Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000E14 ( Pmc/Corpus ); précédent : 000E139; suivant : 000E150 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Redox preconditioning deep cratonic lithosphere for kimberlite genesis – evidence from the central Slave Craton</title>
<author>
<name sortKey="Yaxley, G M" sort="Yaxley, G M" uniqKey="Yaxley G" first="G. M." last="Yaxley">G. M. Yaxley</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2180 7477</institution-id>
<institution-id institution-id-type="GRID">grid.1001.0</institution-id>
<institution>Research School of Earth Sciences,</institution>
<institution>The Australian National University,</institution>
</institution-wrap>
Canberra, ACT 2601 Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Berry, A J" sort="Berry, A J" uniqKey="Berry A" first="A. J." last="Berry">A. J. Berry</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2180 7477</institution-id>
<institution-id institution-id-type="GRID">grid.1001.0</institution-id>
<institution>Research School of Earth Sciences,</institution>
<institution>The Australian National University,</institution>
</institution-wrap>
Canberra, ACT 2601 Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rosenthal, A" sort="Rosenthal, A" uniqKey="Rosenthal A" first="A." last="Rosenthal">A. Rosenthal</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0467 6972</institution-id>
<institution-id institution-id-type="GRID">grid.7384.8</institution-id>
<institution>Bayerisches Geoinstitut,</institution>
<institution>Universität Bayreuth,</institution>
</institution-wrap>
95440 Bayreuth, Germany</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1937 116X</institution-id>
<institution-id institution-id-type="GRID">grid.4491.8</institution-id>
<institution>Institute of Petrology and Structural Geology,</institution>
<institution>Charles University in Prague,</institution>
</institution-wrap>
Albertov 6, 128 43 Praha 2, Czech Republic</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff6">Laboratoire Magmas et Volcans, Université Blaise Pascal, CNRS IRD-OPGC, Campus Universitaire des Cézeaux, 6 Avenue Blaise Pascal, 63178 Aubière Cedex, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Woodland, A B" sort="Woodland, A B" uniqKey="Woodland A" first="A. B." last="Woodland">A. B. Woodland</name>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1936 9721</institution-id>
<institution-id institution-id-type="GRID">grid.7839.5</institution-id>
<institution>Institut für Geowissenschaften,</institution>
<institution>Goethe Universität,</institution>
</institution-wrap>
60438 Frankfurt am Main, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Paterson, D" sort="Paterson, D" uniqKey="Paterson D" first="D." last="Paterson">D. Paterson</name>
<affiliation>
<nlm:aff id="Aff5">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0562 0567</institution-id>
<institution-id institution-id-type="GRID">grid.248753.f</institution-id>
<institution></institution>
<institution>Australian Synchrotron,</institution>
</institution-wrap>
Clayton, Victoria 3168 Australia</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">28184036</idno>
<idno type="pmc">5428371</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5428371</idno>
<idno type="RBID">PMC:5428371</idno>
<idno type="doi">10.1038/s41598-017-00049-3</idno>
<date when="2017">2017</date>
<idno type="wicri:Area/Pmc/Corpus">000E14</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000E14</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Redox preconditioning deep cratonic lithosphere for kimberlite genesis – evidence from the central Slave Craton</title>
<author>
<name sortKey="Yaxley, G M" sort="Yaxley, G M" uniqKey="Yaxley G" first="G. M." last="Yaxley">G. M. Yaxley</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2180 7477</institution-id>
<institution-id institution-id-type="GRID">grid.1001.0</institution-id>
<institution>Research School of Earth Sciences,</institution>
<institution>The Australian National University,</institution>
</institution-wrap>
Canberra, ACT 2601 Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Berry, A J" sort="Berry, A J" uniqKey="Berry A" first="A. J." last="Berry">A. J. Berry</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2180 7477</institution-id>
<institution-id institution-id-type="GRID">grid.1001.0</institution-id>
<institution>Research School of Earth Sciences,</institution>
<institution>The Australian National University,</institution>
</institution-wrap>
Canberra, ACT 2601 Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rosenthal, A" sort="Rosenthal, A" uniqKey="Rosenthal A" first="A." last="Rosenthal">A. Rosenthal</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0467 6972</institution-id>
<institution-id institution-id-type="GRID">grid.7384.8</institution-id>
<institution>Bayerisches Geoinstitut,</institution>
<institution>Universität Bayreuth,</institution>
</institution-wrap>
95440 Bayreuth, Germany</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1937 116X</institution-id>
<institution-id institution-id-type="GRID">grid.4491.8</institution-id>
<institution>Institute of Petrology and Structural Geology,</institution>
<institution>Charles University in Prague,</institution>
</institution-wrap>
Albertov 6, 128 43 Praha 2, Czech Republic</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff6">Laboratoire Magmas et Volcans, Université Blaise Pascal, CNRS IRD-OPGC, Campus Universitaire des Cézeaux, 6 Avenue Blaise Pascal, 63178 Aubière Cedex, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Woodland, A B" sort="Woodland, A B" uniqKey="Woodland A" first="A. B." last="Woodland">A. B. Woodland</name>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1936 9721</institution-id>
<institution-id institution-id-type="GRID">grid.7839.5</institution-id>
<institution>Institut für Geowissenschaften,</institution>
<institution>Goethe Universität,</institution>
</institution-wrap>
60438 Frankfurt am Main, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Paterson, D" sort="Paterson, D" uniqKey="Paterson D" first="D." last="Paterson">D. Paterson</name>
<affiliation>
<nlm:aff id="Aff5">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0562 0567</institution-id>
<institution-id institution-id-type="GRID">grid.248753.f</institution-id>
<institution></institution>
<institution>Australian Synchrotron,</institution>
</institution-wrap>
Clayton, Victoria 3168 Australia</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific Reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2017">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>We present the first oxygen fugacity (
<italic>f</italic>
O
<sub>2</sub>
) profile through the cratonic lithospheric mantle under the Panda kimberlite (Ekati Diamond Mine) in the Lac de Gras kimberlite field, central Slave Craton, northern Canada. Combining this data with new and existing data from garnet peridotite xenoliths from an almost coeval kimberlite (A154-N) at the nearby Diavik Diamond Mine demonstrates that the oxygen fugacity of the Slave cratonic mantle varies by several orders of magnitude as a function of depth and over short lateral distances. The lower part of the diamond-bearing Slave lithosphere (>120–130 km deep) has been oxidized by up to 4 log units in
<italic>f</italic>
O
<sub>2</sub>
, and this is clearly linked to metasomatic enrichment. Such coupled enrichment and oxidation was likely caused by infiltrating carbonate-bearing, hydrous, silicate melts in the presence of diamond, a process proposed to be critical for “pre-conditioning” deep lithospheric mantle and rendering it suitable for later generation of kimberlites and other SiO
<sub>2</sub>
-undersaturated magmas.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Dasgupta, R" uniqKey="Dasgupta R">R Dasgupta</name>
</author>
<author>
<name sortKey="Hirschmann, Mm" uniqKey="Hirschmann M">MM Hirschmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gudmundsson, G" uniqKey="Gudmundsson G">G Gudmundsson</name>
</author>
<author>
<name sortKey="Wood, Bj" uniqKey="Wood B">BJ Wood</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stagno, V" uniqKey="Stagno V">V Stagno</name>
</author>
<author>
<name sortKey="Ojwang, Do" uniqKey="Ojwang D">DO Ojwang</name>
</author>
<author>
<name sortKey="Mccammon, Ca" uniqKey="Mccammon C">CA McCammon</name>
</author>
<author>
<name sortKey="Frost, Dj" uniqKey="Frost D">DJ Frost</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frost, Dj" uniqKey="Frost D">DJ Frost</name>
</author>
<author>
<name sortKey="Mccammon, Ca" uniqKey="Mccammon C">CA McCammon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Eill, Hsc" uniqKey="O Eill H">HSC O’Neill</name>
</author>
<author>
<name sortKey="Wall, Vj" uniqKey="Wall V">VJ Wall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goncharov, Ag" uniqKey="Goncharov A">AG Goncharov</name>
</author>
<author>
<name sortKey="Ionov, Da" uniqKey="Ionov D">DA Ionov</name>
</author>
<author>
<name sortKey="Doucet, Ls" uniqKey="Doucet L">LS Doucet</name>
</author>
<author>
<name sortKey="Pokhilenko, Ln" uniqKey="Pokhilenko L">LN Pokhilenko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yaxley, Gm" uniqKey="Yaxley G">GM Yaxley</name>
</author>
<author>
<name sortKey="Berry, Aj" uniqKey="Berry A">AJ Berry</name>
</author>
<author>
<name sortKey="Kamenetsky, Vs" uniqKey="Kamenetsky V">VS Kamenetsky</name>
</author>
<author>
<name sortKey="Woodland, Ab" uniqKey="Woodland A">AB Woodland</name>
</author>
<author>
<name sortKey="Golovin, Av" uniqKey="Golovin A">AV Golovin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Creighton, S" uniqKey="Creighton S">S Creighton</name>
</author>
<author>
<name sortKey="Stachel, T" uniqKey="Stachel T">T Stachel</name>
</author>
<author>
<name sortKey="Eichenberg, D" uniqKey="Eichenberg D">D Eichenberg</name>
</author>
<author>
<name sortKey="Luth, R" uniqKey="Luth R">R Luth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Creighton, S" uniqKey="Creighton S">S Creighton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Woodland, Ab" uniqKey="Woodland A">AB Woodland</name>
</author>
<author>
<name sortKey="Koch, M" uniqKey="Koch M">M Koch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lazarov, M" uniqKey="Lazarov M">M Lazarov</name>
</author>
<author>
<name sortKey="Woodland, Ab" uniqKey="Woodland A">AB Woodland</name>
</author>
<author>
<name sortKey="Brey, Gp" uniqKey="Brey G">GP Brey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luth, R" uniqKey="Luth R">R Luth</name>
</author>
<author>
<name sortKey="Virgo, D" uniqKey="Virgo D">D Virgo</name>
</author>
<author>
<name sortKey="Boyd, F" uniqKey="Boyd F">F Boyd</name>
</author>
<author>
<name sortKey="Wood, B" uniqKey="Wood B">B Wood</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Canil, D" uniqKey="Canil D">D Canil</name>
</author>
<author>
<name sortKey="Oneill, Hsc" uniqKey="Oneill H">HSC ONeill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Menzies, A" uniqKey="Menzies A">A Menzies</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Creaser, Ra" uniqKey="Creaser R">RA Creaser</name>
</author>
<author>
<name sortKey="Grutter, H" uniqKey="Grutter H">H Grütter</name>
</author>
<author>
<name sortKey="Carlson, J" uniqKey="Carlson J">J Carlson</name>
</author>
<author>
<name sortKey="Crawford, B" uniqKey="Crawford B">B Crawford</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grutter, Hs" uniqKey="Grutter H">HS Grutter</name>
</author>
<author>
<name sortKey="Gurney, Jj" uniqKey="Gurney J">JJ Gurney</name>
</author>
<author>
<name sortKey="Menzies, Ah" uniqKey="Menzies A">AH Menzies</name>
</author>
<author>
<name sortKey="Winter, F" uniqKey="Winter F">F Winter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hanger, Bj" uniqKey="Hanger B">BJ Hanger</name>
</author>
<author>
<name sortKey="Yaxley, Gm" uniqKey="Yaxley G">GM Yaxley</name>
</author>
<author>
<name sortKey="Berry, Aj" uniqKey="Berry A">AJ Berry</name>
</author>
<author>
<name sortKey="Kamenetsky, Vs" uniqKey="Kamenetsky V">VS Kamenetsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brey, Gp" uniqKey="Brey G">GP Brey</name>
</author>
<author>
<name sortKey="Kohler, T" uniqKey="Kohler T">T Kohler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nimis, P" uniqKey="Nimis P">P Nimis</name>
</author>
<author>
<name sortKey="Grutter, H" uniqKey="Grutter H">H Grutter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Griffin, Wl" uniqKey="Griffin W">WL Griffin</name>
</author>
<author>
<name sortKey="Ryan, Cg" uniqKey="Ryan C">CG Ryan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stachel, T" uniqKey="Stachel T">T Stachel</name>
</author>
<author>
<name sortKey="Viljoen, Ks" uniqKey="Viljoen K">KS Viljoen</name>
</author>
<author>
<name sortKey="Brey, G" uniqKey="Brey G">G Brey</name>
</author>
<author>
<name sortKey="Harris, Jw" uniqKey="Harris J">JW Harris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Griffin, Wl" uniqKey="Griffin W">WL Griffin</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stagno, V" uniqKey="Stagno V">V Stagno</name>
</author>
<author>
<name sortKey="Frost, Dj" uniqKey="Frost D">DJ Frost</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tappe, S" uniqKey="Tappe S">S Tappe</name>
</author>
<author>
<name sortKey="Pearson, Dg" uniqKey="Pearson D">DG Pearson</name>
</author>
<author>
<name sortKey="Kjarsgaard, Ba" uniqKey="Kjarsgaard B">BA Kjarsgaard</name>
</author>
<author>
<name sortKey="Nowell, G" uniqKey="Nowell G">G Nowell</name>
</author>
<author>
<name sortKey="Dowall, D" uniqKey="Dowall D">D Dowall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weiss, Y" uniqKey="Weiss Y">Y Weiss</name>
</author>
<author>
<name sortKey="Mcneill, J" uniqKey="Mcneill J">J McNeill</name>
</author>
<author>
<name sortKey="Pearson, Dg" uniqKey="Pearson D">DG Pearson</name>
</author>
<author>
<name sortKey="Nowell, Gm" uniqKey="Nowell G">GM Nowell</name>
</author>
<author>
<name sortKey="Ottley, Cj" uniqKey="Ottley C">CJ Ottley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boyd, Fr" uniqKey="Boyd F">FR Boyd</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kelemen, Pb" uniqKey="Kelemen P">PB Kelemen</name>
</author>
<author>
<name sortKey="Dick, Hjb" uniqKey="Dick H">HJB Dick</name>
</author>
<author>
<name sortKey="Quick, Je" uniqKey="Quick J">JE Quick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Green, Dh" uniqKey="Green D">DH Green</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosenthal, A" uniqKey="Rosenthal A">A Rosenthal</name>
</author>
<author>
<name sortKey="Hauri, Eh" uniqKey="Hauri E">EH Hauri</name>
</author>
<author>
<name sortKey="Hirschmann, Mm" uniqKey="Hirschmann M">MM Hirschmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kovacs, I" uniqKey="Kovacs I">I Kovács</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Green, Dh" uniqKey="Green D">DH Green</name>
</author>
<author>
<name sortKey="Hibberson, Wo" uniqKey="Hibberson W">WO Hibberson</name>
</author>
<author>
<name sortKey="Kovacs, I" uniqKey="Kovacs I">I Kovacs</name>
</author>
<author>
<name sortKey="Rosenthal, A" uniqKey="Rosenthal A">A Rosenthal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taylor, Wr" uniqKey="Taylor W">WR Taylor</name>
</author>
<author>
<name sortKey="Green, Dh" uniqKey="Green D">DH Green</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Foley, Sf" uniqKey="Foley S">SF Foley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miller, Ce" uniqKey="Miller C">CE Miller</name>
</author>
<author>
<name sortKey="Kopylova, M" uniqKey="Kopylova M">M Kopylova</name>
</author>
<author>
<name sortKey="Smith, E" uniqKey="Smith E">E Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Girnis, Av" uniqKey="Girnis A">AV Girnis</name>
</author>
<author>
<name sortKey="Bulatov, Vk" uniqKey="Bulatov V">VK Bulatov</name>
</author>
<author>
<name sortKey="Brey, Gp" uniqKey="Brey G">GP Brey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Girnis, Av" uniqKey="Girnis A">AV Girnis</name>
</author>
<author>
<name sortKey="Brey, Gp" uniqKey="Brey G">GP Brey</name>
</author>
<author>
<name sortKey="Ryabchikov, Id" uniqKey="Ryabchikov I">ID Ryabchikov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brey, Gp" uniqKey="Brey G">GP Brey</name>
</author>
<author>
<name sortKey="Bulatov, Vk" uniqKey="Bulatov V">VK Bulatov</name>
</author>
<author>
<name sortKey="Girnis, Av" uniqKey="Girnis A">AV Girnis</name>
</author>
<author>
<name sortKey="Lahaye, Y" uniqKey="Lahaye Y">Y Lahaye</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Canil, D" uniqKey="Canil D">D Canil</name>
</author>
<author>
<name sortKey="Scarfe, Cm" uniqKey="Scarfe C">CM Scarfe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Novella, D" uniqKey="Novella D">D Novella</name>
</author>
<author>
<name sortKey="Frost, Dj" uniqKey="Frost D">DJ Frost</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davies, Ra" uniqKey="Davies R">RA Davies</name>
</author>
<author>
<name sortKey="Griffin, Wl" uniqKey="Griffin W">WL Griffin</name>
</author>
<author>
<name sortKey="O Eilly, Sy" uniqKey="O Eilly S">SY O’Reilly</name>
</author>
<author>
<name sortKey="Doyle, Bj" uniqKey="Doyle B">BJ Doyle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nowell, Gm" uniqKey="Nowell G">GM Nowell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kiseeva, Es" uniqKey="Kiseeva E">ES Kiseeva</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosenthal, A" uniqKey="Rosenthal A">A Rosenthal</name>
</author>
<author>
<name sortKey="Foley, Sf" uniqKey="Foley S">SF Foley</name>
</author>
<author>
<name sortKey="Pearson, Dg" uniqKey="Pearson D">DG Pearson</name>
</author>
<author>
<name sortKey="Nowell, Gm" uniqKey="Nowell G">GM Nowell</name>
</author>
<author>
<name sortKey="Tappe, S" uniqKey="Tappe S">S Tappe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tappe, S" uniqKey="Tappe S">S Tappe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Foley, Sf" uniqKey="Foley S">SF Foley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Foley, S" uniqKey="Foley S">S Foley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fraser, Kj" uniqKey="Fraser K">KJ Fraser</name>
</author>
<author>
<name sortKey="Hawkesworth, Cj" uniqKey="Hawkesworth C">CJ Hawkesworth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eggins, Sm" uniqKey="Eggins S">SM Eggins</name>
</author>
<author>
<name sortKey="Kinsley, Lpj" uniqKey="Kinsley L">LPJ Kinsley</name>
</author>
<author>
<name sortKey="Shelley, Jmg" uniqKey="Shelley J">JMG Shelley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eggins, Sm" uniqKey="Eggins S">SM Eggins</name>
</author>
<author>
<name sortKey="Rudnick, Rl" uniqKey="Rudnick R">RL Rudnick</name>
</author>
<author>
<name sortKey="Mcdonough, Wf" uniqKey="Mcdonough W">WF McDonough</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Norman, Md" uniqKey="Norman M">MD Norman</name>
</author>
<author>
<name sortKey="Pearson, Nj" uniqKey="Pearson N">NJ Pearson</name>
</author>
<author>
<name sortKey="Sharma, A" uniqKey="Sharma A">A Sharma</name>
</author>
<author>
<name sortKey="Griffin, Wl" uniqKey="Griffin W">WL Griffin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pearce, Njg" uniqKey="Pearce N">NJG Pearce</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Woodland, Ab" uniqKey="Woodland A">AB Woodland</name>
</author>
<author>
<name sortKey="Ross, Cr" uniqKey="Ross C">CR Ross</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Berry, Aj" uniqKey="Berry A">AJ Berry</name>
</author>
<author>
<name sortKey="Yaxley, Gm" uniqKey="Yaxley G">GM Yaxley</name>
</author>
<author>
<name sortKey="Woodland, Ab" uniqKey="Woodland A">AB Woodland</name>
</author>
<author>
<name sortKey="Foran, Gj" uniqKey="Foran G">GJ Foran</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Berry, A" uniqKey="Berry A">A Berry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Paterson, D" uniqKey="Paterson D">D Paterson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Eill, Hsc" uniqKey="O Eill H">HSC O’Neill</name>
</author>
<author>
<name sortKey="Wood, Bj" uniqKey="Wood B">BJ Wood</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lazarov, M" uniqKey="Lazarov M">M Lazarov</name>
</author>
<author>
<name sortKey="Brey, Gp" uniqKey="Brey G">GP Brey</name>
</author>
<author>
<name sortKey="Weyer, S" uniqKey="Weyer S">S Weyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kennedy, Cs" uniqKey="Kennedy C">CS Kennedy</name>
</author>
<author>
<name sortKey="Kennedy, Gc" uniqKey="Kennedy G">GC Kennedy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pollack, Hn" uniqKey="Pollack H">HN Pollack</name>
</author>
<author>
<name sortKey="Chapman, Ds" uniqKey="Chapman D">DS Chapman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luth, Rw" uniqKey="Luth R">RW Luth</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Sci Rep</journal-id>
<journal-id journal-id-type="iso-abbrev">Sci Rep</journal-id>
<journal-title-group>
<journal-title>Scientific Reports</journal-title>
</journal-title-group>
<issn pub-type="epub">2045-2322</issn>
<publisher>
<publisher-name>Nature Publishing Group UK</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">28184036</article-id>
<article-id pub-id-type="pmc">5428371</article-id>
<article-id pub-id-type="publisher-id">49</article-id>
<article-id pub-id-type="doi">10.1038/s41598-017-00049-3</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Redox preconditioning deep cratonic lithosphere for kimberlite genesis – evidence from the central Slave Craton</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0003-0445-8812</contrib-id>
<name>
<surname>Yaxley</surname>
<given-names>G. M.</given-names>
</name>
<address>
<email>greg.yaxley@anu.edu.au</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Berry</surname>
<given-names>A. J.</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0003-3912-4046</contrib-id>
<name>
<surname>Rosenthal</surname>
<given-names>A.</given-names>
</name>
<xref ref-type="aff" rid="Aff2">2</xref>
<xref ref-type="aff" rid="Aff3">3</xref>
<xref ref-type="aff" rid="Aff6">6</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Woodland</surname>
<given-names>A. B.</given-names>
</name>
<xref ref-type="aff" rid="Aff4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Paterson</surname>
<given-names>D.</given-names>
</name>
<xref ref-type="aff" rid="Aff5">5</xref>
</contrib>
<aff id="Aff1">
<label>1</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2180 7477</institution-id>
<institution-id institution-id-type="GRID">grid.1001.0</institution-id>
<institution>Research School of Earth Sciences,</institution>
<institution>The Australian National University,</institution>
</institution-wrap>
Canberra, ACT 2601 Australia</aff>
<aff id="Aff2">
<label>2</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0467 6972</institution-id>
<institution-id institution-id-type="GRID">grid.7384.8</institution-id>
<institution>Bayerisches Geoinstitut,</institution>
<institution>Universität Bayreuth,</institution>
</institution-wrap>
95440 Bayreuth, Germany</aff>
<aff id="Aff3">
<label>3</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1937 116X</institution-id>
<institution-id institution-id-type="GRID">grid.4491.8</institution-id>
<institution>Institute of Petrology and Structural Geology,</institution>
<institution>Charles University in Prague,</institution>
</institution-wrap>
Albertov 6, 128 43 Praha 2, Czech Republic</aff>
<aff id="Aff4">
<label>4</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1936 9721</institution-id>
<institution-id institution-id-type="GRID">grid.7839.5</institution-id>
<institution>Institut für Geowissenschaften,</institution>
<institution>Goethe Universität,</institution>
</institution-wrap>
60438 Frankfurt am Main, Germany</aff>
<aff id="Aff5">
<label>5</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 0562 0567</institution-id>
<institution-id institution-id-type="GRID">grid.248753.f</institution-id>
<institution></institution>
<institution>Australian Synchrotron,</institution>
</institution-wrap>
Clayton, Victoria 3168 Australia</aff>
<aff id="Aff6">
<label>6</label>
Laboratoire Magmas et Volcans, Université Blaise Pascal, CNRS IRD-OPGC, Campus Universitaire des Cézeaux, 6 Avenue Blaise Pascal, 63178 Aubière Cedex, France</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>14</day>
<month>2</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>14</day>
<month>2</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="collection">
<year>2017</year>
</pub-date>
<volume>7</volume>
<elocation-id>30</elocation-id>
<history>
<date date-type="received">
<day>12</day>
<month>9</month>
<year>2016</year>
</date>
<date date-type="accepted">
<day>19</day>
<month>12</month>
<year>2016</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author(s) 2017</copyright-statement>
<license license-type="OpenAccess">
<license-p>This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
</license-p>
</license>
</permissions>
<abstract id="Abs1">
<p>We present the first oxygen fugacity (
<italic>f</italic>
O
<sub>2</sub>
) profile through the cratonic lithospheric mantle under the Panda kimberlite (Ekati Diamond Mine) in the Lac de Gras kimberlite field, central Slave Craton, northern Canada. Combining this data with new and existing data from garnet peridotite xenoliths from an almost coeval kimberlite (A154-N) at the nearby Diavik Diamond Mine demonstrates that the oxygen fugacity of the Slave cratonic mantle varies by several orders of magnitude as a function of depth and over short lateral distances. The lower part of the diamond-bearing Slave lithosphere (>120–130 km deep) has been oxidized by up to 4 log units in
<italic>f</italic>
O
<sub>2</sub>
, and this is clearly linked to metasomatic enrichment. Such coupled enrichment and oxidation was likely caused by infiltrating carbonate-bearing, hydrous, silicate melts in the presence of diamond, a process proposed to be critical for “pre-conditioning” deep lithospheric mantle and rendering it suitable for later generation of kimberlites and other SiO
<sub>2</sub>
-undersaturated magmas.</p>
</abstract>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© The Author(s) 2017</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1" sec-type="introduction">
<title>Introduction</title>
<p>The
<italic>f</italic>
O
<sub>2</sub>
of the Earth’s deep interior is critically important, influencing diverse processes in the solid and volatile cycles of our planet. It controls the speciation of volatile components (CHONS) in the mantle, including diamond/graphite
<italic>versus</italic>
carbonate stability. This profoundly influences melting temperatures and types of partial melts of mantle rocks and the nature of mantle metasomatism. It affects volatile solubilities in magmas and hence outgassing of CHONS-volatiles and so was influential in the formation and nature of the atmosphere. Knowledge of the distribution of the mantle’s
<italic>f</italic>
O
<sub>2</sub>
with depth, location and time is critical for understanding large-scale volatile cycles and fluxes between the crust, ocean and atmosphere, and deep Earth (mantle, core)
<sup>
<xref ref-type="bibr" rid="CR1">1</xref>
</sup>
.</p>
<p>In the absence of partial melts or fluids, the
<italic>f</italic>
O
<sub>2</sub>
of the Earth’s upper mantle is controlled internally by redox sensitive reactions involving Fe-bearing mineral components in spinel, garnet and pyroxenes in which Fe has variable oxidation states. Because of the positive molar volume changes of these reactions
<sup>
<xref ref-type="bibr" rid="CR2">2</xref>
<xref ref-type="bibr" rid="CR4">4</xref>
</sup>
<italic>f</italic>
O
<sub>2</sub>
should decrease steadily with increasing pressure (depth) in the upper ≈250 km of the peridotite-dominated mantle. At pressures around 8–9 GPa (≈250–300 km deep) the depth-
<italic>f</italic>
O
<sub>2</sub>
trend should intersect the Ni precipitation curve, and an FeNi metallic alloy is expected to form
<sup>
<xref ref-type="bibr" rid="CR4">4</xref>
</sup>
. The
<italic>f</italic>
O
<sub>2</sub>
of peridotite will then remain close to that of the Ni precipitation curve (≈IW to IW-1 log unit)
<sup>
<xref ref-type="bibr" rid="CR5">5</xref>
</sup>
down to the transition zone at ≈410 km depth
<sup>
<xref ref-type="bibr" rid="CR4">4</xref>
</sup>
.</p>
<p>Experimental calibrations of redox controlling reactions in garnet peridotite assemblages
<sup>
<xref ref-type="bibr" rid="CR2">2</xref>
,
<xref ref-type="bibr" rid="CR3">3</xref>
</sup>
, coupled with determinations of the Fe
<sup>3+</sup>
/∑Fe of garnet from peridotite xenoliths transported by kimberlite magmas to the surface from depths as great as 220 km (~7 GPa), enable determination of the
<italic>f</italic>
O
<sub>2</sub>
of the cratonic mantle lithosphere. There is now data from several different cratons
<sup>
<xref ref-type="bibr" rid="CR6">6</xref>
<xref ref-type="bibr" rid="CR13">13</xref>
</sup>
.</p>
<p>We have determined the oxygen fugacities recorded by garnet peridotite xenoliths hosted by two nearly coeval and diamondiferous kimberlites from the geographically close Ekati and Diavik mine leases in the central Slave Craton, Canada. In combination with conventional thermobarometry, this allows construction of the first
<italic>f</italic>
O
<sub>2</sub>
profile through the cratonic lithospheric mantle under the Ekati Diamond Mine and demonstrates that the
<italic>f</italic>
O
<sub>2</sub>
of the Slave cratonic mantle can vary by several orders of magnitude as a function of depth and over short lateral distances. The implications for kimberlite genesis are then discussed. No redox data has previously been reported from xenoliths from the Panda kimberlite.</p>
</sec>
<sec id="Sec2">
<title>Results and Calculations</title>
<sec id="Sec3">
<title>Sample locations and other details</title>
<p>Fresh garnet peridotite xenoliths recovered from the Panda kimberlite on the Ekati Diamond Mine lease and from the A154-North (A154-N) pipe on the nearby Diavik lease were investigated. The Panda samples consist of 30 fragments of peridotite approximately 1 cm across, derived from fragmentation of larger xenoliths during processing at the mine. In all cases, they contain relict, fresh primary mineral phases. Major and minor element compositions for all mineral phases were presented by Menzies
<italic>et al.</italic>
<sup>
<xref ref-type="bibr" rid="CR14">14</xref>
</sup>
. The Diavik suite includes 10 new and very fresh garnet lherzolite xenoliths recovered from the A154-N kimberlite pipe at the Diavik Diamond Mine in Lac de Gras, Northwest Territories, Canada. The data from these new samples is presented in Supplementary Tables 
<xref rid="MOESM1" ref-type="media">1</xref>
<xref rid="MOESM5" ref-type="media">5</xref>
and is supplemented by earlier data from other garnet peridotite xenoliths from the same pipe
<sup>
<xref ref-type="bibr" rid="CR8">8</xref>
</sup>
. The two host kimberlites were emplaced at 53.3 ± 0.6 Ma (Panda)
<sup>
<xref ref-type="bibr" rid="CR15">15</xref>
</sup>
and 56.0 ± 0.7 Ma (A154-N)
<sup>
<xref ref-type="bibr" rid="CR16">16</xref>
</sup>
, and are located about 30 km apart near the edge of Lac de Gras in the central Slave Craton (see Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
of Creighton
<italic>et al.</italic>
<sup>
<xref ref-type="bibr" rid="CR8">8</xref>
</sup>
for a location map).
<fig id="Fig1">
<label>Figure 1</label>
<caption>
<p>Garnet (
<bold>A</bold>
) Ti, (
<bold>B</bold>
) Yb, (
<bold>C</bold>
) Y and (
<bold>D</bold>
) Ga
<italic>vs</italic>
. pressure (GPa) for the Panda and A154-N samples. Data for some A154-N samples are from Creighton
<italic>et al.</italic>
<sup>
<xref ref-type="bibr" rid="CR8">8</xref>
</sup>
. Depleted samples contain garnet with <200 ppm Ti, following Griffin and Ryan
<sup>
<xref ref-type="bibr" rid="CR21">21</xref>
</sup>
.</p>
</caption>
<graphic xlink:href="41598_2017_49_Fig1_HTML" id="d29e484"></graphic>
</fig>
</p>
</sec>
<sec id="Sec4">
<title>Major, minor and trace element compositions of mineral phases</title>
<p>Electron microprobe analyses of the major and minor element abundances and laser-ablation inductively couple plasma mass spectroscopy (LA-ICPMS) analyses of trace element abundances in constituent phases in the new A154-N garnet lherzolite xenoliths are presented in Supplementary Tables 
<xref rid="MOESM1" ref-type="media">1</xref>
<xref rid="MOESM4" ref-type="media">4</xref>
. The data presented are averages of multiple analyses of each phase in each sample. In Supplementary Table 
<xref rid="MOESM4" ref-type="media">4</xref>
Fe
<sup>3+</sup>
/∑Fe data for garnets from the A154-N (Diavik) suite, determined by Mössbauer spectroscopy, are presented and the wt% oxide and cation analyses have incorporated this data. In Supplementary Table 
<xref rid="MOESM5" ref-type="media">5</xref>
Fe
<sup>3+</sup>
/∑Fe data for garnets from the Panda (Ekati) suite, determined by X-ray Absorption Near-Edge Structure spectroscopy (XANES), are presented. Major and minor element chemistry for garnets from Menzies
<italic>et al.</italic>
<sup>
<xref ref-type="bibr" rid="CR14">14</xref>
</sup>
are also re-presented, but with Fe
<sub>2</sub>
O
<sub>3</sub>
and Fe
<sup>3+</sup>
included in the wt% oxide and cation analyses respectively, calculated using the XANES measurements. All XANES Fe
<sup>3+</sup>
/∑Fe measurements are presented. New LA-ICPMS garnet trace element data are also presented.</p>
<p>Major element chemistry of mineral phases in the Panda samples and in some of the A154-N samples has been comprehensively described previously
<sup>
<xref ref-type="bibr" rid="CR8">8</xref>
,
<xref ref-type="bibr" rid="CR14">14</xref>
</sup>
. The mineral chemistry of the new A154-N samples is typical of other fertile garnet peridotite xenoliths from various locations around the world. Olivine Mg# (where Mg# = 100*Mg/[Mg+Fe]) varies from 90.0 to 92.9. All new A154-N samples are lherzolites and clinopyroxene is Cr-diopside-rich with Mg# ranging from 90.5 to 95.2, Na
<sub>2</sub>
O from 0.94 to 1.97 wt% and TiO
<sub>2</sub>
up to 0.23 wt%. Orthopyroxene has Mg# from 91.2 to 93.6, CaO from 0.22 to 1.09 wt% and Al
<sub>2</sub>
O
<sub>3</sub>
from 0.41 to 0.70 wt%. Garnets contain from 1.77 to 9.90 wt% Cr
<sub>2</sub>
O
<sub>3</sub>
, 4.32 to 6.95 wt% CaO and are classified as lherzolitic G9 types
<sup>
<xref ref-type="bibr" rid="CR17">17</xref>
</sup>
. CaO and Cr
<sub>2</sub>
O
<sub>3</sub>
are very well correlated. Fe
<sup>3+</sup>
/∑Fe was determined using Mössbauer spectroscopy and ranges from 0.022 to 0.105, similar to other suites of garnet peridotites
<sup>
<xref ref-type="bibr" rid="CR7">7</xref>
,
<xref ref-type="bibr" rid="CR10">10</xref>
,
<xref ref-type="bibr" rid="CR18">18</xref>
</sup>
. Mineral grains from all samples are homogenous within analytical uncertainty on an intra- and intergrain basis.</p>
<p>Trace element abundances in mineral phases present in the samples from the Panda kimberlite and the new samples from the A154-N kimberlite were determined using LA-ICPMS (see Methods) and are presented in Supplementary Tables 
<xref rid="MOESM2" ref-type="media">2</xref>
,
<xref rid="MOESM4" ref-type="media">4</xref>
and
<xref rid="MOESM5" ref-type="media">5</xref>
. Data for the remaining A154-N samples of Creighton
<italic>et al.</italic>
has not been presented
<sup>
<xref ref-type="bibr" rid="CR8">8</xref>
</sup>
.</p>
</sec>
<sec id="Sec5">
<title>Thermobarometry of the garnet peridotites</title>
<p>Based on conventional thermobarometry
<sup>
<xref ref-type="bibr" rid="CR19">19</xref>
,
<xref ref-type="bibr" rid="CR20">20</xref>
</sup>
, the Panda samples equilibrated at pressures from 2.3 ± 0.3 to 6.9 ± 0.3 GPa and temperatures from 717 ± 20 to 1271 ± 20 °C. The A154-N samples equilibrated at pressures from 2.0 ± 0.3 to 5.8 ± 0.3 GPa and temperatures from 457 ± 20 to 1269 ± 20 °C (Supplementary Table 
<xref rid="MOESM6" ref-type="media">6</xref>
). The coeval and geographically close nature of the Panda and A154-N kimberlites and the sampling of material over a depth interval that includes most of the vertical lithospheric section, afford an excellent opportunity to assess lateral and vertical heterogeneity in cratonic lithospheric mantle down to nearly 7 GPa (≈200 km depth).</p>
</sec>
<sec id="Sec6">
<title>Trace element mineral chemistry of the garnet peridotites</title>
<p>Abundances of incompatible trace elements in garnet (and clinopyroxene) are presented in Supplementary Tables 
<xref rid="MOESM2" ref-type="media">2</xref>
,
<xref rid="MOESM4" ref-type="media">4</xref>
and
<xref rid="MOESM5" ref-type="media">5</xref>
. Abundances of trace elements such as Y, Yb, Ga and Ti in garnet have long been recognized as indicators of the relative depleted versus enriched nature of garnet peridotite xenoliths
<sup>
<xref ref-type="bibr" rid="CR21">21</xref>
</sup>
. When abundances of these elements in garnet are plotted against pressure (P), it is clear that the Slave lithosphere under the A154-N pipe is highly depleted at depths shallower than ≈135 km (4.5 GPa) (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
). At greater depths, the garnets contain a much larger range and mostly higher abundances of these elements, indicating that the material present is variably and often strongly enriched. Under the Panda pipe at the nearby Ekati Diamond Mine, the lithospheric architecture is broadly similar to that under the nearby A154-N pipe, although the proportion of samples containing enriched garnet is lower. Also, at Ekati more depleted material was sampled from P > 4.5 GPa than was the case at Diavik. As for A154-N, Panda garnets derived from P ≤ 4.5 GPa are exclusively depleted in these trace elements relative to most higher-pressure garnets (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
).</p>
<p>Cratonic lithospheric garnet normalized Rare Earth Element patterns are distinctive – “sinusoidal” patterns are usually found in garnets in more depleted lithologies (harzburgites) but “normal” patterns are usually in more fertile lherzolitic lithologies
<sup>
<xref ref-type="bibr" rid="CR22">22</xref>
</sup>
. This is also observed in the current samples in that the shallower, depleted samples mostly exhibit “sinusoidal” patterns and the deeper, enriched samples have “normal” patterns (Fig. 
<xref rid="Fig2" ref-type="fig">2</xref>
). The Slave peridotitic garnet compositions therefore indicate strikingly that the upper part of the lithosphere (P ≤ 4.5 GPa) is depleted, but at P > 4.5 GPa, both depleted and variably enriched material is present. Thus, the central Slave cratonic lithosphere is characterized by two layers, the upper depleted and the lower containing both enriched and depleted components, with a remarkably sharp contact between the two at a depth of ≈140 km. Broadly similar inferences were made by Griffin
<italic>et al.</italic>
<sup>
<xref ref-type="bibr" rid="CR23">23</xref>
</sup>
based on garnet and Cr-spinel heavy mineral concentrates from Cretaceous-Tertiary central Slave Craton kimberlites.
<fig id="Fig2">
<label>Figure 2</label>
<caption>
<p>Primitive Mantle normalized
<sup>
<xref ref-type="bibr" rid="CR60">60</xref>
</sup>
garnet REE patterns from depleted and enriched garnets from the Panda and new A154-N samples. Depleted garnets contain <200 ppm Ti. Nearly all depleted garnets have strongly sinusoidal REE patterns, whereas the majority of enriched garnets have normal patterns. Sample numbers are indicated in the key. In the case of the Diavik samples, the samples numbers quoted in the key correspond to the last three digits of the full sample numbers listed in Supplementary Table
<xref rid="MOESM4" ref-type="media">4</xref>
.</p>
</caption>
<graphic xlink:href="41598_2017_49_Fig2_HTML" id="d29e671"></graphic>
</fig>
</p>
</sec>
<sec id="Sec7">
<title>Oxygen fugacity determinations</title>
<p>Oxygen fugacity conditions experienced by the xenoliths prior to entrainment in the host kimberites were calculated using the garnet peridotite oxybarometer of Stagno
<italic>et al.</italic>
<sup>
<xref ref-type="bibr" rid="CR3">3</xref>
</sup>
. Relative to the fayalite-magnetite-quartz (FMQ) redox buffer calculated for the pressure-temperature (PT) conditions of equilibration of each mantle xenolith, we obtained Δlog
<italic>f</italic>
O
<sub>2</sub>
[FMQ] from −0.47 to −3.89 log units (±0.6 log units) for the Panda suite and 0.18 to −3.36 log units for the new A154-N suite (Supplementary Table 
<xref rid="MOESM6" ref-type="media">6</xref>
). Combining the new A154-N data with those from Creighton
<italic>et al.</italic>
<sup>
<xref ref-type="bibr" rid="CR8">8</xref>
</sup>
, recalculated using the Stagno
<italic>et al.</italic>
<sup>
<xref ref-type="bibr" rid="CR3">3</xref>
</sup>
calibration, defines a range of Δlog
<italic>f</italic>
O
<sub>2</sub>
[FMQ] from +0.95 to −4.11 log units over a PT range of 2.01 to 6.85 GPa and 457 to 1346 °C for the full Diavik suite.</p>
</sec>
</sec>
<sec id="Sec8" sec-type="discussion">
<title>Discussion</title>
<p>In Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
, the variation in
<italic>f</italic>
O
<sub>2</sub>
as a function of depth for the A154-N and Panda samples is plotted, revealing several features;
<list list-type="order">
<list-item>
<p>Δlog
<italic>f</italic>
O
<sub>2</sub>
[FMQ] varies by up to ≈4 log units at almost any depth; Lateral heterogeneity in oxygen fugacity of 3 log units has also been observed in the northern part of the Slave Craton using eclogite and pyroxenite xenoliths
<sup>
<xref ref-type="bibr" rid="CR24">24</xref>
</sup>
.</p>
</list-item>
<list-item>
<p>The shallow, depleted Panda samples and some depleted A154-N samples define a broad trend of decreasing
<italic>f</italic>
O
<sub>2</sub>
with increasing pressure down to 5.0 GPa.</p>
</list-item>
<list-item>
<p>At P > 4.5 GPa, there is a trend to more oxidized values than expected by deeper extrapolation of the lower pressure
<italic>f</italic>
O
<sub>2</sub>
-P trend (grey field on Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
). Samples defining this oxidized zone (yellow field on Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
) include nearly all enriched A154-N samples, all enriched Panda samples and 5 of the depleted Panda samples. These 5 depleted Panda samples were classified as depleted on the basis of their low garnet Ti contents (<200 ppm), but they are relatively enriched in Yb, Y and Ga (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
). Hence, this deep, oxidized domain corresponds quite precisely to the trace element enriched layer in the lower part of the lithosphere and to the diamond stability field defined in P-T-
<italic>f</italic>
O
<sub>2</sub>
space, although 8 of the A154-N samples of Creighton
<italic>et al.</italic>
<sup>
<xref ref-type="bibr" rid="CR8">8</xref>
</sup>
lie in the carbonate stability field (Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
).</p>
</list-item>
</list>
<fig id="Fig3">
<label>Figure 3</label>
<caption>
<p>Δlog
<italic>f</italic>
O
<sub>2</sub>
[FMQ]
<sup>3</sup>
<italic>vs</italic>
. pressure in GPa for the current and published, depleted or enriched garnet peridotite xenolith data from the Slave, Kaapvaal and Siberian Cratons
<sup>
<xref ref-type="bibr" rid="CR6">6</xref>
<xref ref-type="bibr" rid="CR8">8</xref>
,
<xref ref-type="bibr" rid="CR10">10</xref>
,
<xref ref-type="bibr" rid="CR61">61</xref>
</sup>
. Grey field encompasses almost entirely depleted Slave Craton samples and the yellow field mostly enriched Slave Craton samples. NiPC is the Ni precipitation curve
<sup>
<xref ref-type="bibr" rid="CR5">5</xref>
</sup>
. The pressure of the graphite-diamond transition was determined from Kennedy and Kennedy
<sup>
<xref ref-type="bibr" rid="CR62">62</xref>
</sup>
assuming a 35 mWm
<sup>−2</sup>
cratonic geotherm
<sup>
<xref ref-type="bibr" rid="CR63">63</xref>
</sup>
. EMOG and EMOD refer to limiting reactions for carbonate/diamond stability in harzburgitic assemblages (enstatite + magnesite = forsterite + graphite/diamond + O
<sub>2</sub>
)
<sup>
<xref ref-type="bibr" rid="CR3">3</xref>
,
<xref ref-type="bibr" rid="CR64">64</xref>
</sup>
, calculated along an assumed 35 mWm
<sup>−2</sup>
cratonic geotherm. The red curves are contours of the relationship between oxygen fugacity and pressure for equal mole fractions of CO
<sub>2</sub>
in silicate melts (indicated by the red numbers next to each curve) calculated following Stagno
<italic>et al.</italic>
<sup>
<xref ref-type="bibr" rid="CR25">25</xref>
</sup>
. The black cross in the upper left corner indicates the estimated uncertainties in the
<italic>f</italic>
O
<sub>2</sub>
and pressure calculations, based on Stagno
<italic>et al.</italic>
<sup>
<xref ref-type="bibr" rid="CR25">25</xref>
</sup>
and Nimis and Grütter
<sup>
<xref ref-type="bibr" rid="CR20">20</xref>
</sup>
.</p>
</caption>
<graphic xlink:href="41598_2017_49_Fig3_HTML" id="d29e888"></graphic>
</fig>
</p>
<p>Thus, although the central Slave cratonic lithosphere at P < 4.5 GPa decreases in
<italic>f</italic>
O
<sub>2</sub>
with increasing pressure as predicted by thermodynamic considerations, at P > 4.5 GPa, there are no samples with
<italic>f</italic>
O
<sub>2</sub>
values on the extrapolation of this trend to higher pressures. Instead almost all samples from these depths are at least 1–4 log units higher in
<italic>f</italic>
O
<sub>2</sub>
. Given that the majority of these deep and oxidized samples are enriched relative to the samples from shallower depths (P < 4.5 GPa), we argue that they have been metasomatised and that the metasomatism was strongly oxidising. This effectively requires addition of oxygen to the deep cratonic lithosphere. Likely candidates for the responsible metasomatic agents are carbonate-bearing, silicate melts
<sup>
<xref ref-type="bibr" rid="CR3">3</xref>
,
<xref ref-type="bibr" rid="CR25">25</xref>
</sup>
, possibly derived from the deeper, reduced asthenosphere
<sup>
<xref ref-type="bibr" rid="CR26">26</xref>
</sup>
(at >230 km depth, i.e. P > 7 GPa), or saline, hydrous fluids derived from a postulated subducted slab beneath the base of the Slave cratonic lithosphere
<sup>
<xref ref-type="bibr" rid="CR27">27</xref>
</sup>
. Such melts may contribute to the commonly observed elevated modes of orthopyroxene in some garnet peridotite xenolith suites
<sup>
<xref ref-type="bibr" rid="CR28">28</xref>
</sup>
, in a manner similar to that proposed by Kelemen
<sup>
<xref ref-type="bibr" rid="CR29">29</xref>
</sup>
.</p>
<p>At these pressures the mantle may be still under-saturated in metallic FeNi
<sup>
<xref ref-type="bibr" rid="CR4">4</xref>
</sup>
. Stagno
<italic>et al.</italic>
<sup>
<xref ref-type="bibr" rid="CR3">3</xref>
,
<xref ref-type="bibr" rid="CR25">25</xref>
</sup>
showed that silicate melts with dilute carbonate contents could be stable at the relatively reduced
<italic>f</italic>
O
<sub>2</sub>
values of the mantle at these depths because of the lower carbonate activity relative to that of low-SiO
<sub>2</sub>
carbonatite melts (Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
). If these carbonated, silicate melts segregate and percolate upwards through parts of the deep cratonic lithosphere they would encounter progressively cooler conditions along the cratonic geotherm, at some point freezing into the lithospheric mantle as the appropriate peridotite + volatile solidus is locally crossed
<sup>
<xref ref-type="bibr" rid="CR30">30</xref>
</sup>
. The oxidized carbon species exsolved from the melt during crystallisation would reduce to C or CH
<sub>4</sub>
(CO
<sub>2</sub>
 = C + O
<sub>2</sub>
; CO
<sub>2</sub>
 + 2H
<sub>2</sub>
O = CH
<sub>4</sub>
 + 2O
<sub>2</sub>
). Very minor amounts of such C and H might be incorporated into nominally volatile-free, peridotitic silicate minerals (such as olivine, ortho- and clinopyroxene, garnet)
<sup>
<xref ref-type="bibr" rid="CR31">31</xref>
,
<xref ref-type="bibr" rid="CR32">32</xref>
</sup>
, or if in excess, may form CH
<sub>4</sub>
and/or diamond when in contact with reduced deep peridotite. Some of the Fe
<sup>2+</sup>
in the melt and wall rock would oxidize to Fe
<sup>3+</sup>
(2FeO + 1/2 O
<sub>2</sub>
 = Fe
<sub>2</sub>
O
<sub>3</sub>
). This and other components would be incorporated into garnet and pyroxenes, leading to the observed increase in lithospheric
<italic>f</italic>
O
<sub>2</sub>
associated with metasomatism. The increased activity of H
<sub>2</sub>
O may cause a substantial drop in the solidus temperature of peridotite and consequent partial melting, if the quantity of newly formed H
<sub>2</sub>
O exceeds the storage capacity of nominally anhydrous minerals in peridotite at given pressure, temperature and
<italic>f</italic>
O
<sub>2</sub>
(refs
<xref ref-type="bibr" rid="CR30">30</xref>
and
<xref ref-type="bibr" rid="CR33">33</xref>
), a process known as hydrous redox melting
<sup>
<xref ref-type="bibr" rid="CR34">34</xref>
,
<xref ref-type="bibr" rid="CR35">35</xref>
</sup>
.</p>
<p>An alternative scenario for metasomatism of the deep Slave cratonic lithosphere has been proposed by Weiss
<italic>et al.</italic>
<sup>
<xref ref-type="bibr" rid="CR27">27</xref>
</sup>
, whereby hydrous, carbon-bearing and saline fluids in a subducted slab underlying the cratonic lithosphere percolate into the overlying lithosphere, evolving to silicic and carbonatitic melts which are preserved as inclusions in syngenetic fibrous diamonds. Similarly, Miller
<italic>et al.</italic>
<sup>
<xref ref-type="bibr" rid="CR36">36</xref>
</sup>
proposed a model of fibrous and non-fibrous diamond formation from reduction of carbonatitic fluids under Ekati, accompanied by enrichment of the mantle in Ca and REE. Reduction of carbonate components in such fluids to diamond could conceivably be accompanied by oxidation of Fe
<sup>2+</sup>
in residual fluids and silicate phases which might crystallise from them.</p>
<p>The observations and processes described above have important general implications for the petrogenesis of kimberlites, some of which (including those discussed here) are primary hosts of economic diamond deposits. High pressure experimental investigations show that group I kimberlite magmas likely formed from low degree melting of carbonate + H
<sub>2</sub>
O-bearing garnet harzburgite at pressures near the base of typical cratonic lithosphere
<sup>
<xref ref-type="bibr" rid="CR37">37</xref>
<xref ref-type="bibr" rid="CR40">40</xref>
</sup>
, whereas group II kimberlitic magmas (orangeites) may have formed from phlogopite-bearing peridotite
<sup>
<xref ref-type="bibr" rid="CR41">41</xref>
</sup>
. The pressure-temperature conditions for the origins of group I kimberlites were proposed to be those at which the primary melt is saturated in magnesite-bearing garnet peridotite, but will vary with the details of volatile contents and species
<sup>
<xref ref-type="bibr" rid="CR37">37</xref>
</sup>
. Ca-bearing magnesite is most likely a necessary phase in the peridotitic melting assemblage to form primary, carbonate-rich melts which can evolve to kimberlite
<sup>
<xref ref-type="bibr" rid="CR37">37</xref>
</sup>
.</p>
<p>This introduces a problem, because at depths corresponding to the likely source regions of kimberlites (near the base of cratonic lithosphere at ≈5–7 GPa [160–230 km], or deeper in the asthenosphere) ambient peridotite mantle oxygen fugacity is too low for crystalline carbonate stability. Predictions from thermodynamic arguments and trends from direct measurements of depleted garnet peridotite xenoliths, as presented here, show that the mantle’s
<italic>f</italic>
O
<sub>2</sub>
at these depths (≈160–230 km) is approaching the Ni precipitation curve at around the iron-wüstite (IW) buffer
<sup>
<xref ref-type="bibr" rid="CR4">4</xref>
,
<xref ref-type="bibr" rid="CR7">7</xref>
</sup>
. Hence, the pre-metasomatic, deep cratonic lithosphere may have been too reduced for carbonate to be stable as a crystalline solid solution (i.e. Ca-magnesite). Even deep lithosphere oxidized by metasomatism, as represented by the xenoliths discussed here, is mostly too reduced for crystalline carbonate stability. Rather such pressure-temperature-
<italic>f</italic>
O
<sub>2</sub>
conditions favour the stability of diamonds as the solid carbon phase in equilibrium with a metasomatic, carbonate-poor, but water-bearing silicate melt
<sup>
<xref ref-type="bibr" rid="CR3">3</xref>
</sup>
.</p>
<p>Tappe
<italic>et al.</italic>
<sup>
<xref ref-type="bibr" rid="CR26">26</xref>
</sup>
have proposed a model for genesis of the Lac de Gras kimberlites, based in part on radiogenic isotope systematics. Lac de Gras kimberlites exhibit restricted ranges in Sr and Nd isotopic compositions, close to bulk earth and CHUR values, but extreme heterogeneity in Hf isotope compositions (Δε
<sub>Hf</sub>
varies from +5 to −5). In addition, the Lac de Gras kimberlites are known to have transported ultra-deep diamonds
<sup>
<xref ref-type="bibr" rid="CR42">42</xref>
</sup>
to the surface. The decoupling of different radiogenic isotope systems and evidence of ultra-deep components in the kimberlites has been explained by a model in which ancient, deeply recycled crustal lithologies (both MORB
<sup>
<xref ref-type="bibr" rid="CR43">43</xref>
</sup>
and OIB
<sup>
<xref ref-type="bibr" rid="CR26">26</xref>
</sup>
) in the Mantle Transition Zone (MTZ) underwent partial melting. These melts refertilised refractory peridotite wall-rock in the MTZ or deep upper mantle. Vigorous mantle convection transported the refertilised domains upwards, in some cases allowing transport of ultra-deep diamonds (and their inclusions) from the deep upper mantle or MTZ, to shallower levels. Some of the refertilised domains may have reached depths at which the peridotite mantle was no longer metal saturated (≤300 km)
<sup>
<xref ref-type="bibr" rid="CR4">4</xref>
</sup>
and may have undergone redox partial melting to produce CO
<sub>2</sub>
-bearing, silicate magmas
<sup>
<xref ref-type="bibr" rid="CR25">25</xref>
</sup>
. These magmas were then transported into the deep cratonic lithosphere, metasomatically enriching and oxidizing it over time.</p>
<p>Progressive, long term oxidation of conduits or zones in the deep cratonic lithosphere by infiltrating carbonate-bearing silicate melts, in the manner described above, or by the incorporation of subducted carbonate-bearing crustal material, and associated complex redox-melting and freezing reactions
<sup>
<xref ref-type="bibr" rid="CR27">27</xref>
,
<xref ref-type="bibr" rid="CR44">44</xref>
,
<xref ref-type="bibr" rid="CR45">45</xref>
</sup>
, could lead to pressure-temperature-
<italic>f</italic>
O
<sub>2</sub>
conditions under which crystalline carbonate phases (Ca-magnesite) become stable in deep, refractory cratonic peridotite relative to diamond or CH
<sub>4</sub>
-fluids. These may ultimately constitute
<italic>f</italic>
O
<sub>2</sub>
heterogeneities, which could be oxidized and chemically enriched, localized sources of carbonatites, kimberlites and other highly silica-undersaturated magmas
<sup>
<xref ref-type="bibr" rid="CR46">46</xref>
,
<xref ref-type="bibr" rid="CR47">47</xref>
</sup>
. This metasomatism may also add accessory phlogopite or K-richterite to the deep lithosphere
<sup>
<xref ref-type="bibr" rid="CR30">30</xref>
,
<xref ref-type="bibr" rid="CR48">48</xref>
</sup>
, phases implicated in the petrogenesis of some alkali-rich magmas
<sup>
<xref ref-type="bibr" rid="CR41">41</xref>
,
<xref ref-type="bibr" rid="CR46">46</xref>
,
<xref ref-type="bibr" rid="CR49">49</xref>
,
<xref ref-type="bibr" rid="CR50">50</xref>
</sup>
. Therefore, carbonatites and kimberlites may form at these depths only after long-term redox pre-conditioning of source regions near the base of the cratonic lithosphere (≈5–7 GPa) by metasomatism, where the pre-conditioning involved trace element enrichment and oxidation to levels of carbonate, rather than diamond stability.</p>
</sec>
<sec id="Sec9">
<title>Methods</title>
<sec id="Sec10">
<title>Sample preparation</title>
<p>The Panda samples were mounted in 1-inch diameter round epoxy buttons, sectioned and polished to expose mineral phases. The new A154-N samples were presented as polished thin-sections (thickness 60 µm).</p>
</sec>
<sec id="Sec11">
<title>Conventional electronprobe microanalysis</title>
<p>The major and minor element compositions of mineral phases from the new A154-N garnet peridotite samples were determined by wave-length dispersive electronprobe microanalysis (EPMA) using the 4–spectrometer Cameca SX100 instrument at the Australian National University (ANU). Calibration was performed using a range of well-characterised natural minerals standards. Column conditions were 15 kV and 20 nA, with the beam focused to 1 µm diameter. Peak counting times varied from 10–60 seconds, depending on element abundance, and background counting times varied from 5–30 seconds.</p>
</sec>
<sec id="Sec12">
<title>Laser ablation-ICPMS</title>
<p>Trace element abundances in garnet and clinopyroxene in the xenoliths were measured by laser ablation ICP-MS, using the instrument at RSES, ANU. This consists of an Excimer 193 nm laser coupled to a purpose built sample cell and an Agilent 7500 ICP-MS
<sup>
<xref ref-type="bibr" rid="CR51">51</xref>
,
<xref ref-type="bibr" rid="CR52">52</xref>
</sup>
.</p>
<p>Analytical conditions used were typically as follows. The laser spot size was varied from 135 to 225 µm depending on the nature of the phase being analysed. The laser pulsed at 5 Hz. For each analysis a gas blank (laser off) was collected for 25 seconds, the laser triggered, and the signal collected for a further 35 seconds. The ablation atmosphere was He and the ablated material was delivered to the Ar plasma in an Ar/H
<sub>2</sub>
mixture. The ionised material was analysed in peak hopping mode by the quadrupole mass spectrometer.</p>
<p>The analytical protocol typically consisted of analyses of the calibrating standard (NIST612 glass) bracketing 6–10 unknowns. BCR2g glass or garnet MU53388
<sup>
<xref ref-type="bibr" rid="CR53">53</xref>
</sup>
were also analysed as unknowns to provide a check on data quality. In almost all cases, measured trace element abundances in BCR2g and MU53388 were within 5–10% of accepted values.</p>
<p>
<sup>43</sup>
Ca was used as the internal reference element, based on CaO determined by EPMA. The values for NIST612 of Pearce
<italic>et al.</italic>
<sup>
<xref ref-type="bibr" rid="CR54">54</xref>
</sup>
were used in the data reduction. A linear drift correction was applied to the background corrected signal for each analysed mass, based on interpolation between bracketing analyses of calibration standards
<sup>
<xref ref-type="bibr" rid="CR51">51</xref>
</sup>
.</p>
</sec>
<sec id="Sec13">
<title>Mössbauer spectroscopy</title>
<p>Garnet Fe
<sup>3+</sup>
/∑Fe from the new A154-N samples was measured using Mössbauer spectroscopy applied to ≈20 mg samples of clean, inclusion and alteration-free garnet fragments, separated by hand-picking under a binocular microscope from crushed portions of all xenoliths except 60505115. Garnet grains from sample 60505115 exhibited cloudy interiors as a result of the presence of abundant inclusions, and were therefore not considered suitable for bulk analysis using Mössbauer spectroscopy. Separated material from the other samples was washed for 5 minutes in HF acid to remove any surface alteration. The acid-washed grain fragments were then inspected with a binocular microscope to ensure that they were free of inclusions and alteration material. Analysis and data reduction were performed at the University of Frankfurt following well-established procedures of Woodland and Koch
<sup>
<xref ref-type="bibr" rid="CR10">10</xref>
</sup>
and Woodland and Ross
<sup>
<xref ref-type="bibr" rid="CR55">55</xref>
</sup>
. Garnet grains separated from these samples have been used as calibration standards for the XANES method for determining Fe
<sup>3+</sup>
in mantle garnet
<sup>
<xref ref-type="bibr" rid="CR7">7</xref>
,
<xref ref-type="bibr" rid="CR18">18</xref>
,
<xref ref-type="bibr" rid="CR56">56</xref>
,
<xref ref-type="bibr" rid="CR57">57</xref>
</sup>
.</p>
</sec>
<sec id="Sec14">
<title>X-ray Absorption Near-Edge Structure (XANES) spectroscopy</title>
<p>Garnet Fe
<sup>3+</sup>
/∑Fe was determined on the Panda xenoliths using the Fe K-edge XANES method of Berry
<italic>et al.</italic>
<sup>
<xref ref-type="bibr" rid="CR56">56</xref>
</sup>
. Spectra were collected at the X-ray Fluorescence Microscopy beamline at the Australian Synchrotron
<sup>
<xref ref-type="bibr" rid="CR58">58</xref>
</sup>
. The method was calibrated using homogenous garnet standards from the new A154-N samples, for which Fe
<sup>3+</sup>
/∑Fe was previously determined by Mössbauer spectroscopy and the suite of Kaapvaal samples of Woodland and Koch
<sup>
<xref ref-type="bibr" rid="CR10">10</xref>
</sup>
, for which garnet Fe
<sup>3+</sup>
/∑Fe was also determined by Mössbauer spectroscopy. Up to three individual garnet grains per sample were measured.</p>
<p>Following Berry
<italic>et al.</italic>
<sup>
<xref ref-type="bibr" rid="CR56">56</xref>
</sup>
the calibration curve obtained at the beamline related the normalized intensity ratios of the post-edge features in the XANES spectrum at 7138.4 and 7161.7 eV to the Fe
<sup>3+</sup>
/∑Fe of the standard garnets as determined by Mössbauer spectroscopy (Fig. 
<xref rid="Fig4" ref-type="fig">4</xref>
). The precision of the XANES Fe
<sup>3+</sup>
/∑Fe measurements is estimated at ±0.012, comparable with that of the Mössbauer measurements
<sup>
<xref ref-type="bibr" rid="CR10">10</xref>
</sup>
.
<fig id="Fig4">
<label>Figure 4</label>
<caption>
<p>Calibration curve for the XANES measurements, relating Fe
<sup>3+</sup>
/∑Fe as determined by Mössbauer spectroscopy on standard garnets from garnet peridotite xenoliths with the normalized intensity ratio of post-edge features in the Fe XANES spectrum at 7138.4 and 7161.7 eV.</p>
</caption>
<graphic xlink:href="41598_2017_49_Fig4_HTML" id="d29e1356"></graphic>
</fig>
</p>
</sec>
<sec id="Sec15">
<title>Thermobarometry</title>
<p>Equilibration pressures and temperatures were calculated for the new A154-N and Panda xenoliths using conventional thermometers and barometers. The results are presented in Supplementary Table 
<xref rid="MOESM6" ref-type="media">6</xref>
. For the A154-N samples, the approach of Nimis and Grütter
<sup>
<xref ref-type="bibr" rid="CR20">20</xref>
</sup>
was used as this has been shown to be a suitable thermometer and barometer combination for garnet lherzolite assemblages
<sup>
<xref ref-type="bibr" rid="CR20">20</xref>
</sup>
. However, because many of the Panda samples do not contain modal clinopyroxene, the garnet-olivine thermometer of O’Neill and Wood
<sup>
<xref ref-type="bibr" rid="CR59">59</xref>
</sup>
combined with the garnet-orthopyroxene barometer of Brey and Köhler
<sup>
<xref ref-type="bibr" rid="CR19">19</xref>
</sup>
was preferred. Fe
<sup>3+</sup>
in garnet determined by XANES spectroscopy was incorporated into the calculations.</p>
</sec>
<sec id="Sec16">
<title>Calculation of oxygen fugacity</title>
<p>The presence in the new samples of fresh garnet, olivine and orthopyroxene was used as a basis for selection for garnet Fe
<sup>3+</sup>
analysis, to enable calculation of the samples’
<italic>f</italic>
O
<sub>2</sub>
<sup>3</sup>
. This information (Supplementary Tables 
<xref rid="MOESM4" ref-type="media">4</xref>
and
<xref rid="MOESM5" ref-type="media">5</xref>
), combined with the results of thermobarometry and the major element compositions of co-existing olivine and orthopyroxene measured by electronprobe microanalysis
<sup>
<xref ref-type="bibr" rid="CR8">8</xref>
,
<xref ref-type="bibr" rid="CR14">14</xref>
</sup>
, enabled calculation of the
<italic>f</italic>
O
<sub>2</sub>
conditions
<sup>
<xref ref-type="bibr" rid="CR3">3</xref>
</sup>
which the xenoliths experienced prior to entrainment in the host kimberlite (Supplementary Table 
<xref rid="MOESM6" ref-type="media">6</xref>
).</p>
<p>All
<italic>f</italic>
O
<sub>2</sub>
calculations presented in this paper were calculated (or re-calculated) using the experimental calibration for garnet peridotite assemblages of Stagno
<italic>et al.</italic>
<sup>
<xref ref-type="bibr" rid="CR3">3</xref>
</sup>
and garnet Fe
<sup>3+</sup>
/∑Fe determinations by Mössbauer spectroscopy (the new samples from A154-N, following the method of Woodland and Koch
<sup>
<xref ref-type="bibr" rid="CR10">10</xref>
</sup>
), or Fe K-edge XANES (the Panda samples, following the method of Berry
<italic>et al.</italic>
<sup>
<xref ref-type="bibr" rid="CR56">56</xref>
</sup>
). This data was coupled with new mineral compositional data for the new A154-N samples, previously reported data for the Panda
<sup>
<xref ref-type="bibr" rid="CR14">14</xref>
</sup>
suite and the earlier A154-N suite
<sup>
<xref ref-type="bibr" rid="CR8">8</xref>
</sup>
and with the thermobarometric data as reported above. Uncertainties in the
<italic>f</italic>
O
<sub>2</sub>
calculations are estimated at ±0.6 log units.</p>
</sec>
</sec>
<sec sec-type="supplementary-material">
<title>Electronic supplementary material</title>
<sec id="Sec17">
<p>
<supplementary-material content-type="local-data" id="MOESM1">
<media xlink:href="41598_2017_49_MOESM1_ESM.xls">
<caption>
<p>Supplementary Table 1</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM2">
<media xlink:href="41598_2017_49_MOESM2_ESM.xls">
<caption>
<p>Supplementary Table 2</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM3">
<media xlink:href="41598_2017_49_MOESM3_ESM.xls">
<caption>
<p>Supplementary Table 3</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM4">
<media xlink:href="41598_2017_49_MOESM4_ESM.xls">
<caption>
<p>Supplementary Table 4</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM5">
<media xlink:href="41598_2017_49_MOESM5_ESM.xls">
<caption>
<p>Supplementary Table 5</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM6">
<media xlink:href="41598_2017_49_MOESM6_ESM.xls">
<caption>
<p>Supplementary Table 6</p>
</caption>
</media>
</supplementary-material>
</p>
</sec>
</sec>
</body>
<back>
<fn-group>
<fn>
<p>
<bold>Electronic supplementary material</bold>
</p>
<p>
<bold>Supplementary information</bold>
accompanies this paper at doi:10.1038/s41598-017-00049-3 </p>
</fn>
<fn>
<p>
<bold>Publisher's note:</bold>
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p>
</fn>
</fn-group>
<ack>
<title>Acknowledgements</title>
<p>This work was undertaken whilst GY was the recipient of an Australian Research Council (ARC) Future Fellowship (FT0990907) and an ARC Linkage Grant (LP0668981) on which AMIRA International was the Partner Organisation. AB also thanks the ARC for the award of a Future Fellowship (FT120100766). AR was supported by a Marie-Curie International Incoming Fellowship (302637), an Auvergne Fellowship and Prof. SW Faryad (GAČR-project # 242–201209). Samples were kindly supplied by Paul Agnew of Rio Tinto Exploration (Diavik) and Herman Grütter of BHP-Billiton (Ekati). We gratefully acknowledge the expertise of Robert Rapp (ANU electron microprobe) and Charlotte Allen (ANU LA-ICPMS). The XANES spectra were acquired at the X-ray Fluorescence Microscopy beamline of the Australian Synchrotron, Victoria, Australia, with the expert assistance of the beamline scientists Martin de Jonge and Daryl Howard. Prokopiy Vasiliev assisted with collection of the XANES spectra from the Ekati suite. We thank Jörg Hermann and Lynton Jacques for constructive comments on an earlier version of the manuscript and Sebastian Tappe and Maya Kopylova for constructive journal reviews.</p>
<sec id="FPar1">
<title>Author Contributions</title>
<p>All co-authors contributed to the writing of the manuscript and to the concepts presented. G.Y., A.B. and D.P. participated in the XANES experiments. G.Y. performed the electronprobe microanalysis of the new A154-N samples. A.R. conducted the LA-ICPMS measurements of the new A154-N and the Panda samples and A.W. performed the Mössbauer spectroscopic measurements on the A154-N samples.</p>
</sec>
<sec id="FPar2">
<title>Competing financial interests</title>
<p>The authors declare no competing financial interests.</p>
</sec>
</ack>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dasgupta</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Hirschmann</surname>
<given-names>MM</given-names>
</name>
</person-group>
<article-title>The deep carbon cycle and melting in Earth’s interior</article-title>
<source>Earth. Planet. Sci. Lett.</source>
<year>2010</year>
<volume>298</volume>
<fpage>1</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="doi">10.1016/j.epsl.2010.06.039</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gudmundsson</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Wood</surname>
<given-names>BJ</given-names>
</name>
</person-group>
<article-title>Experimental Tests of Garnet Peridotite Oxygen Barometry</article-title>
<source>Contrib. Mineral. Petrol.</source>
<year>1995</year>
<volume>119</volume>
<fpage>56</fpage>
<lpage>67</lpage>
<pub-id pub-id-type="doi">10.1007/BF00310717</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stagno</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Ojwang</surname>
<given-names>DO</given-names>
</name>
<name>
<surname>McCammon</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Frost</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>The oxidation state of the mantle and the extraction of carbon from Earth/‘s interior</article-title>
<source>Nature</source>
<year>2013</year>
<volume>493</volume>
<fpage>84</fpage>
<lpage>88</lpage>
<pub-id pub-id-type="doi">10.1038/nature11679</pub-id>
<pub-id pub-id-type="pmid">23282365</pub-id>
</element-citation>
</ref>
<ref id="CR4">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Frost</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>McCammon</surname>
<given-names>CA</given-names>
</name>
</person-group>
<article-title>The redox state of Earth’s mantle</article-title>
<source>Ann. Rev. Earth Planet. Sci</source>
<year>2008</year>
<volume>36</volume>
<fpage>389</fpage>
<lpage>420</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.earth.36.031207.124322</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>O’Neill</surname>
<given-names>HSC</given-names>
</name>
<name>
<surname>Wall</surname>
<given-names>VJ</given-names>
</name>
</person-group>
<article-title>The Olivine—Orthopyroxene—Spinel Oxygen Geobarometer, the Nickel Precipitation Curve, and the Oxygen Fugacity of the Earth’s Upper Mantle</article-title>
<source>J. Petrol.</source>
<year>1987</year>
<volume>28</volume>
<fpage>1169</fpage>
<lpage>1191</lpage>
<pub-id pub-id-type="doi">10.1093/petrology/28.6.1169</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goncharov</surname>
<given-names>AG</given-names>
</name>
<name>
<surname>Ionov</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Doucet</surname>
<given-names>LS</given-names>
</name>
<name>
<surname>Pokhilenko</surname>
<given-names>LN</given-names>
</name>
</person-group>
<article-title>Thermal state, oxygen fugacity and C-O-H fluid speciation in cratonic lithospheric mantle: New data on peridotite xenoliths from the Udachnaya kimberlite, Siberia</article-title>
<source>Earth Planet. Sci. Lett.</source>
<year>2012</year>
<volume>357–358</volume>
<fpage>99</fpage>
<lpage>110</lpage>
<pub-id pub-id-type="doi">10.1016/j.epsl.2012.09.016</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yaxley</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Berry</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Kamenetsky</surname>
<given-names>VS</given-names>
</name>
<name>
<surname>Woodland</surname>
<given-names>AB</given-names>
</name>
<name>
<surname>Golovin</surname>
<given-names>AV</given-names>
</name>
</person-group>
<article-title>An oxygen fugacity profile through the Siberian Craton; Fe K-edge XANES determinations of Fe
<sup>3+</sup>
/∑Fe in garnets in peridotite xenoliths from the Udachnaya East kimberlite</article-title>
<source>Lithos</source>
<year>2012</year>
<volume>140–141</volume>
<fpage>142</fpage>
<lpage>151</lpage>
<pub-id pub-id-type="doi">10.1016/j.lithos.2012.01.016</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Creighton</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Stachel</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Eichenberg</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Luth</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Oxidation state of the lithospheric mantle beneath Diavik diamond mine, central Slave craton, NWT, Canada</article-title>
<source>Contrib. Mineral. Petrol</source>
<year>2010</year>
<volume>159</volume>
<fpage>645</fpage>
<lpage>657</lpage>
<pub-id pub-id-type="doi">10.1007/s00410-009-0446-x</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Creighton</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Oxidation of the Kaapvaal lithospheric mantle driven by metasomatism</article-title>
<source>Contrib. Mineral. Petrol.</source>
<year>2009</year>
<volume>157</volume>
<fpage>491</fpage>
<lpage>504</lpage>
<pub-id pub-id-type="doi">10.1007/s00410-008-0348-3</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Woodland</surname>
<given-names>AB</given-names>
</name>
<name>
<surname>Koch</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, Southern Africa</article-title>
<source>Earth Planet. Sci. Lett.</source>
<year>2003</year>
<volume>214</volume>
<fpage>295</fpage>
<lpage>310</lpage>
<pub-id pub-id-type="doi">10.1016/S0012-821X(03)00379-0</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lazarov</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Woodland</surname>
<given-names>AB</given-names>
</name>
<name>
<surname>Brey</surname>
<given-names>GP</given-names>
</name>
</person-group>
<article-title>Thermal state and redox conditions of the Kaapvaal mantle: A study of xenoliths from the Finsch mine, South Africa</article-title>
<source>Lithos</source>
<year>2009</year>
<volume>112</volume>
<fpage>913</fpage>
<lpage>923</lpage>
<pub-id pub-id-type="doi">10.1016/j.lithos.2009.03.035</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luth</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Virgo</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Boyd</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Wood</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Ferric iron in mantle-derived garnets</article-title>
<source>Contrib. Mineral. Petrol.</source>
<year>1990</year>
<volume>104</volume>
<fpage>56</fpage>
<lpage>72</lpage>
<pub-id pub-id-type="doi">10.1007/BF00310646</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Canil</surname>
<given-names>D</given-names>
</name>
<name>
<surname>ONeill</surname>
<given-names>HSC</given-names>
</name>
</person-group>
<article-title>Distribution of ferric iron in some upper-mantle assemblages</article-title>
<source>J. Petrol.</source>
<year>1996</year>
<volume>37</volume>
<fpage>609</fpage>
<lpage>635</lpage>
<pub-id pub-id-type="doi">10.1093/petrology/37.3.609</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Menzies</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Peridotitic mantle xenoliths from kimberlites on the Ekati Diamond Mine property, NWT, Canada: major element compositions and implications for the lithosphere beneath the central Slave craton</article-title>
<source>Lithos</source>
<year>2004</year>
<volume>77</volume>
<fpage>395</fpage>
<lpage>412</lpage>
<pub-id pub-id-type="doi">10.1016/j.lithos.2004.04.013</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Creaser</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Grütter</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Carlson</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Crawford</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Macrocrystal phlogopite Rb-Sr dates for the Ekati property kimberlites, Slave Province, Canada: Evidence for multiple intrusive episodes in the Paleocene and Eocene</article-title>
<source>Lithos</source>
<year>2004</year>
<volume>76</volume>
<fpage>399</fpage>
<lpage>414</lpage>
<pub-id pub-id-type="doi">10.1016/j.lithos.2004.03.039</pub-id>
</element-citation>
</ref>
<ref id="CR16">
<label>16.</label>
<mixed-citation publication-type="other">Graham, I.
<italic>et al.</italic>
Exploration history and geoogy of the Daivik kimberlites, Lac de Gras, Northwest Territories, Canada, In
<italic>Seventh International Kimberlite Conference</italic>
<italic>.</italic>
(eds J. J. Gurney, J. L. Gurney, M. D. Pascoe, & S. H. Richardson) 262–279, Red Roof Design, (1999).</mixed-citation>
</ref>
<ref id="CR17">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grutter</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Gurney</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Menzies</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Winter</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>An updated classification scheme for mantle-derived garnet, for use by diamond explorers</article-title>
<source>Lithos</source>
<year>2004</year>
<volume>77</volume>
<fpage>841</fpage>
<lpage>857</lpage>
<pub-id pub-id-type="doi">10.1016/j.lithos.2004.04.012</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hanger</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Yaxley</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Berry</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Kamenetsky</surname>
<given-names>VS</given-names>
</name>
</person-group>
<article-title>Relationships between oxygen fugacity and metasomatism in the Kaapvaal subcratonic mantle, represented by garnet peridotite xenoliths in the Wesselton kimberlite, South Africa</article-title>
<source>Lithos</source>
<year>2015</year>
<volume>212–215</volume>
<fpage>443</fpage>
<lpage>452</lpage>
<pub-id pub-id-type="doi">10.1016/j.lithos.2014.09.030</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brey</surname>
<given-names>GP</given-names>
</name>
<name>
<surname>Kohler</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Geothermobarometry in 4-Phase Lherzolites. 2. New Thermobarometers, and Practical Assessment of Existing Thermobarometers</article-title>
<source>J. Petrol.</source>
<year>1990</year>
<volume>31</volume>
<fpage>1353</fpage>
<lpage>1378</lpage>
<pub-id pub-id-type="doi">10.1093/petrology/31.6.1353</pub-id>
</element-citation>
</ref>
<ref id="CR20">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nimis</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Grutter</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Internally consistent geothermometers for garnet peridotites and pyroxenites</article-title>
<source>Contrib. Mineral. Petrol.</source>
<year>2010</year>
<volume>159</volume>
<fpage>411</fpage>
<lpage>427</lpage>
<pub-id pub-id-type="doi">10.1007/s00410-009-0455-9</pub-id>
</element-citation>
</ref>
<ref id="CR21">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Griffin</surname>
<given-names>WL</given-names>
</name>
<name>
<surname>Ryan</surname>
<given-names>CG</given-names>
</name>
</person-group>
<article-title>Trace-Elements in Indicator Minerals - Area Selection and Target Evaluation in Diamond Exploration</article-title>
<source>J. Geochem. Expl</source>
<year>1995</year>
<volume>53</volume>
<fpage>311</fpage>
<lpage>337</lpage>
<pub-id pub-id-type="doi">10.1016/0375-6742(94)00015-4</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stachel</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Viljoen</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Brey</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>JW</given-names>
</name>
</person-group>
<article-title>Metasomatic processes in lherzolitic and harzburgitic domains of diamondiferous lithospheric mantle: REE in garnets from xenoliths and inclusions in diamonds</article-title>
<source>Earth Planet. Sci. Lett.</source>
<year>1998</year>
<volume>159</volume>
<fpage>1</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="doi">10.1016/S0012-821X(98)00064-8</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Griffin</surname>
<given-names>WL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Layered mantle lithosphere in the Lac de Gras area, Slave Craton: Composition, structure and origin</article-title>
<source>J. Petrol.</source>
<year>1999</year>
<volume>40</volume>
<fpage>705</fpage>
<lpage>727</lpage>
<pub-id pub-id-type="doi">10.1093/petroj/40.5.705</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<label>24.</label>
<mixed-citation publication-type="other">Smart, K. A.
<italic>et al.</italic>
Tectonic significance and redox state of Paleoproterozoic eclogite and pyroxenite components in the Slave cratonic mantle lithosphere, Voyageur kimberlite, Arctic Canada. in press in
<italic>Chem. Geol.</italic>
(2016).</mixed-citation>
</ref>
<ref id="CR25">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stagno</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Frost</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>Carbon speciation in the asthenosphere: Experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages</article-title>
<source>Earth Planet. Sci. Lett.</source>
<year>2010</year>
<volume>300</volume>
<fpage>72</fpage>
<lpage>84</lpage>
<pub-id pub-id-type="doi">10.1016/j.epsl.2010.09.038</pub-id>
</element-citation>
</ref>
<ref id="CR26">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tappe</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Pearson</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Kjarsgaard</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Nowell</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Dowall</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Mantle transition zone input to kimberlite magmatism near a subduction zone: origin of anomalous Nd–Hf isotope systematics at Lac de Gras, Canada</article-title>
<source>Earth Planet. Sci. Lett.</source>
<year>2013</year>
<volume>371</volume>
<fpage>235</fpage>
<lpage>251</lpage>
<pub-id pub-id-type="doi">10.1016/j.epsl.2013.03.039</pub-id>
</element-citation>
</ref>
<ref id="CR27">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weiss</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>McNeill</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Pearson</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Nowell</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Ottley</surname>
<given-names>CJ</given-names>
</name>
</person-group>
<article-title>Highly saline fluids from a subducting slab as the source for fluid-rich diamonds</article-title>
<source>Nature</source>
<year>2015</year>
<volume>524</volume>
<fpage>339</fpage>
<lpage>342</lpage>
<pub-id pub-id-type="doi">10.1038/nature14857</pub-id>
<pub-id pub-id-type="pmid">26289205</pub-id>
</element-citation>
</ref>
<ref id="CR28">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boyd</surname>
<given-names>FR</given-names>
</name>
</person-group>
<article-title>The origin of cratonic peridotites: A major-element approach</article-title>
<source>Int Geol Rev</source>
<year>1998</year>
<volume>40</volume>
<fpage>755</fpage>
<lpage>764</lpage>
<pub-id pub-id-type="doi">10.1080/00206819809465236</pub-id>
</element-citation>
</ref>
<ref id="CR29">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kelemen</surname>
<given-names>PB</given-names>
</name>
<name>
<surname>Dick</surname>
<given-names>HJB</given-names>
</name>
<name>
<surname>Quick</surname>
<given-names>JE</given-names>
</name>
</person-group>
<article-title>Formation of harzburgite by pervasive melt/rock reaction in the upper mantle</article-title>
<source>Nature</source>
<year>1992</year>
<volume>358</volume>
<fpage>635</fpage>
<lpage>641</lpage>
<pub-id pub-id-type="doi">10.1038/358635a0</pub-id>
</element-citation>
</ref>
<ref id="CR30">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Green</surname>
<given-names>DH</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Experimental Study of the Influence of Water on Melting and Phase Assemblages in the Upper Mantle</article-title>
<source>J. Petrol.</source>
<year>2014</year>
<volume>55</volume>
<fpage>2067</fpage>
<lpage>2096</lpage>
<pub-id pub-id-type="doi">10.1093/petrology/egu050</pub-id>
</element-citation>
</ref>
<ref id="CR31">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rosenthal</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hauri</surname>
<given-names>EH</given-names>
</name>
<name>
<surname>Hirschmann</surname>
<given-names>MM</given-names>
</name>
</person-group>
<article-title>Experimental determination of C, F, and H partitioning between mantle minerals and carbonated basalt, CO
<sub>2</sub>
/Ba and CO
<sub>2</sub>
/Nb systematics of partial melting, and the CO
<sub>2</sub>
contents of basaltic source regions</article-title>
<source>Earth Planet. Sci. Lett.</source>
<year>2015</year>
<volume>412</volume>
<fpage>77</fpage>
<lpage>87</lpage>
<pub-id pub-id-type="doi">10.1016/j.epsl.2014.11.044</pub-id>
</element-citation>
</ref>
<ref id="CR32">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kovács</surname>
<given-names>I</given-names>
</name>
<etal></etal>
</person-group>
<article-title>An experimental study of water in nominally anhydrous minerals in the upper mantle near the water-saturated solidus</article-title>
<source>J. Petrol.</source>
<year>2012</year>
<volume>53</volume>
<fpage>2067</fpage>
<lpage>2093</lpage>
<pub-id pub-id-type="doi">10.1093/petrology/egs044</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Green</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Hibberson</surname>
<given-names>WO</given-names>
</name>
<name>
<surname>Kovacs</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Rosenthal</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Water and its influence on the lithosphere-asthenosphere boundary</article-title>
<source>Nature</source>
<year>2010</year>
<volume>467</volume>
<fpage>448</fpage>
<lpage>451</lpage>
<pub-id pub-id-type="doi">10.1038/nature09369</pub-id>
<pub-id pub-id-type="pmid">20865000</pub-id>
</element-citation>
</ref>
<ref id="CR34">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taylor</surname>
<given-names>WR</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>DH</given-names>
</name>
</person-group>
<article-title>Measurement of reduced peridotite-C-O-H solidus and implications for redox melting of the mantle</article-title>
<source>Nature</source>
<year>1988</year>
<volume>332</volume>
<fpage>349</fpage>
<lpage>352</lpage>
<pub-id pub-id-type="doi">10.1038/332349a0</pub-id>
</element-citation>
</ref>
<ref id="CR35">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Foley</surname>
<given-names>SF</given-names>
</name>
</person-group>
<article-title>A reappraisal of redox melting in the earth’s mantle as a function of tectonic setting and time</article-title>
<source>J. Petrol.</source>
<year>2011</year>
<volume>52</volume>
<fpage>1363</fpage>
<lpage>1391</lpage>
<pub-id pub-id-type="doi">10.1093/petrology/egq061</pub-id>
</element-citation>
</ref>
<ref id="CR36">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miller</surname>
<given-names>CE</given-names>
</name>
<name>
<surname>Kopylova</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Mineral inclusions in fibrous diamonds: constraints on cratonic mantle refertilization and diamond formation</article-title>
<source>Mineral. & Petrol</source>
<year>2014</year>
<volume>108</volume>
<fpage>317</fpage>
<lpage>331</lpage>
<pub-id pub-id-type="doi">10.1007/s00710-013-0305-3</pub-id>
</element-citation>
</ref>
<ref id="CR37">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Girnis</surname>
<given-names>AV</given-names>
</name>
<name>
<surname>Bulatov</surname>
<given-names>VK</given-names>
</name>
<name>
<surname>Brey</surname>
<given-names>GP</given-names>
</name>
</person-group>
<article-title>Formation of primary kimberlite melts - Constraints from experiments at 6-12GPa and variable CO
<sub>2</sub>
/H
<sub>2</sub>
O</article-title>
<source>Lithos</source>
<year>2011</year>
<volume>127</volume>
<fpage>401</fpage>
<lpage>413</lpage>
<pub-id pub-id-type="doi">10.1016/j.lithos.2011.09.018</pub-id>
</element-citation>
</ref>
<ref id="CR38">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Girnis</surname>
<given-names>AV</given-names>
</name>
<name>
<surname>Brey</surname>
<given-names>GP</given-names>
</name>
<name>
<surname>Ryabchikov</surname>
<given-names>ID</given-names>
</name>
</person-group>
<article-title>Origin of Group 1a kimberlites - fluid-saturated melting experiments at 45–55 Kbar</article-title>
<source>Earth Planet. Sci. Lett.</source>
<year>1995</year>
<volume>134</volume>
<fpage>283</fpage>
<lpage>296</lpage>
<pub-id pub-id-type="doi">10.1016/0012-821X(95)00120-2</pub-id>
</element-citation>
</ref>
<ref id="CR39">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brey</surname>
<given-names>GP</given-names>
</name>
<name>
<surname>Bulatov</surname>
<given-names>VK</given-names>
</name>
<name>
<surname>Girnis</surname>
<given-names>AV</given-names>
</name>
<name>
<surname>Lahaye</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Experimental melting of carbonated peridotite at 6-10 GPa</article-title>
<source>J. Petrol.</source>
<year>2008</year>
<volume>49</volume>
<fpage>797</fpage>
<lpage>821</lpage>
<pub-id pub-id-type="doi">10.1093/petrology/egn002</pub-id>
</element-citation>
</ref>
<ref id="CR40">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Canil</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Scarfe</surname>
<given-names>CM</given-names>
</name>
</person-group>
<article-title>Phase-relations in peridotite + CO
<sub>2</sub>
systems to 12 GPa - Implications for the origin of kimberlite and carbonate stability in the Earth’s upper mantle</article-title>
<source>J. Geophys. Res.-Solid</source>
<year>1990</year>
<volume>95</volume>
<fpage>15805</fpage>
<lpage>15816</lpage>
<pub-id pub-id-type="doi">10.1029/JB095iB10p15805</pub-id>
</element-citation>
</ref>
<ref id="CR41">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Novella</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Frost</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>The composition of hydrous partial melts of garnet peridotite at 6 GPa: Implications for the origin of group II kimberlites</article-title>
<source>J. Petrol.</source>
<year>2014</year>
<volume>55</volume>
<fpage>2097</fpage>
<lpage>2124</lpage>
<pub-id pub-id-type="doi">10.1093/petrology/egu051</pub-id>
</element-citation>
</ref>
<ref id="CR42">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Davies</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Griffin</surname>
<given-names>WL</given-names>
</name>
<name>
<surname>O’Reilly</surname>
<given-names>SY</given-names>
</name>
<name>
<surname>Doyle</surname>
<given-names>BJ</given-names>
</name>
</person-group>
<article-title>Mineral inclusions and geochemical characteristics of microdiamonds from the DO27, A154, A21, A418, DO18, DD17 and Ranch Lake kimberlites at Lac de Gras, Slave Craton, Canada</article-title>
<source>Lithos</source>
<year>2004</year>
<volume>77</volume>
<fpage>39</fpage>
<lpage>55</lpage>
<pub-id pub-id-type="doi">10.1016/j.lithos.2004.04.016</pub-id>
</element-citation>
</ref>
<ref id="CR43">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nowell</surname>
<given-names>GM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Hf isotope systematics of kimberlites and their megacrysts: New constraints on their source regions</article-title>
<source>J. Petrol.</source>
<year>2004</year>
<volume>45</volume>
<fpage>1583</fpage>
<lpage>1612</lpage>
<pub-id pub-id-type="doi">10.1093/petrology/egh024</pub-id>
</element-citation>
</ref>
<ref id="CR44">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kiseeva</surname>
<given-names>ES</given-names>
</name>
<etal></etal>
</person-group>
<article-title>An Experimental Study of Carbonated Eclogite at 3.5-5.5 GPa - Implications for Silicate and Carbonate Metasomatism in the Cratonic Mantle</article-title>
<source>J Petrol</source>
<year>2012</year>
<volume>53</volume>
<fpage>727</fpage>
<lpage>759</lpage>
<pub-id pub-id-type="doi">10.1093/petrology/egr078</pub-id>
</element-citation>
</ref>
<ref id="CR45">
<label>45.</label>
<mixed-citation publication-type="other">Rosenthal, A.
<italic>et al.</italic>
Continuous eclogite melting and variable refertilisation in upwelling heterogeneous mantle.
<italic>Nature Scientific Reports</italic>
<bold>4</bold>
(2014).</mixed-citation>
</ref>
<ref id="CR46">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rosenthal</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Foley</surname>
<given-names>SF</given-names>
</name>
<name>
<surname>Pearson</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Nowell</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Tappe</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Petrogenesis of strongly alkaline primitive volcanic rocks at the propagating tip of the western branch of the East African Rift</article-title>
<source>Earth Planet. Sci. Lett.</source>
<year>2009</year>
<volume>284</volume>
<fpage>236</fpage>
<lpage>248</lpage>
<pub-id pub-id-type="doi">10.1016/j.epsl.2009.04.036</pub-id>
</element-citation>
</ref>
<ref id="CR47">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tappe</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Between carbonatite and lamproite - Diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes</article-title>
<source>Geochim. Cosmochim. Acta</source>
<year>2008</year>
<volume>72</volume>
<fpage>3258</fpage>
<lpage>3286</lpage>
<pub-id pub-id-type="doi">10.1016/j.gca.2008.03.008</pub-id>
</element-citation>
</ref>
<ref id="CR48">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Foley</surname>
<given-names>SF</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The composition of near-solidus melts of peridotite in the presence of CO
<sub>2</sub>
and H
<sub>2</sub>
O between 40 and 60kbar</article-title>
<source>Lithos</source>
<year>2009</year>
<volume>112</volume>
<fpage>274</fpage>
<lpage>283</lpage>
<pub-id pub-id-type="doi">10.1016/j.lithos.2009.03.020</pub-id>
</element-citation>
</ref>
<ref id="CR49">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Foley</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Petrological characterization of the source components of potassic magmas - Geochemical and experimental constraints</article-title>
<source>Lithos</source>
<year>1992</year>
<volume>28</volume>
<fpage>187</fpage>
<lpage>204</lpage>
<pub-id pub-id-type="doi">10.1016/0024-4937(92)90006-K</pub-id>
</element-citation>
</ref>
<ref id="CR50">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fraser</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Hawkesworth</surname>
<given-names>CJ</given-names>
</name>
</person-group>
<article-title>The petrogenesis of group-2 ultrapotassic kimberlites from Finsch Mine, South-Africa</article-title>
<source>Lithos</source>
<year>1992</year>
<volume>28</volume>
<fpage>327</fpage>
<lpage>345</lpage>
<pub-id pub-id-type="doi">10.1016/0024-4937(92)90013-O</pub-id>
</element-citation>
</ref>
<ref id="CR51">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eggins</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Kinsley</surname>
<given-names>LPJ</given-names>
</name>
<name>
<surname>Shelley</surname>
<given-names>JMG</given-names>
</name>
</person-group>
<article-title>Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS</article-title>
<source>Applied Surface Science</source>
<year>1998</year>
<volume>127–129</volume>
<fpage>278</fpage>
<lpage>286</lpage>
<pub-id pub-id-type="doi">10.1016/S0169-4332(97)00643-0</pub-id>
</element-citation>
</ref>
<ref id="CR52">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eggins</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Rudnick</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>McDonough</surname>
<given-names>WF</given-names>
</name>
</person-group>
<article-title>The composition of peridotites and their minerals: A laser-ablation ICP-MS study</article-title>
<source>Earth Planet. Sci. Lett.</source>
<year>1998</year>
<volume>154</volume>
<fpage>53</fpage>
<lpage>71</lpage>
<pub-id pub-id-type="doi">10.1016/S0012-821X(97)00195-7</pub-id>
</element-citation>
</ref>
<ref id="CR53">
<label>53.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Norman</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Pearson</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Sharma</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Griffin</surname>
<given-names>WL</given-names>
</name>
</person-group>
<article-title>Quantitative analysis of trace elements in geological materials by laser ablation ICPMS: Instrumental operating conditions and calibration values of NIST glasses</article-title>
<source>Geostandards Newsletter</source>
<year>1996</year>
<volume>20</volume>
<fpage>247</fpage>
<lpage>261</lpage>
<pub-id pub-id-type="doi">10.1111/j.1751-908X.1996.tb00186.x</pub-id>
</element-citation>
</ref>
<ref id="CR54">
<label>54.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pearce</surname>
<given-names>NJG</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials</article-title>
<source>Journal of Geostandards and Geoanalysis</source>
<year>1997</year>
<volume>21</volume>
<fpage>115</fpage>
<lpage>144</lpage>
<pub-id pub-id-type="doi">10.1111/j.1751-908X.1997.tb00538.x</pub-id>
</element-citation>
</ref>
<ref id="CR55">
<label>55.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Woodland</surname>
<given-names>AB</given-names>
</name>
<name>
<surname>Ross</surname>
<given-names>CR</given-names>
</name>
</person-group>
<article-title>A Crystallographic and Mossbauer-Spectroscopy Study of Fe
<sub>3</sub>
<sup>2+</sup>
Al
<sub>2</sub>
Si
<sub>3</sub>
O
<sub>12</sub>
-Fe
<sub>3</sub>
<sup>2+</sup>
Fe
<sub>2</sub>
<sup>3+</sup>
Si
<sub>3</sub>
O
<sub>12</sub>
, (Almandine-Skiagite) and Ca
<sub>3</sub>
Fe
<sub>2</sub>
<sup>3+</sup>
Si
<sub>3</sub>
O
<sub>12</sub>
-Fe
<sub>3</sub>
<sup>2+</sup>
Fe
<sub>2</sub>
<sup>3+</sup>
Si
<sub>3</sub>
)
<sub>12</sub>
(Andradite-Skiagite) garnet solid-solutions</article-title>
<source>Phys. Chem. Mineral</source>
<year>1994</year>
<volume>21</volume>
<fpage>117</fpage>
<lpage>132</lpage>
<pub-id pub-id-type="doi">10.1007/BF00203142</pub-id>
</element-citation>
</ref>
<ref id="CR56">
<label>56.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Berry</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Yaxley</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Woodland</surname>
<given-names>AB</given-names>
</name>
<name>
<surname>Foran</surname>
<given-names>GJ</given-names>
</name>
</person-group>
<article-title>A XANES calibration for determining the oxidation state of iron in mantle garnet</article-title>
<source>Chem. Geol.</source>
<year>2010</year>
<volume>278</volume>
<fpage>31</fpage>
<lpage>37</lpage>
<pub-id pub-id-type="doi">10.1016/j.chemgeo.2010.08.019</pub-id>
</element-citation>
</ref>
<ref id="CR57">
<label>57.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Berry</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Quantitative mapping of the oxidative effects of mantle metasomatism</article-title>
<source>Geology</source>
<year>2013</year>
<volume>41</volume>
<fpage>683</fpage>
<lpage>686</lpage>
<pub-id pub-id-type="doi">10.1130/G34119.1</pub-id>
</element-citation>
</ref>
<ref id="CR58">
<label>58.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Paterson</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The X-ray Fluorescence Microscopy Beamline at the Australian Synchrotron</article-title>
<source>American Institute of Physics Conference Proceedings</source>
<year>2011</year>
<volume>1365</volume>
<fpage>219</fpage>
<lpage>222</lpage>
</element-citation>
</ref>
<ref id="CR59">
<label>59.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>O’Neill</surname>
<given-names>HSC</given-names>
</name>
<name>
<surname>Wood</surname>
<given-names>BJ</given-names>
</name>
</person-group>
<article-title>An experimental study of Fe-Mg partitioning between garnet and olivine and its calibration as a geothermometer</article-title>
<source>Contrib. Mineral. Petrol.</source>
<year>1979</year>
<volume>70</volume>
<fpage>59</fpage>
<lpage>70</lpage>
<pub-id pub-id-type="doi">10.1007/BF00371872</pub-id>
</element-citation>
</ref>
<ref id="CR60">
<label>60.</label>
<mixed-citation publication-type="other">Sun, S.-s. & McDonough, W. F. In
<italic>Magmatism in the ocean basins</italic>
Vol. 42 (eds A. D. Saunders & M. J. Norry) 313–345 (Geological Society Special Publication, 1989).</mixed-citation>
</ref>
<ref id="CR61">
<label>61.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lazarov</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Brey</surname>
<given-names>GP</given-names>
</name>
<name>
<surname>Weyer</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Evolution of the South African mantle - A case study of garnet peridotites from the Finsch diamond mine (Kaapvaal craton); part 1: Inter-mineral trace element and isotopic equilibrium</article-title>
<source>Lithos</source>
<year>2012</year>
<volume>154</volume>
<fpage>193</fpage>
<lpage>209</lpage>
<pub-id pub-id-type="doi">10.1016/j.lithos.2012.07.007</pub-id>
</element-citation>
</ref>
<ref id="CR62">
<label>62.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kennedy</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>Kennedy</surname>
<given-names>GC</given-names>
</name>
</person-group>
<article-title>The equilibrium boundary between graphite and diamond</article-title>
<source>J. Geophys. Res.</source>
<year>1976</year>
<volume>81</volume>
<fpage>2467</fpage>
<lpage>2470</lpage>
<pub-id pub-id-type="doi">10.1029/JB081i014p02467</pub-id>
</element-citation>
</ref>
<ref id="CR63">
<label>63.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pollack</surname>
<given-names>HN</given-names>
</name>
<name>
<surname>Chapman</surname>
<given-names>DS</given-names>
</name>
</person-group>
<article-title>On the regional variation of heat flow, geotherms, and lithospheric thickness</article-title>
<source>Tectonophysics</source>
<year>1977</year>
<volume>38</volume>
<fpage>279</fpage>
<lpage>296</lpage>
<pub-id pub-id-type="doi">10.1016/0040-1951(77)90215-3</pub-id>
</element-citation>
</ref>
<ref id="CR64">
<label>64.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luth</surname>
<given-names>RW</given-names>
</name>
</person-group>
<article-title>Diamonds, eclogites, and the oxidation-state of the Earth’s mantle</article-title>
<source>Science</source>
<year>1993</year>
<volume>261</volume>
<fpage>66</fpage>
<lpage>68</lpage>
<pub-id pub-id-type="doi">10.1126/science.261.5117.66</pub-id>
<pub-id pub-id-type="pmid">17750546</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E14  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000E14  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024