystalline CNO near the antiferromagnetic phase transition temperature (T
<sub>N</sub>
 = 27.5 K) under a high external magnetic field (>12 kOe). Interestingly, both the magnetically-induced electric polarization and the control of magnetization with an electric field were observed in polycrystalline CNO by Fang
<italic>et al</italic>
.
<sup>
<xref ref-type="bibr" rid="CR5">5</xref>
</sup>
. Our former work showed that the magnetic moments of CNO are located in
<italic>ab</italic>
-plane
<sup>
<xref ref-type="bibr" rid="CR7">7</xref>
</sup>
but not along the
<italic>c</italic>
-axis. Moreover, Khanh
<italic>et al</italic>
. proposed a magnetic structure with space group
<italic>C2/c’</italic>
by using single-crystal neutron diffraction
<sup>
<xref ref-type="bibr" rid="CR8">8</xref>
</sup>
. If the magnetic structure corresponds to that space group, an antiferromagnetic phase transition along
<italic>c</italic>
-axis should be therefore observed. Surprisingly, there is no antiferromagnetic phase transition in our
<italic>c</italic>
-axis magnetic measurements
<sup>
<xref ref-type="bibr" rid="CR7">7</xref>
</sup>
, which was also unseen by Khanh
<italic>et al</italic>
.
<sup>
<xref ref-type="bibr" rid="CR8">8</xref>
</sup>
. In very recent reports, Khanh
<italic>et al</italic>
.
<sup>
<xref ref-type="bibr" rid="CR8">8</xref>
</sup>
and Solovyev
<italic>et al</italic>
.
<sup>
<xref ref-type="bibr" rid="CR9">9</xref>
</sup>
finally clarified the origin of ME effect in the centrosymmetric trigonal Co
<sub>4</sub>
Nb
<sub>2</sub>
O
<sub>9</sub>
and Co
<sub>4</sub>
Ta
<sub>2</sub>
O
<sub>9</sub>
. Furthermore, a structural phase transition with
<italic>a</italic>
-axis shrinkage and
<italic>c</italic>
-axis expansion at T
<sub>N</sub>
was reported by Yin
<italic>et al</italic>
.
<sup>
<xref ref-type="bibr" rid="CR10">10</xref>
</sup>
.</p>
<p id="Par4">In order to better understand the magnetic behavior in this material with large ME coupling, we conducted a new neutron diffraction measurement and suggested a mechanism of the ME coupling in the single crystals of CNO
<sup>
<xref ref-type="bibr" rid="CR11">11</xref>
</sup>
. In this work, our detailed ME measurements reveal a nonlinear ME effect instead of a linear one as previously reported in CNO single crystals. More importantly, a pronounced response was observed under a small cooling magnetic field for which it cannot even cause the spin flop transition. Furthermore, we also found that the magnetization of every axis responds to electric field applied along
<italic>a</italic>
-axis, but unchanged when the electric field is applied
<italic>c</italic>
-axis.</p>
</sec>
<sec id="Sec2" sec-type="results">
<title>Results</title>
<sec id="Sec3">
<title>Analysis of neutron diffraction</title>
<p id="Par5">In our recent research work
<sup>
<xref ref-type="bibr" rid="CR11">11</xref>
</sup>
, we carefully studied the magnetic structure by using neutron powder diffraction and irreducible representation analysis. We found that the magnetic space group is
<italic>C2/c’</italic>
(the magnetic point group is 2/
<italic>m</italic>
’) with two independent sites for Co. Spins on the Co atoms are canted in the
<italic>ab</italic>
-plane and along
<italic>c</italic>
-axis to form ferromagnetic chains. Two ferromagnetic chains within the unit cell are coupled antiferromagnetically leading to the overall magnetic moments equal to zero. The magnetic moments calculated for each Co site are 2.32(6) and 2.52(8) µ
<sub>B,</sub>
respectively. The magnetic structure drawn by VESTA software
<sup>
<xref ref-type="bibr" rid="CR12">12</xref>
</sup>
(See Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
) to some extent agrees with the magnetic ground state predicted by theoretical calculation by Solovyev
<italic>et al</italic>
.
<sup>
<xref ref-type="bibr" rid="CR9">9</xref>
</sup>
. This magnetic structure model was successfully used to explain the magnetoelectric coupling effect in CNO
<sup>
<xref ref-type="bibr" rid="CR11">11</xref>
</sup>
.
<fig id="Fig1">
<label>Figure 1</label>
<caption>
<p>Magnetic structure of Co
<sub>4</sub>
Nb
<sub>2</sub>
O
<sub>9</sub>
, side view along
<italic>b</italic>
axis and top view along
<italic>c</italic>
axis.</p>
</caption>
<graphic xlink:href="41598_2017_14169_Fig1_HTML" id="d29e588"></graphic>
</fig>
</p>
</sec>
<sec id="Sec4">
<title>Magnetic field control of electric polarization</title>
<p id="Par6">Prior to the electrical measurements, the sample was first cooled down from 70 to 10 K with an electric field of 1.2 MV/m and a magnetic field of 0, 20, 40 and 80 kOe was applied along the
<italic>a</italic>
-axis. After ME fields-cooling, the pyroelectric current was recorded with increasing temperature without removing the external magnetic field. As shown in Fig. 
<xref rid="Fig2" ref-type="fig">2(a)</xref>
, and similarly to Co
<sub>4</sub>
Nb
<sub>2</sub>
O
<sub>9</sub>
polycrystalline, no anomaly in the pyroelectric current is observed without any applied magnetic field. However, when a magnetic field H is applied, a peak in the pyroelectric current associated with the antiferromagnetic T
<sub>N</sub>
temperature of the sample is observed, and the peak amplitude becomes more pronounced with increasing H meaning that the polarization strength depends on the magnetic field. In order to clarify the relationship between the external magnetic field and pyroelectric current response, we carried out further measurements along two other regimes. One corresponds in performing a cooling with an electric field of 1.2 MV/m and a magnetic field of 20 kOe, and measuring pyroelectric current during warming process after removing the external magnetic field at 10 K. In the second one, the sample was first cooled down with an electric field of 1.2 MV/m and zero magnetic field, and then the pyroelectric current was measured during warming process after applying an external magnetic field of 20 kOe at 10 K. As shown in Fig. 
<xref rid="Fig2" ref-type="fig">2(a)</xref>
, no anomaly in the pyroelectric current is observed for applied external magnetic field during cooling process. By contrast, an anomaly is observed through the zero for applied external magnetic field of 20 kOe during warming process. It is obvious that there is a polarization induced in CNO, and only if, an external magnetic field is applied during heating to make sure the spin flop transition occurs. Note also that the pyroelectric current measured under 20 kOe applied only during heating process, is smaller than that measured with the same magnetic field value but applied during both cooling and heating processes. This means that the polarization in Co
<sub>4</sub>
Nb
<sub>2</sub>
O
<sub>9</sub>
and therefore the ferroelectricity can be developed below T
<sub>N</sub>
only if the magnetic field is kept applied during warming process. It is also worth mentioning that there is a tail in the pyroelectric current below T
<sub>N</sub>
which indicates that the depolarization (or destabilization of the polarization) does not take place suddenly but continuously.
<fig id="Fig2">
<label>Figure 2</label>
<caption>
<p>(
<bold>a</bold>
) The pyroelectric current as a function of temperature under various magnetic fields after ME cooling; (
<bold>b</bold>
) The polarization as a function of the magnetic field after ME cooling at 10 K.</p>
</caption>
<graphic xlink:href="41598_2017_14169_Fig2_HTML" id="d29e647"></graphic>
</fig>
</p>
<p id="Par7">In order to further clarify the relationship between polarization P and magnetic field H, P-H curve was calculated by integrating displacement current which was measured as a function of the magnetic field after ME cooling. The polarization could also be reversed by changing the direction of magnetic field as shown in Fig. 
<xref rid="Fig2" ref-type="fig">2(b)</xref>
. The coercive magnetic field is about 1.81 kOe while the remnant polarization is 1.2 µC/m
<sup>2</sup>
. It is worth noting that the P-H curve presents an abnormal behavior in the vicinity of 7.5 kOe, which is just correspondent to the critical magnetic field of spin flop as shown in our previous work
<sup>
<xref ref-type="bibr" rid="CR7">7</xref>
</sup>
. Such a consistency sufficiently proves that there indeed exists a nonlinear ME effect in the studied sample, which is originated from the change of spin configuration.</p>
</sec>
<sec id="Sec5">
<title>Electric field control of magnetization</title>
<p id="Par8">For the polycrystalline Co
<sub>4</sub>
Nb
<sub>2</sub>
O
<sub>9</sub>
, the effect of electric control of magnetization was reported
<sup>
<xref ref-type="bibr" rid="CR5">5</xref>
</sup>
in its ferroelectric state (under a cooling magnetic field of 50 kOe). Interestingly here, the control of magnetization by electric field occurs in the paraelectric state for CNO single crystal along the
<italic>a</italic>
-axis. As shown in Fig. 
<xref rid="Fig3" ref-type="fig">3(a)</xref>
, the thermomagnetic curves of CNO along
<italic>a</italic>
-axis are measured at 0.1 kOe and for selected electric field values (−1.2, 0, 1.2 MV/m). In that case, the sample is in its paraelectric state because for such a low magnetic field, the spin flop transition does not occur (see Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
in ref.
<sup>
<xref ref-type="bibr" rid="CR7">7</xref>
</sup>
). Before these measurements, an ME cooling is performed under 0.1 kOe (H < H
<sub>C</sub>
where H
<sub>C</sub>
is the critical field for the occurrence of the spin-flop transition, H
<sub>C</sub>
~7.5 kOe in single crystal and 11 kOe for polycrystalline samples) and 1.2 MV/m in order to ensure the same initial magnetization-polarization state of the sample. As shown in Fig. 
<xref rid="Fig3" ref-type="fig">3(a)</xref>
, the magnetization versus temperature measured in heating process for different electric field values i.e. 1.2 MV/m, 0 MV/m and −1.2 MV/m show different values of the magnetization below T
<sub>N</sub>
~27.5 K. Indeed, for temperatures below T
<sub>N</sub>
, each electric field value gives a different magnetization value. It is clear that the magnetization value increases or decreases of the same magnitude with respect to the magnetization at zero electric field when an electric field, of same amplitude but opposite in sign, is applied. In contrast, the magnetization above T
<sub>N</sub>
keeps unchanged with the different applied electric field values, which is ascribed to the disappearance of polarization. It is interesting to stress here that below T
<sub>N</sub>
the magnetization can be tuned using a small electric field even under a weak cooling magnetic field. In these low magnetic field conditions, CNO is expected to be in its paraelectric state. However, this state shows non-ergodic behavior as the response of the system depends on the way the state is achieved (here different electric field value gives different magnetization value). At this stage, it is possible to invoke the existence of some clusters which size and/or number might depend on the applied fields.
<fig id="Fig3">
<label>Figure 3</label>
<caption>
<p> (
<bold>a</bold>
) The temperature dependence of magnetization under −1.2, 0, and 1.2 MV/m after ME cooling at 100 Oe, 1.2 MV/m, respectively. (
<bold>b</bold>
) The magnetization as a function electric field after ME cooling at 100 Oe, 1.2 MV/m, respectively.</p>
</caption>
<graphic xlink:href="41598_2017_14169_Fig3_HTML" id="d29e736"></graphic>
</fig>
</p>
<p id="Par9">To study the electric field control of magnetization, the electric field (E) dependence of magnetization (M) along
<italic>a</italic>
-axis at 10 K was measured. As is shown in Fig. 
<xref rid="Fig3" ref-type="fig">3(b)</xref>
, there is no hysteresis for M-E curve. Different from previously reported on polycrystalline
<sup>
<xref ref-type="bibr" rid="CR5">5</xref>
</sup>
and single crystal CNO
<sup>
<xref ref-type="bibr" rid="CR10">10</xref>
</sup>
, the nonlinear M-E curve of the single crystal CNO which implies that CNO is a linear ME material with high order (nonlinear) component. This result is consistent with the P-H curve at 10 K (See Fig. 
<xref rid="Fig2" ref-type="fig">2(b)</xref>
). To approximately estimate the converse ME coefficients in the M-E curve, both upper and lower branches were fitted by the formula of
<inline-formula id="IEq3">
<alternatives>
<tex-math id="M5">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu }_{0}M={\mu }_{0}M(0)+{\alpha }_{e}E+\frac{1}{2}\gamma {E}^{2}$$\end{document}</tex-math>
<mml:math id="M6">
<mml:msub>
<mml:mrow>
<mml:mi>μ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mi>M</mml:mi>
<mml:mo>=</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>μ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mi>M</mml:mi>
<mml:mrow>
<mml:mo stretchy="true">(</mml:mo>
<mml:mn>0</mml:mn>
<mml:mo stretchy="true">)</mml:mo>
</mml:mrow>
<mml:mo>+</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>α</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>e</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mi>E</mml:mi>
<mml:mo>+</mml:mo>
<mml:mfrac>
<mml:mn>1</mml:mn>
<mml:mn>2</mml:mn>
</mml:mfrac>
<mml:mi>γ</mml:mi>
<mml:msup>
<mml:mrow>
<mml:mi>E</mml:mi>
</mml:mrow>
<mml:mn>2</mml:mn>
</mml:msup>
</mml:math>
<inline-graphic xlink:href="41598_2017_14169_Article_IEq3.gif"></inline-graphic>
</alternatives>
</inline-formula>
, respectively
<sup>
<xref ref-type="bibr" rid="CR13">13</xref>
</sup>
. The obtained results (see Fig. 
<xref rid="Fig3" ref-type="fig">3(b)</xref>
) show that the linear (
<inline-formula id="IEq4">
<alternatives>
<tex-math id="M7">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha }_{e}$$\end{document}</tex-math>
<mml:math id="M8">
<mml:msub>
<mml:mrow>
<mml:mi>α</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>e</mml:mi>
</mml:mrow>
</mml:msub>
</mml:math>
<inline-graphic xlink:href="41598_2017_14169_Article_IEq4.gif"></inline-graphic>
</alternatives>
</inline-formula>
) and quadratic (
<inline-formula id="IEq5">
<alternatives>
<tex-math id="M9">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}</tex-math>
<mml:math id="M10">
<mml:mrow>
<mml:mi>γ</mml:mi>
</mml:mrow>
</mml:math>
<inline-graphic xlink:href="41598_2017_14169_Article_IEq5.gif"></inline-graphic>
</alternatives>
</inline-formula>
) coefficients equal to ~8.27 ps/m and ~−6.46 ps/MV for upper branch, as well as for the lower branch, the
<inline-formula id="IEq6">
<alternatives>
<tex-math id="M11">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha }_{e}$$\end{document}</tex-math>
<mml:math id="M12">
<mml:msub>
<mml:mrow>
<mml:mi>α</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>e</mml:mi>
</mml:mrow>
</mml:msub>
</mml:math>
<inline-graphic xlink:href="41598_2017_14169_Article_IEq6.gif"></inline-graphic>
</alternatives>
</inline-formula>
and
<inline-formula id="IEq7">
<alternatives>
<tex-math id="M13">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}</tex-math>
<mml:math id="M14">
<mml:mrow>
<mml:mi>γ</mml:mi>
</mml:mrow>
</mml:math>
<inline-graphic xlink:href="41598_2017_14169_Article_IEq7.gif"></inline-graphic>
</alternatives>
</inline-formula>
equal to ~8.38 ps/m and ~6.75 ps/MV. Clearly, the linear coefficients obtained by two branches are almost equivalent, while the quadratic coefficients obtained by two branches are just the opposite. The latter one can be attributed to the change of electric field direction.</p>
<p id="Par10">The magnetic space group is
<italic>C2/c’</italic>
while the magnetic point group is 2/
<italic>m</italic>
’ for CNO. Actually, for the magnetic point group 2/
<italic>m</italic>
’, which is the zero-field magnetic structure of CNO, it has no quadratic term for ME coupling. However, for the mixed magnetic phase under magnetic field or electric field (due to magnetoelectric effect). For example, under electric field, the two polarizations (up and down) will be effected by the electric field. The response from the up one will increase while the other one will suppress or even change (flip) the direction. This would cause the change of magnetic structure due to the formula
<inline-formula id="IEq8">
<alternatives>
<tex-math id="M15">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P={e}_{ij}\times ({S}_{i}\times {S}_{j})$$\end{document}</tex-math>
<mml:math id="M16">
<mml:mi>P</mml:mi>
<mml:mo>=</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>e</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mi>j</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>×</mml:mo>
<mml:mo stretchy="false">(</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>S</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>×</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>S</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>j</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo stretchy="false">)</mml:mo>
</mml:math>
<inline-graphic xlink:href="41598_2017_14169_Article_IEq8.gif"></inline-graphic>
</alternatives>
</inline-formula>
in a reverse way. The final effect is the magnetic moments have to reorient to allow this polarization to take place. Due to such changes, the new phase could be a mixture of 2/m and 2/m’. For the ferromagnetic phase 2/m, the tensor can be described by form (1), which allows the nonlinear HEE term in the thermodynamic potential formula
<inline-formula id="IEq9">
<alternatives>
<tex-math id="M17">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu }_{0}M={\mu }_{0}M(0)+{\alpha }_{e}E+\frac{1}{2}\gamma {E}^{2}$$\end{document}</tex-math>
<mml:math id="M18">
<mml:msub>
<mml:mrow>
<mml:mi>μ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mrow>
<mml:mi>M</mml:mi>
<mml:mo>=</mml:mo>
</mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>μ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mrow>
<mml:mi>M</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mo stretchy="true">(</mml:mo>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
<mml:mo stretchy="true">)</mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mo>+</mml:mo>
</mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>α</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>e</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mrow>
<mml:mi>E</mml:mi>
<mml:mo>+</mml:mo>
</mml:mrow>
<mml:mfrac>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:mrow>
</mml:mfrac>
<mml:mrow>
<mml:mi>γ</mml:mi>
</mml:mrow>
<mml:msup>
<mml:mrow>
<mml:mi>E</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msup>
</mml:math>
<inline-graphic xlink:href="41598_2017_14169_Article_IEq9.gif"></inline-graphic>
</alternatives>
</inline-formula>
, where
<inline-formula id="IEq10">
<alternatives>
<tex-math id="M19">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}\gamma {E}^{2}$$\end{document}</tex-math>
<mml:math id="M20">
<mml:mfrac>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:mrow>
</mml:mfrac>
<mml:mrow>
<mml:mi>γ</mml:mi>
</mml:mrow>
<mml:msup>
<mml:mrow>
<mml:mi>E</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msup>
</mml:math>
<inline-graphic xlink:href="41598_2017_14169_Article_IEq10.gif"></inline-graphic>
</alternatives>
</inline-formula>
is the nonlinear term.
<disp-formula id="Equ1">
<label>1</label>
<alternatives>
<tex-math id="M21">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\begin{array}{ccc}0 & 0 & 0\\ {\gamma }_{24} & {\gamma }_{24} & {\gamma }_{24}\\ 0 & 0 & 0\end{array}\,\begin{array}{ccc}{\gamma }_{14} & 0 & {\gamma }_{16}\\ 0 & {\gamma }_{25} & 0\\ {\gamma }_{34} & 0 & {\gamma }_{36}\end{array}]$$\end{document}</tex-math>
<mml:math id="M22" display="block">
<mml:mo stretchy="true">[</mml:mo>
<mml:mrow>
<mml:mtable>
<mml:mtr>
<mml:mtd>
<mml:mn>0</mml:mn>
</mml:mtd>
<mml:mtd>
<mml:mn>0</mml:mn>
</mml:mtd>
<mml:mtd>
<mml:mn>0</mml:mn>
</mml:mtd>
</mml:mtr>
<mml:mtr>
<mml:mtd>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>γ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>24</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mtd>
<mml:mtd>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>γ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>24</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mtd>
<mml:mtd>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>γ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>24</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mtd>
</mml:mtr>
<mml:mtr>
<mml:mtd>
<mml:mn>0</mml:mn>
</mml:mtd>
<mml:mtd>
<mml:mn>0</mml:mn>
</mml:mtd>
<mml:mtd>
<mml:mn>0</mml:mn>
</mml:mtd>
</mml:mtr>
</mml:mtable>
<mml:mspace width=".25em"></mml:mspace>
<mml:mtable>
<mml:mtr>
<mml:mtd>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>γ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>14</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mtd>
<mml:mtd>
<mml:mn>0</mml:mn>
</mml:mtd>
<mml:mtd>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>γ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>16</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mtd>
</mml:mtr>
<mml:mtr>
<mml:mtd>
<mml:mn>0</mml:mn>
</mml:mtd>
<mml:mtd>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>γ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>25</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mtd>
<mml:mtd>
<mml:mn>0</mml:mn>
</mml:mtd>
</mml:mtr>
<mml:mtr>
<mml:mtd>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>γ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>34</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mtd>
<mml:mtd>
<mml:mn>0</mml:mn>
</mml:mtd>
<mml:mtd>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>γ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>36</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mtd>
</mml:mtr>
</mml:mtable>
</mml:mrow>
<mml:mo stretchy="true">]</mml:mo>
</mml:math>
<graphic xlink:href="41598_2017_14169_Article_Equ1.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
Based on the above discussion, the nonlinear magnetoelectric effect could be explained by existence of high order component in the studied sample. In this case, the ferromagnetic phase 2/
<italic>m</italic>
has quadratic term for ME coupling. For this speculation, more work, such as neutron diffraction under magnetic or electric field, is needed to confirm it.</p>
<p id="Par11">To further investigate the responses of magnetization to the electric field, as shown in Fig. 
<xref rid="Fig4" ref-type="fig">4(a)</xref>
, the variation of magnetization as a function of a periodic electric field is measured. Figure 
<xref rid="Fig4" ref-type="fig">4(b,c,d,e)</xref>
show the corresponding magnetic responses. The magnetization decreases or increases as the same or different sign of the applied electric fields, respectively. More interestingly, a pronounced response was observed under a small cooling magnetic field which cannot even cause the spin flop. This electric field control of magnetism in the paraelectric state would open up a promising spark to implementing and testing the electric field control of magnetism in other high-temperature multiferroics. Furthermore, the responses may find potential uses in magnetic data storage and switching devices such as nonvolatile magnetic memory which facilitates three distinct states of magnetization.
<fig id="Fig4">
<label>Figure 4</label>
<caption>
<p>Temporal evolution of magnetization along
<italic>a</italic>
(M
<sub>
<italic>a</italic>
</sub>
) responding to periodically applied electric fields along
<italic>a</italic>
(E
<sub>
<italic>a</italic>
</sub>
) at T = 10 K and H = 50 kOe and 0.1 kOe, respectively. (
<bold>a</bold>
) shows applied E
<sub>
<italic>a</italic>
</sub>
as a function of time. (
<bold>b</bold>
,
<bold>c</bold>
,
<bold>d</bold>
and
<bold>e</bold>
) display the corresponding M
<sub>
<italic>a</italic>
</sub>
data.</p>
</caption>
<graphic xlink:href="41598_2017_14169_Fig4_HTML" id="d29e1215"></graphic>
</fig>
</p>
<p id="Par12">In order to clarify the directional relationship between magnetic response and applied electric field, the magnetic responses along different axes under
<italic>a</italic>
and
<italic>c</italic>
direction electric field were measured and shown in Fig. 
<xref rid="Fig5" ref-type="fig">5(a) and (b)</xref>
. It is obvious that the magnetization of every axis responds to electric field applied along
<italic>a</italic>
-axis, but fails to do so when the electric field is applied
<italic>c</italic>
-axis. The magnetic response under different directional electric field makes it possible for us to study the interaction between the electric field and the spin. As we know, the antiparallel Co
<sup>2+</sup>
spins locate in
<italic>ab</italic>
plane,
<italic>a</italic>
-axis electric field will yield a net electric field along the spin but
<italic>c</italic>
axis electric field could only be perpendicular to the spin.
<fig id="Fig5">
<label>Figure 5</label>
<caption>
<p>(
<bold>a</bold>
) Temporal evolution of magnetization along
<italic>a</italic>
,
<italic>c</italic>
and the axis orthogonal with
<italic>a</italic>
and
<italic>c</italic>
responding to periodically applied electric fields along
<italic>a</italic>
(E
<sub>
<italic>a</italic>
</sub>
) at T = 10 K and H = 0.1 kOe. (
<bold>b</bold>
) Temporal evolution of magnetization along
<italic>a</italic>
and
<italic>c</italic>
axis responding to periodically applied electric fields along
<italic>c</italic>
(E
<sub>
<italic>c</italic>
</sub>
) at T = 10 K and H = 0.1 kOe.</p>
</caption>
<graphic xlink:href="41598_2017_14169_Fig5_HTML" id="d29e1295"></graphic>
</fig>
</p>
</sec>
</sec>
<sec id="Sec6" sec-type="discussion">
<title>Discussion</title>
<p id="Par13">According to our recent explanation to the ME coupling mechanism in CNO
<sup>
<xref ref-type="bibr" rid="CR11">11</xref>
</sup>
, the magnetic-field-induced electrical polarization is along the [110] direction due to the spin-current effect
<sup>
<xref ref-type="bibr" rid="CR14">14</xref>
</sup>
. Reversely, if applying electric fields in any direction in the
<italic>ab</italic>
plane, the electric fields should induce variations of magnetization in the corresponding directions. However, this effect will not exist along the
<italic>c</italic>
axis because the electrical polarization along the
<italic>c</italic>
axis is always zero. Therefore, the observed magnetization response under electric fields in this study is understandable on the basis of our ME model
<sup>
<xref ref-type="bibr" rid="CR11">11</xref>
</sup>
. At the same time, the systematic electrical and magnetic measurement provides new evidence about the spin-current mechanism of the ME in CNO proposed in our recent work
<sup>
<xref ref-type="bibr" rid="CR11">11</xref>
</sup>
. The ME measurement by Khanh
<italic>et al</italic>
.
<sup>
<xref ref-type="bibr" rid="CR8">8</xref>
</sup>
indicates the ME effect along the
<italic>c</italic>
axis, which is contradictive to the above discussion and could be due to the slight misalignment of the sample in the measurement. Similar problem was observed in the earlier work of Cr
<sub>2</sub>
O
<sub>3</sub>
<sup>
<xref ref-type="bibr" rid="CR15">15</xref>
</sup>
.</p>
<p id="Par14">In summary, we have studied the detailed magnetoelectric (ME), magnetic and electric control of magnetic properties in CNO crystal. A detailed ME measurement reveals a nonlinear ME effect, whose linear (
<inline-formula id="IEq11">
<alternatives>
<tex-math id="M23">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha }_{e}$$\end{document}</tex-math>
<mml:math id="M24">
<mml:msub>
<mml:mrow>
<mml:mi>α</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>e</mml:mi>
</mml:mrow>
</mml:msub>
</mml:math>
<inline-graphic xlink:href="41598_2017_14169_Article_IEq11.gif"></inline-graphic>
</alternatives>
</inline-formula>
) and quadratic (
<inline-formula id="IEq12">
<alternatives>
<tex-math id="M25">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}</tex-math>
<mml:math id="M26">
<mml:mrow>
<mml:mi>γ</mml:mi>
</mml:mrow>
</mml:math>
<inline-graphic xlink:href="41598_2017_14169_Article_IEq12.gif"></inline-graphic>
</alternatives>
</inline-formula>
) coefficients equal to ~8.27 ps/m and ~−6.46 ps/MV for upper branch, as well as for the lower branch, the
<inline-formula id="IEq13">
<alternatives>
<tex-math id="M27">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha }_{e}$$\end{document}</tex-math>
<mml:math id="M28">
<mml:msub>
<mml:mrow>
<mml:mi>α</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>e</mml:mi>
</mml:mrow>
</mml:msub>
</mml:math>
<inline-graphic xlink:href="41598_2017_14169_Article_IEq13.gif"></inline-graphic>
</alternatives>
</inline-formula>
and
<inline-formula id="IEq14">
<alternatives>
<tex-math id="M29">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}</tex-math>
<mml:math id="M30">
<mml:mrow>
<mml:mi>γ</mml:mi>
</mml:mrow>
</mml:math>
<inline-graphic xlink:href="41598_2017_14169_Article_IEq14.gif"></inline-graphic>
</alternatives>
</inline-formula>
equal to ~8.38 ps/m and ~6.75 ps/MV. The
<inline-formula id="IEq15">
<alternatives>
<tex-math id="M31">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}</tex-math>
<mml:math id="M32">
<mml:mrow>
<mml:mi>γ</mml:mi>
</mml:mrow>
</mml:math>
<inline-graphic xlink:href="41598_2017_14169_Article_IEq15.gif"></inline-graphic>
</alternatives>
</inline-formula>
change of sign can be attributed to the change of electric field direction. A pronounced response was observed under a small cooling magnetic field which cannot even cause the spin flop. Furthermore, we also found that the magnetization of every axis responds to electric field
<italic>a</italic>
pplied along
<italic>a</italic>
-axis, but fails to do so when the electric field is applied
<italic>c</italic>
-axis. These findings further indicate that the spin-current mechanism is the nature of the ME effect in CNO single crystal.</p>
</sec>
<sec id="Sec7" sec-type="materials|methods">
<title>Methods</title>
<p id="Par15">A single-crystal specimen of Co
<sub>4</sub>
Nb
<sub>2</sub>
O
<sub>9</sub>
was grown in an optical floating zone furnace. The same sample was investigated in our previous work
<sup>
<xref ref-type="bibr" rid="CR7">7</xref>
</sup>
. Magnetic properties were measured by a Physical Property Measurement System (PPMS-9, Quantum Design Inc.) with VSM (Vibrating Sample Magnetometer) option. To measure magnetization as a function of electric field, a homemade insert which allows the application of electric field was installed in the magnetometer. The plates with the large [100] and [001] plane of 2 * 2 mm
<sup>2</sup>
were sliced out from the crystal rod, and both the end [100] and [001] surfaces were painted with silver paste as the electrodes. The pyroelectric current was collected using an electrometer (Keithley 6517B) after poling the sample in an electric and magnetic field. The electric polarization as a function of temperature and magnetic field was calculated by integrating displacement current with time. Specifically, the specimen was cooled down to 10 K while applying a poling electric field of 1.2 MV/m along [100] direction. In order to release any charges accumulated on the sample surfaces or inside the sample, the sample was short-circuited for a long-enough time (1 h). During the recording of pyroelectric current, the sample was heated slowly at a warming rate of 2 K/min. Note that the magnetic field was applied throughout the cooling and warming processes.</p>
</sec>
</body>
<back>
<fn-group>
<fn>
<p>
<bold>Publisher's note:</bold>
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p>
</fn>
</fn-group>
<ack>
<title>Acknowledgements</title>
<p>This work is supported by the National Natural Science Foundation of China (NSFC, Nos 51372149, 51672171, 11574194), the National Key Basic Research Program of China (Grant No. 2015CB921600), Research grant (No. 16DZ2260600) of Shanghai Municipal Science and Technology Commission, Eastern Scholar Program from Shanghai Municipal Education Commission, the Project for Applied Basic Research Programs of Yunnan Province (No. 2017FD142).</p>
</ack>
<notes notes-type="author-contribution">
<title>Author Contributions</title>
<p>Y.C., S.C. and W.R. conceived the idea for this project and wrote the manuscript. Y.C., G.D., P.B., Z.F., N.G.,and B.K. did all the experiments and prepared the Figs 1–6. Y.C., S.C., Z.F., J.Z., W.R. and B.D. reviewed the manuscript. All authors contributed to the discussion of the results and commented on the manuscript.</p>
</notes>
<notes notes-type="COI-statement">
<sec id="FPar1">
<title>Competing Interests</title>
<p id="Par16">The authors declare that they have no competing interests.</p>
</sec>
</notes>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eerenstein</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Mathur</surname>
<given-names>ND</given-names>
</name>
<name>
<surname>Scott</surname>
<given-names>JF</given-names>
</name>
</person-group>
<article-title>Multiferroic and magnetoelectric materials</article-title>
<source>Nature</source>
<year>2006</year>
<volume>442</volume>
<fpage>759</fpage>
<lpage>765</lpage>
<pub-id pub-id-type="doi">10.1038/nature05023</pub-id>
<pub-id pub-id-type="pmid">16915279</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cheong</surname>
<given-names>S-W</given-names>
</name>
<name>
<surname>Mostovoy</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Multiferroics: a magnetic twist for ferroelectricity</article-title>
<source>Nat. Mater.</source>
<year>2007</year>
<volume>6</volume>
<fpage>13</fpage>
<lpage>20</lpage>
<pub-id pub-id-type="doi">10.1038/nmat1804</pub-id>
<pub-id pub-id-type="pmid">17199121</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rajeswaran</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Khomskii</surname>
<given-names>DI</given-names>
</name>
<name>
<surname>Zvezdin</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Rao</surname>
<given-names>CNR</given-names>
</name>
<name>
<surname>Sundaresan</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Field-induced polar order at the Neel temperature of chromium in rare-earth orthochromites: Interplay of rare-earth and Cr magnetism</article-title>
<source>Phys. Rev. B</source>
<year>2012</year>
<volume>86</volume>
<fpage>214409</fpage>
<pub-id pub-id-type="doi">10.1103/PhysRevB.86.214409</pub-id>
</element-citation>
</ref>
<ref id="CR4">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Voltage Tuning of Ferromagnetic Resonance with Bistable Magnetization Switching in Energy-Efficient Magnetoelectric Composites</article-title>
<source>Adv. Mater.</source>
<year>2013</year>
<volume>25</volume>
<fpage>1435</fpage>
<lpage>1439</lpage>
<pub-id pub-id-type="doi">10.1002/adma.201203792</pub-id>
<pub-id pub-id-type="pmid">23303469</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fang</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Large magnetoelectric coupling in Co
<sub>4</sub>
Nb
<sub>2</sub>
O
<sub>9</sub>
</article-title>
<source>Sci. Rep.</source>
<year>2014</year>
<volume>4</volume>
<fpage>3860</fpage>
<pub-id pub-id-type="doi">10.1038/srep03860</pub-id>
<pub-id pub-id-type="pmid">24463631</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kolodiazhnyi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Sakurai</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Vittayakorn</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Spin-flop driven magneto-dielectric effect in Co
<sub>4</sub>
Nb
<sub>2</sub>
O
<sub>9</sub>
</article-title>
<source>Appl. Phys. Lett.</source>
<year>2011</year>
<volume>99</volume>
<fpage>132906</fpage>
<pub-id pub-id-type="doi">10.1063/1.3645017</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cao</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>High-quality single crystal growth and spin flop of multiferroic Co
<sub>4</sub>
Nb
<sub>2</sub>
O
<sub>9</sub>
</article-title>
<source>J. Cryst. Growth</source>
<year>2015</year>
<volume>420</volume>
<fpage>90</fpage>
<lpage>93</lpage>
<pub-id pub-id-type="doi">10.1016/j.jcrysgro.2015.03.045</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Khanh</surname>
<given-names>ND</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Magnetoelectric coupling in the honeycomb antiferromagnet Co
<sub>4</sub>
Nb
<sub>2</sub>
O
<sub>9</sub>
</article-title>
<source>Phys. Rev. B</source>
<year>2016</year>
<volume>93</volume>
<fpage>075117</fpage>
<pub-id pub-id-type="doi">10.1103/PhysRevB.93.075117</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Solovyev</surname>
<given-names>IV</given-names>
</name>
<name>
<surname>Kolodiazhnyi</surname>
<given-names>TV</given-names>
</name>
</person-group>
<article-title>Origin of magnetoelectric effect in Co
<sub>4</sub>
Nb
<sub>2</sub>
O
<sub>9</sub>
and Co
<sub>4</sub>
Ta
<sub>2</sub>
O
<sub>9</sub>
: The lessons learned from the comparison of first-principles-based theoretical models and experimental data</article-title>
<source>Phys. Rev. B</source>
<year>2016</year>
<volume>94</volume>
<fpage>094427</fpage>
<pub-id pub-id-type="doi">10.1103/PhysRevB.94.094427</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yin</surname>
<given-names>LH</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Colossal magnetodielectric effect and spin flop in magnetoelectric Co
<sub>4</sub>
Nb
<sub>2</sub>
O
<sub>9</sub>
crystal</article-title>
<source>Appl. Phys. Lett.</source>
<year>2016</year>
<volume>109</volume>
<fpage>032905</fpage>
<pub-id pub-id-type="doi">10.1063/1.4959086</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<label>11.</label>
<mixed-citation publication-type="other">Deng, G.
<italic>et al</italic>
. Origin of Magnetoelectric Coupling Effect and Spin Dynamics of Multiferroic System Co
<sub>4</sub>
Nb
<sub>2</sub>
O
<sub>9</sub>
, Preprint at
<ext-link ext-link-type="uri" xlink:href="http://arxiv.org/abs/1705.04017">http://arxiv.org/abs/1705.04017</ext-link>
(2017).</mixed-citation>
</ref>
<ref id="CR12">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Momma</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Izumi</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data</article-title>
<source>J. Appl. Crystallogr.</source>
<year>2011</year>
<volume>44</volume>
<fpage>1272</fpage>
<lpage>1276</lpage>
<pub-id pub-id-type="doi">10.1107/S0021889811038970</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<label>13.</label>
<mixed-citation publication-type="other">Shen, S., Chai, Y. & Sun, Y. Nonvolatile electric-field control of magnetization in a Y-type hexaferrite.
<italic>Sci. Rep.</italic>
<bold>5</bold>
, 8254 (2015).</mixed-citation>
</ref>
<ref id="CR14">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Solovyev</surname>
<given-names>IV</given-names>
</name>
</person-group>
<article-title>Superexchange theory of electronic polarization driven by relativistic spin-orbit interaction at half filling</article-title>
<source>Phys. Rev. B</source>
<year>2017</year>
<volume>95</volume>
<fpage>214406</fpage>
<pub-id pub-id-type="doi">10.1103/PhysRevB.95.214406</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Belov</surname>
<given-names>DV</given-names>
</name>
<name>
<surname>Vorob’ev</surname>
<given-names>GP</given-names>
</name>
<name>
<surname>Kadomtseva</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Popov</surname>
<given-names>YF</given-names>
</name>
<name>
<surname>Zvezdin</surname>
<given-names>AK</given-names>
</name>
</person-group>
<article-title>Magnetoelectric effect in the spin-flop phase of Cr
<sub>2</sub>
O
<sub>3</sub>
and the problem of determining the magnetic structure</article-title>
<source>JETP Lett.</source>
<year>1993</year>
<volume>58</volume>
<fpage>579</fpage>
<lpage>584</lpage>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E44 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000E44 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:5658408
   |texte=   Nonlinear magnetoelectric effect in paraelectric state of Co4Nb2O9 single crystal
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:29074870" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024