Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

How important is gametocyte clearance after malaria therapy?

Identifieur interne : 000971 ( Pmc/Corpus ); précédent : 000970; suivant : 000972

How important is gametocyte clearance after malaria therapy?

Auteurs : Harin A. Karunajeewa ; Ivo Mueller

Source :

RBID : PMC:4912799

Abstract

There has been increasing interest in the role of malaria drugs in preventing malaria transmission from humans to mosquitoes, which would help augment malaria control and elimination strategies. Nevertheless, only one stage in the malaria parasite life cycle, the gametocyte, is infectious to mosquitoes. The Worldwide Antimalarial Resistance Network (WWARN) have analyzed data from 48,840 patients from 141 clinical trials in order to define the nature and determinants of gametocyte clearance following artemisinin combination treatment (ACT) for symptomatic malaria infections. However, the presence of gametocytes does not always predict their infectivity, meaning that the microscopy-based methods used by the WWARN investigators represent an imperfect surrogate marker of transmissibility. Their findings, that some ACTs clear gametocytes faster than others, should be interpreted in light of these limitations and important gaps in our understanding of the biology and epidemiology of malaria transmission.

Please see related article: https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-016-0621-7


Url:
DOI: 10.1186/s12916-016-0641-3
PubMed: 27317420
PubMed Central: 4912799

Links to Exploration step

PMC:4912799

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">How important is gametocyte clearance after malaria therapy?</title>
<author>
<name sortKey="Karunajeewa, Harin A" sort="Karunajeewa, Harin A" uniqKey="Karunajeewa H" first="Harin A." last="Karunajeewa">Harin A. Karunajeewa</name>
<affiliation>
<nlm:aff id="Aff1">Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Vic 3052 Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">Western Centre for Health Research and Education, Western Health, Melbourne, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mueller, Ivo" sort="Mueller, Ivo" uniqKey="Mueller I" first="Ivo" last="Mueller">Ivo Mueller</name>
<affiliation>
<nlm:aff id="Aff1">Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Vic 3052 Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">Malaria: Parasites & Hosts Unit, Institut Pasteur, Paris, France</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27317420</idno>
<idno type="pmc">4912799</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4912799</idno>
<idno type="RBID">PMC:4912799</idno>
<idno type="doi">10.1186/s12916-016-0641-3</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000971</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000971</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">How important is gametocyte clearance after malaria therapy?</title>
<author>
<name sortKey="Karunajeewa, Harin A" sort="Karunajeewa, Harin A" uniqKey="Karunajeewa H" first="Harin A." last="Karunajeewa">Harin A. Karunajeewa</name>
<affiliation>
<nlm:aff id="Aff1">Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Vic 3052 Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">Western Centre for Health Research and Education, Western Health, Melbourne, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mueller, Ivo" sort="Mueller, Ivo" uniqKey="Mueller I" first="Ivo" last="Mueller">Ivo Mueller</name>
<affiliation>
<nlm:aff id="Aff1">Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Vic 3052 Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">Malaria: Parasites & Hosts Unit, Institut Pasteur, Paris, France</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC Medicine</title>
<idno type="eISSN">1741-7015</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>There has been increasing interest in the role of malaria drugs in preventing malaria transmission from humans to mosquitoes, which would help augment malaria control and elimination strategies. Nevertheless, only one stage in the malaria parasite life cycle, the gametocyte, is infectious to mosquitoes. The Worldwide Antimalarial Resistance Network (WWARN) have analyzed data from 48,840 patients from 141 clinical trials in order to define the nature and determinants of gametocyte clearance following artemisinin combination treatment (ACT) for symptomatic malaria infections. However, the presence of gametocytes does not always predict their infectivity, meaning that the microscopy-based methods used by the WWARN investigators represent an imperfect surrogate marker of transmissibility. Their findings, that some ACTs clear gametocytes faster than others, should be interpreted in light of these limitations and important gaps in our understanding of the biology and epidemiology of malaria transmission.</p>
<p>Please see related article:
<ext-link ext-link-type="uri" xlink:href="https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-016-0621-7">https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-016-0621-7</ext-link>
</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Young, Ja" uniqKey="Young J">JA Young</name>
</author>
<author>
<name sortKey="Fivelman, Ql" uniqKey="Fivelman Q">QL Fivelman</name>
</author>
<author>
<name sortKey="Blair, Pl" uniqKey="Blair P">PL Blair</name>
</author>
<author>
<name sortKey="De La Vega, P" uniqKey="De La Vega P">P de la Vega</name>
</author>
<author>
<name sortKey="Le Roch, Kg" uniqKey="Le Roch K">KG Le Roch</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y Zhou</name>
</author>
<author>
<name sortKey="Carucci, Dj" uniqKey="Carucci D">DJ Carucci</name>
</author>
<author>
<name sortKey="Baker, Da" uniqKey="Baker D">DA Baker</name>
</author>
<author>
<name sortKey="Winzeler, Ea" uniqKey="Winzeler E">EA Winzeler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="White, Nj" uniqKey="White N">NJ White</name>
</author>
<author>
<name sortKey="Ashley, Ea" uniqKey="Ashley E">EA Ashley</name>
</author>
<author>
<name sortKey="Recht, J" uniqKey="Recht J">J Recht</name>
</author>
<author>
<name sortKey="Delves, Mj" uniqKey="Delves M">MJ Delves</name>
</author>
<author>
<name sortKey="Ruecker, A" uniqKey="Ruecker A">A Ruecker</name>
</author>
<author>
<name sortKey="Smithuis, Fm" uniqKey="Smithuis F">FM Smithuis</name>
</author>
<author>
<name sortKey="Eziefula, Ac" uniqKey="Eziefula A">AC Eziefula</name>
</author>
<author>
<name sortKey="Bousema, T" uniqKey="Bousema T">T Bousema</name>
</author>
<author>
<name sortKey="Drakeley, C" uniqKey="Drakeley C">C Drakeley</name>
</author>
<author>
<name sortKey="Chotivanich, K" uniqKey="Chotivanich K">K Chotivanich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Graves, Pm" uniqKey="Graves P">PM Graves</name>
</author>
<author>
<name sortKey="Gelband, H" uniqKey="Gelband H">H Gelband</name>
</author>
<author>
<name sortKey="Garner, P" uniqKey="Garner P">P Garner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Delves, M" uniqKey="Delves M">M Delves</name>
</author>
<author>
<name sortKey="Plouffe, D" uniqKey="Plouffe D">D Plouffe</name>
</author>
<author>
<name sortKey="Scheurer, C" uniqKey="Scheurer C">C Scheurer</name>
</author>
<author>
<name sortKey="Meister, S" uniqKey="Meister S">S Meister</name>
</author>
<author>
<name sortKey="Wittlin, S" uniqKey="Wittlin S">S Wittlin</name>
</author>
<author>
<name sortKey="Winzeler, Ea" uniqKey="Winzeler E">EA Winzeler</name>
</author>
<author>
<name sortKey="Sinden, Re" uniqKey="Sinden R">RE Sinden</name>
</author>
<author>
<name sortKey="Leroy, D" uniqKey="Leroy D">D Leroy</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="White, Nj" uniqKey="White N">NJ White</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beavogui, Ah" uniqKey="Beavogui A">AH Beavogui</name>
</author>
<author>
<name sortKey="Djimde, Aa" uniqKey="Djimde A">AA Djimde</name>
</author>
<author>
<name sortKey="Gregson, A" uniqKey="Gregson A">A Gregson</name>
</author>
<author>
<name sortKey="Toure, Am" uniqKey="Toure A">AM Toure</name>
</author>
<author>
<name sortKey="Dao, A" uniqKey="Dao A">A Dao</name>
</author>
<author>
<name sortKey="Coulibaly, B" uniqKey="Coulibaly B">B Coulibaly</name>
</author>
<author>
<name sortKey="Ouologuem, D" uniqKey="Ouologuem D">D Ouologuem</name>
</author>
<author>
<name sortKey="Fofana, B" uniqKey="Fofana B">B Fofana</name>
</author>
<author>
<name sortKey="Sacko, A" uniqKey="Sacko A">A Sacko</name>
</author>
<author>
<name sortKey="Tekete, M" uniqKey="Tekete M">M Tekete</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goncalves, Bp" uniqKey="Goncalves B">BP Goncalves</name>
</author>
<author>
<name sortKey="Tiono, Ab" uniqKey="Tiono A">AB Tiono</name>
</author>
<author>
<name sortKey="Ouedraogo, A" uniqKey="Ouedraogo A">A Ouedraogo</name>
</author>
<author>
<name sortKey="Guelbeogo, Wm" uniqKey="Guelbeogo W">WM Guelbeogo</name>
</author>
<author>
<name sortKey="Bradley, J" uniqKey="Bradley J">J Bradley</name>
</author>
<author>
<name sortKey="Nebie, I" uniqKey="Nebie I">I Nebie</name>
</author>
<author>
<name sortKey="Siaka, D" uniqKey="Siaka D">D Siaka</name>
</author>
<author>
<name sortKey="Lanke, K" uniqKey="Lanke K">K Lanke</name>
</author>
<author>
<name sortKey="Eziefula, Ac" uniqKey="Eziefula A">AC Eziefula</name>
</author>
<author>
<name sortKey="Diarra, A" uniqKey="Diarra A">A Diarra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johnston, Gl" uniqKey="Johnston G">GL Johnston</name>
</author>
<author>
<name sortKey="Gething, Pw" uniqKey="Gething P">PW Gething</name>
</author>
<author>
<name sortKey="Hay, Si" uniqKey="Hay S">SI Hay</name>
</author>
<author>
<name sortKey="Smith, Dl" uniqKey="Smith D">DL Smith</name>
</author>
<author>
<name sortKey="Fidock, Da" uniqKey="Fidock D">DA Fidock</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="editorial">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">BMC Med</journal-id>
<journal-id journal-id-type="iso-abbrev">BMC Med</journal-id>
<journal-title-group>
<journal-title>BMC Medicine</journal-title>
</journal-title-group>
<issn pub-type="epub">1741-7015</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27317420</article-id>
<article-id pub-id-type="pmc">4912799</article-id>
<article-id pub-id-type="publisher-id">641</article-id>
<article-id pub-id-type="doi">10.1186/s12916-016-0641-3</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Commentary</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>How important is gametocyte clearance after malaria therapy?</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Karunajeewa</surname>
<given-names>Harin A.</given-names>
</name>
<address>
<phone>+61 39345 2476</phone>
<phone>+61 40583 5317</phone>
<email>karunajeewa.h@wehi.edu.au</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
<xref ref-type="aff" rid="Aff2"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mueller</surname>
<given-names>Ivo</given-names>
</name>
<xref ref-type="aff" rid="Aff1"></xref>
<xref ref-type="aff" rid="Aff3"></xref>
</contrib>
<aff id="Aff1">
<label></label>
Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Vic 3052 Australia</aff>
<aff id="Aff2">
<label></label>
Western Centre for Health Research and Education, Western Health, Melbourne, Australia</aff>
<aff id="Aff3">
<label></label>
Malaria: Parasites & Hosts Unit, Institut Pasteur, Paris, France</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>18</day>
<month>6</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>18</day>
<month>6</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="collection">
<year>2016</year>
</pub-date>
<volume>14</volume>
<elocation-id>93</elocation-id>
<history>
<date date-type="received">
<day>8</day>
<month>6</month>
<year>2016</year>
</date>
<date date-type="accepted">
<day>9</day>
<month>6</month>
<year>2016</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author(s). 2016</copyright-statement>
<license license-type="OpenAccess">
<license-p>
<bold>Open Access</bold>
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/publicdomain/zero/1.0/">http://creativecommons.org/publicdomain/zero/1.0/</ext-link>
) applies to the data made available in this article, unless otherwise stated.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<p>There has been increasing interest in the role of malaria drugs in preventing malaria transmission from humans to mosquitoes, which would help augment malaria control and elimination strategies. Nevertheless, only one stage in the malaria parasite life cycle, the gametocyte, is infectious to mosquitoes. The Worldwide Antimalarial Resistance Network (WWARN) have analyzed data from 48,840 patients from 141 clinical trials in order to define the nature and determinants of gametocyte clearance following artemisinin combination treatment (ACT) for symptomatic malaria infections. However, the presence of gametocytes does not always predict their infectivity, meaning that the microscopy-based methods used by the WWARN investigators represent an imperfect surrogate marker of transmissibility. Their findings, that some ACTs clear gametocytes faster than others, should be interpreted in light of these limitations and important gaps in our understanding of the biology and epidemiology of malaria transmission.</p>
<p>Please see related article:
<ext-link ext-link-type="uri" xlink:href="https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-016-0621-7">https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-016-0621-7</ext-link>
</p>
</abstract>
<kwd-group xml:lang="en">
<title>Keywords</title>
<kwd>Malaria</kwd>
<kwd>
<italic>P. falciparum</italic>
</kwd>
<kwd>Antimalarial</kwd>
<kwd>Gametocytes</kwd>
<kwd>Gametocyte clearance</kwd>
<kwd>Artemisinin combination therapy</kwd>
</kwd-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© The Author(s) 2016</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1" sec-type="introduction">
<title>Background</title>
<p>Global improvements in malaria control over the last 15 years have been greater than at any other time in history, with annual deaths from malaria having almost halved since 2000 [
<xref ref-type="bibr" rid="CR1">1</xref>
]. The scale of this success reinforces the notion that the complete global eradication of malaria may be an attainable goal. With this in mind, the pharmacological properties of antimalarial drugs have recently been regarded from a different perspective [
<xref ref-type="bibr" rid="CR2">2</xref>
] – in addition to curing symptomatic infections, the broader public health implications with regards to their role in reducing ongoing malaria transmission at the population level must also be considered.</p>
<p>The success of malaria elimination strategies will fundamentally rest on interrupting the cycle of parasite transmission between the Anopheles mosquito vector and humans. Strategies can target not only transmission from mosquito to human but also from human to mosquito, prompting renewed interest both in so-called “transmission-blocking” human malaria vaccines and the role of antimalarial drugs for preventing transmission to mosquitoes.</p>
<p>Gametocytes arise mainly as progeny of “asexual” blood-stage parasites (merozoites). The maturation of
<italic>Plasmodium falciparum</italic>
gametocytes within humans has been divided into five morphologically and transcriptionally distinct stages (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
) [
<xref ref-type="bibr" rid="CR3">3</xref>
]. Only the most mature stage 5 gametocytes are infectious to mosquitoes and, following ingestion, travel to the mosquito mid-gut to develop into gametes. If both male and female gametes are present, sexual reproduction ensues, leading ultimately to sporozoites able to infect humans. Therefore, gametocytes are imperative to human-to-mosquito transmission for all malaria species.
<italic>P. falciparum</italic>
gametocytes have a highly distinctive morphology, meaning that they can easily be detected, distinguished from other life-stages, and quantified using conventional microscopic techniques. The finding of gametocytes on a standard Giemsa-stained blood film (together with metrics derived from their concentration over time) has therefore been used as an easily generated indicator of an individual’s potential for onward transmission of malaria [
<xref ref-type="bibr" rid="CR4">4</xref>
,
<xref ref-type="bibr" rid="CR5">5</xref>
].
<fig id="Fig1">
<label>Fig. 1</label>
<caption>
<p>The life cycle of
<italic>Plasmodium falciparum</italic>
, demonstrating how onward transmission occurs from one human host to the next. Drugs with “transmission-blocking” properties can act on any of the sexual stages of the parasite (gametocytes from stage I to V) occurring within the human host (
<italic>pink-shaded area</italic>
). However, because a mosquito’s blood meal will contain concentrations of any drug present at the time of biting, drugs administered to humans can also have transmission-blocking potential through their activity on stages present in the mosquito mid-gut (
<italic>yellow-shaded area</italic>
)</p>
</caption>
<graphic xlink:href="12916_2016_641_Fig1_HTML" id="MO1"></graphic>
</fig>
</p>
</sec>
<sec id="Sec2">
<title>Some antimalarial drugs clear gametocytes from the blood more rapidly than others</title>
<p>Antimalarial drugs differ in their relative activity on the various life-cycle stages of the malaria parasite, a property often termed “stage specificity”, which can manifest through the more effective gametocytocidal activity of certain drugs over others [
<xref ref-type="bibr" rid="CR6">6</xref>
]. Although new in vitro techniques can assess drug gametocytocidal activity [
<xref ref-type="bibr" rid="CR6">6</xref>
], in vivo data is needed to establish drug activity within the human host.</p>
<p>Artemisinin combination therapies (ACTs) are now the mainstay in the treatment of most malaria cases worldwide [
<xref ref-type="bibr" rid="CR7">7</xref>
]. Five ACTs, each utilizing a different “partner drug” are currently approved for use. It could be argued that differences in gametocytocidal activity between these ACTs could have important public health implications.</p>
<p>In a research article published in
<italic>BMC Medicine</italic>
[
<xref ref-type="bibr" rid="CR8">8</xref>
], the WWARN investigators identify clear differences between different ACTs with regards to gametocyte clearance. They show that those with 4-aminoquinoline partner drugs (dihydroartemisinin-piperaquine and artesunate-amodiaquine) clear gametocytes significantly slower than those with aryl-amino alcohol and related structures (artesunate-mefloquine and artemether-lumefantrine). These data infer that, whilst 4-aminoquinoline-based ACTs may be perfectly effective in curing an individual patient’s clinical malaria infection, they could be inferior from a public health perspective given their reduced effectiveness at preventing onward transmission. It could be argued that artesunate-mefloquine and artemether-lumefantrine have advantages for malaria control, especially if elimination is the ultimate aim. Others have also argued that primaquine, a drug with potent gametocytocidal activity, should be routinely deployed as adjunctive therapy to further reduce transmission following ACT treatment [
<xref ref-type="bibr" rid="CR9">9</xref>
].</p>
</sec>
<sec id="Sec3">
<title>How much does gametocyte clearance actually really matter?</title>
<p>There are important reasons why the differences in gametocyte clearance identified by the WWARN investigators should be interpreted with caution. Firstly, microscopic evidence of gametocytaemia may not necessarily be as accurate an indicator of human-to-mosquito transmissibility as might be expected. Indeed, microscopy cannot distinguish viable, living parasites from those that are dead or have been affected by a drug in a way that compromises their infectivity [
<xref ref-type="bibr" rid="CR10">10</xref>
,
<xref ref-type="bibr" rid="CR11">11</xref>
]. Further, routine microscopy usually does not distinguish between the most mature infective forms and the less mature non-infective forms. Therefore, considering that drugs may have differing gametocytocidal activity at the various stages of development, simply measuring the total numbers of gametocytes can be misleading [
<xref ref-type="bibr" rid="CR4">4</xref>
]. Finally, microscopy is relatively insensitive and methods based on reverse-transcriptase quantitative PCR can unmask both a much larger potentially infective population and longer durations of potential infectivity following treatment [
<xref ref-type="bibr" rid="CR4">4</xref>
]. In combination, these and other factors indicate that there is no simple linear relationship between gametocyte density and true infectivity. Indeed, some individuals with little or no gametocytemia are infectious and others with very high gametocytemia are non-infectious. Therefore, microscopy-based metrics of blood gametocyte clearance kinetics can only be considered “indirect” or “surrogate” markers of true infectivity to mosquitoes.</p>
<p>Ideal “gold standard” tests should rely on experiments known as direct (membrane) feeding assays. These require mosquitoes to be allowed to feed on human subjects (or at least on fresh human blood through an artificial membrane), after which mosquito mid-guts are dissected to determine whether oocysts have been formed. Yet, being labor-intensive and requiring significant insectary and laboratory facilities in a malaria endemic setting, it is not surprising that data from definitive studies of this type are lacking. Nevertheless, when such studies have been performed, they have generated some surprising and counterintuitive findings. For example, a previously widely-held belief was that, based on in vitro and in vivo observations of very high and prolonged gametocyte prevalence following treatment with the antimalarial sulfadoxine-pyrimethamine, this drug was a particularly bad culprit for facilitating onward transmission. However, direct feeding experiments showed these gametocytes are, in fact, poorly infective [
<xref ref-type="bibr" rid="CR10">10</xref>
,
<xref ref-type="bibr" rid="CR11">11</xref>
]. Another recent study evaluating adjunctive gametocytocidal treatment (primaquine added to artemether-lumefantrine) showed that only one of 49 subjects in the control group (who received only artemether-lumefantrine without primaquine) was able to infect mosquitoes following treatment despite over 30 % having microscopically detectable post-treatment gametocytemia [
<xref ref-type="bibr" rid="CR12">12</xref>
]. This data challenges recent calls for routine deployment of adjunctive primaquine gametocytocidal treatment following ACT case management [
<xref ref-type="bibr" rid="CR9">9</xref>
] and demonstrates how important direct infectivity data are for assessing the effect of different treatments on malaria transmission.</p>
</sec>
<sec id="Sec4">
<title>Uncertainties in transmissibility within sub-populations</title>
<p>Furthermore, there is a singular, crucial, unresolved epidemiological question that must be urgently addressed. In endemic settings, at any one time, the total transmissible biomass can be thought of as residing in three separate sub-populations: (1) those who have become unwell with malaria, but have yet to be treated; (2) those who have been treated and may remain infectious for a variable period (depending on drug and other factors); and (3) the population of chronic asymptomatic carriers (who are unlikely to receive antimalarial treatment at all). The relative contribution of each group to overall transmission will depend on three factors that may vary according to the epidemiological setting: (1) the size of each group relative to one another; (2) the duration for which individuals in each group remain infectious; and (3) how infectious individuals in each group are relative to those in the other groups. In other words, what is the probability that a single mosquito feed will result in human-mosquito transmission and how does this vary between groups? In the absence of good data from direct feeding experiments, this last factor remains essentially unclear. For instance, because asymptomatic carriers have generally lower concentrations of circulating gametocytes (often at sub-microscopic levels) it is uncertain just how infectious they are. However, because they usually represent the largest of the three groups and since they may have (potentially) much longer durations of infectivity (months or even years, compared with days or weeks in the other two groups) asymptomatic carriers could possibly represent a substantial contributor to human-mosquito transmission in many epidemiological settings. One mathematical modeling study suggests this could be to such a degree that post-treatment gametocytaemia (in the second group) becomes irrelevant [
<xref ref-type="bibr" rid="CR13">13</xref>
]. However, such modeling exercises rely on assumptions regarding the infectivity of asymptomatic carriers that are open to debate. These uncertainties can only be resolved with robust infectivity data from direct feeding studies that include asymptomatic carriers living in endemic areas.</p>
</sec>
<sec id="Sec5" sec-type="conclusion">
<title>Conclusions</title>
<p>The WWARN investigators have again demonstrated the impressive power of pooling data from a large number of studies and how this can unearth significant between-treatment differences in pharmacodynamic endpoints that would not ordinarily be detected. However, we must accept that its findings are subject to limitations inherent both in their use of an imperfect, indirect, surrogate biomarker for transmission and our currently limited understanding of the relative contribution of symptomatic and asymptomatic infections under different transmission scenarios. We must therefore be careful to distinguish the statistical significance of its findings from their actual clinical or public health implications. To this effect, we must first address fundamental gaps in our knowledge of the biology and epidemiology of malaria transmission through field studies using direct feeding assays, including in asymptomatic carriers. These studies are difficult and resource intensive to perform, but not impossible. The significant investment required is more than justified by the returns they are likely to generate for guiding policy and future research in malaria.</p>
</sec>
<sec id="Sec6">
<title>Abbreviations</title>
<p>ACT, artemisinin-based combination therapy; WWARN, Worldwide Antimalarial Resistance Network</p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgements</title>
<p>The authors are both supported by the Australian National Health and Medical Research Council.</p>
<sec id="FPar1">
<title>Authors’ contributions</title>
<p>HK conceived the manuscript and wrote the first draft, with intellectual input from IM who also contributed to subsequent revisions. Both authors read and approved the final manuscript.</p>
</sec>
<sec id="FPar2">
<title>Authors’ information</title>
<p>HK is a practicing infectious diseases physician whose primary research interest is in pharmacotherapy of tropical diseases, especially malaria, where his work involves both the pharmacokinetic and pharmacodynamic aspects of malaria. He works in the Division of Population Health and Immunity at the Walter and Eliza Hall Institute of Medical Research in Melbourne, Australia. The current focus of much of his work is research that informs drug-based strategies for malaria elimination, especially in the Asia-Pacific region. IM is head of the Division of Population Health and Immunity at the Walter and Eliza Hall Institute and also heads the “Malaria: Hosts and Parasites” unit at the Institut Pasteur, Paris. His primary interest is in the epidemiology and population biology of malaria, especially of
<italic>Plasmodium vivax</italic>
. He is also heavily involved in the malaria elimination agenda through collaborative research in the South Pacific, South-East Asia, and South America.</p>
</sec>
<sec id="FPar3">
<title>Competing interests</title>
<p>The authors have previously contributed data and co-authored publications as part of the Worldwide Antimalarial Resistance Network (WWARN).</p>
</sec>
</ack>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<collab>World Health Organization</collab>
</person-group>
<source>World Malaria Report 2015</source>
<year>2015</year>
<publisher-loc>Geneva</publisher-loc>
<publisher-name>WHO</publisher-name>
</element-citation>
</ref>
<ref id="CR2">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<collab>MalERA Consultative Group on Drugs</collab>
</person-group>
<article-title>A research agenda for malaria eradication: drugs</article-title>
<source>PLoS Med</source>
<year>2011</year>
<volume>8</volume>
<issue>1</issue>
<fpage>e1000402</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pmed.1000402</pub-id>
<pub-id pub-id-type="pmid">21311580</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Young</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Fivelman</surname>
<given-names>QL</given-names>
</name>
<name>
<surname>Blair</surname>
<given-names>PL</given-names>
</name>
<name>
<surname>de la Vega</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Le Roch</surname>
<given-names>KG</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Carucci</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Baker</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Winzeler</surname>
<given-names>EA</given-names>
</name>
</person-group>
<article-title>The Plasmodium falciparum sexual development transcriptome: a microarray analysis using ontology-based pattern identification</article-title>
<source>Mol Biochem Parasitol</source>
<year>2005</year>
<volume>143</volume>
<issue>1</issue>
<fpage>67</fpage>
<lpage>79</lpage>
<pub-id pub-id-type="doi">10.1016/j.molbiopara.2005.05.007</pub-id>
<pub-id pub-id-type="pmid">16005087</pub-id>
</element-citation>
</ref>
<ref id="CR4">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>White</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Ashley</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Recht</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Delves</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Ruecker</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Smithuis</surname>
<given-names>FM</given-names>
</name>
<name>
<surname>Eziefula</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Bousema</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Drakeley</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Chotivanich</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Assessment of therapeutic responses to gametocytocidal drugs in Plasmodium falciparum malaria</article-title>
<source>Malar J</source>
<year>2014</year>
<volume>13</volume>
<fpage>483</fpage>
<pub-id pub-id-type="doi">10.1186/1475-2875-13-483</pub-id>
<pub-id pub-id-type="pmid">25486998</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Graves</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Gelband</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Garner</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Primaquine or other 8-aminoquinoline for reducing P. falciparum transmission</article-title>
<source>Cochrane Database Syst Rev</source>
<year>2014</year>
<volume>6</volume>
<fpage>CD008152</fpage>
<pub-id pub-id-type="pmid">24979199</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Delves</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Plouffe</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Scheurer</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Meister</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wittlin</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Winzeler</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Sinden</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Leroy</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>The activities of current antimalarial drugs on the life cycle stages of Plasmodium: a comparative study with human and rodent parasites</article-title>
<source>PLoS Med</source>
<year>2012</year>
<volume>9</volume>
<issue>2</issue>
<fpage>e1001169</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pmed.1001169</pub-id>
<pub-id pub-id-type="pmid">22363211</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<label>7.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<collab>World Health Organization</collab>
</person-group>
<source>Guidelines for the treatment of malaria</source>
<year>2015</year>
<edition>3</edition>
<publisher-loc>Geneva</publisher-loc>
<publisher-name>WHO</publisher-name>
</element-citation>
</ref>
<ref id="CR8">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<collab>WWARN Gametocyte Study Group</collab>
</person-group>
<article-title>Gametocyte carriage in uncomplicated Plasmodium falciparum malaria following treatment with artemisinin combination therapy: a systematic review and meta-analysis of individual patient data</article-title>
<source>BMC Med</source>
<year>2016</year>
<volume>14</volume>
<fpage>79</fpage>
<pub-id pub-id-type="doi">10.1186/s12916-016-0621-7</pub-id>
<pub-id pub-id-type="pmid">27221542</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>White</surname>
<given-names>NJ</given-names>
</name>
</person-group>
<article-title>Primaquine to prevent transmission of falciparum malaria</article-title>
<source>Lancet Infect Dis</source>
<year>2013</year>
<volume>13</volume>
<issue>2</issue>
<fpage>175</fpage>
<lpage>81</lpage>
<pub-id pub-id-type="doi">10.1016/S1473-3099(12)70198-6</pub-id>
<pub-id pub-id-type="pmid">23182932</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Beavogui</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Djimde</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Gregson</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Toure</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Dao</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Coulibaly</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Ouologuem</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Fofana</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Sacko</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Tekete</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Low infectivity of Plasmodium falciparum gametocytes to Anopheles gambiae following treatment with sulfadoxine-pyrimethamine in Mali</article-title>
<source>Int J Parasitol</source>
<year>2010</year>
<volume>40</volume>
<issue>10</issue>
<fpage>1213</fpage>
<lpage>20</lpage>
<pub-id pub-id-type="doi">10.1016/j.ijpara.2010.04.010</pub-id>
<pub-id pub-id-type="pmid">20460125</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<label>11.</label>
<mixed-citation publication-type="other">Kone A, van de Vegte-Bolmer M, Siebelink-Stoter R, van Gemert GJ, Dara A, Niangaly H, Ouologuem D, Fofana B, Sacko A, Tekete M. Sulfadoxine-pyrimethamine impairs Plasmodium falciparum gametocyte infectivity and Anopheles mosquito survival. Int J Parasitol. 2010;40(10):1221–8.</mixed-citation>
</ref>
<ref id="CR12">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goncalves</surname>
<given-names>BP</given-names>
</name>
<name>
<surname>Tiono</surname>
<given-names>AB</given-names>
</name>
<name>
<surname>Ouedraogo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Guelbeogo</surname>
<given-names>WM</given-names>
</name>
<name>
<surname>Bradley</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Nebie</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Siaka</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Lanke</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Eziefula</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Diarra</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Single low dose primaquine to reduce gametocyte carriage and Plasmodium falciparum transmission after artemether-lumefantrine in children with asymptomatic infection: a randomised, double-blind, placebo-controlled trial</article-title>
<source>BMC Med</source>
<year>2016</year>
<volume>14</volume>
<fpage>40</fpage>
<pub-id pub-id-type="doi">10.1186/s12916-016-0581-y</pub-id>
<pub-id pub-id-type="pmid">26952094</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Johnston</surname>
<given-names>GL</given-names>
</name>
<name>
<surname>Gething</surname>
<given-names>PW</given-names>
</name>
<name>
<surname>Hay</surname>
<given-names>SI</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Fidock</surname>
<given-names>DA</given-names>
</name>
</person-group>
<article-title>Modeling within-host effects of drugs on Plasmodium falciparum transmission and prospects for malaria elimination</article-title>
<source>PLoS Comput Biol</source>
<year>2014</year>
<volume>10</volume>
<issue>1</issue>
<fpage>e1003434</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pcbi.1003434</pub-id>
<pub-id pub-id-type="pmid">24465196</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000971 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000971 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4912799
   |texte=   How important is gametocyte clearance after malaria therapy?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:27317420" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024