Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000E219 ( Pmc/Corpus ); précédent : 000E218; suivant : 000E220 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Intricate disorder in defect fluorite/pyrochlore: a concord of chemistry and crystallography</title>
<author>
<name sortKey="Simeone, David" sort="Simeone, David" uniqKey="Simeone D" first="David" last="Simeone">David Simeone</name>
<affiliation>
<nlm:aff id="Aff1">DEN/Service de Recherches Metallurgiques Appliquees, CEA, Universite Paris-Saclay, F-91191, Centralesupelec/SPMS/UMR-8085/LRC CARMEN, 92292 Chatenay Malabry, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Thorogood, Gordon James" sort="Thorogood, Gordon James" uniqKey="Thorogood G" first="Gordon James" last="Thorogood">Gordon James Thorogood</name>
<affiliation>
<nlm:aff id="Aff2">ANSTO, Lucas Heights, NSW, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 0671 2234</institution-id>
<institution-id institution-id-type="GRID">grid.260427.5</institution-id>
<institution>Department of Nuclear System Safety Engineering,</institution>
<institution>Nagaoka University of Technology,</institution>
</institution-wrap>
1603-1 Kamitomioka, Nagaoka, 940-2188 Japan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Huo, Da" sort="Huo, Da" uniqKey="Huo D" first="Da" last="Huo">Da Huo</name>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 4910 6535</institution-id>
<institution-id institution-id-type="GRID">grid.460789.4</institution-id>
<institution>LEEL, NIMBE, CEA/CNRS,</institution>
<institution>Universite Paris Saclay,</institution>
</institution-wrap>
91191 Gif sur, Yvette France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Luneville, Laurence" sort="Luneville, Laurence" uniqKey="Luneville L" first="Laurence" last="Luneville">Laurence Luneville</name>
<affiliation>
<nlm:aff id="Aff5">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 4910 6535</institution-id>
<institution-id institution-id-type="GRID">grid.460789.4</institution-id>
<institution>DEN/Service d’Etude et de Recherches en Mathematiques Appliquees, CEA,</institution>
<institution>Universite Paris-Saclay, F-91191, Centralesupelec/SPMS/UMR-8085/LRC CARMEN,</institution>
</institution-wrap>
92292 Chatenay Malabry, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Baldinozzi, Gianguido" sort="Baldinozzi, Gianguido" uniqKey="Baldinozzi G" first="Gianguido" last="Baldinozzi">Gianguido Baldinozzi</name>
<affiliation>
<nlm:aff id="Aff1">DEN/Service de Recherches Metallurgiques Appliquees, CEA, Universite Paris-Saclay, F-91191, Centralesupelec/SPMS/UMR-8085/LRC CARMEN, 92292 Chatenay Malabry, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Petricek, Vaclav" sort="Petricek, Vaclav" uniqKey="Petricek V" first="Vaclav" last="Petricek">Vaclav Petricek</name>
<affiliation>
<nlm:aff id="Aff6">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0634 148X</institution-id>
<institution-id institution-id-type="GRID">grid.424881.3</institution-id>
<institution></institution>
<institution>Institute of Physics ASCR, v.v.i.,</institution>
</institution-wrap>
Na Slovance 2, Prague, Czech Republic</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Porcher, Florence" sort="Porcher, Florence" uniqKey="Porcher F" first="Florence" last="Porcher">Florence Porcher</name>
<affiliation>
<nlm:aff id="Aff7">Laboratoire Leon Brillouin, CEA/CNRS Universite Paris Saclay, 91191 Gif sur Yvette, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ribis, Joel" sort="Ribis, Joel" uniqKey="Ribis J" first="Joel" last="Ribis">Joel Ribis</name>
<affiliation>
<nlm:aff id="Aff1">DEN/Service de Recherches Metallurgiques Appliquees, CEA, Universite Paris-Saclay, F-91191, Centralesupelec/SPMS/UMR-8085/LRC CARMEN, 92292 Chatenay Malabry, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mazerolles, Leo" sort="Mazerolles, Leo" uniqKey="Mazerolles L" first="Leo" last="Mazerolles">Leo Mazerolles</name>
<affiliation>
<nlm:aff id="Aff8">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2149 7878</institution-id>
<institution-id institution-id-type="GRID">grid.410511.0</institution-id>
<institution>Institut de Chimie et des Materiaux CNRS UMR 7182,</institution>
<institution>Universite Paris Est,</institution>
</institution-wrap>
2-8 Rue Henri Dunant, F-94407 Vitry Sur Seine, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Largeau, Ludovic" sort="Largeau, Ludovic" uniqKey="Largeau L" first="Ludovic" last="Largeau">Ludovic Largeau</name>
<affiliation>
<nlm:aff id="Aff9">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 4910 6535</institution-id>
<institution-id institution-id-type="GRID">grid.460789.4</institution-id>
<institution></institution>
<institution>C2N/CNRS-Universite Paris-Saclay,</institution>
</institution-wrap>
Route de Nozay, 91460 Marcoussis, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Berar, Jean Francois" sort="Berar, Jean Francois" uniqKey="Berar J" first="Jean Francois" last="Berar">Jean Francois Berar</name>
<affiliation>
<nlm:aff id="Aff10">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0369 268X</institution-id>
<institution-id institution-id-type="GRID">grid.450308.a</institution-id>
<institution></institution>
<institution>Institut Neel, CNRS/UJF UPR 2940, 25 rue des Martyrs BP166,</institution>
</institution-wrap>
38042 Grenoble cedex 9, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Surble, Suzy" sort="Surble, Suzy" uniqKey="Surble S" first="Suzy" last="Surble">Suzy Surble</name>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 4910 6535</institution-id>
<institution-id institution-id-type="GRID">grid.460789.4</institution-id>
<institution>LEEL, NIMBE, CEA/CNRS,</institution>
<institution>Universite Paris Saclay,</institution>
</institution-wrap>
91191 Gif sur, Yvette France</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">28623293</idno>
<idno type="pmc">5473899</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5473899</idno>
<idno type="RBID">PMC:5473899</idno>
<idno type="doi">10.1038/s41598-017-02787-w</idno>
<date when="2017">2017</date>
<idno type="wicri:Area/Pmc/Corpus">000E21</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000E21</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Intricate disorder in defect fluorite/pyrochlore: a concord of chemistry and crystallography</title>
<author>
<name sortKey="Simeone, David" sort="Simeone, David" uniqKey="Simeone D" first="David" last="Simeone">David Simeone</name>
<affiliation>
<nlm:aff id="Aff1">DEN/Service de Recherches Metallurgiques Appliquees, CEA, Universite Paris-Saclay, F-91191, Centralesupelec/SPMS/UMR-8085/LRC CARMEN, 92292 Chatenay Malabry, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Thorogood, Gordon James" sort="Thorogood, Gordon James" uniqKey="Thorogood G" first="Gordon James" last="Thorogood">Gordon James Thorogood</name>
<affiliation>
<nlm:aff id="Aff2">ANSTO, Lucas Heights, NSW, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 0671 2234</institution-id>
<institution-id institution-id-type="GRID">grid.260427.5</institution-id>
<institution>Department of Nuclear System Safety Engineering,</institution>
<institution>Nagaoka University of Technology,</institution>
</institution-wrap>
1603-1 Kamitomioka, Nagaoka, 940-2188 Japan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Huo, Da" sort="Huo, Da" uniqKey="Huo D" first="Da" last="Huo">Da Huo</name>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 4910 6535</institution-id>
<institution-id institution-id-type="GRID">grid.460789.4</institution-id>
<institution>LEEL, NIMBE, CEA/CNRS,</institution>
<institution>Universite Paris Saclay,</institution>
</institution-wrap>
91191 Gif sur, Yvette France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Luneville, Laurence" sort="Luneville, Laurence" uniqKey="Luneville L" first="Laurence" last="Luneville">Laurence Luneville</name>
<affiliation>
<nlm:aff id="Aff5">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 4910 6535</institution-id>
<institution-id institution-id-type="GRID">grid.460789.4</institution-id>
<institution>DEN/Service d’Etude et de Recherches en Mathematiques Appliquees, CEA,</institution>
<institution>Universite Paris-Saclay, F-91191, Centralesupelec/SPMS/UMR-8085/LRC CARMEN,</institution>
</institution-wrap>
92292 Chatenay Malabry, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Baldinozzi, Gianguido" sort="Baldinozzi, Gianguido" uniqKey="Baldinozzi G" first="Gianguido" last="Baldinozzi">Gianguido Baldinozzi</name>
<affiliation>
<nlm:aff id="Aff1">DEN/Service de Recherches Metallurgiques Appliquees, CEA, Universite Paris-Saclay, F-91191, Centralesupelec/SPMS/UMR-8085/LRC CARMEN, 92292 Chatenay Malabry, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Petricek, Vaclav" sort="Petricek, Vaclav" uniqKey="Petricek V" first="Vaclav" last="Petricek">Vaclav Petricek</name>
<affiliation>
<nlm:aff id="Aff6">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0634 148X</institution-id>
<institution-id institution-id-type="GRID">grid.424881.3</institution-id>
<institution></institution>
<institution>Institute of Physics ASCR, v.v.i.,</institution>
</institution-wrap>
Na Slovance 2, Prague, Czech Republic</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Porcher, Florence" sort="Porcher, Florence" uniqKey="Porcher F" first="Florence" last="Porcher">Florence Porcher</name>
<affiliation>
<nlm:aff id="Aff7">Laboratoire Leon Brillouin, CEA/CNRS Universite Paris Saclay, 91191 Gif sur Yvette, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ribis, Joel" sort="Ribis, Joel" uniqKey="Ribis J" first="Joel" last="Ribis">Joel Ribis</name>
<affiliation>
<nlm:aff id="Aff1">DEN/Service de Recherches Metallurgiques Appliquees, CEA, Universite Paris-Saclay, F-91191, Centralesupelec/SPMS/UMR-8085/LRC CARMEN, 92292 Chatenay Malabry, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mazerolles, Leo" sort="Mazerolles, Leo" uniqKey="Mazerolles L" first="Leo" last="Mazerolles">Leo Mazerolles</name>
<affiliation>
<nlm:aff id="Aff8">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2149 7878</institution-id>
<institution-id institution-id-type="GRID">grid.410511.0</institution-id>
<institution>Institut de Chimie et des Materiaux CNRS UMR 7182,</institution>
<institution>Universite Paris Est,</institution>
</institution-wrap>
2-8 Rue Henri Dunant, F-94407 Vitry Sur Seine, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Largeau, Ludovic" sort="Largeau, Ludovic" uniqKey="Largeau L" first="Ludovic" last="Largeau">Ludovic Largeau</name>
<affiliation>
<nlm:aff id="Aff9">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 4910 6535</institution-id>
<institution-id institution-id-type="GRID">grid.460789.4</institution-id>
<institution></institution>
<institution>C2N/CNRS-Universite Paris-Saclay,</institution>
</institution-wrap>
Route de Nozay, 91460 Marcoussis, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Berar, Jean Francois" sort="Berar, Jean Francois" uniqKey="Berar J" first="Jean Francois" last="Berar">Jean Francois Berar</name>
<affiliation>
<nlm:aff id="Aff10">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0369 268X</institution-id>
<institution-id institution-id-type="GRID">grid.450308.a</institution-id>
<institution></institution>
<institution>Institut Neel, CNRS/UJF UPR 2940, 25 rue des Martyrs BP166,</institution>
</institution-wrap>
38042 Grenoble cedex 9, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Surble, Suzy" sort="Surble, Suzy" uniqKey="Surble S" first="Suzy" last="Surble">Suzy Surble</name>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 4910 6535</institution-id>
<institution-id institution-id-type="GRID">grid.460789.4</institution-id>
<institution>LEEL, NIMBE, CEA/CNRS,</institution>
<institution>Universite Paris Saclay,</institution>
</institution-wrap>
91191 Gif sur, Yvette France</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific Reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2017">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Intuitively scientists accept that order can emerge from disorder and a significant amount of effort has been devoted over many years to demonstrate this. In metallic alloys and oxides, disorder at the atomic scale is the result of occupation at equivalent atomic positions by different atoms which leads to the material exhibiting a fully random or modulated scattering pattern. This arrangement has a substantial influence on the material’s properties, for example ionic conductivity. However it is generally accepted that oxides, such as defect fluorite as used for nuclear waste immobilization matrices and fuel cells, are the result of disorder at the atomic scale. To investigate how order at the atomic scale induces disorder at a larger scale length, we have applied different techniques to study the atomic composition of a homogeneous
<italic>La</italic>
<sub>2</sub>
<italic>Zr</italic>
<sub>2</sub>
<italic>O</italic>
<sub>7</sub>
pyrochlore, a textbook example of such a structure. Here we demonstrate that a pyrochlore, which is considered to be defect fluorite, is the result of intricate disorder due to a random distribution of fully ordered nano-domains. Our investigation provides new insight into the order disorder transformations in complex materials with regards to domain formation, resulting in a concord of chemistry with crystallography illustrating that order can induce disorder.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Subramanian, M" uniqKey="Subramanian M">M Subramanian</name>
</author>
<author>
<name sortKey="Aravamudan, G" uniqKey="Aravamudan G">G Aravamudan</name>
</author>
<author>
<name sortKey="Raoe, G" uniqKey="Raoe G">G Raoe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seul, M" uniqKey="Seul M">M Seul</name>
</author>
<author>
<name sortKey="Andelman, D" uniqKey="Andelman D">D Andelman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Subramanian, M" uniqKey="Subramanian M">M Subramanian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ewing, R" uniqKey="Ewing R">R Ewing</name>
</author>
<author>
<name sortKey="Weber, W" uniqKey="Weber W">W Weber</name>
</author>
<author>
<name sortKey="Lian, L" uniqKey="Lian L">L Lian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kennedy, B" uniqKey="Kennedy B">B Kennedy</name>
</author>
<author>
<name sortKey="Vogt, T" uniqKey="Vogt T">T Vogt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mins, C" uniqKey="Mins C">C Mins</name>
</author>
<author>
<name sortKey="Jacobson, A" uniqKey="Jacobson A">A Jacobson</name>
</author>
<author>
<name sortKey="Hall, R" uniqKey="Hall R">R Hall</name>
</author>
<author>
<name sortKey="Lewandowski, J" uniqKey="Lewandowski J">J Lewandowski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sickafus, K" uniqKey="Sickafus K">K Sickafus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arai, S" uniqKey="Arai S">S Arai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Galoisy, L" uniqKey="Galoisy L">L Galoisy</name>
</author>
<author>
<name sortKey="Pellerin, E" uniqKey="Pellerin E">E Pellerin</name>
</author>
<author>
<name sortKey="Arrio, M" uniqKey="Arrio M">M Arrio</name>
</author>
<author>
<name sortKey="Ildefonse, P" uniqKey="Ildefonse P">P Ildefonse</name>
</author>
<author>
<name sortKey="Callas, J" uniqKey="Callas J">J Callas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Uberuaga, B" uniqKey="Uberuaga B">B Uberuaga</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shamblin, J" uniqKey="Shamblin J">J Shamblin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huo, D" uniqKey="Huo D">D Huo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prusty, D" uniqKey="Prusty D">D Prusty</name>
</author>
<author>
<name sortKey="Pathak, A" uniqKey="Pathak A">A Pathak</name>
</author>
<author>
<name sortKey="Chinta, A" uniqKey="Chinta A">A Chinta</name>
</author>
<author>
<name sortKey="Mukherjee, B" uniqKey="Mukherjee B">B Mukherjee</name>
</author>
<author>
<name sortKey="Chowdhury, A" uniqKey="Chowdhury A">A Chowdhury</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Champion, J" uniqKey="Champion J">J Champion</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Michel, D" uniqKey="Michel D">D Michel</name>
</author>
<author>
<name sortKey="Perez Y Jorba, M" uniqKey="Perez Y Jorba M">M Perez y Jorba</name>
</author>
<author>
<name sortKey="Collongues, R" uniqKey="Collongues R">R Collongues</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cai, J" uniqKey="Cai J">J Cai</name>
</author>
<author>
<name sortKey="Raptis, C" uniqKey="Raptis C">C Raptis</name>
</author>
<author>
<name sortKey="Raptis, Y" uniqKey="Raptis Y">Y Raptis</name>
</author>
<author>
<name sortKey="Anastassakis, E" uniqKey="Anastassakis E">E Anastassakis</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brese, N" uniqKey="Brese N">N Brese</name>
</author>
<author>
<name sortKey="O Eeffe, M" uniqKey="O Eeffe M">M O’Keeffe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bradley, J" uniqKey="Bradley J">J Bradley</name>
</author>
<author>
<name sortKey="Cracknell, A" uniqKey="Cracknell A">A Cracknell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Simeone, D" uniqKey="Simeone D">D Simeone</name>
</author>
<author>
<name sortKey="Dodane, C" uniqKey="Dodane C">C Dodane</name>
</author>
<author>
<name sortKey="Gosset, D" uniqKey="Gosset D">D Gosset</name>
</author>
<author>
<name sortKey="Baldinozzi, G" uniqKey="Baldinozzi G">G Baldinozzi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blanchard, P" uniqKey="Blanchard P">P Blanchard</name>
</author>
<author>
<name sortKey="Clements, R" uniqKey="Clements R">R Clements</name>
</author>
<author>
<name sortKey="Kennedy, B" uniqKey="Kennedy B">B Kennedy</name>
</author>
<author>
<name sortKey="Ling, C" uniqKey="Ling C">C Ling</name>
</author>
<author>
<name sortKey="Reynolds, E" uniqKey="Reynolds E">E Reynolds</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dash, L" uniqKey="Dash L">L Dash</name>
</author>
<author>
<name sortKey="Vast, N" uniqKey="Vast N">N Vast</name>
</author>
<author>
<name sortKey="Baranek, P" uniqKey="Baranek P">P Baranek</name>
</author>
<author>
<name sortKey="Cheynet, M C" uniqKey="Cheynet M">M-C Cheynet</name>
</author>
<author>
<name sortKey="Reining, L" uniqKey="Reining L">L Reining</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Petricek, V" uniqKey="Petricek V">V Petricek</name>
</author>
<author>
<name sortKey="Dusek, M" uniqKey="Dusek M">M Dusek</name>
</author>
<author>
<name sortKey="Palatinus, L" uniqKey="Palatinus L">L Palatinus</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Toledano, P" uniqKey="Toledano P">P Toledano</name>
</author>
<author>
<name sortKey="Toledano, Jc" uniqKey="Toledano J">JC Toledano</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Sci Rep</journal-id>
<journal-id journal-id-type="iso-abbrev">Sci Rep</journal-id>
<journal-title-group>
<journal-title>Scientific Reports</journal-title>
</journal-title-group>
<issn pub-type="epub">2045-2322</issn>
<publisher>
<publisher-name>Nature Publishing Group UK</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">28623293</article-id>
<article-id pub-id-type="pmc">5473899</article-id>
<article-id pub-id-type="publisher-id">2787</article-id>
<article-id pub-id-type="doi">10.1038/s41598-017-02787-w</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Intricate disorder in defect fluorite/pyrochlore: a concord of chemistry and crystallography</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Simeone</surname>
<given-names>David</given-names>
</name>
<address>
<email>david.simeone@cea.fr</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Thorogood</surname>
<given-names>Gordon James</given-names>
</name>
<xref ref-type="aff" rid="Aff2">2</xref>
<xref ref-type="aff" rid="Aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Huo</surname>
<given-names>Da</given-names>
</name>
<xref ref-type="aff" rid="Aff4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Luneville</surname>
<given-names>Laurence</given-names>
</name>
<xref ref-type="aff" rid="Aff5">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Baldinozzi</surname>
<given-names>Gianguido</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Petricek</surname>
<given-names>Vaclav</given-names>
</name>
<xref ref-type="aff" rid="Aff6">6</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Porcher</surname>
<given-names>Florence</given-names>
</name>
<xref ref-type="aff" rid="Aff7">7</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ribis</surname>
<given-names>Joel</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mazerolles</surname>
<given-names>Leo</given-names>
</name>
<xref ref-type="aff" rid="Aff8">8</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Largeau</surname>
<given-names>Ludovic</given-names>
</name>
<xref ref-type="aff" rid="Aff9">9</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Berar</surname>
<given-names>Jean Francois</given-names>
</name>
<xref ref-type="aff" rid="Aff10">10</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Surble</surname>
<given-names>Suzy</given-names>
</name>
<xref ref-type="aff" rid="Aff4">4</xref>
</contrib>
<aff id="Aff1">
<label>1</label>
DEN/Service de Recherches Metallurgiques Appliquees, CEA, Universite Paris-Saclay, F-91191, Centralesupelec/SPMS/UMR-8085/LRC CARMEN, 92292 Chatenay Malabry, France</aff>
<aff id="Aff2">
<label>2</label>
ANSTO, Lucas Heights, NSW, Australia</aff>
<aff id="Aff3">
<label>3</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 0671 2234</institution-id>
<institution-id institution-id-type="GRID">grid.260427.5</institution-id>
<institution>Department of Nuclear System Safety Engineering,</institution>
<institution>Nagaoka University of Technology,</institution>
</institution-wrap>
1603-1 Kamitomioka, Nagaoka, 940-2188 Japan</aff>
<aff id="Aff4">
<label>4</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 4910 6535</institution-id>
<institution-id institution-id-type="GRID">grid.460789.4</institution-id>
<institution>LEEL, NIMBE, CEA/CNRS,</institution>
<institution>Universite Paris Saclay,</institution>
</institution-wrap>
91191 Gif sur, Yvette France</aff>
<aff id="Aff5">
<label>5</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 4910 6535</institution-id>
<institution-id institution-id-type="GRID">grid.460789.4</institution-id>
<institution>DEN/Service d’Etude et de Recherches en Mathematiques Appliquees, CEA,</institution>
<institution>Universite Paris-Saclay, F-91191, Centralesupelec/SPMS/UMR-8085/LRC CARMEN,</institution>
</institution-wrap>
92292 Chatenay Malabry, France</aff>
<aff id="Aff6">
<label>6</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0634 148X</institution-id>
<institution-id institution-id-type="GRID">grid.424881.3</institution-id>
<institution></institution>
<institution>Institute of Physics ASCR, v.v.i.,</institution>
</institution-wrap>
Na Slovance 2, Prague, Czech Republic</aff>
<aff id="Aff7">
<label>7</label>
Laboratoire Leon Brillouin, CEA/CNRS Universite Paris Saclay, 91191 Gif sur Yvette, France</aff>
<aff id="Aff8">
<label>8</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2149 7878</institution-id>
<institution-id institution-id-type="GRID">grid.410511.0</institution-id>
<institution>Institut de Chimie et des Materiaux CNRS UMR 7182,</institution>
<institution>Universite Paris Est,</institution>
</institution-wrap>
2-8 Rue Henri Dunant, F-94407 Vitry Sur Seine, France</aff>
<aff id="Aff9">
<label>9</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 4910 6535</institution-id>
<institution-id institution-id-type="GRID">grid.460789.4</institution-id>
<institution></institution>
<institution>C2N/CNRS-Universite Paris-Saclay,</institution>
</institution-wrap>
Route de Nozay, 91460 Marcoussis, France</aff>
<aff id="Aff10">
<label>10</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0369 268X</institution-id>
<institution-id institution-id-type="GRID">grid.450308.a</institution-id>
<institution></institution>
<institution>Institut Neel, CNRS/UJF UPR 2940, 25 rue des Martyrs BP166,</institution>
</institution-wrap>
38042 Grenoble cedex 9, France</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>16</day>
<month>6</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>16</day>
<month>6</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="collection">
<year>2017</year>
</pub-date>
<volume>7</volume>
<elocation-id>3727</elocation-id>
<history>
<date date-type="received">
<day>11</day>
<month>10</month>
<year>2016</year>
</date>
<date date-type="accepted">
<day>20</day>
<month>4</month>
<year>2017</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author(s) 2017</copyright-statement>
<license license-type="OpenAccess">
<license-p>
<bold>Open Access</bold>
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<p>Intuitively scientists accept that order can emerge from disorder and a significant amount of effort has been devoted over many years to demonstrate this. In metallic alloys and oxides, disorder at the atomic scale is the result of occupation at equivalent atomic positions by different atoms which leads to the material exhibiting a fully random or modulated scattering pattern. This arrangement has a substantial influence on the material’s properties, for example ionic conductivity. However it is generally accepted that oxides, such as defect fluorite as used for nuclear waste immobilization matrices and fuel cells, are the result of disorder at the atomic scale. To investigate how order at the atomic scale induces disorder at a larger scale length, we have applied different techniques to study the atomic composition of a homogeneous
<italic>La</italic>
<sub>2</sub>
<italic>Zr</italic>
<sub>2</sub>
<italic>O</italic>
<sub>7</sub>
pyrochlore, a textbook example of such a structure. Here we demonstrate that a pyrochlore, which is considered to be defect fluorite, is the result of intricate disorder due to a random distribution of fully ordered nano-domains. Our investigation provides new insight into the order disorder transformations in complex materials with regards to domain formation, resulting in a concord of chemistry with crystallography illustrating that order can induce disorder.</p>
</abstract>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© The Author(s) 2017</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1" sec-type="introduction">
<title>Introduction</title>
<p>The properties of a material are intrinsically related to the notion of order and applications that are associated with thermal or ionic conductivities such as barrier coatings or fuel cells are closely related to the ordering of atoms over different length scales
<sup>
<xref ref-type="bibr" rid="CR1">1</xref>
,
<xref ref-type="bibr" rid="CR2">2</xref>
</sup>
. Complex oxides like defect fluorites can be thought of as superstructures of simple atomic building blocks over a length of tens of nanometers, and offer the unique opportunity to tune certain properties
<sup>
<xref ref-type="bibr" rid="CR3">3</xref>
,
<xref ref-type="bibr" rid="CR4">4</xref>
</sup>
such as ionic conductivity
<sup>
<xref ref-type="bibr" rid="CR5">5</xref>
,
<xref ref-type="bibr" rid="CR6">6</xref>
</sup>
by modifying these building blocks, i.e. over a length of less than a nanometer. Given that there is a single cation site in defect fluorite, the coordination number is seven for both La and Zr, irrespective of their valence state
<sup>
<xref ref-type="bibr" rid="CR7">7</xref>
</sup>
. Therefore if the samples are transforming from pyrochlore to defect fluorite with respect to grain size a change in local symmetry should also be occurring. To test this assumption, Electron Energy Loss Spectroscopy (EELS) was employed to probe the inner ionisation shell of the
<italic>Zr</italic>
atom for samples of different grain sizes. Comparison of EELS spectra collected near the
<italic>L</italic>
<sub>2,3</sub>
edge of
<italic>Zr</italic>
indicate the local
<italic>Zr</italic>
symmetry does not vary with respect to grain size as shown in Fig. 
<xref rid="Fig1" ref-type="fig">1a</xref>
(two distinct peaks at 2233 and 2235 eV in the
<italic>L</italic>
<sub>3</sub>
edge are clearly visible for the nanometric (black line) and micro-metric (red line)
<italic>La</italic>
<sub>2</sub>
<italic>Zr</italic>
<sub>2</sub>
<italic>O</italic>
<sub>7</sub>
pyrochlore samples. EELS spectrum of cubic
<italic>ZrO</italic>
<sub>2</sub>
, the archetype of the defect fluorite structure, clearly displays a single peak at 2234 eV in the
<italic>L</italic>
<sub>3</sub>
edge (green line) in agreement with previous studies
<sup>
<xref ref-type="bibr" rid="CR8">8</xref>
,
<xref ref-type="bibr" rid="CR9">9</xref>
</sup>
). These results show that the valence state of
<italic>Zr</italic>
does not vary in small grain pyrochlores which have been identified via diffraction methods as defect fluorite. To reconcile the charge valence with crystallography, recent diffraction studies have attempted to define this defect fluorite structure as resulting from intricate disorder
<sup>
<xref ref-type="bibr" rid="CR5">5</xref>
</sup>
associated with a random distribution of Weberite nano domains
<sup>
<xref ref-type="bibr" rid="CR6">6</xref>
</sup>
. This analysis is solely based on the observation of an unusual broadening of the first peaks in an experimental neutron pair distribution function. However, the physical mechanism responsible for the formation of the defect fluorite structure and the stabilization of the claimed Weberite phase at the atomic scale remains unclear.
<fig id="Fig1">
<label>Figure 1</label>
<caption>
<p>Description of the structures (1a), EELS (
<bold>a</bold>
), Raman (
<bold>b</bold>
) spectra and X-ray diffraction patterns (
<bold>c</bold>
) collected on the
<italic>La</italic>
<sub>2</sub>
<italic>Zr</italic>
<sub>2</sub>
<italic>O</italic>
<sub>7</sub>
powders. Figure 1a is a schematic of the pristine (top) and defect fluorite (bottom) pyrochlore structure. Oxygen sites (red) are fully occupied in the pyrochlore structure and
<inline-formula id="IEq1">
<alternatives>
<tex-math id="M1">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{7}{8}}^{th}$$\end{document}</tex-math>
<mml:math id="M2">
<mml:msup>
<mml:mrow>
<mml:mfrac>
<mml:mn>7</mml:mn>
<mml:mn>8</mml:mn>
</mml:mfrac>
</mml:mrow>
<mml:mrow>
<mml:mi>t</mml:mi>
<mml:mi>h</mml:mi>
</mml:mrow>
</mml:msup>
</mml:math>
<inline-graphic xlink:href="41598_2017_2787_Article_IEq1.gif"></inline-graphic>
</alternatives>
</inline-formula>
occupied in the defect fluorite structure. La (blue) and Zr (green) sites in the pyrochlore structure are equivalent in the defect fluorite decreasing the unit cell by two (black squares). EELS spectra of the micrometric (red,
<italic>t</italic>
 = 350 
<italic>nm</italic>
), nanometric (black,
<italic>t</italic>
 = 70 
<italic>nm</italic>
) pyrochlores and cubic
<italic>ZrO</italic>
<sub>2</sub>
(green:
<italic>t</italic>
 = 250 
<italic>nm</italic>
) are displayed in Figure a. The Raman spectra (
<bold>b</bold>
) does not vary with respect to grain size. X-ray diffraction patterns for samples with different grains sizes are plotted in figure c (black: 70 nm, blue: 120 nm, green: 150 nm, cyan: 200 nm, red: 350 nm). The loss of odd X-ray reflexions in samples with small grains is highlighted in the insert.</p>
</caption>
<graphic xlink:href="41598_2017_2787_Fig1_HTML" id="d29e597"></graphic>
</fig>
</p>
<p>To gain an insight into this phenomenon, we have engineered nano pyrochlore domains to probe order at different length scales. The pyrochlore we selected was
<italic>La</italic>
<sub>2</sub>
<italic>Zr</italic>
<sub>2</sub>
<italic>O</italic>
<sub>7</sub>
because the cation ionic radii ratio is large enough (
<inline-formula id="IEq2">
<alternatives>
<tex-math id="M3">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{{R}_{La}}{{R}_{Zr}}\mathrm{ > 1}$$\end{document}</tex-math>
<mml:math id="M4">
<mml:mfrac>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>L</mml:mi>
<mml:mi>a</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>Z</mml:mi>
<mml:mi>r</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfrac>
<mml:mn>>1</mml:mn>
</mml:math>
<inline-graphic xlink:href="41598_2017_2787_Article_IEq2.gif"></inline-graphic>
</alternatives>
</inline-formula>
) to stabilize the ordered pyrochlore structure with the valence states for
<italic>La</italic>
and
<italic>Zr</italic>
being 3
<sup>+</sup>
and 4
<sup>+</sup>
respectively. By decreasing the grain size
<italic>t</italic>
in this material via a green chemistry method
<sup>
<xref ref-type="bibr" rid="CR7">7</xref>
</sup>
, previous authors
<sup>
<xref ref-type="bibr" rid="CR8">8</xref>
</sup>
indicated that below a threshold value (100 nanometers), the diffraction pattern is similar to that observed in the defect fluorite. Therefore by combining green chemistry methods to produce homogeneous powders, and the selection of cations of appropriate valences, offers the unique opportunity to understand the defect fluorite/pyrochlore transformation by characterising samples with different grain sizes. Defect fluorite is analogous to the mineral fluorite, with a single cation and anion site (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
). The random mixing of oxygen and vacancies on a single site increases the number of symmetry operations reducing the pyrochlore unit cell parameter by
<inline-formula id="IEq3">
<alternatives>
<tex-math id="M5">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}$$\end{document}</tex-math>
<mml:math id="M6">
<mml:mfrac>
<mml:mn>1</mml:mn>
<mml:mn>2</mml:mn>
</mml:mfrac>
</mml:math>
<inline-graphic xlink:href="41598_2017_2787_Article_IEq3.gif"></inline-graphic>
</alternatives>
</inline-formula>
. To achieve the transformation to a defect fluorite, an unusual disordering of cations must simultaneously take place. This order/disorder transition from the pyrochlore to the defect fluorite structure is a very rare example of simultaneous disordering of both anions and cations
<sup>
<xref ref-type="bibr" rid="CR9">9</xref>
</sup>
. Given that there is a single cation site in defect fluorite, the coordination number is seven for both La and Zr, irrespective of their valence state. Therefore if the samples are transforming from pyrochlore to defect fluorite with respect to grain size a change in local symmetry should also be occurring. To test this assumption, Electron Energy Loss Spectroscopy (EELS) was employed to probe the inner ionisation shell of the
<italic>Zr</italic>
atom for samples of different grain sizes. Comparison of EELS spectra collected near the
<italic>L</italic>
<sub>2,3</sub>
edge of
<italic>Zr</italic>
indicate the local
<italic>Zr</italic>
symmetry does not vary with respect to grain size as shown in Fig. 
<xref rid="Fig1" ref-type="fig">1a</xref>
. These results show that the valence state of
<italic>Zr</italic>
does not vary in small grain pyrochlores which have been identified via diffraction methods as defect fluorite.</p>
<p>In order to probe symmetries in these samples, Raman scattering was employed (Fig 
<xref rid="Fig1" ref-type="fig">1b</xref>
). Regardless of grain size six distinct Raman peaks are always visible. These peaks can be derived via group theory calculations for the pyrochlore structure
<sup>
<xref ref-type="bibr" rid="CR10">10</xref>
</sup>
(dashed vertical lines on Fig. 
<xref rid="Fig1" ref-type="fig">1b</xref>
). The persistence of these peaks disagrees with the appearance of a unique Raman peak as expected for the defect fluorite structure
<sup>
<xref ref-type="bibr" rid="CR11">11</xref>
</sup>
. However, X-ray and neutron diffraction patterns clearly illustrate the loss of odd Bragg peaks which is associated with the pyrochlore/defect fluorite transition versus grain size (Fig. 
<xref rid="Fig1" ref-type="fig">1c</xref>
). The characteristic size
<italic>t</italic>
of diffracting domains derived via analyses of the broadening of even reflexions using Hall Williamson (HW) plots
<sup>
<xref ref-type="bibr" rid="CR12">12</xref>
</sup>
agrees with the observation of grain sizes performed via Transmission Electron Microscopy (HW curves are plotted in Figure 
<xref rid="MOESM1" ref-type="media">4</xref>
in the supporting information). Surprisingly, the broadening of the odd reflexions is more important as the grain size decreases (Fig. 
<xref rid="Fig1" ref-type="fig">1c</xref>
) and these reflexions vanish in samples with the smallest size, thus leading to diffraction patterns similar to the defect fluorite. This analysis suggests the existence of a characteristic length
<italic>ξ</italic>
extracted from the HW plots of the odd reflexions associated with the coherent diffracting domains smaller than the grain size (Fig. 
<xref rid="Fig2" ref-type="fig">2a</xref>
). For small grain sizes
<italic>ξ</italic>
 ≪ t, numerous mesoscopic domains are present in the grain (insert Fig. 
<xref rid="Fig2" ref-type="fig">2a</xref>
) whereas few domains are present for
<italic>ξ</italic>
 ≈ 
<italic>t</italic>
, i.e. in samples with large grain sizes. The first bisecting line (red) in Fig. 
<xref rid="Fig2" ref-type="fig">2a</xref>
displays the limit between two regimes. From joint neutron and X-ray Rietveld refinements, the valencies of cations were computed via the Bond Valence Model
<sup>
<xref ref-type="bibr" rid="CR13">13</xref>
</sup>
. For samples with large grain sizes, the nominal valencies for
<italic>Zr</italic>
and
<italic>La</italic>
are in agreement with the pyrochlore model (Fig. 
<xref rid="Fig2" ref-type="fig">2b</xref>
). As the grain size decreases, these valences reach unrealistic values of 2.8 and 4.2 for
<italic>Zr</italic>
and
<italic>La</italic>
cations respectively (Fig. 
<xref rid="Fig2" ref-type="fig">2b</xref>
). This phenomenon is associated with a largely distorted local environment of the
<italic>Zr</italic>
cations and is in disagreement with EELS results displayed in Fig. 
<xref rid="Fig1" ref-type="fig">1a</xref>
.
<fig id="Fig2">
<label>Figure 2</label>
<caption>
<p>Variation of pyrochlore domains
<italic>ξ</italic>
(
<bold>a</bold>
) and valencies of
<italic>La</italic>
and
<italic>Zr</italic>
cations (
<bold>b</bold>
) versus grain size. From the joint refinements of X-ray and neutron diffraction powder patterns, the evolution of La (black squares) and Zr (red dots) valences are plotted versus grain size (
<bold>b</bold>
) and compared with their nominal values (full lines).</p>
</caption>
<graphic xlink:href="41598_2017_2787_Fig2_HTML" id="d29e830"></graphic>
</fig>
</p>
<p>To reconcile all of these experimental results, we present a novel approach to explain the observed diffraction patterns. From group theory calculations
<sup>
<xref ref-type="bibr" rid="CR14">14</xref>
</sup>
, defect fluorite can be understood to result from an ensemble average of different perfectly ordered pyrochlore domains of size
<italic>ξ</italic>
 ≪ 
<italic>t</italic>
randomly shifted from the pyrochlore setting by given translation vectors (
<italic>Id</italic>
|
<italic>t</italic>
<sub>
<italic>j</italic>
</sub>
) (Table 
<xref rid="MOESM1" ref-type="media">1</xref>
in the supporting information). From this model, the
<italic>La</italic>
and
<italic>Zr</italic>
cations are equally distributed at all cationic sites with vacancies spread over all oxygen sites implying a partial (
<inline-formula id="IEq4">
<alternatives>
<tex-math id="M7">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{7}{8}$$\end{document}</tex-math>
<mml:math id="M8">
<mml:mfrac>
<mml:mn>7</mml:mn>
<mml:mn>8</mml:mn>
</mml:mfrac>
</mml:math>
<inline-graphic xlink:href="41598_2017_2787_Article_IEq4.gif"></inline-graphic>
</alternatives>
</inline-formula>
) occupation of these sites (Table 
<xref rid="MOESM1" ref-type="media">1</xref>
in the supporting information). The defect fluorite structure is achieved without invoking any simultaneous disordering of anions and cations at the atomic level and it removes the requirement for the appearance of a new phase at the atomic scale. Therefore each domain remains as a pyrochlore of domain size
<italic>ξ</italic>
in what would be described as defect fluorite via diffraction methods, additionally the EELS and Raman spectra do not vary with grain size as displayed in Fig. 
<xref rid="Fig1" ref-type="fig">1a and b</xref>
.</p>
<p>When the number of domains
<inline-formula id="IEq5">
<alternatives>
<tex-math id="M9">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\frac{t}{\xi })}^{3}$$\end{document}</tex-math>
<mml:math id="M10">
<mml:msup>
<mml:mrow>
<mml:mo stretchy="false">(</mml:mo>
<mml:mfrac>
<mml:mi>t</mml:mi>
<mml:mi>ξ</mml:mi>
</mml:mfrac>
<mml:mo stretchy="false">)</mml:mo>
</mml:mrow>
<mml:mn>3</mml:mn>
</mml:msup>
</mml:math>
<inline-graphic xlink:href="41598_2017_2787_Article_IEq5.gif"></inline-graphic>
</alternatives>
</inline-formula>
in the grain (
<italic>ξ</italic>
 ≪ 
<italic>t</italic>
are large, the structure factor < 
<italic>F</italic>
<sub>
<italic>DF</italic>
</sub>
(
<italic>hkl</italic>
) > of the diffraction patterns can be expressed as the product of the pyrochlore structure factor
<italic>F</italic>
(
<italic>hkl</italic>
) by an interference function
<italic>Z</italic>
(
<italic>hkl</italic>
):
<disp-formula id="Equ1">
<alternatives>
<tex-math id="M11">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ < {F}_{DF}(hkl) > =F(hkl)\sum _{j\mathrm{=1}}^{8}{e}^{i2\pi ({t}_{j}^{h}h+{t}_{j}^{k}k+{t}_{j}^{l}l)}=F(hkl)Z(hkl)$$\end{document}</tex-math>
<mml:math id="M12" display="block">
<mml:mo><</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>F</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>D</mml:mi>
<mml:mi>F</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo stretchy="false">(</mml:mo>
<mml:mi>h</mml:mi>
<mml:mi>k</mml:mi>
<mml:mi>l</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
<mml:mo>></mml:mo>
<mml:mo>=</mml:mo>
<mml:mi>F</mml:mi>
<mml:mo stretchy="false">(</mml:mo>
<mml:mi>h</mml:mi>
<mml:mi>k</mml:mi>
<mml:mi>l</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
<mml:munderover>
<mml:mo></mml:mo>
<mml:mrow>
<mml:mi>j</mml:mi>
<mml:mn>=1</mml:mn>
</mml:mrow>
<mml:mn>8</mml:mn>
</mml:munderover>
<mml:msup>
<mml:mrow>
<mml:mi>e</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mn>2</mml:mn>
<mml:mi>π</mml:mi>
<mml:mo stretchy="false">(</mml:mo>
<mml:msubsup>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>j</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>h</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mi>h</mml:mi>
<mml:mo>+</mml:mo>
<mml:msubsup>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>j</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>k</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mi>k</mml:mi>
<mml:mo>+</mml:mo>
<mml:msubsup>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>j</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>l</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mi>l</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
</mml:mrow>
</mml:msup>
<mml:mo>=</mml:mo>
<mml:mi>F</mml:mi>
<mml:mo stretchy="false">(</mml:mo>
<mml:mi>h</mml:mi>
<mml:mi>k</mml:mi>
<mml:mi>l</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
<mml:mi>Z</mml:mi>
<mml:mo stretchy="false">(</mml:mo>
<mml:mi>h</mml:mi>
<mml:mi>k</mml:mi>
<mml:mi>l</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
</mml:math>
<graphic xlink:href="41598_2017_2787_Article_Equ1.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
where Bragg peaks are labelled by the (
<italic>hkl</italic>
) triplets,
<inline-formula id="IEq6">
<alternatives>
<tex-math id="M13">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${t}_{j}^{i}$$\end{document}</tex-math>
<mml:math id="M14">
<mml:msubsup>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>j</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msubsup>
</mml:math>
<inline-graphic xlink:href="41598_2017_2787_Article_IEq6.gif"></inline-graphic>
</alternatives>
</inline-formula>
is the
<italic>i</italic>
<sup>
<italic>th</italic>
</sup>
component of (
<italic>Id</italic>
|
<italic>t</italic>
<sub>
<italic>j</italic>
</sub>
) (the list of these vectors is printed in Table 
<xref rid="MOESM1" ref-type="media">2</xref>
in the supporting information). Summing over all the 8 possible variants (
<italic>ξ</italic>
 ≪ 
<italic>t</italic>
) implies that
<italic>Z</italic>
(
<italic>hkl</italic>
) vanishes and the defect fluorite diffraction pattern associated with the null (200), (022), (422), (244) and odd reflexions of the pyrochlore structure is restored (Fig. 
<xref rid="Fig1" ref-type="fig">1c</xref>
). By increasing the grain size, the number of pyrochlore domains decreases (insert in Fig. 
<xref rid="Fig2" ref-type="fig">2a</xref>
) this results in the
<italic>Z</italic>
(
<italic>hkl</italic>
) for these reflexions no longer being reduced and thus the pyrochlore diffraction pattern is re-established.</p>
<p>To assess our model, simulated TEM diffraction patterns of a disorder free pyrochlore and a large virtual crystal resulting from a random distribution of shifted pyrochlore domains of size
<italic>ξ</italic>
are plotted on Fig. 
<xref rid="Fig3" ref-type="fig">3a and c</xref>
. Simulated TEM diffraction patterns resulting from electron diffraction derived from a disorder free pyrochlore structure (Fig. 
<xref rid="Fig3" ref-type="fig">3a</xref>
) and the virtual crystal (Fig. 
<xref rid="Fig3" ref-type="fig">3c</xref>
) are in fair agreement with experimental results obtained on samples with the largest (Fig. 
<xref rid="Fig3" ref-type="fig">3b</xref>
) and smallest (Fig. 
<xref rid="Fig3" ref-type="fig">3d</xref>
) grain size. Figure 
<xref rid="Fig3" ref-type="fig">3c</xref>
displays the loss of the odd diffraction spots in agreement with experimental TEM patterns (Fig. 
<xref rid="Fig3" ref-type="fig">3d</xref>
). Fourier transformations (Fig. 
<xref rid="Fig3" ref-type="fig">3e</xref>
) of a HR TEM picture calculated in the volume
<italic>ξ</italic>
<sup>3</sup>
(blue square in the insert) neglecting diffraction display a pyrochlore structure for the samples with the smallest grain size. Moreover, experimental TEM pictures collected in the volume
<italic>t</italic>
<sup>3</sup>
in the same sample are similar to TEM diffraction patterns of a defect fluorite structure (Fig. 
<xref rid="Fig3" ref-type="fig">3f</xref>
). These experimental results thus ensure that the structure is always pyrochlore in samples with small grain sizes. The vanishing of diffraction spots only results from interference between incident and scattered waves.
<fig id="Fig3">
<label>Figure 3</label>
<caption>
<p>Simulated and experimental High Resolution TEM patterns. Comparison between simulated TEM diffraction for a disorder free pyrochlore (Fig. 3a) and the virtual crystal (Fig. 3c) and experimental data collected on samples with the largest (Fig. 3b) and the smallest (Fig. 3d) grain size. Fourier transformations (Fig. 3e) of a HR TEM picture performed in a volume
<italic>ξ</italic>
<sup>3</sup>
(blue square and experimental TEM pictures collected in the volume
<italic>t</italic>
<sup>3</sup>
(Fig. 3f)).</p>
</caption>
<graphic xlink:href="41598_2017_2787_Fig3_HTML" id="d29e1231"></graphic>
</fig>
</p>
<p>Simulated X ray powder patterns of the disorder free and the virtual pyrochlore crystals (supplementary Fig. 
<xref rid="MOESM1" ref-type="media">4a</xref>
) display a similar progression as the experimental X-ray diffraction patterns (Fig. 
<xref rid="Fig1" ref-type="fig">1c</xref>
) indicating the effect of
<italic>Z</italic>
(
<italic>hkl</italic>
). From our model, experimental neutron pair distribution functions are able to provide separate results consistent with the local and long range structures (supplementary Fig. 
<xref rid="MOESM1" ref-type="media">4b</xref>
) which were also computed and agree closely with published results
<sup>
<xref ref-type="bibr" rid="CR6">6</xref>
</sup>
. Therefore, no distortion or broadening of the first peaks of
<italic>G</italic>
(
<italic>r</italic>
) (supplementary Fig.
<xref rid="MOESM1" ref-type="media">6b</xref>
) can be observed in the virtual crystal ensuring the conservation of the local environment of cations in domains in agreement with EELS measurements.</p>
<p>In summary, a combination of spectroscopic and diffraction techniques has provided a new insight to demonstrate that order can generate disorder in materials. For the first time, we demonstrate that the defect fluorite structure observed in diffraction patterns of
<italic>La</italic>
<sub>2</sub>
<italic>Zr</italic>
<sub>2</sub>
<italic>O</italic>
<sub>7</sub>
is only due to the interference of scattering waves between shifted pyrochlore domains. The intricate disorder resulting from a random distribution at the mesoscopic scale of well ordered pyrochlore domains at the atomic scale leads to structures that are apparently disordered. The existence of interfaces resulting from this intricate disorder must then be taken into account to model the transport properties in these materials. The model presented in this work can easily be extended to understand the aging of a large class of complex oxides such as spinels
<sup>
<xref ref-type="bibr" rid="CR15">15</xref>
</sup>
with practical applications ranging from fuel cell production to nuclear waste form design and management.</p>
</sec>
<sec id="Sec2" sec-type="materials|methods">
<title>Methods</title>
<p>An aqueous solution of
<italic>La</italic>
(
<italic>NO</italic>
<sub>3</sub>
)
<sub>3</sub>
 − 6(
<italic>H</italic>
<sub>2</sub>
<italic>O</italic>
) with a purity of 99.999% and
<italic>ZrOCL</italic>
<sub>2.8</sub>
(
<italic>H</italic>
<sub>2</sub>
<italic>O</italic>
) with a purity of 99.5% (Aldrich products) were combined. Oxalic acid (Normapur, Prolabo) was slowly added to the mixture in order to induce the precipitation. The final product was produced by the calcination of the precipitate at different temperatures ranging from 1073 K to 1773 K for three hours under atmospheric conditions resulting in homogeneous
<italic>La</italic>
<sub>2</sub>
<italic>Zr</italic>
<sub>2</sub>
<italic>O</italic>
<sub>7</sub>
samples of different grain sizes.</p>
<p>Raman spectra were collected on a Renishaw spectrometer equipped with a Notch filter. The 532 nm excitation laser lines were used in order to avoid any luminescence signal. Four strong peaks are visible in the Raman spectra with another visible in the shoulder of the strongest peak (340 cm
<sup>−1</sup>
) and a small peak at 740 cm
<sup>−1</sup>
(small bump in Fig. 
<xref rid="Fig1" ref-type="fig">1b</xref>
). These results are in agreement with group theory calculations of a perfect pyrochlore structure (peaks are labelled by their irreducible representations) and previously published Raman spectra
<sup>
<xref ref-type="bibr" rid="CR10">10</xref>
</sup>
. To check the quality of samples, a zoom of the Raman spectra collected on the different samples is plotted in Figure 
<xref rid="MOESM1" ref-type="media">5</xref>
in the supplementary information. No peaks associated with
<italic>CaCO</italic>
<sub>3</sub>
(intense peaks at 1354 
<italic>cm</italic>
<sup>−1</sup>
and 1603 
<italic>cm</italic>
<sup>−1</sup>
) can be observed in this zoom assessing that no carbonate is present in the pyrochlore samples in agreement with x ray diffraction patterns.</p>
<p>EELS spectra were collected on a FEI Tecnai Scanning Transmission Electron Microscope operating at 200 kV with a GATAN Gif electron spectrometer. The EELS collection angle was 16 milli radiant and spectra were collected near the
<italic>L</italic>
<sub>2,3</sub>
edge for zirconium. All spectra are collected with an energy resolution of 0.05 eV. EELS spectra collected on micrometric (black line), nanometric
<italic>La</italic>
<sub>2</sub>
<italic>Zr</italic>
<sub>2</sub>
<italic>O</italic>
<sub>7</sub>
(red line) and cubic
<italic>ZrO</italic>
<sub>2</sub>
stabilized by a 8% atomic fraction of Yttrium (green line), the archetype of defect fluorite structures, display distinct shapes near the
<italic>L</italic>
<sub>3</sub>
edge. Pyrochlore samples exhibit two distinct peaks separated by 2 eV whereas only a single peak can be observed in the cubic-
<italic>ZrO</italic>
<sub>2</sub>
sample at the
<italic>L</italic>
<sub>3</sub>
edge (zoom in Fig. 
<xref rid="Fig1" ref-type="fig">1b</xref>
) in agreement with previous studies
<sup>
<xref ref-type="bibr" rid="CR4">4</xref>
</sup>
. The existence of these two distinct peaks observe in the nanometric and the micrometric samples points out that the Zr coordination in nanometric
<italic>La</italic>
<sub>2</sub>
<italic>Zr</italic>
<sub>2</sub>
<italic>O</italic>
<sub>7</sub>
samples is similar to the Zr coordination in a perfect pyrochlore structure. These two peaks are associated with dipole-allowed transitions and correspond to the
<italic>T</italic>
<sub>2
<italic>g</italic>
</sub>
and
<italic>E</italic>
<sub>
<italic>g</italic>
</sub>
electronic states
<sup>
<xref ref-type="bibr" rid="CR16">16</xref>
,
<xref ref-type="bibr" rid="CR17">17</xref>
</sup>
, and do not exist in cubic
<italic>ZrO</italic>
<sub>2</sub>
, the archetype of a defective fluorite structure (green curve in Fig. 
<xref rid="Fig1" ref-type="fig">1b</xref>
).</p>
<p>X-ray diffraction patterns were collected in Bragg-Brentano geometry using a Bruker D8 Discover diffractometer. The instrument was equipped with a parabolic
<italic>Göbel</italic>
mirror and a line focus
<italic>CuKα</italic>
radiation source. The nearly parallel incident X-ray beam was collimated with 0.05 × 6 mm primary slits. Radial sollers were used to decrease the intensity of the background and the diffraction patterns were collected on a position-sensitive detector (Vantec detector).</p>
<p>Neutron diffraction patterns were collected on the high resolution 3T-2 diffractometer at the Laboratoire Leon Brilloiun at Saclay (France) in transmission mode. The wavelength of the neutron beam was 0.123 nm.</p>
<p>Joint Neutron and X-ray Rietveld refinements were performed using Jana
<sup>
<xref ref-type="bibr" rid="CR18">18</xref>
</sup>
and Xnd
<sup>
<xref ref-type="bibr" rid="CR19">19</xref>
</sup>
software to extract information on the structure and the micro structure of samples versus grain sizes. For all Rietveld refinements, reliability factors
<italic>R</italic>
<sub>
<italic>wp</italic>
</sub>
and
<italic>R</italic>
<sub>
<italic>Bragg</italic>
</sub>
were smaller than 10% and 5% insuring the quality of refinements. To study in detail the micro structure of samples, Le bail fits of the X-ray diffraction patterns were performed. The instrumental broadening was altered during the refinement of the diffraction data obtained for the samples annealed at 1773K, i.e. the value of the largest grain size was found to be in agreement with the instrumental parameters. For the remaining refinements, this instrumental broadening was fixed and only the broadening due to the sample,
<italic>β</italic>
was refined. These refined sample broadening values
<italic>β</italic>
cos(
<italic>θ</italic>
) were then plotted versus sin(
<italic>θ</italic>
) in the HW plots (Fig. 
<xref rid="MOESM1" ref-type="media">6</xref>
in the supporting information). HW plots allow for separate strain (slopes) and size (intercept at the origin) broadening. Moreover, the grain sizes tg extracted from these HW plots are in good agreement with TEM observations thus adding to the validity of our analysis. No variation of unit cell parameters was observed and the maximum value of the strain fields extracted from the slopes of the HW plots
<sup>
<xref ref-type="bibr" rid="CR12">12</xref>
</sup>
of all reflexions are similar. This indicates that the defect fluorite/pyrochlore transition is not driven by the elastic fields in agreement with non ferroic phase transitions
<sup>
<xref ref-type="bibr" rid="CR20">20</xref>
</sup>
. Joint neutron and X-ray patterns were refined using the defect fluorite model allowing the extraction of both accurate partial occupation of the cation and oxygen atomic positions. From this analysis it is possible to extract the characteristic Zr-O/La-O lengths and calculate the average charge of cations via the Bond Valence model as displayed in Fig. 
<xref rid="Fig2" ref-type="fig">2b</xref>
. The purpose of this figure is to demonstrate that such charge valences for the
<italic>La</italic>
and
<italic>Zr</italic>
cations are unrealistic in the context of a defect fluorite structure.</p>
<p>Selected area TEM diffraction patterns were acquired on
<italic>La</italic>
<sub>2</sub>
<italic>Zr</italic>
<sub>2</sub>
<italic>O</italic>
<sub>7</sub>
powders deposited on a carbon support film grid using a JEOL 2100 transmission electron microscope operating at 200 keV. The High Resolution TEM pictures were collected on powders deposited on a copper grid using a 200 keV TITAN microscope and diffraction patterns were collected with a 70 nm aperture.</p>
<p>The simultaneous condensation of four L points of the Brillioun zone of the
<inline-formula id="IEq7">
<alternatives>
<tex-math id="M15">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Fm\bar{3}m$$\end{document}</tex-math>
<mml:math id="M16">
<mml:mi>F</mml:mi>
<mml:mi>m</mml:mi>
<mml:mover accent="true">
<mml:mn>3</mml:mn>
<mml:mo>¯</mml:mo>
</mml:mover>
<mml:mi>m</mml:mi>
</mml:math>
<inline-graphic xlink:href="41598_2017_2787_Article_IEq7.gif"></inline-graphic>
</alternatives>
</inline-formula>
space group describing the defect fluorite structure (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
) leads to a non standard crystallographic group associated with 8 × 192 = 1536 symmetry operations. This space group is the direct product of the
<inline-formula id="IEq8">
<alternatives>
<tex-math id="M17">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Fd\bar{3}m$$\end{document}</tex-math>
<mml:math id="M18">
<mml:mi>F</mml:mi>
<mml:mi>d</mml:mi>
<mml:mover accent="true">
<mml:mn>3</mml:mn>
<mml:mo>¯</mml:mo>
</mml:mover>
<mml:mi>m</mml:mi>
</mml:math>
<inline-graphic xlink:href="41598_2017_2787_Article_IEq8.gif"></inline-graphic>
</alternatives>
</inline-formula>
space group by a coset of 8 pure translation operations (
<italic>Id</italic>
|
<italic>t</italic>
<sub>
<italic>j</italic>
</sub>
) printed in Table 
<xref rid="MOESM1" ref-type="media">1</xref>
in the supporting information. The action of each (
<italic>Id</italic>
|
<italic>t</italic>
<sub>
<italic>j</italic>
</sub>
) on the Wyckoff positions associated with vacancy (8a),
<italic>Zr</italic>
(16c) and
<italic>La</italic>
(16d) cations on pure pyrochlore (
<inline-formula id="IEq9">
<alternatives>
<tex-math id="M19">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Fd\bar{3}m$$\end{document}</tex-math>
<mml:math id="M20">
<mml:mi>F</mml:mi>
<mml:mi>d</mml:mi>
<mml:mover accent="true">
<mml:mn>3</mml:mn>
<mml:mo>¯</mml:mo>
</mml:mover>
<mml:mi>m</mml:mi>
</mml:math>
<inline-graphic xlink:href="41598_2017_2787_Article_IEq9.gif"></inline-graphic>
</alternatives>
</inline-formula>
space group) is listed in Table 
<xref rid="MOESM1" ref-type="media">2</xref>
in the supporting information.</p>
<p>The extinction rules for the defect fluorite structure are given by:
<disp-formula id="Equ2">
<label>1</label>
<alternatives>
<tex-math id="M21">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ < {F}_{DF}(hkl) > =F(hkl)Z(hkl)=F(hkl\mathrm{)(1}+{e}^{i\pi (h+k+l)}\mathrm{)(1}+{e}^{i\frac{\pi }{2}(h+k)}+{e}^{i\frac{\pi }{2}i(k+l)}+{e}^{i\frac{\pi }{2}(h+l)})$$\end{document}</tex-math>
<mml:math id="M22" display="block">
<mml:mo><</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>F</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>D</mml:mi>
<mml:mi>F</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo stretchy="false">(</mml:mo>
<mml:mi>h</mml:mi>
<mml:mi>k</mml:mi>
<mml:mi>l</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
<mml:mo>></mml:mo>
<mml:mo>=</mml:mo>
<mml:mi>F</mml:mi>
<mml:mo stretchy="false">(</mml:mo>
<mml:mi>h</mml:mi>
<mml:mi>k</mml:mi>
<mml:mi>l</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
<mml:mi>Z</mml:mi>
<mml:mo stretchy="false">(</mml:mo>
<mml:mi>h</mml:mi>
<mml:mi>k</mml:mi>
<mml:mi>l</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
<mml:mo>=</mml:mo>
<mml:mi>F</mml:mi>
<mml:mo stretchy="false">(</mml:mo>
<mml:mi>h</mml:mi>
<mml:mi>k</mml:mi>
<mml:mi>l</mml:mi>
<mml:mn>)(1</mml:mn>
<mml:mo>+</mml:mo>
<mml:msup>
<mml:mrow>
<mml:mi>e</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mi>π</mml:mi>
<mml:mo stretchy="false">(</mml:mo>
<mml:mi>h</mml:mi>
<mml:mo>+</mml:mo>
<mml:mi>k</mml:mi>
<mml:mo>+</mml:mo>
<mml:mi>l</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
</mml:mrow>
</mml:msup>
<mml:mn>)(1</mml:mn>
<mml:mo>+</mml:mo>
<mml:msup>
<mml:mrow>
<mml:mi>e</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mfrac>
<mml:mi>π</mml:mi>
<mml:mn>2</mml:mn>
</mml:mfrac>
<mml:mo stretchy="false">(</mml:mo>
<mml:mi>h</mml:mi>
<mml:mo>+</mml:mo>
<mml:mi>k</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
</mml:mrow>
</mml:msup>
<mml:mo>+</mml:mo>
<mml:msup>
<mml:mrow>
<mml:mi>e</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mfrac>
<mml:mi>π</mml:mi>
<mml:mn>2</mml:mn>
</mml:mfrac>
<mml:mi>i</mml:mi>
<mml:mo stretchy="false">(</mml:mo>
<mml:mi>k</mml:mi>
<mml:mo>+</mml:mo>
<mml:mi>l</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
</mml:mrow>
</mml:msup>
<mml:mo>+</mml:mo>
<mml:msup>
<mml:mrow>
<mml:mi>e</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mfrac>
<mml:mi>π</mml:mi>
<mml:mn>2</mml:mn>
</mml:mfrac>
<mml:mo stretchy="false">(</mml:mo>
<mml:mi>h</mml:mi>
<mml:mo>+</mml:mo>
<mml:mi>l</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
</mml:mrow>
</mml:msup>
<mml:mo stretchy="false">)</mml:mo>
</mml:math>
<graphic xlink:href="41598_2017_2787_Article_Equ2.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
</p>
<p>The structure factor is null for the (200), (022), (422), (244) and odd reflexions. All reflexions of the
<inline-formula id="IEq10">
<alternatives>
<tex-math id="M23">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Fm\bar{3}m$$\end{document}</tex-math>
<mml:math id="M24">
<mml:mi>F</mml:mi>
<mml:mi>m</mml:mi>
<mml:mover accent="true">
<mml:mn>3</mml:mn>
<mml:mo>¯</mml:mo>
</mml:mover>
<mml:mi>m</mml:mi>
</mml:math>
<inline-graphic xlink:href="41598_2017_2787_Article_IEq10.gif"></inline-graphic>
</alternatives>
</inline-formula>
space group associated with defect fluorite are restored assuming
<inline-formula id="IEq11">
<alternatives>
<tex-math id="M25">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a}_{DF}=\frac{{a}_{pyrochlore}}{2}$$\end{document}</tex-math>
<mml:math id="M26">
<mml:msub>
<mml:mrow>
<mml:mi>a</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>D</mml:mi>
<mml:mi>F</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>a</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>p</mml:mi>
<mml:mi>y</mml:mi>
<mml:mi>r</mml:mi>
<mml:mi>o</mml:mi>
<mml:mi>c</mml:mi>
<mml:mi>h</mml:mi>
<mml:mi>l</mml:mi>
<mml:mi>o</mml:mi>
<mml:mi>r</mml:mi>
<mml:mi>e</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
<mml:mn>2</mml:mn>
</mml:mfrac>
</mml:math>
<inline-graphic xlink:href="41598_2017_2787_Article_IEq11.gif"></inline-graphic>
</alternatives>
</inline-formula>
.</p>
<p>All diffraction simulations were performed using the DISCUS package
<sup>
<xref ref-type="bibr" rid="CR21">21</xref>
</sup>
. Pyrochlore unit cells were expanded along all directions to model a 80 × 80 × 80 
<italic>nm</italic>
<sup>3</sup>
crystal. Eight distinct shifted domains were randomly created to generate a virtual crystal. A positive correlation between cells of the same nature were chosen to reproduce the characteristic size of mesoscopic domains
<italic>ξ</italic>
measured by X-ray diffraction (the probability of having different unit cells of same domains is equal to 20%). Because no variation of the unit cell parameters were observed in experimental X-ray patterns, no distortion of the unit cells were introduced in simulations. TEM diffraction patterns were then computed for the virtual and perfect crystals within the kinematic approximation assuming an infinite coherent length. Broadening of the intensity of the (222) reflexion observed on the virtual crystal is due to the finite size of domains. Simulated X-ray powder diagrams (Fig. 
<xref rid="MOESM1" ref-type="media">4a</xref>
in the supporting information) were calculated using the resolution function of the D8 discover allowing for a direct comparison of simulated patterns with the experimental ones (Fig. 
<xref rid="Fig1" ref-type="fig">1c</xref>
). High frequency oscillations observed in the background of the powder diagrams are due to the finite size of simulation boxes (the coherent length is always infinite in the DISCUS simulations). Moreover, simulated neutron pair distribution function
<italic>G</italic>
(
<italic>r</italic>
) for the perfect and virtual crystals were also computed (supplementary Fig.
<xref rid="MOESM1" ref-type="media">4b</xref>
) using realistic resolution functions from the Nanoscale Ordered materials and Diffraction at the Spallation Neutron Source beam line at Oak Ridge National Laboratory (
<italic>Q</italic>
<sub>
<italic>max</italic>
</sub>
 = 3.1 
<italic>nm</italic>
<sup>−1</sup>
). These calculations allow a direct comparison of our simulations with published experimental data and does not take into account the impact of nano domains on the distortion and the broadening of first peaks of
<italic>G</italic>
(
<italic>r</italic>
) as claimed for other pyrochlores
<sup>
<xref ref-type="bibr" rid="CR6">6</xref>
,
<xref ref-type="bibr" rid="CR22">22</xref>
</sup>
.</p>
</sec>
<sec sec-type="supplementary-material">
<title>Electronic supplementary material</title>
<sec id="Sec3">
<p>
<supplementary-material content-type="local-data" id="MOESM1">
<media xlink:href="41598_2017_2787_MOESM1_ESM.pdf">
<caption>
<p>supplementary information</p>
</caption>
</media>
</supplementary-material>
</p>
</sec>
</sec>
</body>
<back>
<fn-group>
<fn>
<p>
<bold>Electronic supplementary material</bold>
</p>
<p>
<bold>Supplementary information</bold>
accompanies this paper at doi:10.1038/s41598-017-02787-w </p>
</fn>
<fn>
<p>
<bold>Publisher's note:</bold>
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p>
</fn>
</fn-group>
<ack>
<title>Acknowledgements</title>
<p>This work was supported as part of the RSTB/RCOMB project of the CEA (France). We acknowledge P. Garcia from CEA/Cadarache for helpful advice and continuous support during different stages of this work. The NANOTEM TEM-STEM FEI Titan was sponsored by the TEMPOS project (program ANR-10-EQPX-50) of the French Research Nation Agency (ANR).</p>
</ack>
<notes notes-type="author-contribution">
<title>Author Contributions</title>
<p>D.S. and S.S. conceived and designed the experiments. D.H. and S.S. synthesized the samples. D.S., F.P., J.R., S.S., D.H., L.L. and L.M. collected experimental data. D.S., V.P., G.J.T. and J.B. analyzed X-ray and neutron diffraction patterns. D.S., G.B. and L.L. performed numerical calculations. D.S., G.J.T. and L.L. prepared the manuscript.</p>
</notes>
<notes notes-type="COI-statement">
<sec id="FPar1">
<title>Competing Interests</title>
<p>The authors declare that they have no competing interests.</p>
</sec>
</notes>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Subramanian</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Aravamudan</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Raoe</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Oxide pyrochlores: A review</article-title>
<source>Progress in Solid State Chemistry</source>
<year>1983</year>
<volume>15</volume>
<fpage>55</fpage>
<lpage>143</lpage>
<pub-id pub-id-type="doi">10.1016/0079-6786(83)90001-8</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Seul</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Andelman</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Domain shapes and patterns: the phenomenology of modulated phases</article-title>
<source>Science</source>
<year>1993</year>
<volume>267</volume>
<fpage>476</fpage>
<lpage>751</lpage>
<pub-id pub-id-type="doi">10.1126/science.267.5197.476</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Subramanian</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Colossal Magnetoresistance Without Mn3+/Mn4+ Double Exchange in the Stoichiometric Pyrochlore Ti2Mn2O7</article-title>
<source>Science</source>
<year>1996</year>
<volume>273</volume>
<fpage>81</fpage>
<lpage>84</lpage>
<pub-id pub-id-type="doi">10.1126/science.273.5271.81</pub-id>
<pub-id pub-id-type="pmid">8688054</pub-id>
</element-citation>
</ref>
<ref id="CR4">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ewing</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Weber</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Lian</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Nuclear waste disposal pyrochlore (
<italic>A</italic>
<sub>2</sub>
<italic>B</italic>
<sub>2</sub>
<italic>O</italic>
<sub>7</sub>
): Nuclear waste form for the immobilization of plutonium and minor actinides</article-title>
<source>Journal of Applied Physics</source>
<year>2004</year>
<volume>95</volume>
<fpage>5949</fpage>
<lpage>5971</lpage>
<pub-id pub-id-type="doi">10.1063/1.1707213</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kennedy</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Vogt</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Structural and Bonding Trends in Ruthenium Pyrochlores</article-title>
<source>Journal of Solid State Chemistry</source>
<year>1996</year>
<volume>126</volume>
<fpage>261</fpage>
<lpage>270</lpage>
<pub-id pub-id-type="doi">10.1006/jssc.1996.0337</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mins</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Jacobson</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hall</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Lewandowski</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Methane Oxidative Coupling over Nonstoichiometric Bismuth-Tin Pyrochlore Catalysts</article-title>
<source>Journal of Catalysis</source>
<year>1995</year>
<volume>153</volume>
<fpage>197</fpage>
<lpage>207</lpage>
<pub-id pub-id-type="doi">10.1006/jcat.1995.1122</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sickafus</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Radiation Tolerance of Complex Oxides</article-title>
<source>Science</source>
<year>2000</year>
<volume>289</volume>
<fpage>748</fpage>
<lpage>751</lpage>
<pub-id pub-id-type="doi">10.1126/science.289.5480.748</pub-id>
<pub-id pub-id-type="pmid">10926530</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arai</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Valence change of Catins in Ceria-Zirconia Solid Solution associated with redox reactions studied with Electron Energy-Loss Spectroscopy</article-title>
<source>Materials Transactions</source>
<year>2004</year>
<volume>45</volume>
<fpage>2951</fpage>
<lpage>2955</lpage>
<pub-id pub-id-type="doi">10.2320/matertrans.45.2951</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Galoisy</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Pellerin</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Arrio</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ildefonse</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Callas</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Evidence for 6 coordinated Zirconium in Inactive Nuclear Waste Glasses</article-title>
<source>Am. Ceram. Soc</source>
<year>1999</year>
<volume>82</volume>
<fpage>2219</fpage>
<lpage>2224</lpage>
<pub-id pub-id-type="doi">10.1111/j.1151-2916.1999.tb02065.x</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Uberuaga</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Complex oxides: Intricate disorder</article-title>
<source>Nature Materials</source>
<year>2016</year>
<volume>15</volume>
<fpage>496</fpage>
<lpage>497</lpage>
<pub-id pub-id-type="doi">10.1038/nmat4582</pub-id>
<pub-id pub-id-type="pmid">26928638</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shamblin</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Probing disorder in isometric pyrochlore and related complex oxides</article-title>
<source>Nature Materials</source>
<year>2016</year>
<volume>15</volume>
<fpage>507</fpage>
<lpage>511</lpage>
<pub-id pub-id-type="doi">10.1038/nmat4581</pub-id>
<pub-id pub-id-type="pmid">26928636</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huo</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Influence of sintering methods on microstructure and ionic conductivity of
<italic>La</italic>
<sub>1.95</sub>
<italic>Sr</italic>
<sub>0.05</sub>
<italic>Zr</italic>
<sub>2</sub>
<italic>O</italic>
<sub>6.95</sub>
synthesized by co-precipitation</article-title>
<source>Solid State Ionics</source>
<year>2015</year>
<volume>278</volume>
<fpage>181</fpage>
<lpage>187</lpage>
<pub-id pub-id-type="doi">10.1016/j.ssi.2015.05.028</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Prusty</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Pathak</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Chinta</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mukherjee</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Chowdhury</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Structural Investigations on the Compositional Anomalies in Lanthanum Zirconate System Synthesized by Coprecipitation Method</article-title>
<source>Journal of American Ceramic Society</source>
<year>2014</year>
<volume>97</volume>
<fpage>718</fpage>
<lpage>724</lpage>
<pub-id pub-id-type="doi">10.1111/jace.12741</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Champion</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Order in the Heisenberg pyrochlore: The magnetic structure of
<italic>Gd</italic>
<sub>
<italic>2</italic>
</sub>
<italic>Ti</italic>
<sub>
<italic>2</italic>
</sub>
<italic>O</italic>
<sub>
<italic>7</italic>
</sub>
</article-title>
<source>Physical Review B</source>
<year>2001</year>
<volume>64</volume>
<fpage>140407(R)</fpage>
<pub-id pub-id-type="doi">10.1103/PhysRevB.64.140407</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Michel</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Perez y Jorba</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Collongues</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Study by Ramam spectroscopy of order disorder phenomena occuring in some binary oxides with fluorite-related structures</article-title>
<source>J Raman Specroscopy</source>
<year>1976</year>
<volume>5</volume>
<fpage>163</fpage>
<lpage>180</lpage>
<pub-id pub-id-type="doi">10.1002/jrs.1250050208</pub-id>
</element-citation>
</ref>
<ref id="CR16">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cai</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Raptis</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Raptis</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Anastassakis</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Temperature dependdence of Raman scattering in stabilized cubic zirconia</article-title>
<source>Phys. Rev</source>
<year>1995</year>
<volume>51</volume>
<fpage>201</fpage>
<lpage>209</lpage>
<pub-id pub-id-type="doi">10.1103/PhysRevB.51.201</pub-id>
</element-citation>
</ref>
<ref id="CR17">
<label>17.</label>
<mixed-citation publication-type="other">Klug, H. & Alexander, L. X ray diffraction procedures. John Wiley (1954).</mixed-citation>
</ref>
<ref id="CR18">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brese</surname>
<given-names>N</given-names>
</name>
<name>
<surname>O’Keeffe</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Bond Valence Parameters for Solids</article-title>
<source>Acta Crystallographia</source>
<year>1991</year>
<volume>B47</volume>
<fpage>192</fpage>
<lpage>197</lpage>
<pub-id pub-id-type="doi">10.1107/S0108768190011041</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<label>19.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Bradley</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Cracknell</surname>
<given-names>A</given-names>
</name>
</person-group>
<source>The mathematical theory of symmetry in solids</source>
<year>1972</year>
<publisher-loc>Oxford</publisher-loc>
<publisher-name>Clarendon</publisher-name>
</element-citation>
</ref>
<ref id="CR20">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Simeone</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Dodane</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Gosset</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Baldinozzi</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Order disorder phase transition induced by swift ions in
<italic>MgAl</italic>
<sub>2</sub>
<italic>O</italic>
<sub>4</sub>
and
<italic>ZnAl</italic>
<sub>2</sub>
<italic>O</italic>
<sub>4</sub>
spinels</article-title>
<source>Journal of Nuclear Materials</source>
<year>2002</year>
<volume>300</volume>
<fpage>151</fpage>
<lpage>161</lpage>
<pub-id pub-id-type="doi">10.1016/S0022-3115(01)00749-8</pub-id>
</element-citation>
</ref>
<ref id="CR21">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Blanchard</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Clements</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kennedy</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Ling</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Reynolds</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Does local disorder occurs in the pyrochlore zirconate</article-title>
<source>Inorganic Chemistry</source>
<year>2012</year>
<volume>51</volume>
<fpage>13237</fpage>
<lpage>13244</lpage>
<pub-id pub-id-type="doi">10.1021/ic301677b</pub-id>
<pub-id pub-id-type="pmid">23057771</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dash</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Vast</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Baranek</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Cheynet</surname>
<given-names>M-C</given-names>
</name>
<name>
<surname>Reining</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Electronic structure and electron energy-loss spectroscopy of ZrO
<sub>2</sub>
zirconia</article-title>
<source>Phys REv B</source>
<year>2004</year>
<volume>70</volume>
<fpage>245116</fpage>
<lpage>245134</lpage>
<pub-id pub-id-type="doi">10.1103/PhysRevB.70.245116</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Petricek</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Dusek</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Palatinus</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Jana-Crystallographic computing system</article-title>
<source>Z. Kristallogr.</source>
<year>2004</year>
<volume>5</volume>
<fpage>345</fpage>
<lpage>352</lpage>
</element-citation>
</ref>
<ref id="CR24">
<label>24.</label>
<mixed-citation publication-type="other">Berar, J. & Baldinozzi, G. From x-ray laboratory data to incommensurable modulated phases: Rietveld modelling of complex materials. IUC Newsletter
<bold>47</bold>
(1998).</mixed-citation>
</ref>
<ref id="CR25">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Toledano</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Toledano</surname>
<given-names>JC</given-names>
</name>
</person-group>
<article-title>Nonferroic phase transitions</article-title>
<source>Physical Review B</source>
<year>1982</year>
<volume>250</volume>
<fpage>1946</fpage>
<lpage>1964</lpage>
<pub-id pub-id-type="doi">10.1103/PhysRevB.25.1946</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E219 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000E219 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024