Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000E16 ( Pmc/Corpus ); précédent : 000E159; suivant : 000E170 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">
<italic>Populus trichocarpa</italic>
encodes small, effector-like secreted proteins that are highly induced during mutualistic symbiosis</title>
<author>
<name sortKey="Plett, Jonathan M" sort="Plett, Jonathan M" uniqKey="Plett J" first="Jonathan M." last="Plett">Jonathan M. Plett</name>
<affiliation>
<nlm:aff id="Aff1">INRA, UMR 1136 INRA-University of Lorraine, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA-Nancy, 54280 Champenoux, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0000 9939 5719</institution-id>
<institution-id institution-id-type="GRID">grid.1029.a</institution-id>
<institution>Hawkesbury Institute for the Environment,</institution>
<institution>University of Western Sydney,</institution>
</institution-wrap>
Richmond, 2753 NSW Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yin, Hengfu" sort="Yin, Hengfu" uniqKey="Yin H" first="Hengfu" last="Yin">Hengfu Yin</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0446 2659</institution-id>
<institution-id institution-id-type="GRID">grid.135519.a</institution-id>
<institution>Biosciences Division,</institution>
<institution>Oak Ridge National Laboratory,</institution>
</institution-wrap>
Oak Ridge, TN 37831 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mewalal, Ritesh" sort="Mewalal, Ritesh" uniqKey="Mewalal R" first="Ritesh" last="Mewalal">Ritesh Mewalal</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0446 2659</institution-id>
<institution-id institution-id-type="GRID">grid.135519.a</institution-id>
<institution>Biosciences Division,</institution>
<institution>Oak Ridge National Laboratory,</institution>
</institution-wrap>
Oak Ridge, TN 37831 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hu, Rongbin" sort="Hu, Rongbin" uniqKey="Hu R" first="Rongbin" last="Hu">Rongbin Hu</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0446 2659</institution-id>
<institution-id institution-id-type="GRID">grid.135519.a</institution-id>
<institution>Biosciences Division,</institution>
<institution>Oak Ridge National Laboratory,</institution>
</institution-wrap>
Oak Ridge, TN 37831 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Ting" sort="Li, Ting" uniqKey="Li T" first="Ting" last="Li">Ting Li</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0446 2659</institution-id>
<institution-id institution-id-type="GRID">grid.135519.a</institution-id>
<institution>Biosciences Division,</institution>
<institution>Oak Ridge National Laboratory,</institution>
</institution-wrap>
Oak Ridge, TN 37831 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ranjan, Priya" sort="Ranjan, Priya" uniqKey="Ranjan P" first="Priya" last="Ranjan">Priya Ranjan</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0446 2659</institution-id>
<institution-id institution-id-type="GRID">grid.135519.a</institution-id>
<institution>Biosciences Division,</institution>
<institution>Oak Ridge National Laboratory,</institution>
</institution-wrap>
Oak Ridge, TN 37831 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jawdy, Sara" sort="Jawdy, Sara" uniqKey="Jawdy S" first="Sara" last="Jawdy">Sara Jawdy</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0446 2659</institution-id>
<institution-id institution-id-type="GRID">grid.135519.a</institution-id>
<institution>Biosciences Division,</institution>
<institution>Oak Ridge National Laboratory,</institution>
</institution-wrap>
Oak Ridge, TN 37831 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="De Paoli, Henrique C" sort="De Paoli, Henrique C" uniqKey="De Paoli H" first="Henrique C." last="De Paoli">Henrique C. De Paoli</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0446 2659</institution-id>
<institution-id institution-id-type="GRID">grid.135519.a</institution-id>
<institution>Biosciences Division,</institution>
<institution>Oak Ridge National Laboratory,</institution>
</institution-wrap>
Oak Ridge, TN 37831 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Butler, George" sort="Butler, George" uniqKey="Butler G" first="George" last="Butler">George Butler</name>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2315 1184</institution-id>
<institution-id institution-id-type="GRID">grid.411461.7</institution-id>
<institution>Department of Biochemistry & Cellular and Molecular Biology,</institution>
<institution>University of Tennessee,</institution>
</institution-wrap>
Knoxville, TN 37996 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Burch Smith, Tessa Maureen" sort="Burch Smith, Tessa Maureen" uniqKey="Burch Smith T" first="Tessa Maureen" last="Burch-Smith">Tessa Maureen Burch-Smith</name>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2315 1184</institution-id>
<institution-id institution-id-type="GRID">grid.411461.7</institution-id>
<institution>Department of Biochemistry & Cellular and Molecular Biology,</institution>
<institution>University of Tennessee,</institution>
</institution-wrap>
Knoxville, TN 37996 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Guo, Hao Bo" sort="Guo, Hao Bo" uniqKey="Guo H" first="Hao-Bo" last="Guo">Hao-Bo Guo</name>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2315 1184</institution-id>
<institution-id institution-id-type="GRID">grid.411461.7</institution-id>
<institution>Department of Biochemistry & Cellular and Molecular Biology,</institution>
<institution>University of Tennessee,</institution>
</institution-wrap>
Knoxville, TN 37996 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ju Chen, Chun" sort="Ju Chen, Chun" uniqKey="Ju Chen C" first="Chun" last="Ju Chen">Chun Ju Chen</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0446 2659</institution-id>
<institution-id institution-id-type="GRID">grid.135519.a</institution-id>
<institution>Biosciences Division,</institution>
<institution>Oak Ridge National Laboratory,</institution>
</institution-wrap>
Oak Ridge, TN 37831 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kohler, Annegret" sort="Kohler, Annegret" uniqKey="Kohler A" first="Annegret" last="Kohler">Annegret Kohler</name>
<affiliation>
<nlm:aff id="Aff1">INRA, UMR 1136 INRA-University of Lorraine, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA-Nancy, 54280 Champenoux, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Anderson, Ian C" sort="Anderson, Ian C" uniqKey="Anderson I" first="Ian C." last="Anderson">Ian C. Anderson</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0000 9939 5719</institution-id>
<institution-id institution-id-type="GRID">grid.1029.a</institution-id>
<institution>Hawkesbury Institute for the Environment,</institution>
<institution>University of Western Sydney,</institution>
</institution-wrap>
Richmond, 2753 NSW Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Labbe, Jessy L" sort="Labbe, Jessy L" uniqKey="Labbe J" first="Jessy L." last="Labbé">Jessy L. Labbé</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0446 2659</institution-id>
<institution-id institution-id-type="GRID">grid.135519.a</institution-id>
<institution>Biosciences Division,</institution>
<institution>Oak Ridge National Laboratory,</institution>
</institution-wrap>
Oak Ridge, TN 37831 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Martin, Francis" sort="Martin, Francis" uniqKey="Martin F" first="Francis" last="Martin">Francis Martin</name>
<affiliation>
<nlm:aff id="Aff1">INRA, UMR 1136 INRA-University of Lorraine, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA-Nancy, 54280 Champenoux, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tuskan, Gerald A" sort="Tuskan, Gerald A" uniqKey="Tuskan G" first="Gerald A." last="Tuskan">Gerald A. Tuskan</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0446 2659</institution-id>
<institution-id institution-id-type="GRID">grid.135519.a</institution-id>
<institution>Biosciences Division,</institution>
<institution>Oak Ridge National Laboratory,</institution>
</institution-wrap>
Oak Ridge, TN 37831 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Xiaohan" sort="Yang, Xiaohan" uniqKey="Yang X" first="Xiaohan" last="Yang">Xiaohan Yang</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0446 2659</institution-id>
<institution-id institution-id-type="GRID">grid.135519.a</institution-id>
<institution>Biosciences Division,</institution>
<institution>Oak Ridge National Laboratory,</institution>
</institution-wrap>
Oak Ridge, TN 37831 USA</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">28336910</idno>
<idno type="pmc">5428498</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5428498</idno>
<idno type="RBID">PMC:5428498</idno>
<idno type="doi">10.1038/s41598-017-00400-8</idno>
<date when="2017">2017</date>
<idno type="wicri:Area/Pmc/Corpus">000E16</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000E16</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">
<italic>Populus trichocarpa</italic>
encodes small, effector-like secreted proteins that are highly induced during mutualistic symbiosis</title>
<author>
<name sortKey="Plett, Jonathan M" sort="Plett, Jonathan M" uniqKey="Plett J" first="Jonathan M." last="Plett">Jonathan M. Plett</name>
<affiliation>
<nlm:aff id="Aff1">INRA, UMR 1136 INRA-University of Lorraine, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA-Nancy, 54280 Champenoux, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0000 9939 5719</institution-id>
<institution-id institution-id-type="GRID">grid.1029.a</institution-id>
<institution>Hawkesbury Institute for the Environment,</institution>
<institution>University of Western Sydney,</institution>
</institution-wrap>
Richmond, 2753 NSW Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yin, Hengfu" sort="Yin, Hengfu" uniqKey="Yin H" first="Hengfu" last="Yin">Hengfu Yin</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0446 2659</institution-id>
<institution-id institution-id-type="GRID">grid.135519.a</institution-id>
<institution>Biosciences Division,</institution>
<institution>Oak Ridge National Laboratory,</institution>
</institution-wrap>
Oak Ridge, TN 37831 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mewalal, Ritesh" sort="Mewalal, Ritesh" uniqKey="Mewalal R" first="Ritesh" last="Mewalal">Ritesh Mewalal</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0446 2659</institution-id>
<institution-id institution-id-type="GRID">grid.135519.a</institution-id>
<institution>Biosciences Division,</institution>
<institution>Oak Ridge National Laboratory,</institution>
</institution-wrap>
Oak Ridge, TN 37831 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hu, Rongbin" sort="Hu, Rongbin" uniqKey="Hu R" first="Rongbin" last="Hu">Rongbin Hu</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0446 2659</institution-id>
<institution-id institution-id-type="GRID">grid.135519.a</institution-id>
<institution>Biosciences Division,</institution>
<institution>Oak Ridge National Laboratory,</institution>
</institution-wrap>
Oak Ridge, TN 37831 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Ting" sort="Li, Ting" uniqKey="Li T" first="Ting" last="Li">Ting Li</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0446 2659</institution-id>
<institution-id institution-id-type="GRID">grid.135519.a</institution-id>
<institution>Biosciences Division,</institution>
<institution>Oak Ridge National Laboratory,</institution>
</institution-wrap>
Oak Ridge, TN 37831 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ranjan, Priya" sort="Ranjan, Priya" uniqKey="Ranjan P" first="Priya" last="Ranjan">Priya Ranjan</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0446 2659</institution-id>
<institution-id institution-id-type="GRID">grid.135519.a</institution-id>
<institution>Biosciences Division,</institution>
<institution>Oak Ridge National Laboratory,</institution>
</institution-wrap>
Oak Ridge, TN 37831 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jawdy, Sara" sort="Jawdy, Sara" uniqKey="Jawdy S" first="Sara" last="Jawdy">Sara Jawdy</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0446 2659</institution-id>
<institution-id institution-id-type="GRID">grid.135519.a</institution-id>
<institution>Biosciences Division,</institution>
<institution>Oak Ridge National Laboratory,</institution>
</institution-wrap>
Oak Ridge, TN 37831 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="De Paoli, Henrique C" sort="De Paoli, Henrique C" uniqKey="De Paoli H" first="Henrique C." last="De Paoli">Henrique C. De Paoli</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0446 2659</institution-id>
<institution-id institution-id-type="GRID">grid.135519.a</institution-id>
<institution>Biosciences Division,</institution>
<institution>Oak Ridge National Laboratory,</institution>
</institution-wrap>
Oak Ridge, TN 37831 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Butler, George" sort="Butler, George" uniqKey="Butler G" first="George" last="Butler">George Butler</name>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2315 1184</institution-id>
<institution-id institution-id-type="GRID">grid.411461.7</institution-id>
<institution>Department of Biochemistry & Cellular and Molecular Biology,</institution>
<institution>University of Tennessee,</institution>
</institution-wrap>
Knoxville, TN 37996 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Burch Smith, Tessa Maureen" sort="Burch Smith, Tessa Maureen" uniqKey="Burch Smith T" first="Tessa Maureen" last="Burch-Smith">Tessa Maureen Burch-Smith</name>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2315 1184</institution-id>
<institution-id institution-id-type="GRID">grid.411461.7</institution-id>
<institution>Department of Biochemistry & Cellular and Molecular Biology,</institution>
<institution>University of Tennessee,</institution>
</institution-wrap>
Knoxville, TN 37996 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Guo, Hao Bo" sort="Guo, Hao Bo" uniqKey="Guo H" first="Hao-Bo" last="Guo">Hao-Bo Guo</name>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2315 1184</institution-id>
<institution-id institution-id-type="GRID">grid.411461.7</institution-id>
<institution>Department of Biochemistry & Cellular and Molecular Biology,</institution>
<institution>University of Tennessee,</institution>
</institution-wrap>
Knoxville, TN 37996 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ju Chen, Chun" sort="Ju Chen, Chun" uniqKey="Ju Chen C" first="Chun" last="Ju Chen">Chun Ju Chen</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0446 2659</institution-id>
<institution-id institution-id-type="GRID">grid.135519.a</institution-id>
<institution>Biosciences Division,</institution>
<institution>Oak Ridge National Laboratory,</institution>
</institution-wrap>
Oak Ridge, TN 37831 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kohler, Annegret" sort="Kohler, Annegret" uniqKey="Kohler A" first="Annegret" last="Kohler">Annegret Kohler</name>
<affiliation>
<nlm:aff id="Aff1">INRA, UMR 1136 INRA-University of Lorraine, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA-Nancy, 54280 Champenoux, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Anderson, Ian C" sort="Anderson, Ian C" uniqKey="Anderson I" first="Ian C." last="Anderson">Ian C. Anderson</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0000 9939 5719</institution-id>
<institution-id institution-id-type="GRID">grid.1029.a</institution-id>
<institution>Hawkesbury Institute for the Environment,</institution>
<institution>University of Western Sydney,</institution>
</institution-wrap>
Richmond, 2753 NSW Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Labbe, Jessy L" sort="Labbe, Jessy L" uniqKey="Labbe J" first="Jessy L." last="Labbé">Jessy L. Labbé</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0446 2659</institution-id>
<institution-id institution-id-type="GRID">grid.135519.a</institution-id>
<institution>Biosciences Division,</institution>
<institution>Oak Ridge National Laboratory,</institution>
</institution-wrap>
Oak Ridge, TN 37831 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Martin, Francis" sort="Martin, Francis" uniqKey="Martin F" first="Francis" last="Martin">Francis Martin</name>
<affiliation>
<nlm:aff id="Aff1">INRA, UMR 1136 INRA-University of Lorraine, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA-Nancy, 54280 Champenoux, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tuskan, Gerald A" sort="Tuskan, Gerald A" uniqKey="Tuskan G" first="Gerald A." last="Tuskan">Gerald A. Tuskan</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0446 2659</institution-id>
<institution-id institution-id-type="GRID">grid.135519.a</institution-id>
<institution>Biosciences Division,</institution>
<institution>Oak Ridge National Laboratory,</institution>
</institution-wrap>
Oak Ridge, TN 37831 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Xiaohan" sort="Yang, Xiaohan" uniqKey="Yang X" first="Xiaohan" last="Yang">Xiaohan Yang</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0446 2659</institution-id>
<institution-id institution-id-type="GRID">grid.135519.a</institution-id>
<institution>Biosciences Division,</institution>
<institution>Oak Ridge National Laboratory,</institution>
</institution-wrap>
Oak Ridge, TN 37831 USA</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific Reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2017">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>During symbiosis, organisms use a range of metabolic and protein-based signals to communicate. Of these protein signals, one class is defined as ‘effectors’, i.e., small secreted proteins (SSPs) that cause phenotypical and physiological changes in another organism. To date, protein-based effectors have been described in aphids, nematodes, fungi and bacteria. Using RNA sequencing of
<italic>Populus trichocarpa</italic>
roots in mutualistic symbiosis with the ectomycorrhizal fungus
<italic>Laccaria bicolor</italic>
, we sought to determine if host plants also contain genes encoding effector-like proteins. We identified 417 plant-encoded putative SSPs that were significantly regulated during this interaction, including 161 SSPs specific to
<italic>P. trichocarpa</italic>
and 15 SSPs exhibiting expansion in
<italic>Populus</italic>
and closely related lineages. We demonstrate that a subset of these SSPs can enter
<italic>L. bicolor</italic>
hyphae, localize to the nucleus and affect hyphal growth and morphology. We conclude that plants encode proteins that appear to function as effector proteins that may regulate symbiotic associations.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bos, Ji" uniqKey="Bos J">JI Bos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bos, Ji" uniqKey="Bos J">JI Bos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kleemann, J" uniqKey="Kleemann J">J Kleemann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kemen, E" uniqKey="Kemen E">E Kemen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tanaka, S" uniqKey="Tanaka S">S Tanaka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Plett, Jm" uniqKey="Plett J">JM Plett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kloppholz, S" uniqKey="Kloppholz S">S Kloppholz</name>
</author>
<author>
<name sortKey="Kuhn, H" uniqKey="Kuhn H">H Kuhn</name>
</author>
<author>
<name sortKey="Requena, N" uniqKey="Requena N">N Requena</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lebeis, Sl" uniqKey="Lebeis S">SL Lebeis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Weert, S" uniqKey="De Weert S">S de Weert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Akiyama, K" uniqKey="Akiyama K">K Akiyama</name>
</author>
<author>
<name sortKey="Matsuzaki, K" uniqKey="Matsuzaki K">K Matsuzaki</name>
</author>
<author>
<name sortKey="Hayashi, H" uniqKey="Hayashi H">H Hayashi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kneer, R" uniqKey="Kneer R">R Kneer</name>
</author>
<author>
<name sortKey="Poulev, Aa" uniqKey="Poulev A">AA Poulev</name>
</author>
<author>
<name sortKey="Olesinski, A" uniqKey="Olesinski A">A Olesinski</name>
</author>
<author>
<name sortKey="Raskin, I" uniqKey="Raskin I">I Raskin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mar Ti, G" uniqKey="Mar Ti G">G Maróti</name>
</author>
<author>
<name sortKey="Kereszt, A" uniqKey="Kereszt A">A Kereszt</name>
</author>
<author>
<name sortKey="Kondorosi, E" uniqKey="Kondorosi E">E Kondorosi</name>
</author>
<author>
<name sortKey="Mergaert, P" uniqKey="Mergaert P">P Mergaert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De La Pe A, C" uniqKey="De La Pe A C">C De-la-Peña</name>
</author>
<author>
<name sortKey="Lei, Z" uniqKey="Lei Z">Z Lei</name>
</author>
<author>
<name sortKey="Watson, Bs" uniqKey="Watson B">BS Watson</name>
</author>
<author>
<name sortKey="Sumner, Lw" uniqKey="Sumner L">LW Sumner</name>
</author>
<author>
<name sortKey="Vivanco, Jm" uniqKey="Vivanco J">JM Vivanco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De La Pena, C" uniqKey="De La Pena C">C De-la-Pena</name>
</author>
<author>
<name sortKey="M Loyola Vargas, V" uniqKey="M Loyola Vargas V">V M. Loyola-Vargas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sagaram, Us" uniqKey="Sagaram U">US Sagaram</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Farkas, A" uniqKey="Farkas A">A Farkas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Penterman, J" uniqKey="Penterman J">J Penterman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van De Velde, W" uniqKey="Van De Velde W">W Van de Velde</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Durgo, H" uniqKey="Durgo H">H Durgo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, X" uniqKey="Yang X">X Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ghorbani, S" uniqKey="Ghorbani S">S Ghorbani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hanada, K" uniqKey="Hanada K">K Hanada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goldberg, T" uniqKey="Goldberg T">T Goldberg</name>
</author>
<author>
<name sortKey="Hamp, T" uniqKey="Hamp T">T Hamp</name>
</author>
<author>
<name sortKey="Rost, B" uniqKey="Rost B">B Rost</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, Cs" uniqKey="Yu C">CS Yu</name>
</author>
<author>
<name sortKey="Chen, Yc" uniqKey="Chen Y">YC Chen</name>
</author>
<author>
<name sortKey="Lu, Ch" uniqKey="Lu C">CH Lu</name>
</author>
<author>
<name sortKey="Hwang, Jk" uniqKey="Hwang J">JK Hwang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Briesemeister, S" uniqKey="Briesemeister S">S Briesemeister</name>
</author>
<author>
<name sortKey="Rahnenfuhrer, J" uniqKey="Rahnenfuhrer J">J Rahnenfuhrer</name>
</author>
<author>
<name sortKey="Kohlbacher, O" uniqKey="Kohlbacher O">O Kohlbacher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Labbe, J" uniqKey="Labbe J">J Labbé</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Colpaert, J" uniqKey="Colpaert J">J Colpaert</name>
</author>
<author>
<name sortKey="Wevers, Jl" uniqKey="Wevers J">JL Wevers</name>
</author>
<author>
<name sortKey="Krznaric, E" uniqKey="Krznaric E">E Krznaric</name>
</author>
<author>
<name sortKey="Adriaensen, K" uniqKey="Adriaensen K">K Adriaensen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, J" uniqKey="Li J">J Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pena, R" uniqKey="Pena R">R Pena</name>
</author>
<author>
<name sortKey="Polle, A" uniqKey="Polle A">A Polle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rooney, D" uniqKey="Rooney D">D Rooney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ceballos, I" uniqKey="Ceballos I">I Ceballos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Erman, M" uniqKey="Erman M">M Erman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Plett, Jm" uniqKey="Plett J">JM Plett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Berendsen, Rl" uniqKey="Berendsen R">RL Berendsen</name>
</author>
<author>
<name sortKey="Pieterse, Cm" uniqKey="Pieterse C">CM Pieterse</name>
</author>
<author>
<name sortKey="Bakker, Pa" uniqKey="Bakker P">PA Bakker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hortal, S" uniqKey="Hortal S">S Hortal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lau, Ja" uniqKey="Lau J">JA Lau</name>
</author>
<author>
<name sortKey="Lennon, Jt" uniqKey="Lennon J">JT Lennon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bordiec, S" uniqKey="Bordiec S">S Bordiec</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brotman, Y" uniqKey="Brotman Y">Y Brotman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Molitor, A" uniqKey="Molitor A">A Molitor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Postnikova, Oa" uniqKey="Postnikova O">OA Postnikova</name>
</author>
<author>
<name sortKey="Nemchinov, Lg" uniqKey="Nemchinov L">LG Nemchinov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, Rhy" uniqKey="Jiang R">RHY Jiang</name>
</author>
<author>
<name sortKey="Tripathy, S" uniqKey="Tripathy S">S Tripathy</name>
</author>
<author>
<name sortKey="Govers, F" uniqKey="Govers F">F Govers</name>
</author>
<author>
<name sortKey="Tyler, Bm" uniqKey="Tyler B">BM Tyler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jones, Jd" uniqKey="Jones J">JD Jones</name>
</author>
<author>
<name sortKey="Dangl, Jl" uniqKey="Dangl J">JL Dangl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Doehlemann, G" uniqKey="Doehlemann G">G Doehlemann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grant, Sr" uniqKey="Grant S">SR Grant</name>
</author>
<author>
<name sortKey="Fisher, Ej" uniqKey="Fisher E">EJ Fisher</name>
</author>
<author>
<name sortKey="Chang, Jh" uniqKey="Chang J">JH Chang</name>
</author>
<author>
<name sortKey="Mole, Bm" uniqKey="Mole B">BM Mole</name>
</author>
<author>
<name sortKey="Dangl, Jl" uniqKey="Dangl J">JL Dangl</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mortier, F" uniqKey="Mortier F">F Mortier</name>
</author>
<author>
<name sortKey="Le Tacon, F" uniqKey="Le Tacon F">F Le Tacon</name>
</author>
<author>
<name sortKey="Garbaye, J" uniqKey="Garbaye J">J Garbaye</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Plett, Jm" uniqKey="Plett J">JM Plett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tuskan, Ga" uniqKey="Tuskan G">GA Tuskan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Trapnell, C" uniqKey="Trapnell C">C Trapnell</name>
</author>
<author>
<name sortKey="Pachter, L" uniqKey="Pachter L">L Pachter</name>
</author>
<author>
<name sortKey="Salzberg, Sl" uniqKey="Salzberg S">SL Salzberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Trapnell, C" uniqKey="Trapnell C">C Trapnell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Trapnell, C" uniqKey="Trapnell C">C Trapnell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Finn, Rd" uniqKey="Finn R">RD Finn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Conesa, A" uniqKey="Conesa A">A Conesa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maere, S" uniqKey="Maere S">S Maere</name>
</author>
<author>
<name sortKey="Heymans, K" uniqKey="Heymans K">K Heymans</name>
</author>
<author>
<name sortKey="Kuiper, M" uniqKey="Kuiper M">M Kuiper</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Camacho, C" uniqKey="Camacho C">C Camacho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Evans, Lm" uniqKey="Evans L">LM Evans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Slavov, Gt" uniqKey="Slavov G">GT Slavov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, H" uniqKey="Li H">H Li</name>
</author>
<author>
<name sortKey="Ruan, J" uniqKey="Ruan J">J Ruan</name>
</author>
<author>
<name sortKey="Durbin, R" uniqKey="Durbin R">R Durbin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Quinlan, Ar" uniqKey="Quinlan A">AR Quinlan</name>
</author>
<author>
<name sortKey="Hall, Im" uniqKey="Hall I">IM Hall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, S J" uniqKey="Lee S">S-J Lee</name>
</author>
<author>
<name sortKey="Kim, B D" uniqKey="Kim B">B-D Kim</name>
</author>
<author>
<name sortKey="Rose, Jkc" uniqKey="Rose J">JKC Rose</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Sci Rep</journal-id>
<journal-id journal-id-type="iso-abbrev">Sci Rep</journal-id>
<journal-title-group>
<journal-title>Scientific Reports</journal-title>
</journal-title-group>
<issn pub-type="epub">2045-2322</issn>
<publisher>
<publisher-name>Nature Publishing Group UK</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">28336910</article-id>
<article-id pub-id-type="pmc">5428498</article-id>
<article-id pub-id-type="publisher-id">400</article-id>
<article-id pub-id-type="doi">10.1038/s41598-017-00400-8</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>
<italic>Populus trichocarpa</italic>
encodes small, effector-like secreted proteins that are highly induced during mutualistic symbiosis</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Plett</surname>
<given-names>Jonathan M.</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
<xref ref-type="aff" rid="Aff2">2</xref>
</contrib>
<contrib contrib-type="author" equal-contrib="yes">
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0002-0720-5311</contrib-id>
<name>
<surname>Yin</surname>
<given-names>Hengfu</given-names>
</name>
<xref ref-type="aff" rid="Aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0002-0153-2434</contrib-id>
<name>
<surname>Mewalal</surname>
<given-names>Ritesh</given-names>
</name>
<xref ref-type="aff" rid="Aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0001-5921-6891</contrib-id>
<name>
<surname>Hu</surname>
<given-names>Rongbin</given-names>
</name>
<xref ref-type="aff" rid="Aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Li</surname>
<given-names>Ting</given-names>
</name>
<xref ref-type="aff" rid="Aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ranjan</surname>
<given-names>Priya</given-names>
</name>
<xref ref-type="aff" rid="Aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jawdy</surname>
<given-names>Sara</given-names>
</name>
<xref ref-type="aff" rid="Aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0001-8494-0603</contrib-id>
<name>
<surname>De Paoli</surname>
<given-names>Henrique C.</given-names>
</name>
<xref ref-type="aff" rid="Aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Butler</surname>
<given-names>George</given-names>
</name>
<xref ref-type="aff" rid="Aff4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Burch-Smith</surname>
<given-names>Tessa Maureen</given-names>
</name>
<xref ref-type="aff" rid="Aff4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Guo</surname>
<given-names>Hao-Bo</given-names>
</name>
<xref ref-type="aff" rid="Aff4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ju Chen</surname>
<given-names>Chun</given-names>
</name>
<xref ref-type="aff" rid="Aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kohler</surname>
<given-names>Annegret</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Anderson</surname>
<given-names>Ian C.</given-names>
</name>
<xref ref-type="aff" rid="Aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0003-0368-2054</contrib-id>
<name>
<surname>Labbé</surname>
<given-names>Jessy L.</given-names>
</name>
<xref ref-type="aff" rid="Aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0002-4737-3715</contrib-id>
<name>
<surname>Martin</surname>
<given-names>Francis</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Tuskan</surname>
<given-names>Gerald A.</given-names>
</name>
<xref ref-type="aff" rid="Aff3">3</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0001-5207-4210</contrib-id>
<name>
<surname>Yang</surname>
<given-names>Xiaohan</given-names>
</name>
<address>
<email>yangx@ornl.gov</email>
</address>
<xref ref-type="aff" rid="Aff3">3</xref>
</contrib>
<aff id="Aff1">
<label>1</label>
INRA, UMR 1136 INRA-University of Lorraine, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA-Nancy, 54280 Champenoux, France</aff>
<aff id="Aff2">
<label>2</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0000 9939 5719</institution-id>
<institution-id institution-id-type="GRID">grid.1029.a</institution-id>
<institution>Hawkesbury Institute for the Environment,</institution>
<institution>University of Western Sydney,</institution>
</institution-wrap>
Richmond, 2753 NSW Australia</aff>
<aff id="Aff3">
<label>3</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0446 2659</institution-id>
<institution-id institution-id-type="GRID">grid.135519.a</institution-id>
<institution>Biosciences Division,</institution>
<institution>Oak Ridge National Laboratory,</institution>
</institution-wrap>
Oak Ridge, TN 37831 USA</aff>
<aff id="Aff4">
<label>4</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2315 1184</institution-id>
<institution-id institution-id-type="GRID">grid.411461.7</institution-id>
<institution>Department of Biochemistry & Cellular and Molecular Biology,</institution>
<institution>University of Tennessee,</institution>
</institution-wrap>
Knoxville, TN 37996 USA</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>23</day>
<month>3</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>23</day>
<month>3</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="collection">
<year>2017</year>
</pub-date>
<volume>7</volume>
<elocation-id>382</elocation-id>
<history>
<date date-type="received">
<day>27</day>
<month>1</month>
<year>2016</year>
</date>
<date date-type="accepted">
<day>27</day>
<month>2</month>
<year>2017</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author(s) 2017</copyright-statement>
<license license-type="OpenAccess">
<license-p>This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
</license-p>
</license>
</permissions>
<abstract id="Abs1">
<p>During symbiosis, organisms use a range of metabolic and protein-based signals to communicate. Of these protein signals, one class is defined as ‘effectors’, i.e., small secreted proteins (SSPs) that cause phenotypical and physiological changes in another organism. To date, protein-based effectors have been described in aphids, nematodes, fungi and bacteria. Using RNA sequencing of
<italic>Populus trichocarpa</italic>
roots in mutualistic symbiosis with the ectomycorrhizal fungus
<italic>Laccaria bicolor</italic>
, we sought to determine if host plants also contain genes encoding effector-like proteins. We identified 417 plant-encoded putative SSPs that were significantly regulated during this interaction, including 161 SSPs specific to
<italic>P. trichocarpa</italic>
and 15 SSPs exhibiting expansion in
<italic>Populus</italic>
and closely related lineages. We demonstrate that a subset of these SSPs can enter
<italic>L. bicolor</italic>
hyphae, localize to the nucleus and affect hyphal growth and morphology. We conclude that plants encode proteins that appear to function as effector proteins that may regulate symbiotic associations.</p>
</abstract>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© The Author(s) 2017</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1" sec-type="introduction">
<title>Introduction</title>
<p>Symbiosis, defined as a durable interaction between two or more organisms, is a complex association that requires both physiological and morphological signaling, reception and alterations on the part of both organisms. Many fungal lineages within the pathogenic/mutualistic continuum have evolved elaborate protein-based signals to influence their hosts in order to support their metabolic requirements during symbiosis
<sup>
<xref ref-type="bibr" rid="CR1">1</xref>
</sup>
. These proteins, called effectors, are typically fungal strain- or species-specific, usually ≤250 amino acids in size, and carry a secretion signal motif that may be cysteine-rich. Some examples of pathogenic effector proteins include: Avr3a of
<italic>Phytophthora infestans</italic>
<sup>
<xref ref-type="bibr" rid="CR2">2</xref>
,
<xref ref-type="bibr" rid="CR3">3</xref>
</sup>
, the ChCEs of
<italic>Colletotrichum higginsianum</italic>
<sup>
<xref ref-type="bibr" rid="CR4">4</xref>
</sup>
, RTP1 of
<italic>Uromyces fabae</italic>
<sup>
<xref ref-type="bibr" rid="CR5">5</xref>
</sup>
and the TIN2 of
<italic>Ustilago maydis</italic>
<sup>
<xref ref-type="bibr" rid="CR6">6</xref>
</sup>
. More recently, effector proteins have also been characterized in mutualistic fungi. For example, MiSSP7 of the ectomycorrhizal (ECM) fungus
<italic>Laccaria bicolor</italic>
stabilizes the
<italic>Populus</italic>
jasmonic acid signaling repressor PtJAZ6
<sup>
<xref ref-type="bibr" rid="CR7">7</xref>
</sup>
while the SP7 protein of the arbuscular mycorrhizal fungus
<italic>Rhizophagus irregularis</italic>
(formerly
<italic>Glomus intraradices</italic>
) blocks the activity of ERF19
<sup>
<xref ref-type="bibr" rid="CR8">8</xref>
</sup>
.</p>
<p>When viewed from the perspective of the fungal-encoded effector biology described to date, the outcome of symbiosis would appear to be heavily influenced by the colonizing fungus. Is this true, or could plants encode similar “effector-like” proteins that, in turn, exert a level of influence on the activity of the symbiotic associates? Previous research supporting the influence of plants over microbial biology suggests that: (1) plants utilize a number of secondary metabolites to affect rhizospheric and endopsheric microbes
<sup>
<xref ref-type="bibr" rid="CR9">9</xref>
</sup>
, (2) general root exudates act as microbial chemoattractants
<sup>
<xref ref-type="bibr" rid="CR10">10</xref>
</sup>
, (3) plants produce strigolactones which act as signals in initiating mycorrhizal formation
<sup>
<xref ref-type="bibr" rid="CR11">11</xref>
</sup>
and (4) flavonoids from plants function as antimicrobial compounds
<sup>
<xref ref-type="bibr" rid="CR12">12</xref>
,
<xref ref-type="bibr" rid="CR13">13</xref>
</sup>
.</p>
<p>Recently, attention has turned to investigating proteins present in root exudates and their role in influencing plant-microbe interactions. Proteins, such as peptidases, hydrolases and defensins, have been implicated in affecting symbiosis
<sup>
<xref ref-type="bibr" rid="CR14">14</xref>
<xref ref-type="bibr" rid="CR16">16</xref>
</sup>
. There is also a precedent for plant small secreted proteins (SSPs; ≤250 amino acids) that are produced by roots and enter the cytosol of nitrogen-fixing bacteria during nodule formation to govern the outcome of these mutualistic interactions
<sup>
<xref ref-type="bibr" rid="CR17">17</xref>
<xref ref-type="bibr" rid="CR20">20</xref>
</sup>
. In total, 146 plant cysteine-rich SSPs have been identified
<sup>
<xref ref-type="bibr" rid="CR17">17</xref>
,
<xref ref-type="bibr" rid="CR19">19</xref>
,
<xref ref-type="bibr" rid="CR21">21</xref>
</sup>
. It is generally understood that the discovery of SSPs in newly sequenced plant genomes has been hampered by the lack of gene annotation for proteins smaller than 100 amino acids (aa) due to a high false positive discovery rate from computational prediction of small open reading frames (ORFs) and a lack of homology across plant genomes which constrains
<italic>ab initio</italic>
gene calling
<sup>
<xref ref-type="bibr" rid="CR22">22</xref>
,
<xref ref-type="bibr" rid="CR23">23</xref>
</sup>
.</p>
<p>The lack of SSP annotation is changing, however, due to the increasing availability of deep RNA-sequencing data. Recent re-annotation of the
<italic>Arabidopsis</italic>
and
<italic>Populus</italic>
genomes found evidence for 2,099 and 1,282 new small proteins, respectively
<sup>
<xref ref-type="bibr" rid="CR22">22</xref>
,
<xref ref-type="bibr" rid="CR24">24</xref>
</sup>
. Moreover, mutation analysis of a number of these new
<italic>Arabidopsis</italic>
small proteins has demonstrated that a large portion play critical roles in plant developmental processes such as flowering, leaf development and overall plant structure
<sup>
<xref ref-type="bibr" rid="CR24">24</xref>
</sup>
. However, the possibility that a number of these proteins could be secreted and function as effector proteins during symbiotic interactions is still uncertain. The aim of this study was to determine if: (1)
<italic>Populus</italic>
encoded effector-like proteins are regulated during mutualistic symbiosis with the ectomycorrhizal fungus
<italic>L. bicolor</italic>
and (2) whether some of these proteins might be able to enter the hyphae of
<italic>L. bicolor</italic>
and affect the growth of the fungus.</p>
</sec>
<sec id="Sec2" sec-type="results">
<title>Results</title>
<sec id="Sec3">
<title>Size bias in proteins predicted to be secreted during a mutualistic interaction</title>
<p>Using a computational pipeline for discovery of small protein-encoding genes based on transcriptomes analyzed by RNA-seq (Fig. 
<xref rid="Fig1" ref-type="fig">1a</xref>
), we identified 2,819
<italic>Populus</italic>
protein-encoding genes (designated as the ‘All-protein set’) that exhibited differential (p-value < 0.05) transcript abundance across all stages of mycorrhizal root tip development during symbiosis between
<italic>P. trichocarpa</italic>
and
<italic>L. bicolor</italic>
. The quantitative expression based on RNA-seq data was validated by quantitative RT-PCR analysis of 13 randomly-selected transcripts, which significantly correlated with the data obtained from the RNA-seq transcript analysis (p-value < 0.001; Supplementary Fig. 
<xref rid="MOESM1" ref-type="media">S1</xref>
; Supplementary Table 
<xref rid="MOESM1" ref-type="media">S1</xref>
). In the “All-protein set”, 2,631 transcripts (93.3%) contained a complete open reading frame (ORF) and were designated as the full-length (FL) set. In the FL set, 1,242 proteins (47.2%) satisfied the criteria for small proteins, i.e., ≤250 amino acids in length, and were designated as the “SmP set”. Given that SSPs are typically secreted, the predicted subcellular localizations of the FL set proteins were determined by three differential computational tools: LocTree2
<sup>
<xref ref-type="bibr" rid="CR25">25</xref>
</sup>
, CELLO
<sup>
<xref ref-type="bibr" rid="CR26">26</xref>
</sup>
and YLoc
<sup>
<xref ref-type="bibr" rid="CR27">27</xref>
</sup>
. From this analysis, 646 proteins in the FL set were predicted to code for secreted proteins (the SeP set). Within the SeP set, there was an over-representation of small proteins of ≤250 aa in length (64.6% of the SeP set), with the largest number of proteins falling within the size range of 51–100 aa (Fig. 
<xref rid="Fig1" ref-type="fig">1b</xref>
). This subgroup of proteins was designated the SSP set (Supplementary Table 
<xref rid="MOESM2" ref-type="media">S2</xref>
).
<fig id="Fig1">
<label>Figure 1</label>
<caption>
<p>Characteristics of
<italic>Populus trichocarpa</italic>
genes differentially expressed during mutualistic symbiosis with
<italic>Laccaria bicolor</italic>
. (
<bold>a</bold>
) A computational pipeline for discovery of small protein-encoding genes in
<italic>P. trichocarpa</italic>
in response to
<italic>L. bicolor</italic>
. (
<bold>b</bold>
) Sequence length distribution of
<italic>P. trichocarpa</italic>
computationally-predicted secreted proteins expressed during mutualistic symbiosis with
<italic>L. bicolor</italic>
. ‘Small’ proteins are defined as ≤250 amino acids.</p>
</caption>
<graphic xlink:href="41598_2017_400_Fig1_HTML" id="d29e591"></graphic>
</fig>
</p>
<p>This SSP set (417 proteins) was further divided into sub-sets based on three computational ‘confidence level’ approaches (see Methods section): the high confidence set (“SSP_hc set”; 171 proteins), the medium confidence set (“SSP_mc set”; 126 proteins) and the low confidence set (“SSP_lc set; 120 proteins; Fig. 
<xref rid="Fig1" ref-type="fig">1a</xref>
; Supplementary Table 
<xref rid="MOESM2" ref-type="media">S2</xref>
). Proteins not found in the current
<italic>P. trichocarpa</italic>
genome annotation (37% of the SSP set) were named with the prefix ‘CUFF’ while proteins found in the current
<italic>Populus</italic>
genome annotation v3.0 (
<ext-link ext-link-type="uri" xlink:href="http://www.Phytozome.net">www.Phytozome.net</ext-link>
) were designated with the prefix ‘Potri’.
<italic>In silico</italic>
analysis of the SSP set found that 79 of these SSPs contained predicted nuclear localization signals as predicted by using YLoc
<sup>
<xref ref-type="bibr" rid="CR27">27</xref>
</sup>
and CELLO
<sup>
<xref ref-type="bibr" rid="CR26">26</xref>
</sup>
. Functional categorization of the differentially expressed SSPs with gene ontology (GO) biological process showed that these proteins are putatively involved in different biological pathways with varying biochemical activity (Supplementary Table 
<xref rid="MOESM2" ref-type="media">S2</xref>
). Overall, there was enrichment for stress-related GO terms, in particular the “response to fungus” category (Supplementary Table 
<xref rid="MOESM1" ref-type="media">S3</xref>
).</p>
</sec>
<sec id="Sec4">
<title>Lineage- or genus-specific set of
<italic>P. trichocarpa</italic>
SSP genes</title>
<p>Of the entire 417 
<italic>P. trichocarpa</italic>
SSP set, 39% (or 161 SSPs) appear to be specific to
<italic>Populus</italic>
, i.e., without homologs in the other 15 species examined (Fig. 
<xref rid="Fig2" ref-type="fig">2</xref>
; Supplementary Table 
<xref rid="MOESM1" ref-type="media">S4</xref>
), while 15 SSPs have homologs found only within closely related plant genera (Supplementary Table 
<xref rid="MOESM3" ref-type="media">S5</xref>
). A comparison of SSPs between
<italic>P. trichocarpa</italic>
accessions (Nisqually-1 and 93–960; strong ECM host plants) and
<italic>P. deltoides</italic>
accessions (ILL-101 and D124; poor ECM host plants)
<sup>
<xref ref-type="bibr" rid="CR28">28</xref>
</sup>
showed that six SSPs predicted in the
<italic>P. trichocarpa</italic>
genomes were missing or truncated in the
<italic>P. deltoides</italic>
accessions (Table 
<xref rid="Tab1" ref-type="table">1</xref>
).
<fig id="Fig2">
<label>Figure 2</label>
<caption>
<p>Lineage-specific expansion of small secreted proteins (SSPs) associated with
<italic>Populus trichocarpa</italic>
-
<italic>Laccaria bicolor</italic>
interaction. Due to space limitation, only five genes (Potri.019G124600, Potri.009G028300, Potri.009G063200, Potri.013G131900 and Potri.009G111900) showing lineage-specific expansion are shown in this figure. See Supplementary Tables 
<xref rid="MOESM1" ref-type="media">S4</xref>
and
<xref rid="MOESM3" ref-type="media">S5</xref>
for details about the SSP genes showing lineage-specific expansion in
<italic>Populus</italic>
and closely related plant genera. The phylogenetic tree was adapted from
<ext-link ext-link-type="uri" xlink:href="http://phytozome.jgi.doe.gov">http://phytozome.jgi.doe.gov</ext-link>
.</p>
</caption>
<graphic xlink:href="41598_2017_400_Fig2_HTML" id="d29e703"></graphic>
</fig>
<table-wrap id="Tab1">
<label>Table 1</label>
<caption>
<p>SSP genes that have re-sequencing read coverage of >90% in
<italic>Populus trichocarpa</italic>
(“93–968” and “Nisqually-1”) and <50% in
<italic>P. deltoides</italic>
(“D124” and “ILL-101”).</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="2">Gene name</th>
<th rowspan="2">Confidence Group</th>
<th rowspan="2">Protein length, aa</th>
<th rowspan="2">Genomic location</th>
<th colspan="2">
<italic>Populus trichocarpa</italic>
</th>
<th colspan="2">
<italic>Populus deltoides</italic>
</th>
</tr>
<tr>
<th>Nisqually-1</th>
<th>93–968</th>
<th>D124</th>
<th>ILL-101</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUFF.22613.1</td>
<td>HC</td>
<td>216</td>
<td>Chr10:21706385–21717909</td>
<td>100</td>
<td>100</td>
<td>24</td>
<td>33</td>
</tr>
<tr>
<td>Potri.009G063200.1</td>
<td>HC</td>
<td>69</td>
<td>Chr09:6460994–6461507</td>
<td>100</td>
<td>99</td>
<td>14</td>
<td>33</td>
</tr>
<tr>
<td>CUFF.3798.1</td>
<td>LC</td>
<td>38</td>
<td>Chr01:47088970–47089866</td>
<td>99</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Potri.004G136500.1</td>
<td>LC</td>
<td>249</td>
<td>Chr04:15714835–15715724</td>
<td>99</td>
<td>93</td>
<td>28</td>
<td>42</td>
</tr>
<tr>
<td>Potri.006G212200.1</td>
<td>LC</td>
<td>70</td>
<td>Chr06:22618830–22619398</td>
<td>100</td>
<td>98</td>
<td>13</td>
<td>45</td>
</tr>
<tr>
<td>CUFF.21535.1</td>
<td>MC</td>
<td>139</td>
<td>Chr01:48110837–48112147</td>
<td>99</td>
<td>98</td>
<td>15</td>
<td>23</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Confidence levels HC, MC and LC represent three computationally-predicted SSP sets: the high confidence set (“SSP_hc set”), the medium confidence set (“SSP_mc set”) and the low confidence set (“SSP_lc set”), respectively.</p>
</table-wrap-foot>
</table-wrap>
</p>
</sec>
<sec id="Sec5">
<title>
<italic>Populus</italic>
SSPs have functional secretion signals</title>
<p>To test the secretion of SSPs, a complementation assay in which the survival of the host depends on the secretion of the protein of interest was chosen. Forty full-length proteins (Supplementary Table 
<xref rid="MOESM1" ref-type="media">S6</xref>
), including their predicted secretion signals, were cloned upstream of a SUC2 invertase that lacked its native secretion signal. The recombinant genes were then expressed in the
<italic>Saccharomyces cerevisiae suc2</italic>
mutant that cannot grow on media containing sucrose as the sole energy source without the presence of a secreted SUC2 protein. We found that on average 15 of the 40 (38%) SSPs tested complemented the
<italic>suc2</italic>
mutation (Table 
<xref rid="Tab2" ref-type="table">2</xref>
; Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
). Even though we used full-length genes, including the secretion signal in these tests, it is possible that the secondary structure of the small proteins masked the signal sequence and gave us a number of false negatives. Of the 40 SSPs tested, 16 were from the high confidence set (i.e., the SSP_hc set in Fig. 
<xref rid="Fig1" ref-type="fig">1a</xref>
), and of those, 8 SSPs were able to able to rescue the mutant, yielding a 50% confirmation rate. In contrast, the medium confidence set of 14 SSPs (i.e., the SSP_mc set in Fig. 
<xref rid="Fig1" ref-type="fig">1a</xref>
) and low confidence set of 10 SSPs (i.e., the SSP_lc set in Fig. 
<xref rid="Fig1" ref-type="fig">1a</xref>
) each had a confirmation rate of around 30% (Table 
<xref rid="Tab2" ref-type="table">2</xref>
; Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
). In summation, the signal peptides in some of the
<italic>Populus</italic>
SSPs were capable of directing secretion in a heterologous system.
<table-wrap id="Tab2">
<label>Table 2</label>
<caption>
<p>Percentage of
<italic>Populus</italic>
SSPs that encode secretion signals recognized in
<italic>S. cerevisiae.</italic>
</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Confidence Level</th>
<th>Secretion Signals Tested</th>
<th>Number Positive for Secretion*</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC</td>
<td>16</td>
<td>8</td>
<td>50.0</td>
</tr>
<tr>
<td>MC</td>
<td>14</td>
<td>4</td>
<td>28.6</td>
</tr>
<tr>
<td>LC</td>
<td>10</td>
<td>3</td>
<td>30.0</td>
</tr>
<tr>
<td>
<bold>Total/Average</bold>
</td>
<td>40</td>
<td>15</td>
<td>37.5</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>A subset from each confidence level of predicted
<italic>P. trichocarpa</italic>
SSPs was tested. Confidence levels HC, MC and LC represent three computationally-predicted SSP sets: the high confidence set (“SSP_hc set”), the medium confidence set (“SSP_mc set”) and the low confidence set (“SSP_lc set”), respectively.</p>
<p>*See Supplementary Table 
<xref rid="MOESM1" ref-type="media">S6</xref>
for detailed results.</p>
</table-wrap-foot>
</table-wrap>
<fig id="Fig3">
<label>Figure 3</label>
<caption>
<p>Testing of
<italic>Populus trichocarpa</italic>
small secreted proteins (SSPs) secretion using a yeast expression system. (
<bold>a</bold>
) Design of the yeast SUC2-SP vector used for the protein secretion assay
<sup>
<xref ref-type="bibr" rid="CR63">63</xref>
</sup>
. The expression of the candidate
<italic>P. trichocarpa</italic>
SSP with a positive secretion signal will result in the secretion of the SUC2 protein allowing the growth of yeast on sucrose-containing media. (
<bold>b</bold>
) Representative examples of positive
<italic>P. trichocarpa</italic>
SSPs using the yeast secretion assay. The yeast strain growing on medium with glucose supplied was used as a positive control while the strain transformed with empty pGAD-SUC vector was used as a negative control.</p>
</caption>
<graphic xlink:href="41598_2017_400_Fig3_HTML" id="d29e1091"></graphic>
</fig>
</p>
</sec>
<sec id="Sec6">
<title>
<italic>Populus</italic>
SSPs can enter
<italic>Laccaria bicolor</italic>
hyphae and accumulate in the nucleus</title>
<p>In order to determine if
<italic>P. trichocarpa</italic>
SSPs could cross the
<italic>L. bicolor</italic>
hyphal membrane and accumulate within the fungal cells, we used five proteins (CUFF.29946, Potri.009G063200, Potri.010G251000, Potri.019G121200 and Potri.007G006800) produced by cell-free recombinant protein synthesis without the secretion signal and with an amino-terminal covalent addition of the FITC fluorescent molecule. Five biological replicates (i.e., independent
<italic>L. bicolor</italic>
colonies) were then treated with an individual protein or FITC alone on the leading edge of an
<italic>in vitro</italic>
fungal colony. Of the five FITC-tagged proteins tested, four (CUFF.29946, Potri.009G063200, Potri.010G251000 and Potri.007G006800) were able to enter the hyphae and concentrate in the nucleus (Fig. 
<xref rid="Fig4" ref-type="fig">4a–d</xref>
). The fifth, Potri.019G121200, a negative control, did not localize to the nucleus of
<italic>L. bicolor</italic>
hyphae (Fig. 
<xref rid="Fig4" ref-type="fig">4e</xref>
), indicating that the nuclear localization is not simply due to protein size. There was absence of fluorescent signal in the nuclei of hyphae treated with FITC alone (Fig. 
<xref rid="Fig4" ref-type="fig">4f</xref>
). Localization of CUFF.29946, Potri.009G063200 and Potri.010G251000 was further verified using Western blotting of
<italic>L. bicolor</italic>
treated with
<italic>P. trichocarpa</italic>
SSPs modified with an HA tag rather than FITC (Fig. 
<xref rid="Fig4" ref-type="fig">4g</xref>
). Further, we tested whether scrambling the amino acid sequence of these three proteins would affect their localization. We found that for Potri.009G063200 and CUFF.29946, scrambling the amino acid sequence led to reduced or absent import of the protein into
<italic>L. bicolor</italic>
hyphae. Scrambled Potri.010G251000 was still found to be imported into hyphae and localize to the nucleus, but at a reduced level (Fig. 
<xref rid="Fig4" ref-type="fig">4g</xref>
). Therefore, some of the
<italic>P. trichocarpa</italic>
SSPs can enter
<italic>L. bicolor</italic>
hyphae.
<fig id="Fig4">
<label>Figure 4</label>
<caption>
<p>Uptake and sub-cellular localization of
<italic>Populus trichocarpa</italic>
small secreted proteins (SSPs) into
<italic>Laccaria bicolor</italic>
hyphae.
<italic>L. bicolor</italic>
colonies were incubated with 1 µM of either FITC-labelled SSP or FITC alone (control) in PBS (pH 7) for 4 hours after which they were rinsed briefly in PBS, fixed in 4% paraformaldehyde and then stained with 0.1% propidium iodide. Green signal indicates SSP-FITC (mature protein lacking secretion signal) florescent localization, red indicates propidium iodide fluorescence as a nucleus marker. Nuclei are marked by an arrow. (
<bold>a</bold>
) CUFF.29946; (
<bold>b</bold>
) Potri.009G063200; (
<bold>c</bold>
) Potri.010G251000; (
<bold>d</bold>
) Potri.007G006800; (
<bold>e</bold>
) Potri.019G121200; (
<bold>f</bold>
) FITC control; (
<bold>g</bold>
) Representative Western blot of cytoplasmic and nuclear protein extracted from
<italic>L. bicolor</italic>
exposed to either scrambled (scr) or native forms of CUFF.29946, Potri.009G063200 and Potri.010G251000 labeled with an HA tag. Probing for histone H3 shows purity of cytoplasmic fraction from nuclear protein.</p>
</caption>
<graphic xlink:href="41598_2017_400_Fig4_HTML" id="d29e1192"></graphic>
</fig>
</p>
</sec>
<sec id="Sec7">
<title>
<italic>Populus</italic>
SSPs can alter the development of multiple fungi</title>
<p>Finally, in pharmacological studies, where
<italic>L. bicolor</italic>
hyphae cultures were exposed to the four
<italic>Populus</italic>
SSPs that were able to move into the fungal nuclei, Potri.009G063200 and Potri.010G251000 significantly increased the distance between hyphal branches (p < 0.05; Fig. 
<xref rid="Fig5" ref-type="fig">5a</xref>
). This effect was dose dependent (Fig. 
<xref rid="Fig5" ref-type="fig">5b</xref>
). Scrambling of the amino acid sequence of both Potri.009G063200 and Potri.010G251000 blocked their ability to affect hyphal branching (Fig. 
<xref rid="Fig5" ref-type="fig">5c</xref>
). We tested the ability of these two proteins to affect the growth of other ectomycorrhizal fungi; Potri.009G063200 significantly decreased branching distance in
<italic>Pisolithus microcarpus</italic>
(Boletales) while Potri.010G251000 increased branch distance of
<italic>P. microcarpus</italic>
and it significantly decreased branching distance in
<italic>Suillus granulatus</italic>
(Boletales) (p < 0.05; Fig. 
<xref rid="Fig5" ref-type="fig">5d</xref>
).
<fig id="Fig5">
<label>Figure 5</label>
<caption>
<p>Effect of
<italic>Populus trichocarpa</italic>
small secreted proteins (SSPs) on hyphal branching. (
<bold>a</bold>
) Distance between hyphal branches in colonies of
<italic>L. bicolor</italic>
treated with 1 µM of FITC (C = control), Potri.007G006800 (7G), Potri.009G063200 (9G), Potri.010 G251000 (10G), Potri.019G121200 (19G) or with CUFF.29946.1 (CUFF). (
<bold>b</bold>
) Distance between hyphal branches in colonies of
<italic>L. bicolor</italic>
treated with 1 µM (black bars), 0.1 µM (grey bars), 0.01 µM (diagonal striped bars) or 0.001 µM (diamond pattern bars) Potri.009G063200 (9G) or Potri.010G251000 (10G) as compared to control treatment (dashed line, 1% DMSO). (
<bold>c</bold>
) Distance between hyphal branches in colonies of
<italic>L. bicolor</italic>
treated with 1 µM of either scrambled (scr) or native forms of Potri.009G063200 and Potri.010G251000 labeled with an HA tag as compared to control treatment (‘C’, 1% DMSO). (
<bold>d</bold>
) Impact of Potri.009G063200 (black bars) and Potri.010G25100 (grey bars) as opposed to control treatment (white bars) on the distance between hyphal branches of three different fungal species (
<italic>Armillaria luteobobulina</italic>
,
<italic>Pisolithus microcarpus</italic>
,
<italic>Suillus granulatus</italic>
) ± SE, *Significant difference from control (p < 0.05; Student’s t-test).</p>
</caption>
<graphic xlink:href="41598_2017_400_Fig5_HTML" id="d29e1271"></graphic>
</fig>
</p>
<p>
<italic>L. bicolor</italic>
hyphae cultures were exposed to the four
<italic>Populus</italic>
SSPs that were able to move into the fungal nuclei also demonstrated that Potri.009G063200 significantly reduced the growth rate of
<italic>L. bicolor</italic>
hyphae (p < 0.05; Fig. 
<xref rid="Fig6" ref-type="fig">6a</xref>
). This effect was dose dependent (Fig. 
<xref rid="Fig6" ref-type="fig">6b</xref>
). Scrambling of the amino acid sequence of Potri.009G063200 blocked its effect on fungal growth rate (Fig. 
<xref rid="Fig6" ref-type="fig">6c</xref>
). When both Potri.009G063200 and Potri.010G251000 were tested on other fungal species, Potri.009G063200 significantly reduced the growth of the pathogenic Agaricales
<italic>Armillaria luteobobulina</italic>
and
<italic>S. granulatus</italic>
(Fig. 
<xref rid="Fig6" ref-type="fig">6d</xref>
). Potri.010G251000 increased the growth rate of the ectomycorrhizal
<italic>P. microcarpus</italic>
.
<fig id="Fig6">
<label>Figure 6</label>
<caption>
<p>Effect of
<italic>Populus trichocarpa</italic>
small secreted proteins (SSPs) on hyphal growth rate. (
<bold>a</bold>
) Growth rate of
<italic>L. bicolor</italic>
hyphae treated with 1 µM of FITC (C = control), Potri.007G006800 (7G), Potri.009G063200 (9G), Potri.010G251000 (10G), Potri.019G121200 (19G) or with CUFF.29946.1 (CUFF). (
<bold>b</bold>
) Growth rate of
<italic>L. bicolor</italic>
hyphae treated with 1 µM (black bars), 0.1 µM (grey bars), 0.01 µM (diagonal striped bars) or 0.001 µM (diamond pattern bars) Potri.009G063200 (9G) or Potri.010G251000 (10G) as compared to control treatment (dashed line, 1% DMSO). (
<bold>c</bold>
) Growth rate of
<italic>L. bicolor</italic>
hyphae treated with 1 µM of either scrambled (scr) or native forms of Potri.009G063200 and Potri.010G251000 labeled with an HA tag as compared to control treatment (‘C’, 1% DMSO). (
<bold>d</bold>
) Impact of Potri.009G063200 (black bars) and Potri.010G25100 (grey bars) as opposed to control treatment (white bars) on the growth rate of hyphae of three different fungal species (
<italic>Armillaria luteobobulina</italic>
,
<italic>Pisolithus microcarpus</italic>
,
<italic>Suillus granulatus</italic>
) ± SE, *Significant difference from control (p < 0.05; Student’s t-test).</p>
</caption>
<graphic xlink:href="41598_2017_400_Fig6_HTML" id="d29e1348"></graphic>
</fig>
</p>
</sec>
</sec>
<sec id="Sec8" sec-type="discussion">
<title>Discussion</title>
<p>Mutualistic plant-microbe interactions are common among land plants. Interactions with mutualistic fungi and bacteria afford plant hosts enhanced stress tolerance
<sup>
<xref ref-type="bibr" rid="CR29">29</xref>
<xref ref-type="bibr" rid="CR32">32</xref>
</sup>
, increased growth rate and improved reproductive success
<sup>
<xref ref-type="bibr" rid="CR33">33</xref>
,
<xref ref-type="bibr" rid="CR34">34</xref>
</sup>
. Our understanding of the mechanisms used by (1) plants to monitor, encourage and establish these relationships and/or (2) mutualistic organisms to colonize plants is limited. It has recently been established that mutualistic mycorrhizal fungi use SSPs to influence host functioning
<sup>
<xref ref-type="bibr" rid="CR7">7</xref>
,
<xref ref-type="bibr" rid="CR8">8</xref>
,
<xref ref-type="bibr" rid="CR35">35</xref>
</sup>
. In the current study, we used computational predictions and experimental evidence to determine if the model perennial plant
<italic>P. trichocarpa</italic>
has an analogous genomic complement of effector-like SSPs. Genomic annotation of plant SSPs has lagged behind that of fungal SSPs. To address this limitation, we used a large RNA sequencing data-set sampled from different stages of
<italic>P. trichocarpa</italic>
root colonization by the mutualistic fungus
<italic>L. bicolor</italic>
to annotate novel
<italic>P. trichocarpa</italic>
SSPs. From a pool of differentially expressed transcripts, we identified 417 SSPs in
<italic>P. trichocarpa</italic>
expressed during mutualistic interaction with the ectomycorrhizal fungus
<italic>L. bicolor</italic>
. Of these 417 mycorrhiza-induced SSPs, 37% were undocumented in the current
<italic>P. trichocarpa</italic>
genome annotation v3.0 (
<ext-link ext-link-type="uri" xlink:href="http://www.Phytozome.net">www.Phytozome.net</ext-link>
).</p>
<p>To functionally validate these proteins, we first showed that several of these small proteins contained verified secretion signals (Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
), demonstrating the ability of these proteins to move across the membrane of the plant host cell. Secondly, we were able to demonstrate that four of six
<italic>P. trichocarpa</italic>
SSPs tested are capable of entering
<italic>L. bicolor</italic>
hyphae and localizing to the nuclei (Fig. 
<xref rid="Fig4" ref-type="fig">4</xref>
). Interestingly, two of these
<italic>P. trichocarpa</italic>
SSPs significantly modified hyphal growth (Figs 
<xref rid="Fig5" ref-type="fig">5</xref>
and
<xref rid="Fig6" ref-type="fig">6</xref>
). A biological implication of this is that SSPs may be used to slow growth of fungal hyphae to prevent excessive growth within the root and thereby prevent parasitism. Alternatively, plant-based SSPs could be used to induce a switch in hyphal growth patterns from rhizospheric runner hyphae to aggregated hyphae on the root surface during the initial steps of symbiosis.</p>
<p>Plants may be exposed to hundreds of microbes at any given moment
<sup>
<xref ref-type="bibr" rid="CR36">36</xref>
<xref ref-type="bibr" rid="CR38">38</xref>
</sup>
. While only a small fraction of these organisms will attempt to colonize plant tissues, the plant must be able to distinguish between beneficial vs. detrimental microbes. The degree to which the plant is able to respond differently to organisms of different lifestyles (e.g., pathogenic vs. mutualistic) or between organisms of the same lifestyle (e.g., mutualistic vs. neutral) is poorly understood. Host species specificity in the transcriptomic response of the host to different microbes has been observed in the interaction between
<italic>Vitis vinifera</italic>
and
<italic>Burkholderia phytofirmans</italic>
or
<italic>Pseudomonas syringae</italic>
<sup>
<xref ref-type="bibr" rid="CR39">39</xref>
</sup>
, between
<italic>Arabidopsis thaliana</italic>
and
<italic>Trichoderma asperelloides</italic>
or
<italic>P. syringae</italic>
<sup>
<xref ref-type="bibr" rid="CR40">40</xref>
</sup>
, between
<italic>Hordeum vulgare</italic>
and
<italic>Piriformospora indica</italic>
or
<italic>Blumeria graminis</italic>
<sup>
<xref ref-type="bibr" rid="CR41">41</xref>
</sup>
and between
<italic>A. thaliana</italic>
and various viruses
<sup>
<xref ref-type="bibr" rid="CR42">42</xref>
</sup>
, suggesting that the plant is able to tailor its SSP transcriptomic response to different lifestyles of microbes.</p>
<p>Effector SSPs are a hallmark in the genomes of microbes that associate with plants
<sup>
<xref ref-type="bibr" rid="CR1">1</xref>
</sup>
. These proteins are typically classified as ≤250 aa in length, are significantly regulated during symbiosis and coded by genes that show genomic evidence of rapid evolution
<sup>
<xref ref-type="bibr" rid="CR43">43</xref>
,
<xref ref-type="bibr" rid="CR44">44</xref>
</sup>
. Upon secretion, these fungal effectors may remain external to plant cells or they may enter the plant cell. Regardless of their final localization, these proteins alter the functioning of the plant cell and their expression is generally considered crucial for the successful colonization of plant tissues
<sup>
<xref ref-type="bibr" rid="CR6">6</xref>
,
<xref ref-type="bibr" rid="CR35">35</xref>
,
<xref ref-type="bibr" rid="CR45">45</xref>
,
<xref ref-type="bibr" rid="CR46">46</xref>
</sup>
. The discovery, described herein, of plant-encoded mycorrhiza-induced SSPs that are: (1) ≤250 aa in size, (2) lineage- or genera-specific, (3) highly expressed during symbiosis, (4) able to enter fungal hyphae and localize to the nucleus and (5) affecting fungal morphology strongly support the conclusion that plants encode proteins that are effector-like. This inference is supported by previous work in the legume:rhizobial interaction where small plant proteins have been reported to enter the symbiotic bacterium and affect its growth
<sup>
<xref ref-type="bibr" rid="CR17">17</xref>
<xref ref-type="bibr" rid="CR21">21</xref>
</sup>
.
<italic>Populus</italic>
can respond to mutualistic fungi by secreting their own effector-like proteins that might parallel the role of fungal effectors (Fig. 
<xref rid="Fig7" ref-type="fig">7</xref>
). Our observation of effector SSPs in
<italic>Populus</italic>
implies a novel avenue, apart from the traditional immune response
<sup>
<xref ref-type="bibr" rid="CR44">44</xref>
</sup>
, by which plants communicate with (or control) their mutualistic microbial partners.
<fig id="Fig7">
<label>Figure 7</label>
<caption>
<p>Proposed model of reciprocal small secreted proteins (SSP) feedback between ectomycorrhizal fungi and their host plants. During colonization of receptive plant hosts, fungal hyphae (brown cell) produce effector-like SSPs (black stars) that are secreted from the hyphal cell (#1). A portion of these proteins cross the symbiotic interface (grey shaded area) and enter the plant cell (green cell; #2) where they localize to different sub-cellular compartments (#3). These effectors may induce a change in the transcription of host genes (#4; adapted from Plett
<italic>et al.</italic>
<sup>
<xref ref-type="bibr" rid="CR35">35</xref>
</sup>
). Plant cells, in turn, produce small effector-like SSPs (red stars) that are secreted, cross the symbiotic interface (#5) where some may enter the hyphal cell and localize to different sub-cellular compartments. Some effectors may induce a change in the transcription of host genes (#6). GB = Golgi bodies; N = nucleus; S.I. = symbiotic interface. Note: we do not currently know the priority of this signaling network (i.e. if the fungus signals and the plant responds or vice-versa). Rather, numbering here is used to enable description of the different steps in a feedback system that is likely reciprocal in nature.</p>
</caption>
<graphic xlink:href="41598_2017_400_Fig7_HTML" id="d29e1549"></graphic>
</fig>
</p>
<p>Our data further supports previous hypotheses which has suggested that plants are not silent, or ‘naïve’, participants in mutualistic relationships by demonstrating that they too have the genetic tools in the form of effector-like proteins to communicate with and influence their microbial partners. These data are the first steps forward in understanding the role of plant SSPs as effectors in influencing symbiotic relationships. As more transcriptomic and genomic data related to SSPs becomes available, a more complete description of plasticity of plant responses to microbes will be possible. This research highlights the importance of the cross-talk between the plant and fungal effectors. Future studies on the fine-tuned balance between the number and level of the various released effectors could provide deeper insights into the development and the fitness of symbiosis.</p>
</sec>
<sec id="Sec9">
<title>Methods</title>
<sec id="Sec10">
<title>Plant material, RNA extraction and sequencing</title>
<p>For colonization experiments,
<italic>L. bicolor</italic>
(Maire) P.D. Orton isolate S238N inoculum was grown on a substrate of peat moss:vermiculite (3:1) containing liquid Pachlewski medium for 3 months
<sup>
<xref ref-type="bibr" rid="CR47">47</xref>
,
<xref ref-type="bibr" rid="CR48">48</xref>
</sup>
. Dormant hardwood stems from
<italic>Populus trichocarpa</italic>
clone 101–74 were collected from stool beds in January. Dormant stems were then cut into 25-cm cuttings with six to seven nodes per cutting. These cuttings were sealed in polyethylene bags and kept in cold storage (0 °C) until they were removed for rooting. The experiments in which these cuttings were used were then performed during the following year. Three node stem cuttings of
<italic>P. trichocarpa</italic>
clone 101–74 were pre-rooted for 1 week in a solution of 2.5 mM KNO
<sub>3</sub>
, 0.8 mM KH
<sub>2</sub>
PO
<sub>4</sub>
, 1 mM MgSO
<sub>4</sub>
 · 7 H
<sub>2</sub>
O, 2.3 mM Ca(NO
<sub>3</sub>
)
<sub>2</sub>
 · 4 H
<sub>2</sub>
O, 23 μM H
<sub>3</sub>
BO
<sub>3</sub>
, 4.6 μM MnCl
<sub>2</sub>
 · 4 H
<sub>2</sub>
O, 0.4 μM ZnSO
<sub>4</sub>
 · 7 H
<sub>2</sub>
O, 0.09 μM (NH
<sub>4</sub>
)
<sub>2</sub>
MoO
<sub>4</sub>
, 0.18 μM CuSO
<sub>4</sub>
 · 5 H
<sub>2</sub>
O, 20 μM FeNa
<sup>.</sup>
EDTA, pH 5.8 and then planted in a 1 L-pot containing a 9:1 mixture (v:v) of Terra-Green to
<italic>L. bicolor</italic>
inoculum as previously described
<sup>
<xref ref-type="bibr" rid="CR49">49</xref>
</sup>
. The colonization experiment was replicated twice (technical replicate) under climate controlled greenhouse conditions maintaining a 16-hr photoperiod at 22 °C.</p>
<p>Tissues used for transcriptomic profiling were sampled from fine roots of
<italic>P. trichocarpa</italic>
between 10 am and 2 pm each day to avoid confounding effects of circadian rhythm on gene expression. Plant host roots, grown in the same substrate and with the same nutrient regime but without fungal inoculum, were harvested as a non-mycorrhizal control for transcriptomic analyses. Three biological replicates of between 50–100 mg of colonized root tips (equivalent to approximately 100 colonized root tips) or of uncolonized lateral roots (control) were harvested at 2, 4 and 12 weeks after
<italic>L. bicolor</italic>
inoculation, washed thoroughly, snap frozen in liquid nitrogen and stored at −80 °C until total RNA extraction was performed using the RNAeasy kit (Qiagen) per the manufacturer’s instructions. An on-column DNA digestion step with DNAse I (Qiagen) was also included to avoid DNA contamination. RNA quality was verified using Experion HighSens capillary gels (Bio-Rad). For
<italic>P. trichocarpa</italic>
RNA sequencing (RNA-seq), three biological replicates of colonized or un-colonized tissues were pooled for sequencing. As mycorrhizal tissues are very recalcitrant to RNA extraction, quantities of RNA recovered were too low for quantities needed for RNA-seq analysis. Therefore, we amplified 250 ng total RNA using the Clonetech SMARTer amplification kit (Ozyme, St Quentin en Yvelines, France), according to manufacturer’s instructions and being sure to maintain the amplification in the logarithmic phase such that RNA pools were still proportional to original quantities of transcript as described previously
<sup>
<xref ref-type="bibr" rid="CR49">49</xref>
</sup>
. Each pooled sample was sequenced (36-bp single-end reads) using Illumina GAII technology by IGA Technology services (Udine, Italy; GEO Accession Series GSE54789). Also, 100-bp single-end sequencing was also performed using Illumina HiSeq2000 platform (Beckman Coulter Genomics, Danvers, MA, USA) for samples collected 12 weeks after
<italic>Laccaria</italic>
inoculation (GEO Accession Series GSE75437).</p>
</sec>
<sec id="Sec11">
<title>RNA-seq data analysis and prediction of
<italic>P. trichocarpa</italic>
small secreted proteins</title>
<p>The computational pipeline for RNA-seq data analysis and prediction of
<italic>P. trichocarpa</italic>
SSPs is illustrated in Fig. 
<xref rid="Fig1" ref-type="fig">1a</xref>
. RNA-seq reads were mapped to the
<italic>P. trichocarpa</italic>
genome
<sup>
<xref ref-type="bibr" rid="CR50">50</xref>
</sup>
using TopHat
<sup>
<xref ref-type="bibr" rid="CR51">51</xref>
</sup>
and novel transcripts were discovered using Cufflinks
<sup>
<xref ref-type="bibr" rid="CR52">52</xref>
,
<xref ref-type="bibr" rid="CR53">53</xref>
</sup>
. Differentially expressed genes between treatment (i.e.,
<italic>P. trichocarpa</italic>
roots with
<italic>L. bicolor</italic>
ectomycorrhizas) and control (i.e.,
<italic>P. trichocarpa</italic>
roots without
<italic>L. bicolor</italic>
inoculation) were identified using Cuffdiff
<sup>
<xref ref-type="bibr" rid="CR52">52</xref>
</sup>
. The open reading frames (ORFs) were annotated using six-frame translation based on standard genetic code with a length range of 10–10,000 aa. The best ORF for each transcript was chosen based on those ORFs with the highest score in a BLASTp search using the default setting against the UniRef90 database (
<ext-link ext-link-type="uri" xlink:href="http://www.uniprot.org">http://www.uniprot.org</ext-link>
) or the longest ORF if there were no BLASTp hits.</p>
<p>The subcellular localizations of proteins were predicted using three different methods: (1) LocTree2
<sup>
<xref ref-type="bibr" rid="CR25">25</xref>
</sup>
, (2) CELLO
<sup>
<xref ref-type="bibr" rid="CR26">26</xref>
</sup>
and (3) YLoc
<sup>
<xref ref-type="bibr" rid="CR27">27</xref>
</sup>
using default parameters. Proteins with full-length sequences of ≤250 aa were defined as small proteins (SmPs). The predicted small secreted proteins (SSPs) were divided into three sets: high-confidence set (SSP_hc) including proteins with subcellular localization as “secreted” predicted by method 1 and “extracellular space” by both method 2 and method 3; medium-confidence set (SSP_mc) proteins with subcellular localization as “secreted” predicted by method 1 and “extracellular space” by method 2 or method 3; and low-confidence set (SSP_lc) proteins with subcellular localization as “secreted” predicted by method 1, but no “extracellular” prediction by either method 2 or method 3.</p>
</sec>
<sec id="Sec12">
<title>Protein domain and Gene Ontology analysis</title>
<p>A protein-domain search for all SSP sequences against the Pfam 28.0 database
<sup>
<xref ref-type="bibr" rid="CR54">54</xref>
</sup>
was performed with an E-value cutoff of 1e-10. Gene Ontology (GO) annotation was performed using Blast2GO with a BLASTp E-value hit filter of 1e-6, an annotation cutoff value of 55, and GO weight of 5
<sup>
<xref ref-type="bibr" rid="CR55">55</xref>
</sup>
. GO enrichment analysis was performed using BiNGO
<sup>
<xref ref-type="bibr" rid="CR56">56</xref>
</sup>
.</p>
</sec>
<sec id="Sec13">
<title>Identification of homologs of
<italic>Populus</italic>
SSP genes in other plant species</title>
<p>The representative protein sequences (i.e., the longest protein sequence in case of multiple transcripts annotated for one gene locus) in 16 species (
<italic>Arabidopsis thaliana</italic>
,
<italic>Arabidopsis lyrata</italic>
,
<italic>Gossypium raimondii</italic>
,
<italic>Theobroma cacao</italic>
,
<italic>Populus trichocarpa</italic>
,
<italic>Glycine max</italic>
,
<italic>Fragaria vesca</italic>
,
<italic>Eucalyptus grandis</italic>
,
<italic>Vitis vinifera</italic>
,
<italic>Solanum tuberosum</italic>
,
<italic>Zea mays</italic>
,
<italic>Sorghum bicolor</italic>
,
<italic>Oryza sativa</italic>
,
<italic>Brachypodium distachyon</italic>
,
<italic>Selaginella moellendorffii</italic>
,
<italic>Physcomitrella patens</italic>
) were downloaded from Phytozome v9.0 (
<ext-link ext-link-type="uri" xlink:href="http://www.Phytozome.net">www.Phytozome.net</ext-link>
). The homologs were identified using BLASTp
<sup>
<xref ref-type="bibr" rid="CR57">57</xref>
</sup>
with e-value cutoff of 1e-10.</p>
</sec>
<sec id="Sec14">
<title>Comparative analysis of SSP genes among different
<italic>Populus</italic>
genotypes</title>
<p>
<italic>Populus</italic>
genome resequencing data
<sup>
<xref ref-type="bibr" rid="CR58">58</xref>
,
<xref ref-type="bibr" rid="CR59">59</xref>
</sup>
was used to reveal genomic differences in the region of selected genes. Two
<italic>P. trichocarpa</italic>
genotypes (Nisqually-1 and 93–968) and two
<italic>P. deltoides</italic>
genotypes (ILL-101 and D124) were selected for the analysis. The Illumina reads were aligned to the reference
<italic>P. trichocarpa</italic>
genome sequence
<sup>
<xref ref-type="bibr" rid="CR50">50</xref>
</sup>
to generate bam files using the MAQ software package
<sup>
<xref ref-type="bibr" rid="CR60">60</xref>
</sup>
. Per base sequence coverage for mapped reads in the region corresponding to the selected genes were obtained using bedtools
<sup>
<xref ref-type="bibr" rid="CR61">61</xref>
</sup>
.</p>
</sec>
<sec id="Sec15">
<title>Testing of protein secretion using a yeast expression system</title>
<p>To construct a Gateway compatible vector for yeast secretion assay, a DNA fragment containing the
<italic>SUC</italic>
gene without signal peptide was synthesized by GeneScript (Piscataway, NJ, USA) and validated by sequencing. The DNA fragment was ligated into pGAD-424 vector by S
<italic>phI</italic>
. Candidate SSPs were cloned into the secretion vector, with the SSP gene fused with the N-terminus of
<italic>SUC</italic>
gene, by Gateway cloning and transformed into the
<italic>suc2</italic>
yeast mutant (strain ATCC-96100). Positive transformants were selected and validated on a synthetic dropout medium. Transformants were assayed on plates with glucose (10 mM) and sucrose (10 mM) as carbon supplies respectively and growth activity was measured after growing 2–3 days at 28 °C.</p>
</sec>
<sec id="Sec16">
<title>
<italic>L. bicolo</italic>
r uptake of
<italic>P. trichocarpa</italic>
SSPs and growth analysis tests</title>
<p>In order to determine if
<italic>P. trichocarpa</italic>
SSPs could cross the
<italic>L. bicolor</italic>
hyphal membrane, five proteins (CUFF.29946, Potri.009G063200, Potri.010G251000, Potri.019G121200 and Potri.007G006800) were produced by cell-free recombinant peptide synthesis (Eurogentec) without the secretion signal and amino-terminal covalent addition of FITC using standard amino acid coupling techniques or with the addition of an HA tag (C-terminal addition of the following amino acid sequence: YPYDVPDYA). CUFF.29946, Potri.009G063200 and Potri.010G251000 were also produced in this method as a ‘scrambled’ (scr) version whereby the amino acids were randomly re-ordered and synthesized in a new sequence. Potri.019G121200 was used as a negative control, which contains a FASCICLIN-LIKE ARABINOGALACTAN PROTEIN 12 domain (
<ext-link ext-link-type="uri" xlink:href="http://www.phytozome.net">www.phytozome.net</ext-link>
), and it was predicted to be a cell adhesion protein and was not expected to be imported by fungal hyphae. The peptides were purified using HPLC fractionation to ensure the purity of the synthesis product. A control of the FITC fluorophore or of dilution buffer was also used throughout the experiments to ensure that this tag nor the buffer were altering our results.</p>
<p>To test subcellular localizations of these
<italic>P. trichocarpa</italic>
SSPs in
<italic>L. bicolor</italic>
hyphae and the role of these proteins in affecting fungal morphology (for
<italic>L. bicolor, P. microcarpus, A. luteobobulina, S. granulatus</italic>
), fungal colonies grown on cellophane membranes on ½ MMN agar plates at 25 °C until the colonies were 2–3 cm in diameter (2 weeks). Five biological replicates (i.e., independent colonies) were treated with an individual synthetic protein or FITC or buffer alone (controls) by dripping 10 µL of a solution of the protein (concentrations varying between 1 µM and 0.001 µM as outlined in the text) on the leading edge of the fungal colony. This treatment was repeated daily for four days after which the growth of the leading fungal edge and the hyphal branching were measured using ImageJ. The protein, FITC or buffer solutions were produced fresh daily and never re-used to avoid degradation of the protein.</p>
<p>For the localization experiment, the same aged
<italic>L. bicolor</italic>
colonies were treated by placing a 10 µL drop of either 1 µM protein or 1 µM FITC (PBS, pH7) on the leading edge of an in-tact, un-perturbed fungal colony grown as described above. After 4 hour of incubation, colonies were washed in excess PBS two times for five minutes each. The treated hyphae were then cut away from the rest of the colony and were fixed overnight in 4% (w/v) paraformaldehyde at 4 °C. Post fixing, samples were washed 3 × 10 min in PBS and then stained in 0.1% propidium iodide for 20 min then imaged using an inverted Leica TCS SP5 laser scanning confocal microscope. Fluorescent excitation was achieved using a 488 nm beam (10% power) for FITC and a 561 nm beam for propidium iodide. Emission was recovered between 510–530 nm for FITC and between 610–630 nm for propidium iodide. To corroborate fluorescent cell entry tests,
<italic>L. bicolor</italic>
colonies were exposed to HA-tagged proteins as above. Rather than fixing the samples, they were ground in liquid nitrogen and cytoplasmic and nuclear proteins were extracted as per Wang and colleagues
<sup>
<xref ref-type="bibr" rid="CR62">62</xref>
</sup>
. Equal quantities of total protein were separated on a 1D Bio-Rad gradient gel (4–20%) and then transferred to a PVDF membrane. Membranes were blocked and then probed with either α-HA (to detect the presence of the SSP) or α-Histone H3 primary antibody (to ascertain the purity of the cytoplasmic vs. nuclear protein fraction). Bands were developed using the Clarity ECL Blotting substrate (Bio-Rad) as per manufacturer’s instructions and chemiluminescent images were taken using the Bio-Rad ChemiDoc Imaging system with an exposure of between 15–20 s.</p>
</sec>
</sec>
<sec sec-type="supplementary-material">
<title>Electronic supplementary material</title>
<sec id="Sec17">
<p>
<supplementary-material content-type="local-data" id="MOESM1">
<media xlink:href="41598_2017_400_MOESM1_ESM.doc">
<caption>
<p>Supplementary_information</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM2">
<media xlink:href="41598_2017_400_MOESM2_ESM.xls">
<caption>
<p>Supplementary Table S2</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM3">
<media xlink:href="41598_2017_400_MOESM3_ESM.xls">
<caption>
<p>Supplementary Table S5</p>
</caption>
</media>
</supplementary-material>
</p>
</sec>
</sec>
</body>
<back>
<fn-group>
<fn>
<p>Jonathan M. Plett and Hengfu Yin contributed equally to this work.</p>
</fn>
<fn>
<p>
<bold>Electronic supplementary material</bold>
</p>
<p>
<bold>Supplementary information</bold>
accompanies this paper at doi:10.1038/s41598-017-00400-8 </p>
</fn>
<fn>
<p>
<bold>Publisher's note:</bold>
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p>
</fn>
</fn-group>
<ack>
<title>Acknowledgements</title>
<p>This research was sponsored by the Genomic Science Program, US Department of Energy, Office of Science, Biological and Environmental Research as part of the Plant-Microbe Interfaces Scientific Focus Area (
<ext-link ext-link-type="uri" xlink:href="http://pmi.ornl.gov">http://pmi.ornl.gov</ext-link>
). Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the US Department of Energy under contract DE-AC05-00OR22725. FM’s research group is also funded by the Laboratory of Excellence ARBRE (ANR-11-LABX-0002-01) and the Region Lorraine Research Council. JMP’s research is funded by the Australian Research Council (DE150100408), Western Sydney University and the Hawkesbury Institute for the Environment. ICA acknowledges funding from the Australian Research Council. The authors would like to acknowledge the Western Sydney University Confocal Bio-Imaging Facility for access to its instrumentation and staff. FM would like to thank the Hawkesbury Institute for the Environment research exchange program for funding his research stay at Western Sydney University. Stem cuttings were supplied by F. Le Tacon and P. Vion.</p>
</ack>
<notes notes-type="author-contribution">
<title>Author Contributions</title>
<p>Jonathan M. Plett, Xiaohan Yang, Gerald A. Tuskan and Francis Martin designed research. Jonathan M. Plett and Annegret Kohler performed RNA sequencing. Ting Li, Priya Ranjan, Hao-Bo Guo and Xiaohan Yang performed computational analysis. Jonathan M. Plett, Hengfu Yin, Ritesh Mewalal, Rongbin Hu, Sara Jawdy, Chun Ju Chen, Henrique C. De Paoli, George Butler and Tessa Maureen Burch-Smith performed experimental analysis. Jonathan M. Plett, Hengfu Yin and Ritesh Mewalal wrote the paper. Ian C. Anderson and Jessy L. Labbé, Xiaohan Yang, Gerald A. Tuskan and Francis Martin discussed the results and edited the manuscript.</p>
</notes>
<notes notes-type="COI-statement">
<sec id="FPar1">
<title>Competing Interests</title>
<p>The authors declare that they have no competing interests.</p>
</sec>
</notes>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1.</label>
<mixed-citation publication-type="other">Martin, F. & Kamoun, S. Effectors in plant-microbe interactions. (John Wiley & Sons, 2011).</mixed-citation>
</ref>
<ref id="CR2">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bos</surname>
<given-names>JI</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1</article-title>
<source>Proceedings of the National Academy of Sciences of the United States of America</source>
<year>2010</year>
<volume>107</volume>
<fpage>9909</fpage>
<lpage>9914</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0914408107</pub-id>
<pub-id pub-id-type="pmid">20457921</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bos</surname>
<given-names>JI</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The C-terminal half of
<italic>Phytophthora infestans</italic>
RXLR effector AVR3a is sufficient to trigger R3a-mediated hypersensitivity and suppress INF1-induced cell death in
<italic>Nicotiana benthamiana</italic>
</article-title>
<source>Plant Journal</source>
<year>2006</year>
<volume>48</volume>
<fpage>165</fpage>
<lpage>176</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-313X.2006.02866.x</pub-id>
<pub-id pub-id-type="pmid">16965554</pub-id>
</element-citation>
</ref>
<ref id="CR4">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kleemann</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen
<italic>Colletotrichum higginsianum</italic>
</article-title>
<source>PLoS Pathogens</source>
<year>2012</year>
<volume>8</volume>
<fpage>e1002643</fpage>
<pub-id pub-id-type="doi">10.1371/journal.ppat.1002643</pub-id>
<pub-id pub-id-type="pmid">22496661</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kemen</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Identification of a protein from rust fungi transferred from
<italic>Haustoria</italic>
into infected plant cells</article-title>
<source>Molecular Plant-Microbe Interactions</source>
<year>2005</year>
<volume>18</volume>
<fpage>1130</fpage>
<lpage>1139</lpage>
<pub-id pub-id-type="doi">10.1094/MPMI-18-1130</pub-id>
<pub-id pub-id-type="pmid">16353548</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tanaka</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A secreted
<italic>Ustilago maydis</italic>
effector promotes virulence by targeting anthocyanin biosynthesis in maize</article-title>
<source>eLife</source>
<year>2014</year>
<volume>3</volume>
<fpage>e01355</fpage>
<pub-id pub-id-type="doi">10.7554/eLife.01355</pub-id>
<pub-id pub-id-type="pmid">24473076</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Plett</surname>
<given-names>JM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effector MiSSP7 of the mutualistic fungus
<italic>Laccaria bicolor</italic>
stabilizes the
<italic>Populus</italic>
JAZ6 protein and represses jasmonic acid (JA) responsive genes</article-title>
<source>Proceedings of the National Academy of Sciences of the United States of America</source>
<year>2014</year>
<volume>111</volume>
<fpage>8299</fpage>
<lpage>8304</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1322671111</pub-id>
<pub-id pub-id-type="pmid">24847068</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kloppholz</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kuhn</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Requena</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>A secreted fungal effector of
<italic>Glomus intraradices</italic>
promotes symbiotic biotrophy</article-title>
<source>Current Biology</source>
<year>2011</year>
<volume>21</volume>
<fpage>1204</fpage>
<lpage>1209</lpage>
<pub-id pub-id-type="doi">10.1016/j.cub.2011.06.044</pub-id>
<pub-id pub-id-type="pmid">21757354</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lebeis</surname>
<given-names>SL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa</article-title>
<source>Science</source>
<year>2015</year>
<volume>349</volume>
<fpage>860</fpage>
<lpage>864</lpage>
<pub-id pub-id-type="doi">10.1126/science.aaa8764</pub-id>
<pub-id pub-id-type="pmid">26184915</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Weert</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by
<italic>Pseudomonas fluorescens</italic>
</article-title>
<source>Molecular Plant-Microbe Interactions</source>
<year>2002</year>
<volume>15</volume>
<fpage>1173</fpage>
<lpage>1180</lpage>
<pub-id pub-id-type="doi">10.1094/MPMI.2002.15.11.1173</pub-id>
<pub-id pub-id-type="pmid">12423023</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Akiyama</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Matsuzaki</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hayashi</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi</article-title>
<source>Nature</source>
<year>2005</year>
<volume>435</volume>
<fpage>824</fpage>
<lpage>827</lpage>
<pub-id pub-id-type="doi">10.1038/nature03608</pub-id>
<pub-id pub-id-type="pmid">15944706</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kneer</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Poulev</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Olesinski</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Raskin</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Characterization of the elicitor-induced biosynthesis and secretion of genistein from roots of
<italic>Lupinus luteus</italic>
L</article-title>
<source>Journal of Experimental Botany</source>
<year>1999</year>
<volume>50</volume>
<fpage>1553</fpage>
<lpage>1559</lpage>
<pub-id pub-id-type="doi">10.1093/jxb/50.339.1553</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maróti</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Kereszt</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kondorosi</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Mergaert</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Natural roles of antimicrobial peptides in microbes, plants and animals</article-title>
<source>Research in Microbiology</source>
<year>2011</year>
<volume>162</volume>
<fpage>363</fpage>
<lpage>374</lpage>
<pub-id pub-id-type="doi">10.1016/j.resmic.2011.02.005</pub-id>
<pub-id pub-id-type="pmid">21320593</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De-la-Peña</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Lei</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Watson</surname>
<given-names>BS</given-names>
</name>
<name>
<surname>Sumner</surname>
<given-names>LW</given-names>
</name>
<name>
<surname>Vivanco</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>Root-microbe communication through protein secretion</article-title>
<source>Journal of Biological Chemistry</source>
<year>2008</year>
<volume>283</volume>
<fpage>25247</fpage>
<lpage>25255</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M801967200</pub-id>
<pub-id pub-id-type="pmid">18635546</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De-la-Pena</surname>
<given-names>C</given-names>
</name>
<name>
<surname>M. Loyola-Vargas</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>The hidden chemical cross-talk between roots and microbes: A proteomic approach</article-title>
<source>Current Proteomics</source>
<year>2012</year>
<volume>9</volume>
<fpage>103</fpage>
<lpage>117</lpage>
<pub-id pub-id-type="doi">10.2174/157016412800786194</pub-id>
</element-citation>
</ref>
<ref id="CR16">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sagaram</surname>
<given-names>US</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Structural and functional studies of a phosphatidic acid-binding antifungal plant defensin MtDef4: identification of an RGFRRR motif governing fungal cell entry</article-title>
<source>PLoS One</source>
<year>2013</year>
<volume>8</volume>
<fpage>e82485</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0082485</pub-id>
<pub-id pub-id-type="pmid">24324798</pub-id>
</element-citation>
</ref>
<ref id="CR17">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Farkas</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>
<italic>Medicago truncatula</italic>
symbiotic peptide NCR247 contributes to bacteroid differentiation through multiple mechanisms</article-title>
<source>Proceedings of the National Academy of Sciences of the United States of America</source>
<year>2014</year>
<volume>111</volume>
<fpage>5183</fpage>
<lpage>5188</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1404169111</pub-id>
<pub-id pub-id-type="pmid">24706863</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Penterman</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Host plant peptides elicit a transcriptional response to control the
<italic>Sinorhizobium meliloti</italic>
cell cycle during symbiosis</article-title>
<source>Proceedings of the National Academy of Sciences of the United States of America</source>
<year>2014</year>
<volume>111</volume>
<fpage>3561</fpage>
<lpage>3566</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1400450111</pub-id>
<pub-id pub-id-type="pmid">24501120</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Van de Velde</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Plant peptides govern terminal differentiation of bacteria in symbiosis</article-title>
<source>Science</source>
<year>2010</year>
<volume>327</volume>
<fpage>1122</fpage>
<lpage>1126</lpage>
<pub-id pub-id-type="doi">10.1126/science.1184057</pub-id>
<pub-id pub-id-type="pmid">20185722</pub-id>
</element-citation>
</ref>
<ref id="CR20">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis</article-title>
<source>Science</source>
<year>2010</year>
<volume>327</volume>
<fpage>1126</fpage>
<lpage>1129</lpage>
<pub-id pub-id-type="doi">10.1126/science.1184096</pub-id>
<pub-id pub-id-type="pmid">20185723</pub-id>
</element-citation>
</ref>
<ref id="CR21">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Durgo</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Identification of nodule-specific cysteine-rich plant peptides in endosymbiotic bacteria</article-title>
<source>Proteomics</source>
<year>2015</year>
<volume>15</volume>
<fpage>2291</fpage>
<lpage>2295</lpage>
<pub-id pub-id-type="doi">10.1002/pmic.201400385</pub-id>
<pub-id pub-id-type="pmid">25690539</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Discovery and annotation of small proteins using genomics, proteomics, and computational approaches</article-title>
<source>Genome Research</source>
<year>2011</year>
<volume>21</volume>
<fpage>634</fpage>
<lpage>641</lpage>
<pub-id pub-id-type="doi">10.1101/gr.109280.110</pub-id>
<pub-id pub-id-type="pmid">21367939</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ghorbani</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Expanding the repertoire of secretory peptides controlling root development with comparative genome analysis and functional assays</article-title>
<source>Journal of Experimental Botany</source>
<year>2015</year>
<volume>66</volume>
<fpage>5257</fpage>
<lpage>5269</lpage>
<pub-id pub-id-type="doi">10.1093/jxb/erv346</pub-id>
<pub-id pub-id-type="pmid">26195730</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hanada</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Small open reading frames associated with morphogenesis are hidden in plant genomes</article-title>
<source>Proceedings of the National Academy of Sciences of the United States of America</source>
<year>2013</year>
<volume>110</volume>
<fpage>2395</fpage>
<lpage>2400</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1213958110</pub-id>
<pub-id pub-id-type="pmid">23341627</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goldberg</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Hamp</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Rost</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>LocTree2 predicts localization for all domains of life</article-title>
<source>Bioinformatics</source>
<year>2012</year>
<volume>28</volume>
<fpage>i458</fpage>
<lpage>i465</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/bts390</pub-id>
<pub-id pub-id-type="pmid">22962467</pub-id>
</element-citation>
</ref>
<ref id="CR26">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>YC</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Hwang</surname>
<given-names>JK</given-names>
</name>
</person-group>
<article-title>Prediction of protein subcellular localization</article-title>
<source>Proteins: Structure, Function, and Bioinformatics</source>
<year>2006</year>
<volume>64</volume>
<fpage>643</fpage>
<lpage>651</lpage>
<pub-id pub-id-type="doi">10.1002/prot.21018</pub-id>
</element-citation>
</ref>
<ref id="CR27">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Briesemeister</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rahnenfuhrer</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kohlbacher</surname>
<given-names>O</given-names>
</name>
</person-group>
<article-title>YLoc–an interpretable web server for predicting subcellular localization</article-title>
<source>Nucleic Acids Research</source>
<year>2010</year>
<volume>38</volume>
<fpage>W497</fpage>
<lpage>W502</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkq477</pub-id>
<pub-id pub-id-type="pmid">20507917</pub-id>
</element-citation>
</ref>
<ref id="CR28">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Labbé</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Identification of quantitative trait loci affecting ectomycorrhizal symbiosis in an interspecific F1 poplar cross and differential expression of genes in ectomycorrhizas of the two parents:
<italic>Populus deltoides</italic>
and
<italic>Populus trichocarpa</italic>
</article-title>
<source>Tree Genetics & Genomes</source>
<year>2011</year>
<volume>7</volume>
<fpage>617</fpage>
<lpage>627</lpage>
<pub-id pub-id-type="doi">10.1007/s11295-010-0361-3</pub-id>
</element-citation>
</ref>
<ref id="CR29">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Colpaert</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wevers</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Krznaric</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Adriaensen</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution</article-title>
<source>Annals of Forest Science</source>
<year>2011</year>
<volume>68</volume>
<fpage>17</fpage>
<lpage>24</lpage>
<pub-id pub-id-type="doi">10.1007/s13595-010-0003-9</pub-id>
</element-citation>
</ref>
<ref id="CR30">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>
<italic>Paxillus involutus</italic>
strains MAJ and NAU mediate K
<sup>+</sup>
/Na
<sup>+</sup>
homeostasis in ectomycorrhizal
<italic>Populus</italic>
 × cane
<italic>scens</italic>
under sodium chloride stress</article-title>
<source>Plant Physiology</source>
<year>2012</year>
<volume>159</volume>
<fpage>1771</fpage>
<lpage>1786</lpage>
<pub-id pub-id-type="doi">10.1104/pp.112.195370</pub-id>
<pub-id pub-id-type="pmid">22652127</pub-id>
</element-citation>
</ref>
<ref id="CR31">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pena</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Polle</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Attributing functions to ectomycorrhizal fungal identities in assemblages for nitrogen acquisition under stress</article-title>
<source>The ISME journal</source>
<year>2014</year>
<volume>8</volume>
<fpage>321</fpage>
<lpage>330</lpage>
<pub-id pub-id-type="doi">10.1038/ismej.2013.158</pub-id>
<pub-id pub-id-type="pmid">24030593</pub-id>
</element-citation>
</ref>
<ref id="CR32">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rooney</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effect of arbuscular mycorrhizal colonisation on the growth and phosphorus nutrition of
<italic>Populus euramericana</italic>
cv Ghoy</article-title>
<source>Biomass and Bioenergy</source>
<year>2011</year>
<volume>35</volume>
<fpage>4605</fpage>
<lpage>4612</lpage>
<pub-id pub-id-type="doi">10.1016/j.biombioe.2011.08.015</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ceballos</surname>
<given-names>I</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The
<italic>in vitro</italic>
mass-produced model mycorrhizal fungus,
<italic>Rhizophagus irregularis</italic>
, significantly increases yields of the globally important food security crop cassava</article-title>
<source>PLoS One</source>
<year>2013</year>
<volume>8</volume>
<fpage>e70633</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0070633</pub-id>
<pub-id pub-id-type="pmid">23950975</pub-id>
</element-citation>
</ref>
<ref id="CR34">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Erman</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effects of
<italic>Rhizobium</italic>
, arbuscular mycorrhiza and whey applications on some properties in chickpea (
<italic>Cicer arietinum</italic>
L.) under irrigated and rainfed conditions 1-Yield, yield components, nodulation and AMF colonization</article-title>
<source>Field Crops Research</source>
<year>2011</year>
<volume>122</volume>
<fpage>14</fpage>
<lpage>24</lpage>
<pub-id pub-id-type="doi">10.1016/j.fcr.2011.02.002</pub-id>
</element-citation>
</ref>
<ref id="CR35">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Plett</surname>
<given-names>JM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A secreted effector protein of
<italic>Laccaria bicolor</italic>
is required for symbiosis development</article-title>
<source>Current Biology</source>
<year>2011</year>
<volume>21</volume>
<fpage>1197</fpage>
<lpage>1203</lpage>
<pub-id pub-id-type="doi">10.1016/j.cub.2011.05.033</pub-id>
<pub-id pub-id-type="pmid">21757352</pub-id>
</element-citation>
</ref>
<ref id="CR36">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Berendsen</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Pieterse</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Bakker</surname>
<given-names>PA</given-names>
</name>
</person-group>
<article-title>The rhizosphere microbiome and plant health</article-title>
<source>Trends in Plant Science</source>
<year>2012</year>
<volume>17</volume>
<fpage>478</fpage>
<lpage>486</lpage>
<pub-id pub-id-type="doi">10.1016/j.tplants.2012.04.001</pub-id>
<pub-id pub-id-type="pmid">22564542</pub-id>
</element-citation>
</ref>
<ref id="CR37">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hortal</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Beech roots are simultaneously colonized by multiple genets of the ectomycorrhizal fungus
<italic>Laccaria amethystina</italic>
clustered in two genetic groups</article-title>
<source>Molecular Ecology</source>
<year>2012</year>
<volume>21</volume>
<fpage>2116</fpage>
<lpage>2129</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-294X.2012.05515.x</pub-id>
<pub-id pub-id-type="pmid">22429247</pub-id>
</element-citation>
</ref>
<ref id="CR38">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lau</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Lennon</surname>
<given-names>JT</given-names>
</name>
</person-group>
<article-title>Evolutionary ecology of plant–microbe interactions: soil microbial structure alters selection on plant traits</article-title>
<source>New Phytologist</source>
<year>2011</year>
<volume>192</volume>
<fpage>215</fpage>
<lpage>224</lpage>
<pub-id pub-id-type="doi">10.1111/j.1469-8137.2011.03790.x</pub-id>
<pub-id pub-id-type="pmid">21658184</pub-id>
</element-citation>
</ref>
<ref id="CR39">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bordiec</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Comparative analysis of defence responses induced by the endophytic plant growth-promoting rhizobacterium
<italic>Burkholderia phytofirmans</italic>
strain PsJN and the non-host bacterium
<italic>Pseudomonas syringae</italic>
pv.
<italic>pisi</italic>
in grapevine cell suspensions</article-title>
<source>Journal of Experimental Botany</source>
<year>2011</year>
<volume>62</volume>
<fpage>595</fpage>
<lpage>603</lpage>
<pub-id pub-id-type="doi">10.1093/jxb/erq291</pub-id>
<pub-id pub-id-type="pmid">20881012</pub-id>
</element-citation>
</ref>
<ref id="CR40">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brotman</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Transcript and metabolite analysis of the
<italic>Trichoderma</italic>
-induced systemic resistance response to
<italic>Pseudomonas syringae</italic>
in
<italic>Arabidopsis thaliana</italic>
</article-title>
<source>Microbiology</source>
<year>2012</year>
<volume>158</volume>
<fpage>139</fpage>
<lpage>146</lpage>
<pub-id pub-id-type="doi">10.1099/mic.0.052621-0</pub-id>
<pub-id pub-id-type="pmid">21852347</pub-id>
</element-citation>
</ref>
<ref id="CR41">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Molitor</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Barley leaf transcriptome and metabolite analysis reveals new aspects of compatibility and
<italic>Piriformospora indica</italic>
-mediated systemic induced resistance to powdery mildew</article-title>
<source>Molecular Plant-Microbe Interactions</source>
<year>2011</year>
<volume>24</volume>
<fpage>1427</fpage>
<lpage>1439</lpage>
<pub-id pub-id-type="doi">10.1094/MPMI-06-11-0177</pub-id>
<pub-id pub-id-type="pmid">21830949</pub-id>
</element-citation>
</ref>
<ref id="CR42">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Postnikova</surname>
<given-names>OA</given-names>
</name>
<name>
<surname>Nemchinov</surname>
<given-names>LG</given-names>
</name>
</person-group>
<article-title>Comparative analysis of microarray data in
<italic>Arabidopsis</italic>
transcriptome during compatible interactions with plant viruses</article-title>
<source>Virology Journal</source>
<year>2012</year>
<volume>9</volume>
<fpage>101</fpage>
<pub-id pub-id-type="doi">10.1186/1743-422X-9-101</pub-id>
<pub-id pub-id-type="pmid">22643110</pub-id>
</element-citation>
</ref>
<ref id="CR43">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>RHY</given-names>
</name>
<name>
<surname>Tripathy</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Govers</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Tyler</surname>
<given-names>BM</given-names>
</name>
</person-group>
<article-title>RXLR effector reservoir in two
<italic>Phytophthora</italic>
species is dominated by a single rapidly evolving superfamily with more than 700 members</article-title>
<source>Proceedings of the National Academy of Sciences of the United States of America</source>
<year>2008</year>
<volume>105</volume>
<fpage>4874</fpage>
<lpage>4879</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0709303105</pub-id>
<pub-id pub-id-type="pmid">18344324</pub-id>
</element-citation>
</ref>
<ref id="CR44">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jones</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Dangl</surname>
<given-names>JL</given-names>
</name>
</person-group>
<article-title>The plant immune system</article-title>
<source>Nature</source>
<year>2006</year>
<volume>444</volume>
<fpage>323</fpage>
<lpage>329</lpage>
<pub-id pub-id-type="doi">10.1038/nature05286</pub-id>
<pub-id pub-id-type="pmid">17108957</pub-id>
</element-citation>
</ref>
<ref id="CR45">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Doehlemann</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Pep1, a secreted effector protein of
<italic>Ustilago maydis</italic>
, is required for successful invasion of plant cells</article-title>
<source>PLoS Pathogens</source>
<year>2009</year>
<volume>5</volume>
<fpage>e1000290</fpage>
<pub-id pub-id-type="doi">10.1371/journal.ppat.1000290</pub-id>
<pub-id pub-id-type="pmid">19197359</pub-id>
</element-citation>
</ref>
<ref id="CR46">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grant</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Fisher</surname>
<given-names>EJ</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Mole</surname>
<given-names>BM</given-names>
</name>
<name>
<surname>Dangl</surname>
<given-names>JL</given-names>
</name>
</person-group>
<article-title>Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria</article-title>
<source>Annual Review of Microbiology</source>
<year>2006</year>
<volume>60</volume>
<fpage>425</fpage>
<lpage>449</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.micro.60.080805.142251</pub-id>
<pub-id pub-id-type="pmid">16753033</pub-id>
</element-citation>
</ref>
<ref id="CR47">
<label>47.</label>
<mixed-citation publication-type="other">Pachlewski, R. & Pachlewska, J. Studies on symbiotic properties of mycorrhizal fungi of pine (
<italic>Pinus silvestris</italic>
L.) with the aid of the method of mycorrhizal synthesis in pure cultures on agar. (Forest Research Institute, Warsaw, Poland; 1974).</mixed-citation>
</ref>
<ref id="CR48">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mortier</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Le Tacon</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Garbaye</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Effect of inoculum type and inoculation dose on ectomycorrhizal development, root necrosis and growth of Douglas fir seedlings inoculated with
<italic>Laccaria laccata</italic>
in a nursery</article-title>
<source>Annales des Sciences Forestières</source>
<year>1988</year>
<volume>45</volume>
<fpage>301</fpage>
<lpage>310</lpage>
<pub-id pub-id-type="doi">10.1051/forest:19880401</pub-id>
</element-citation>
</ref>
<ref id="CR49">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Plett</surname>
<given-names>JM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The mutualist
<italic>Laccaria bicolor</italic>
expresses a core gene regulon during the colonization of diverse host plants and a variable regulon to counteract host-specific defenses</article-title>
<source>Molecular Plant-Microbe Interactions</source>
<year>2015</year>
<volume>28</volume>
<fpage>261</fpage>
<lpage>273</lpage>
<pub-id pub-id-type="doi">10.1094/MPMI-05-14-0129-FI</pub-id>
<pub-id pub-id-type="pmid">25338146</pub-id>
</element-citation>
</ref>
<ref id="CR50">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tuskan</surname>
<given-names>GA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The genome of black cottonwood,
<italic>Populus trichocarpa</italic>
(Torr. & Gray)</article-title>
<source>Science</source>
<year>2006</year>
<volume>313</volume>
<fpage>1596</fpage>
<lpage>1604</lpage>
<pub-id pub-id-type="doi">10.1126/science.1128691</pub-id>
<pub-id pub-id-type="pmid">16973872</pub-id>
</element-citation>
</ref>
<ref id="CR51">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Trapnell</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Pachter</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Salzberg</surname>
<given-names>SL</given-names>
</name>
</person-group>
<article-title>TopHat: discovering splice junctions with RNA-Seq</article-title>
<source>Bioinformatics</source>
<year>2009</year>
<volume>25</volume>
<fpage>1105</fpage>
<lpage>1111</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btp120</pub-id>
<pub-id pub-id-type="pmid">19289445</pub-id>
</element-citation>
</ref>
<ref id="CR52">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Trapnell</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks</article-title>
<source>Nature Protocols</source>
<year>2012</year>
<volume>7</volume>
<fpage>562</fpage>
<lpage>578</lpage>
<pub-id pub-id-type="doi">10.1038/nprot.2012.016</pub-id>
<pub-id pub-id-type="pmid">22383036</pub-id>
</element-citation>
</ref>
<ref id="CR53">
<label>53.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Trapnell</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation</article-title>
<source>Nature Biotechnology</source>
<year>2010</year>
<volume>28</volume>
<fpage>511</fpage>
<lpage>515</lpage>
<pub-id pub-id-type="doi">10.1038/nbt.1621</pub-id>
<pub-id pub-id-type="pmid">20436464</pub-id>
</element-citation>
</ref>
<ref id="CR54">
<label>54.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Finn</surname>
<given-names>RD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Pfam: the protein families database</article-title>
<source>Nucleic Acids Research</source>
<year>2014</year>
<volume>42</volume>
<fpage>D222</fpage>
<lpage>D230</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkt1223</pub-id>
<pub-id pub-id-type="pmid">24288371</pub-id>
</element-citation>
</ref>
<ref id="CR55">
<label>55.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Conesa</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research</article-title>
<source>Bioinformatics</source>
<year>2005</year>
<volume>21</volume>
<fpage>3674</fpage>
<lpage>3676</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/bti610</pub-id>
<pub-id pub-id-type="pmid">16081474</pub-id>
</element-citation>
</ref>
<ref id="CR56">
<label>56.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maere</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Heymans</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kuiper</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks</article-title>
<source>Bioinformatics</source>
<year>2005</year>
<volume>21</volume>
<fpage>3448</fpage>
<lpage>3449</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/bti551</pub-id>
<pub-id pub-id-type="pmid">15972284</pub-id>
</element-citation>
</ref>
<ref id="CR57">
<label>57.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Camacho</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>BLAST+: architecture and applications</article-title>
<source>BMC Bioinformatics</source>
<year>2009</year>
<volume>10</volume>
<fpage>421</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2105-10-421</pub-id>
<pub-id pub-id-type="pmid">20003500</pub-id>
</element-citation>
</ref>
<ref id="CR58">
<label>58.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Evans</surname>
<given-names>LM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Population genomics of
<italic>Populus trichocarpa</italic>
identifies signatures of selection and adaptive trait associations</article-title>
<source>Nature Genetics</source>
<year>2014</year>
<volume>46</volume>
<fpage>1089</fpage>
<lpage>1096</lpage>
<pub-id pub-id-type="doi">10.1038/ng.3075</pub-id>
<pub-id pub-id-type="pmid">25151358</pub-id>
</element-citation>
</ref>
<ref id="CR59">
<label>59.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Slavov</surname>
<given-names>GT</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genome resequencing reveals multiscale geographic structure and extensive linkage disequilibrium in the forest tree
<italic>Populus trichocarpa</italic>
</article-title>
<source>New Phytologist</source>
<year>2012</year>
<volume>196</volume>
<fpage>713</fpage>
<lpage>725</lpage>
<pub-id pub-id-type="doi">10.1111/j.1469-8137.2012.04258.x</pub-id>
<pub-id pub-id-type="pmid">22861491</pub-id>
</element-citation>
</ref>
<ref id="CR60">
<label>60.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Ruan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Durbin</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Mapping short DNA sequencing reads and calling variants using mapping quality scores</article-title>
<source>Genome Research</source>
<year>2008</year>
<volume>18</volume>
<fpage>1851</fpage>
<lpage>1858</lpage>
<pub-id pub-id-type="doi">10.1101/gr.078212.108</pub-id>
<pub-id pub-id-type="pmid">18714091</pub-id>
</element-citation>
</ref>
<ref id="CR61">
<label>61.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Quinlan</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Hall</surname>
<given-names>IM</given-names>
</name>
</person-group>
<article-title>BEDTools: a flexible suite of utilities for comparing genomic features</article-title>
<source>Bioinformatics</source>
<year>2010</year>
<volume>26</volume>
<fpage>841</fpage>
<lpage>842</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btq033</pub-id>
<pub-id pub-id-type="pmid">20110278</pub-id>
</element-citation>
</ref>
<ref id="CR62">
<label>62.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<article-title>An importin β protein negatively regulates microRNA activity in
<italic>Arabidopsis</italic>
</article-title>
<source>Plant Cell</source>
<year>2011</year>
<volume>23</volume>
<fpage>3565</fpage>
<lpage>3576</lpage>
<pub-id pub-id-type="doi">10.1105/tpc.111.091058</pub-id>
<pub-id pub-id-type="pmid">21984696</pub-id>
</element-citation>
</ref>
<ref id="CR63">
<label>63.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>S-J</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>B-D</given-names>
</name>
<name>
<surname>Rose</surname>
<given-names>JKC</given-names>
</name>
</person-group>
<article-title>Identification of eukaryotic secreted and cell surface proteins using the yeast secretion trap screen</article-title>
<source>Nature Protocols</source>
<year>2006</year>
<volume>1</volume>
<fpage>2439</fpage>
<lpage>2447</lpage>
<pub-id pub-id-type="doi">10.1038/nprot.2006.373</pub-id>
<pub-id pub-id-type="pmid">17406489</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E16  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000E16  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024