Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reduced Activity of SRY and its Target Enhancer Sox9-TESCO in a Mouse Species with X*Y Sex Reversal

Identifieur interne : 000866 ( Pmc/Corpus ); précédent : 000865; suivant : 000867

Reduced Activity of SRY and its Target Enhancer Sox9-TESCO in a Mouse Species with X*Y Sex Reversal

Auteurs : Liang Zhao ; Alexander Quinn ; Ee Ting Ng ; Frederic Veyrunes ; Peter Koopman

Source :

RBID : PMC:5290746

Abstract

In most eutherian mammals, sex determination is governed by the Y-linked gene Sry, but in African pygmy mice Mus minutoides, Sry action is overridden by a variant X chromosome (X*), yielding X*Y females. We hypothesized that X*Y sex reversal may be underpinned not only by neomorphic X chromosome functionality, but also by a compromised Sry pathway. Here, we show that neither M. minutoides SRY nor its target, the Sox9-TESCO enhancer, had appreciable transcriptional activity in in vitro assays, correlating with sequence degradation compared to Mus musculus counterparts. However, M. minutoides SRY activated its cognate TESCO to a moderate degree, and can clearly engage the male pathway in M. minutoides in the wild, indicating that SRY and TESCO may have co-evolved in M. minutoides to retain function above a threshold level. We suggest that weakening of the SRY/TESCO nexus may have facilitated the rise and spread of a variant X* chromosome carrying female-inducing modifier gene(s).


Url:
DOI: 10.1038/srep41378
PubMed: 28155866
PubMed Central: 5290746

Links to Exploration step

PMC:5290746

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Reduced Activity of SRY and its Target Enhancer
<italic>Sox9</italic>
-TESCO in a Mouse Species with X*Y Sex Reversal</title>
<author>
<name sortKey="Zhao, Liang" sort="Zhao, Liang" uniqKey="Zhao L" first="Liang" last="Zhao">Liang Zhao</name>
<affiliation>
<nlm:aff id="a1">
<institution>Institute for Molecular Bioscience, The University of Queensland</institution>
, Brisbane, QLD 4072,
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Quinn, Alexander" sort="Quinn, Alexander" uniqKey="Quinn A" first="Alexander" last="Quinn">Alexander Quinn</name>
<affiliation>
<nlm:aff id="a1">
<institution>Institute for Molecular Bioscience, The University of Queensland</institution>
, Brisbane, QLD 4072,
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ng, Ee Ting" sort="Ng, Ee Ting" uniqKey="Ng E" first="Ee Ting" last="Ng">Ee Ting Ng</name>
<affiliation>
<nlm:aff id="a1">
<institution>Institute for Molecular Bioscience, The University of Queensland</institution>
, Brisbane, QLD 4072,
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Veyrunes, Frederic" sort="Veyrunes, Frederic" uniqKey="Veyrunes F" first="Frederic" last="Veyrunes">Frederic Veyrunes</name>
<affiliation>
<nlm:aff id="a2">
<institution>Institut des Sciences de l’Evolution de Montpellier, Université Montpellier II</institution>
, CNRS, Montpellier,
<country>France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Koopman, Peter" sort="Koopman, Peter" uniqKey="Koopman P" first="Peter" last="Koopman">Peter Koopman</name>
<affiliation>
<nlm:aff id="a1">
<institution>Institute for Molecular Bioscience, The University of Queensland</institution>
, Brisbane, QLD 4072,
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">28155866</idno>
<idno type="pmc">5290746</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5290746</idno>
<idno type="RBID">PMC:5290746</idno>
<idno type="doi">10.1038/srep41378</idno>
<date when="2017">2017</date>
<idno type="wicri:Area/Pmc/Corpus">000866</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000866</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Reduced Activity of SRY and its Target Enhancer
<italic>Sox9</italic>
-TESCO in a Mouse Species with X*Y Sex Reversal</title>
<author>
<name sortKey="Zhao, Liang" sort="Zhao, Liang" uniqKey="Zhao L" first="Liang" last="Zhao">Liang Zhao</name>
<affiliation>
<nlm:aff id="a1">
<institution>Institute for Molecular Bioscience, The University of Queensland</institution>
, Brisbane, QLD 4072,
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Quinn, Alexander" sort="Quinn, Alexander" uniqKey="Quinn A" first="Alexander" last="Quinn">Alexander Quinn</name>
<affiliation>
<nlm:aff id="a1">
<institution>Institute for Molecular Bioscience, The University of Queensland</institution>
, Brisbane, QLD 4072,
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ng, Ee Ting" sort="Ng, Ee Ting" uniqKey="Ng E" first="Ee Ting" last="Ng">Ee Ting Ng</name>
<affiliation>
<nlm:aff id="a1">
<institution>Institute for Molecular Bioscience, The University of Queensland</institution>
, Brisbane, QLD 4072,
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Veyrunes, Frederic" sort="Veyrunes, Frederic" uniqKey="Veyrunes F" first="Frederic" last="Veyrunes">Frederic Veyrunes</name>
<affiliation>
<nlm:aff id="a2">
<institution>Institut des Sciences de l’Evolution de Montpellier, Université Montpellier II</institution>
, CNRS, Montpellier,
<country>France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Koopman, Peter" sort="Koopman, Peter" uniqKey="Koopman P" first="Peter" last="Koopman">Peter Koopman</name>
<affiliation>
<nlm:aff id="a1">
<institution>Institute for Molecular Bioscience, The University of Queensland</institution>
, Brisbane, QLD 4072,
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific Reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2017">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>In most eutherian mammals, sex determination is governed by the Y-linked gene
<italic>Sry,</italic>
but in African pygmy mice
<italic>Mus minutoides, Sry</italic>
action is overridden by a variant X chromosome (X*), yielding X*Y females. We hypothesized that X*Y sex reversal may be underpinned not only by neomorphic X chromosome functionality, but also by a compromised
<italic>Sry</italic>
pathway. Here, we show that neither
<italic>M. minutoides</italic>
SRY nor its target, the
<italic>Sox9-</italic>
TESCO enhancer, had appreciable transcriptional activity in
<italic>in vitro</italic>
assays, correlating with sequence degradation compared to
<italic>Mus musculus</italic>
counterparts. However,
<italic>M. minutoides</italic>
SRY activated its cognate TESCO to a moderate degree, and can clearly engage the male pathway in
<italic>M. minutoides</italic>
in the wild, indicating that SRY and TESCO may have co-evolved in
<italic>M. minutoides</italic>
to retain function above a threshold level. We suggest that weakening of the SRY/TESCO nexus may have facilitated the rise and spread of a variant X* chromosome carrying female-inducing modifier gene(s).</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Koopman, P" uniqKey="Koopman P">P. Koopman</name>
</author>
<author>
<name sortKey="Gubbay, J" uniqKey="Gubbay J">J. Gubbay</name>
</author>
<author>
<name sortKey="Vivian, N" uniqKey="Vivian N">N. Vivian</name>
</author>
<author>
<name sortKey="Goodfellow, P" uniqKey="Goodfellow P">P. Goodfellow</name>
</author>
<author>
<name sortKey="Lovell Badge, R" uniqKey="Lovell Badge R">R. Lovell-Badge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sinclair, A H" uniqKey="Sinclair A">A. H. Sinclair</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gubbay, J" uniqKey="Gubbay J">J. Gubbay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bowles, J" uniqKey="Bowles J">J. Bowles</name>
</author>
<author>
<name sortKey="Schepers, G" uniqKey="Schepers G">G. Schepers</name>
</author>
<author>
<name sortKey="Koopman, P" uniqKey="Koopman P">P. Koopman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sekido, R" uniqKey="Sekido R">R. Sekido</name>
</author>
<author>
<name sortKey="Lovell Badge, R" uniqKey="Lovell Badge R">R. Lovell-Badge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Zheng, M" uniqKey="Zheng M">M. Zheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Svingen, T" uniqKey="Svingen T">T. Svingen</name>
</author>
<author>
<name sortKey="Koopman, P" uniqKey="Koopman P">P. Koopman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, L" uniqKey="Zhao L">L. Zhao</name>
</author>
<author>
<name sortKey="Koopman, P" uniqKey="Koopman P">P. Koopman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Eill, M J" uniqKey="O Eill M">M. J. O’Neill</name>
</author>
<author>
<name sortKey="O Eill, R J" uniqKey="O Eill R">R. J. O’Neill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bowles, J" uniqKey="Bowles J">J. Bowles</name>
</author>
<author>
<name sortKey="Cooper, L" uniqKey="Cooper L">L. Cooper</name>
</author>
<author>
<name sortKey="Berkman, J" uniqKey="Berkman J">J. Berkman</name>
</author>
<author>
<name sortKey="Koopman, P" uniqKey="Koopman P">P. Koopman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, L" uniqKey="Zhao L">L. Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Veyrunes, F" uniqKey="Veyrunes F">F. Veyrunes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rahmoun, M" uniqKey="Rahmoun M">M. Rahmoun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Veyrunes, F" uniqKey="Veyrunes F">F. Veyrunes</name>
</author>
<author>
<name sortKey="Perez, J" uniqKey="Perez J">J. Perez</name>
</author>
<author>
<name sortKey="Paintsil, S N C" uniqKey="Paintsil S">S. N. C. Paintsil</name>
</author>
<author>
<name sortKey="Fichet Calvet, E" uniqKey="Fichet Calvet E">E. Fichet-Calvet</name>
</author>
<author>
<name sortKey="Britton Davidian, J" uniqKey="Britton Davidian J">J. Britton-Davidian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Britton Davidian, J" uniqKey="Britton Davidian J">J. Britton-Davidian</name>
</author>
<author>
<name sortKey="Robinson, T J" uniqKey="Robinson T">T. J. Robinson</name>
</author>
<author>
<name sortKey="Veyrunes, F" uniqKey="Veyrunes F">F. Veyrunes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nagamine, C M" uniqKey="Nagamine C">C. M. Nagamine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coward, P" uniqKey="Coward P">P. Coward</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Albrecht, K H" uniqKey="Albrecht K">K. H. Albrecht</name>
</author>
<author>
<name sortKey="Eicher, E M" uniqKey="Eicher E">E. M. Eicher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lundrigan, B" uniqKey="Lundrigan B">B. Lundrigan</name>
</author>
<author>
<name sortKey="Tucker, P" uniqKey="Tucker P">P. Tucker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Uhlenhaut, N H" uniqKey="Uhlenhaut N">N. H. Uhlenhaut</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ludbrook, L M" uniqKey="Ludbrook L">L. M. Ludbrook</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bernard, P" uniqKey="Bernard P">P. Bernard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bagheri Fam, S" uniqKey="Bagheri Fam S">S. Bagheri-Fam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kimura, R" uniqKey="Kimura R">R. Kimura</name>
</author>
<author>
<name sortKey="Murata, C" uniqKey="Murata C">C. Murata</name>
</author>
<author>
<name sortKey="Kuroki, Y" uniqKey="Kuroki Y">Y. Kuroki</name>
</author>
<author>
<name sortKey="Kuroiwa, A" uniqKey="Kuroiwa A">A. Kuroiwa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bagheri Fam, S" uniqKey="Bagheri Fam S">S. Bagheri-Fam</name>
</author>
<author>
<name sortKey="Sinclair, A H" uniqKey="Sinclair A">A. H. Sinclair</name>
</author>
<author>
<name sortKey="Koopman, P" uniqKey="Koopman P">P. Koopman</name>
</author>
<author>
<name sortKey="Harley, V R" uniqKey="Harley V">V. R. Harley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morohashi, K" uniqKey="Morohashi K">K. Morohashi</name>
</author>
<author>
<name sortKey="Honda, S" uniqKey="Honda S">S. Honda</name>
</author>
<author>
<name sortKey="Inomata, Y" uniqKey="Inomata Y">Y. Inomata</name>
</author>
<author>
<name sortKey="Handa, H" uniqKey="Handa H">H. Handa</name>
</author>
<author>
<name sortKey="Omura, T" uniqKey="Omura T">T. Omura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harley, V R" uniqKey="Harley V">V. R. Harley</name>
</author>
<author>
<name sortKey="Lovell Badge, R" uniqKey="Lovell Badge R">R. Lovell-Badge</name>
</author>
<author>
<name sortKey="Goodfellow, P N" uniqKey="Goodfellow P">P. N. Goodfellow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Y S" uniqKey="Chen Y">Y. S. Chen</name>
</author>
<author>
<name sortKey="Racca, J D" uniqKey="Racca J">J. D. Racca</name>
</author>
<author>
<name sortKey="Sequeira, P W" uniqKey="Sequeira P">P. W. Sequeira</name>
</author>
<author>
<name sortKey="Phillips, N B" uniqKey="Phillips N">N. B. Phillips</name>
</author>
<author>
<name sortKey="Weiss, M A" uniqKey="Weiss M">M. A. Weiss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jimenez, R" uniqKey="Jimenez R">R. Jiménez</name>
</author>
<author>
<name sortKey="Barrionuevo, F J" uniqKey="Barrionuevo F">F. J. Barrionuevo</name>
</author>
<author>
<name sortKey="Burgos, M" uniqKey="Burgos M">M. Burgos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tucker, P K" uniqKey="Tucker P">P. K. Tucker</name>
</author>
<author>
<name sortKey="Lundrigan, B L" uniqKey="Lundrigan B">B. L. Lundrigan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Whitfield, L S" uniqKey="Whitfield L">L. S. Whitfield</name>
</author>
<author>
<name sortKey="Lovell Badge, R" uniqKey="Lovell Badge R">R. Lovell-Badge</name>
</author>
<author>
<name sortKey="Goodfellow, P N" uniqKey="Goodfellow P">P. N. Goodfellow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Werner, M H" uniqKey="Werner M">M. H. Werner</name>
</author>
<author>
<name sortKey="Huth, J R" uniqKey="Huth J">J. R. Huth</name>
</author>
<author>
<name sortKey="Gronenborn, A M" uniqKey="Gronenborn A">A. M. Gronenborn</name>
</author>
<author>
<name sortKey="Marius Clore, G" uniqKey="Marius Clore G">G. Marius Clore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Swain, A" uniqKey="Swain A">A. Swain</name>
</author>
<author>
<name sortKey="Narvaez, V" uniqKey="Narvaez V">V. Narvaez</name>
</author>
<author>
<name sortKey="Burgoyne, P" uniqKey="Burgoyne P">P. Burgoyne</name>
</author>
<author>
<name sortKey="Camerino, G" uniqKey="Camerino G">G. Camerino</name>
</author>
<author>
<name sortKey="Lovell Badge, R" uniqKey="Lovell Badge R">R. Lovell-Badge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eicher, E" uniqKey="Eicher E">E. Eicher</name>
</author>
<author>
<name sortKey="Washburn, L" uniqKey="Washburn L">L. Washburn</name>
</author>
<author>
<name sortKey="Whitney, J" uniqKey="Whitney J">J. Whitney</name>
</author>
<author>
<name sortKey="Morrow, K" uniqKey="Morrow K">K. Morrow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Charlesworth, B" uniqKey="Charlesworth B">B. Charlesworth</name>
</author>
<author>
<name sortKey="Sniegowski, P" uniqKey="Sniegowski P">P. Sniegowski</name>
</author>
<author>
<name sortKey="Stephan, W" uniqKey="Stephan W">W. Stephan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taketo Hosotani, T" uniqKey="Taketo Hosotani T">T. Taketo-Hosotani</name>
</author>
<author>
<name sortKey="Nishioka, Y" uniqKey="Nishioka Y">Y. Nishioka</name>
</author>
<author>
<name sortKey="Nagamine, C M" uniqKey="Nagamine C">C. M. Nagamine</name>
</author>
<author>
<name sortKey="Villalpando, I" uniqKey="Villalpando I">I. Villalpando</name>
</author>
<author>
<name sortKey="Merchant Larios, H" uniqKey="Merchant Larios H">H. Merchant-Larios</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saunders, P A" uniqKey="Saunders P">P. A. Saunders</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fredga, K" uniqKey="Fredga K">K. Fredga</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fredga, K" uniqKey="Fredga K">K. Fredga</name>
</author>
<author>
<name sortKey="Setterfield, L" uniqKey="Setterfield L">L. Setterfield</name>
</author>
<author>
<name sortKey="Mittwoch, U" uniqKey="Mittwoch U">U. Mittwoch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Espinosa, M B" uniqKey="Espinosa M">M. B. Espinosa</name>
</author>
<author>
<name sortKey="Vitullo, A D" uniqKey="Vitullo A">A. D. Vitullo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Espinosa, M B" uniqKey="Espinosa M">M. B. Espinosa</name>
</author>
<author>
<name sortKey="Vitullo, A D" uniqKey="Vitullo A">A. D. Vitullo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kozielska, M" uniqKey="Kozielska M">M. Kozielska</name>
</author>
<author>
<name sortKey="Weissing, F J" uniqKey="Weissing F">F. J. Weissing</name>
</author>
<author>
<name sortKey="Beukeboom, L W" uniqKey="Beukeboom L">L. W. Beukeboom</name>
</author>
<author>
<name sortKey="Pen, I" uniqKey="Pen I">I. Pen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Doorn, G S" uniqKey="Van Doorn G">G. S. van Doorn</name>
</author>
<author>
<name sortKey="Kirkpatrick, M" uniqKey="Kirkpatrick M">M. Kirkpatrick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vuilleumier, S" uniqKey="Vuilleumier S">S. Vuilleumier</name>
</author>
<author>
<name sortKey="Lande, R" uniqKey="Lande R">R. Lande</name>
</author>
<author>
<name sortKey="Van Alphen, J J M" uniqKey="Van Alphen J">J. J. M. Van Alphen</name>
</author>
<author>
<name sortKey="Seehausen, O" uniqKey="Seehausen O">O. Seehausen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bull, J J" uniqKey="Bull J">J. J. Bull</name>
</author>
<author>
<name sortKey="Charnov, E L" uniqKey="Charnov E">E. L. Charnov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Doorn, G S" uniqKey="Van Doorn G">G. S. van Doorn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Foster, J W" uniqKey="Foster J">J. W. Foster</name>
</author>
<author>
<name sortKey="Graves, J A" uniqKey="Graves J">J. A. Graves</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sutton, E" uniqKey="Sutton E">E. Sutton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stevanovl, M" uniqKey="Stevanovl M">M. Stevanovlć</name>
</author>
<author>
<name sortKey="Lovell Badge, R" uniqKey="Lovell Badge R">R. Lovell-Badge</name>
</author>
<author>
<name sortKey="Collignon, J M" uniqKey="Collignon J">J. m. Collignon</name>
</author>
<author>
<name sortKey="Goodfellow, P N" uniqKey="Goodfellow P">P. N. Goodfellow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Charlesworth, B" uniqKey="Charlesworth B">B. Charlesworth</name>
</author>
<author>
<name sortKey="Charlesworth, D" uniqKey="Charlesworth D">D. Charlesworth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Charlesworth, B" uniqKey="Charlesworth B">B. Charlesworth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bachtrog, D" uniqKey="Bachtrog D">D. Bachtrog</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bachtrog, D" uniqKey="Bachtrog D">D. Bachtrog</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arakawa, Y" uniqKey="Arakawa Y">Y. Arakawa</name>
</author>
<author>
<name sortKey="Nishida Umehara, C" uniqKey="Nishida Umehara C">C. Nishida-Umehara</name>
</author>
<author>
<name sortKey="Matsuda, Y" uniqKey="Matsuda Y">Y. Matsuda</name>
</author>
<author>
<name sortKey="Sutou, S" uniqKey="Sutou S">S. Sutou</name>
</author>
<author>
<name sortKey="Suzuki, H" uniqKey="Suzuki H">H. Suzuki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hughes, J" uniqKey="Hughes J">J. Hughes</name>
</author>
<author>
<name sortKey="Skaletsky, H" uniqKey="Skaletsky H">H. Skaletsky</name>
</author>
<author>
<name sortKey="Koutseva, N" uniqKey="Koutseva N">N. Koutseva</name>
</author>
<author>
<name sortKey="Pyntikova, T" uniqKey="Pyntikova T">T. Pyntikova</name>
</author>
<author>
<name sortKey="Page, D" uniqKey="Page D">D. Page</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sutou, S" uniqKey="Sutou S">S. Sutou</name>
</author>
<author>
<name sortKey="Mitsui, Y" uniqKey="Mitsui Y">Y. Mitsui</name>
</author>
<author>
<name sortKey="Tsuchiya, K" uniqKey="Tsuchiya K">K. Tsuchiya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soullier, S" uniqKey="Soullier S">S. Soullier</name>
</author>
<author>
<name sortKey="Hanni, C" uniqKey="Hanni C">C. Hanni</name>
</author>
<author>
<name sortKey="Catzeflis, F" uniqKey="Catzeflis F">F. Catzeflis</name>
</author>
<author>
<name sortKey="Berta, P" uniqKey="Berta P">P. Berta</name>
</author>
<author>
<name sortKey="Laudet, V" uniqKey="Laudet V">V. Laudet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Just, W" uniqKey="Just W">W. Just</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Just, W" uniqKey="Just W">W. Just</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jotterand Bellomo, M" uniqKey="Jotterand Bellomo M">M. Jotterand-Bellomo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thompson, J D" uniqKey="Thompson J">J. D. Thompson</name>
</author>
<author>
<name sortKey="Higgins, D G" uniqKey="Higgins D">D. G. Higgins</name>
</author>
<author>
<name sortKey="Gibson, T J" uniqKey="Gibson T">T. J. Gibson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pearson, W R" uniqKey="Pearson W">W. R. Pearson</name>
</author>
<author>
<name sortKey="Wood, T" uniqKey="Wood T">T. Wood</name>
</author>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z. Zhang</name>
</author>
<author>
<name sortKey="Miller, W" uniqKey="Miller W">W. Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bouckaert, R" uniqKey="Bouckaert R">R. Bouckaert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, E F" uniqKey="Lee E">E. F. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, L" uniqKey="Zhao L">L. Zhao</name>
</author>
<author>
<name sortKey="Neumann, B" uniqKey="Neumann B">B. Neumann</name>
</author>
<author>
<name sortKey="Murphy, K" uniqKey="Murphy K">K. Murphy</name>
</author>
<author>
<name sortKey="Silke, J" uniqKey="Silke J">J. Silke</name>
</author>
<author>
<name sortKey="Gonda, T J" uniqKey="Gonda T">T. J. Gonda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schepers, G" uniqKey="Schepers G">G. Schepers</name>
</author>
<author>
<name sortKey="Wilson, M" uniqKey="Wilson M">M. Wilson</name>
</author>
<author>
<name sortKey="Wilhelm, D" uniqKey="Wilhelm D">D. Wilhelm</name>
</author>
<author>
<name sortKey="Koopman, P" uniqKey="Koopman P">P. Koopman</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Sci Rep</journal-id>
<journal-id journal-id-type="iso-abbrev">Sci Rep</journal-id>
<journal-title-group>
<journal-title>Scientific Reports</journal-title>
</journal-title-group>
<issn pub-type="epub">2045-2322</issn>
<publisher>
<publisher-name>Nature Publishing Group</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">28155866</article-id>
<article-id pub-id-type="pmc">5290746</article-id>
<article-id pub-id-type="pii">srep41378</article-id>
<article-id pub-id-type="doi">10.1038/srep41378</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Reduced Activity of SRY and its Target Enhancer
<italic>Sox9</italic>
-TESCO in a Mouse Species with X*Y Sex Reversal</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Zhao</surname>
<given-names>Liang</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Quinn</surname>
<given-names>Alexander</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ng</surname>
<given-names>Ee Ting</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Veyrunes</surname>
<given-names>Frederic</given-names>
</name>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Koopman</surname>
<given-names>Peter</given-names>
</name>
<xref ref-type="corresp" rid="c1">a</xref>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<aff id="a1">
<label>1</label>
<institution>Institute for Molecular Bioscience, The University of Queensland</institution>
, Brisbane, QLD 4072,
<country>Australia</country>
</aff>
<aff id="a2">
<label>2</label>
<institution>Institut des Sciences de l’Evolution de Montpellier, Université Montpellier II</institution>
, CNRS, Montpellier,
<country>France</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="c1">
<label>a</label>
<email>p.koopman@imb.uq.edu.au</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>03</day>
<month>02</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="collection">
<year>2017</year>
</pub-date>
<volume>7</volume>
<elocation-id>41378</elocation-id>
<history>
<date date-type="received">
<day>11</day>
<month>08</month>
<year>2016</year>
</date>
<date date-type="accepted">
<day>20</day>
<month>12</month>
<year>2016</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2017, The Author(s)</copyright-statement>
<copyright-year>2017</copyright-year>
<copyright-holder>The Author(s)</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/4.0/">
<pmc-comment>author-paid</pmc-comment>
<license-p>This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
</license-p>
</license>
</permissions>
<abstract>
<p>In most eutherian mammals, sex determination is governed by the Y-linked gene
<italic>Sry,</italic>
but in African pygmy mice
<italic>Mus minutoides, Sry</italic>
action is overridden by a variant X chromosome (X*), yielding X*Y females. We hypothesized that X*Y sex reversal may be underpinned not only by neomorphic X chromosome functionality, but also by a compromised
<italic>Sry</italic>
pathway. Here, we show that neither
<italic>M. minutoides</italic>
SRY nor its target, the
<italic>Sox9-</italic>
TESCO enhancer, had appreciable transcriptional activity in
<italic>in vitro</italic>
assays, correlating with sequence degradation compared to
<italic>Mus musculus</italic>
counterparts. However,
<italic>M. minutoides</italic>
SRY activated its cognate TESCO to a moderate degree, and can clearly engage the male pathway in
<italic>M. minutoides</italic>
in the wild, indicating that SRY and TESCO may have co-evolved in
<italic>M. minutoides</italic>
to retain function above a threshold level. We suggest that weakening of the SRY/TESCO nexus may have facilitated the rise and spread of a variant X* chromosome carrying female-inducing modifier gene(s).</p>
</abstract>
</article-meta>
</front>
<body>
<p>In most eutherian mammals with an XX/XY chromosomal system, sex development hinges on the presence or absence of the Y-linked testis-determining gene
<italic>Sry</italic>
<xref ref-type="bibr" rid="b1">1</xref>
<xref ref-type="bibr" rid="b2">2</xref>
<xref ref-type="bibr" rid="b3">3</xref>
. SRY protein is a transcription factor characterized by a 79-amino acid DNA binding domain known as the high mobility group (HMG) domain
<xref ref-type="bibr" rid="b4">4</xref>
. When expressed in fetal gonads, SRY protein, together with its partner SF1 (also known as NR5A1), bind to the testis-specific enhancer core element (TESCO) of the target effector gene
<italic>Sox9</italic>
and upregulate its expression
<xref ref-type="bibr" rid="b5">5</xref>
. SOX9 protein in turn initiates a genetic cascade directing the bipotential somatic precursor cells to develop into Sertoli cells
<xref ref-type="bibr" rid="b6">6</xref>
, which orchestrate the development of a testis
<xref ref-type="bibr" rid="b7">7</xref>
. In the absence of
<italic>Sry</italic>
expression or upregulation of
<italic>Sox9</italic>
, the fetal gonads develop as ovaries.</p>
<p>While SRY proteins from different species show strong conservation in the HMG domain, sequences outside the HMG domain are poorly conserved
<xref ref-type="bibr" rid="b8">8</xref>
<xref ref-type="bibr" rid="b9">9</xref>
. Mouse and rat SRY proteins have C-termini that are particularly unusual in that they comprise a bridge domain and a polyglutamine (polyQ) tract encoded by a CAG trinucleotide-repeat microsatellite. We have demonstrated previously that the polyQ tract plays essential roles in male sex determination in laboratory mice (
<italic>Mus musculus</italic>
) by stabilizing SRY protein and transcriptionally inducing
<italic>Sox9</italic>
expression
<italic>via</italic>
activating TESCO
<xref ref-type="bibr" rid="b10">10</xref>
<xref ref-type="bibr" rid="b11">11</xref>
.</p>
<p>An atypical sex determination system has been described in the African pygmy mouse
<italic>Mus minutoides</italic>
. In this species, regular XX females and XY males exist, but in addition, individuals bearing a normal Y and a variant X (X*) develop as females, despite the presence of the Y chromosome and
<italic>Sry</italic>
<xref ref-type="bibr" rid="b12">12</xref>
<xref ref-type="bibr" rid="b13">13</xref>
. While the genetic variation that allows the X* to override the male sex-determining programme has not been identified, the other side of the coin is the question of whether the male sex-determining pathway has been weakened in this species, perhaps rendering it vulnerable to be overridden by X*. In
<italic>M. minutoides, Sry</italic>
is expressed in embryonic and adult X*Y ovaries at levels higher than in XY testes
<xref ref-type="bibr" rid="b13">13</xref>
(and our unpublished data), suggesting that female development in X*Y animals is unlikely due to the lack of
<italic>Sry</italic>
expression. Previous analyses of
<italic>Sry</italic>
in
<italic>M. minutoides</italic>
have identified no disruptive mutations in the HMG box and part of the bridge domain, and no differences in partial
<italic>Sry</italic>
sequence between XY males and X*Y females
<xref ref-type="bibr" rid="b12">12</xref>
<xref ref-type="bibr" rid="b14">14</xref>
. However, gross defects in
<italic>Sry</italic>
are unlikely, given that it must retain its male sex-determining function in XY males, leading us to hypothesize that molecular function of the
<italic>Sry</italic>
pathway might be more subtly compromised in this species.</p>
<p>In the current study, we test this hypothesis by examining in detail the structure and function of SRY in
<italic>M. minutoides</italic>
. We find that both SRY and its target enhancer,
<italic>Sox9</italic>
-TESCO, are strongly debilitated in
<italic>M. minutoides,</italic>
but they appear to have co-evolved such that they remain able to function together in XY males. We propose a model in which weakening of the SRY/TESCO nexus may have facilitated the rise and stabilization of an X*-based feminizing mechanism in
<italic>M. minutoides.</italic>
</p>
<sec disp-level="1">
<title>Results</title>
<sec disp-level="2">
<title>A degraded C-terminal polyQ tract in
<italic>M. minutoides</italic>
SRY</title>
<p>We began by investigating whether structural changes in SRY might contribute to the mechanism of X*Y sex reversal. We sequenced the entire
<italic>Sry</italic>
coding region in
<italic>M. minutoides</italic>
and
<italic>M. mattheyi</italic>
(
<xref ref-type="fig" rid="f1">Fig. 1a</xref>
), a close relative with a typical XX/XY system
<xref ref-type="bibr" rid="b15">15</xref>
, and identified 5 and 7
<italic>Sry</italic>
haplotypes from
<italic>M. minutoides</italic>
and
<italic>M. mattheyi</italic>
respectively (
<xref ref-type="supplementary-material" rid="S1">Supplementary Figs S1–4</xref>
and
<xref ref-type="table" rid="t1">Table 1</xref>
), consistent with previous reports of multiple non-identical
<italic>Sry</italic>
copies in these species
<xref ref-type="bibr" rid="b14">14</xref>
<xref ref-type="bibr" rid="b16">16</xref>
. In subsequent analyses, a reference clone representing the respective consensus of all identified
<italic>Sry</italic>
haplotypes in
<italic>M. mattheyi</italic>
or
<italic>M. minutoides</italic>
was used (
<xref ref-type="table" rid="t1">Table 1</xref>
).</p>
<p>Mouse SRY protein comprises an N-terminal HMG domain responsible for DNA binding, a short bridge domain of unknown function, and a large C-terminal polyQ domain composed of 8 (
<italic>Mus musculus domesticus</italic>
; hereafter referred to as
<italic>M. domesticus</italic>
) to 20 (
<italic>Mus musculus molossinus</italic>
; hereafter referred to as
<italic>M. musculus</italic>
) blocks of 2–13 glutamine residues interspersed by a short histidine-rich spacer sequence
<xref ref-type="bibr" rid="b17">17</xref>
<xref ref-type="bibr" rid="b18">18</xref>
. Compared with
<italic>M. musculus</italic>
SRY (musSRY), most sequence variations in
<italic>M. mattheyi</italic>
and
<italic>M. minutoides</italic>
SRY (mat- and minSRY) were found in the C-terminal polyQ tract, whereas the HMG box and bridge domains are relatively conserved (
<xref ref-type="fig" rid="f1">Fig. 1b,c</xref>
, and
<xref ref-type="supplementary-material" rid="S1">Supplementary Figs S5</xref>
,S6), consistent with previous analyses
<xref ref-type="bibr" rid="b12">12</xref>
<xref ref-type="bibr" rid="b14">14</xref>
. The C-terminus of matSRY, despite the truncation caused by an internal stop codon (
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. S5</xref>
), retains 11 glutamine blocks and histidine-rich spacers, resembling a typical SRY polyQ tract (
<xref ref-type="fig" rid="f1">Fig. 1c</xref>
). In contrast, the C-terminus of minSRY was further shortened and contains 4 blocks of only 2 glutamine residues and no histidine-rich spacers (
<xref ref-type="fig" rid="f1">Fig. 1b,c</xref>
).</p>
<p>The fact that other murine species, like
<italic>Rattus</italic>
, Arvicanthini tribe, and other
<italic>Mus</italic>
species including pygmy mice share a long glutamine-rich C-terminal domain
<xref ref-type="bibr" rid="b18">18</xref>
<xref ref-type="bibr" rid="b19">19</xref>
(and our unpublished data) suggests the
<italic>M. minutoides</italic>
polyQ tract has evolved by degradation of a longer and more organized polyQ tract present in common ancestors to
<italic>M. minutoides, M. mattheyi</italic>
and
<italic>M. musculus</italic>
. Supporting this view, further degradation of the polyQ tract has occurred in some of the identified
<italic>Sry</italic>
haplotypes when compared with the reference ones (
<italic>M. minutoides</italic>
haplotype
<italic>a</italic>
and
<italic>M. mattheyi</italic>
haplotypes
<italic>c, g</italic>
;
<xref ref-type="table" rid="t1">Table 1</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Figs S1–4</xref>
).</p>
</sec>
<sec disp-level="2">
<title>Loss of transactivation ability of
<italic>M. minutoides</italic>
SRY</title>
<p>We have previously established that the polyQ tract is essential for protein stabilization and transactivation by SRY in
<italic>M. musculus</italic>
<xref ref-type="bibr" rid="b11">11</xref>
. Because minSRY has a highly degraded polyQ tract, we examined whether the stability and transactivation potential of minSRY is compromised. We found that, unlike a EGFP-tagged
<italic>M. musculus</italic>
SRY mutant protein completely lacking the polyQ tract that is barely detectable when stably expressed in mouse Sertoli-like 15P-1 cell line
<xref ref-type="bibr" rid="b11">11</xref>
, EGFP-tagged min- and matSRY protein (
<xref ref-type="fig" rid="f2">Fig. 2a</xref>
) were readily detected by Western blot and immunofluorescence (
<xref ref-type="fig" rid="f2">Fig. 2b,c</xref>
) in stable 15P-1 cell lines, indicating that the stability of minSRY is not affected by its degraded polyQ tract.</p>
<p>In mouse sex determination, the 1.4-kb TESCO enhancer element plays a significant role in mediating the induction of
<italic>Sox9</italic>
expression by SRY in the presence of SF1
<xref ref-type="bibr" rid="b5">5</xref>
, although it is likely that other, yet to be identified testis-specific
<italic>Sox9</italic>
-enhancer elements may also contribute to SRY’s regulation of
<italic>Sox9</italic>
. We have previously shown that the ability of a series of SRY mutant proteins to transactivate a
<italic>M. musculus</italic>
TESCO-luciferase reporter construct (musTESCO-Luc)
<xref ref-type="bibr" rid="b5">5</xref>
in the heterologous cell line HEK293 correlates closely with their ability to induce
<italic>Sox9</italic>
expression and direct male sex determination in transgenic mouse embryos
<xref ref-type="bibr" rid="b11">11</xref>
. We therefore examined the ability of min- or matSRY protein to activate the musTESCO-Luc reporter in the presence of
<italic>M. musculus</italic>
SF1 (musSF1) in HEK293 cells. We observed activation by matSRY, albeit weaker than musSRY (
<xref ref-type="fig" rid="f3">Fig. 3a</xref>
), consistent with our previous observation that, compared with musSRY,
<italic>M. domesticus</italic>
SRY exhibits reduced TESCO activation due to its shortened polyQ tract
<xref ref-type="bibr" rid="b11">11</xref>
. Strikingly, minSRY failed to activate musTESCO-Luc at all in this system (
<xref ref-type="fig" rid="f3">Fig. 3a</xref>
, compare green arrows).</p>
<p>The failure of minSRY to activate musTESCO-Luc could be caused by either its intrinsic structural changes or incompatibility between minSRY and musSF1. We therefore investigated whether potential sequence variations between
<italic>M. musculus</italic>
and
<italic>M. minutoides Sf1</italic>
could account for the loss of musTESCO activation by minSRY. To this end, we sequenced coding exons 2–7 of
<italic>Sf1</italic>
gene in
<italic>M. minutoides</italic>
and
<italic>M. mattheyi</italic>
(
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. S7</xref>
) and found four and one amino acid substitutions in
<italic>M. minutoides</italic>
and
<italic>M. mattheyi</italic>
SF1 (min- and matSF1) respectively, compared with musSF1 (
<xref ref-type="supplementary-material" rid="S1">Supplementary Figs. S8 and S9a</xref>
). Nevertheless, these sequence changes had no measurable effect on SF1’s ability to synergize with SRY to activate musTESCO (
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. S9b</xref>
,c). Importantly, minSRY failed to activate the musTESCO-Luc reporter in the presence of either mat- or minSF1. These results indicate that the sequence changes in mat/minSF1 do not significantly alter their ability to synergize with SRY to activate TESCO (at least in these
<italic>in vitro</italic>
reporter assays), and that the loss of transactivation ability of minSRY is most likely caused by its intrinsic structural changes.</p>
<p>We reasoned that either the degraded polyQ domain of minSRY had lost transactivation potential, or variations in the HMG + bridge domains (
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. S6</xref>
)
<xref ref-type="bibr" rid="b14">14</xref>
impaired binding to TESCO and/or interaction with SF1. To distinguish these possibilities, we generated two mutant constructs and analyzed their ability to activate musTESCO-Luc in the presence of musSF1. The mutant musHBminQ—combining the musSRY HMG + bridge domains with the
<italic>M. minutoides</italic>
polyQ tract—failed to activate musTESCO-Luc, similar to minSRY (
<xref ref-type="fig" rid="f3">Fig. 3b</xref>
, compare orange arrows). In contrast, the mutant minHBmusQ—combining the minSRY HMG + bridge domains with the
<italic>M. musculus</italic>
polyQ tract—showed fully restored ability to activate musTESCO-Luc (
<xref ref-type="fig" rid="f3">Fig. 3b</xref>
, compare blue arrows). The use of mat/min SF1 appeared to have no effect on the activities of these SRY mutants (
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. S9b</xref>
,c). Thus, the abolished transactivation capacity of minSRY on
<italic>M. musculus</italic>
TESCO is primarily caused by the loss of a typical polyQ tract.</p>
</sec>
<sec disp-level="2">
<title>
<italic>M. minutoides</italic>
and
<italic>M. mattheyi</italic>
TESCO are severely debilitated</title>
<p>In
<italic>M. musculus</italic>
, the TESCO enhancer acts as a regulatory hub for
<italic>Sox9</italic>
expression
<xref ref-type="bibr" rid="b5">5</xref>
<xref ref-type="bibr" rid="b20">20</xref>
<xref ref-type="bibr" rid="b21">21</xref>
<xref ref-type="bibr" rid="b22">22</xref>
. Debilitation of the SRY-
<italic>Sox9</italic>
nexus due to various sequence changes within TESCO may have led to the emergence of
<italic>Sry</italic>
-independent sex-determining systems in the mole voles
<italic>Ellobius lutescens</italic>
and
<italic>E. tancrei</italic>
<xref ref-type="bibr" rid="b23">23</xref>
, and the Japanese spiny rats
<italic>Tokudaia osimensis</italic>
and
<italic>T. tokunoshimensis</italic>
<xref ref-type="bibr" rid="b24">24</xref>
. We therefore analyzed TESCO sequences in
<italic>M. minutoides</italic>
and
<italic>M. mattheyi</italic>
(minTESCO and matTESCO) to look for structural irregularities that might similarly disrupt this nexus.</p>
<p>matTESCO and minTESCO have sequence identities of approximately 93% with musTESCO (
<xref ref-type="fig" rid="f4">Fig. 4a</xref>
). Most sequence variations lie outside regulatory elements previously identified in
<italic>M. musculus</italic>
, including the SRY binding sites R4-R6
<xref ref-type="bibr" rid="b5">5</xref>
and the evolutionarily conserved regions ECRi-v
<xref ref-type="bibr" rid="b25">25</xref>
(
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. S10</xref>
). Notably, sequence variations were identified in both mat- and minTESCO at SF1 binding sites F1-F4
<xref ref-type="bibr" rid="b5">5</xref>
(
<xref ref-type="fig" rid="f4">Fig. 4b,c</xref>
) which may impair SF1 binding
<xref ref-type="bibr" rid="b26">26</xref>
<xref ref-type="bibr" rid="b27">27</xref>
. Sequences at SF1 binding sites F5-F6 in mat/minTESCO remain identical to those in musTESCO (
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. S10</xref>
). Moreover, two haplotypes minTESCO.a and -.b differ at three sites (V1-3;
<xref ref-type="fig" rid="f4">Figs 4b</xref>
and
<xref ref-type="fig" rid="f5">5a</xref>
).</p>
<p>We next examined the transcriptional activities conferred by mat/minTESCO enhancers using luciferase reporter assays in HEK293 cells. The transcriptional activities of mat/minTESCO in the presence of musSF1 decreased significantly compared to musTESCO (
<xref ref-type="fig" rid="f4">Fig. 4c</xref>
), due to a severely diminished response to musSF1: fold induction by musSF1 (that is, the ratio of activity in the presence:absence of SF1) fell to approximately 8 or 24% in the case of matTESCO and minTESCO.b respectively (
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. S11</xref>
). As a result, minTESCO.a retained ~10% of musTESCO activity, while the activities of matTESCO and minTESCO.b were 1–3% of that of musTESCO (
<xref ref-type="fig" rid="f4">Fig. 4c</xref>
).</p>
<p>The severely decreased ability of mat/minTESCO to respond to SF1 may be a direct consequence of the sequence variations at known SF1 binding sites F1-4 (
<xref ref-type="fig" rid="f4">Fig. 4b,c</xref>
). We therefore mutated these sites in musTESCO-Luc to the corresponding sequences in mat/minTESCO (musTESCO.mut1/2;
<xref ref-type="fig" rid="f4">Fig. 4c</xref>
). Surprisingly, the two TESCO mutants showed only mildly reduced reporter activities (
<xref ref-type="fig" rid="f4">Fig. 4c</xref>
) and response to musSF1 (
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. S11</xref>
), nowhere near those of mat/minTESCO, suggesting the likely presence of unidentified SF1 binding sites within TESCO. Supporting this view, mutation of the V3 site in minTESCO.b to the corresponding motif found in minTESCO.a (minTESCO.b.mut;
<xref ref-type="fig" rid="f5">Fig. 5a</xref>
), fully restored its activity and response to musSF1 to the levels of minTESCO.a (
<xref ref-type="fig" rid="f5">Fig. 5b</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. S12</xref>
). Similar results were obtained with mat- and minSF1 (
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. S13</xref>
and data not shown).</p>
<p>Together, these results demonstrate that TESCO enhancers in
<italic>M. minutoides</italic>
and
<italic>M. mattheyi</italic>
are barely functional, compared to
<italic>M. musculus</italic>
TESCO. Moreover, our data strongly indicate that sequences outside the previously identified SF1 (and SRY) binding sites may play hitherto unappreciated roles in modulating TESCO activity and
<italic>Sox9</italic>
expression in
<italic>Mus</italic>
species.</p>
</sec>
<sec disp-level="2">
<title>
<italic>M. minutoides</italic>
SRY activates its cognate TESCO in the presence of SF1</title>
<p>The failure of minSRY to activate musTESCO (
<xref ref-type="fig" rid="f3">Fig. 3a</xref>
) may indicate that, in
<italic>M. minutoides</italic>
, SRY is no longer functioning as the testis-determining gene and a newly evolved Y-linked testis-determining gene may be operative. Alternatively, TESCO and SRY may have co-evolved in this species, such that minSRY remains able to activate its cognate TESCO. To distinguish these possibilities, we performed luciferase reporter assays in HEK293 cells testing synergistic activation of min/matTESCO luciferase reporters by various combinations of SRY and SF1 constructs. We found that, in the presence of musSF1, minSRY robustly activated its cognate minTESCO.a/b (
<xref ref-type="fig" rid="f6">Fig. 6a,b</xref>
, compare green arrows). However, the fold induction by minSRY was much weaker compared to musSRY which has a longer polyQ tract (
<xref ref-type="fig" rid="f6">Fig. 6a,b</xref>
). minSRY also activated matTESCO (
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. S14c</xref>
), despite its lack of activity on musTESCO (
<xref ref-type="fig" rid="f3">Fig. 3a</xref>
). Similar results were obtained with mat/minSF1 constructs (
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. S14</xref>
). Thus,
<italic>Sry</italic>
and TESCO appear to have co-evolved to retain functional compatibility in
<italic>M. minutoides</italic>
.</p>
<p>We reasoned that that mat/minTESCO may have acquired sequence changes making them more responsive to SRY, thus allowing a weaker SRY such as minSRY to function. Consistent with this hypothesis, minTESCO was activated > 7 fold by musSRY in the presence of SF1 (
<xref ref-type="fig" rid="f6">Fig. 6a,b</xref>
), while musTESCO was only activated ~2 fold by musSRY (
<xref ref-type="fig" rid="f3">Fig. 3a</xref>
).</p>
<p>Furthermore, minSRY may have also acquired adaptive changes, presumably within the HMG box and bridge domains, since its degraded polyQ domain represents a much weaker transactivation domain compared with its counterpart in musSRY (
<xref ref-type="fig" rid="f3">Fig. 3b</xref>
), and is unlikely to offer any adaptive advantages. To test this possibility, we made various combinations of the HMG (H), bridge (B) and polyQ-domains (Q), and assayed their ability to activate both minTESCO.a/b luciferase reporters. Consistent with our hypothesis, minSRY outperformed the musHBminQ mutant, and the minHBmusQ mutant eclipsed musSRY (
<xref ref-type="fig" rid="f6">Fig. 6c,d</xref>
, compare orange and blue arrows respectively).</p>
<p>These results support the notion that
<italic>Sry</italic>
and TESCO may have co-evolved in
<italic>M. minutoides</italic>
, and further indicate that the HMG box and bridge domains of SRY may have a mild impact on TESCO activation. This conclusion is in accordance with a previous report that
<italic>M. musculus</italic>
polyQ tract, as a strong transactivation domain, allows and compensates for otherwise deleterious amino acid substitutions in the HMG box
<xref ref-type="bibr" rid="b28">28</xref>
.</p>
<p>Taken together, our results indicate that the SRY/SF1/TESCO nexus has been severely weakened in
<italic>M. minutoides</italic>
through two different mechanisms.
<italic>M. minutoides</italic>
SRY’s capacity to activate TESCO is severely compromised primarily due to its degraded polyQ tract, as SRY binding sites within TESCO remain intact. Secondly, SF1 protein in
<italic>M. minutoides</italic>
possesses comparable activity compared with
<italic>M. musculus</italic>
SF1, but DNA sequence changes in its target sites in TESCO cause a significantly reduced response.</p>
</sec>
</sec>
<sec disp-level="1">
<title>Discussion</title>
<p>In contrast to the high plasticity seen in many vertebrate classes, sex determination in mammals is relatively static and almost invariably based on an XX female/XY male system. Exceptions are rare
<xref ref-type="bibr" rid="b29">29</xref>
, and afford the potential to gain insights into the evolution of sex-determining systems as well as into mechanistic issues such as the interplay between testis- and ovarian-determining pathways. Such is the case with the unusual X*Y sex reversal system found in
<italic>M. minutoides</italic>
, the focus of the present study. By studying critical elements of the testis-determining pathway, we have shown that the activities of
<italic>M. minutoides</italic>
SRY, SF1 and the
<italic>Sox9</italic>
enhancer TESCO are compromised but still capable of functioning such that they are able to generate XY males. Assuming our
<italic>in vitro</italic>
data broadly reflect the activities of these elements
<italic>in vivo</italic>
, the phenomenon of X*Y sex reversal in this species is likely to be due to a combination of an as-yet unidentified variant gene(s) on the X* chromosome and a weakening of the male sex-determining pathway.</p>
<sec disp-level="2">
<title>Co-evolution of SRY and TESCO in
<italic>M. minutoides</italic>
</title>
<p>Our analyses reveal that
<italic>M. minutoides</italic>
SRY has completely lost its ability to activate TESCO from other species, and that
<italic>M. minutoides</italic>
TESCO also has degenerated so that it retains only very limited ability to respond to SF1, compared with its counterpart in
<italic>M. musculus</italic>
. However,
<italic>M. minutoides</italic>
SRY is clearly able to activate its cognate TESCO, albeit weakly, indicating that SRY and its target TESCO enhancer may have co-evolved in this species to secure male sex determination.</p>
<p>TESCO in
<italic>M. mattheyi</italic>
and
<italic>M. minutoides</italic>
may have acquired sequence changes outside the previously identified SRY binding sites R4-R6 to enable itself to respond more strongly to SRY, thus compensating for the weaker transactivating capacity of SRY in these species. In addition, SRY itself has also evolved. It has been suggested that
<italic>Sry</italic>
is under positive selection
<xref ref-type="bibr" rid="b9">9</xref>
<xref ref-type="bibr" rid="b30">30</xref>
<xref ref-type="bibr" rid="b31">31</xref>
. Supporting this view, we found several amino acid changes in the sequences of the HMG and bridge domains of matSRY and minSRY. These adaptive sequence changes in TESCO and SRY may improve the binding affinity of SRY to TESCO and/or the interaction between SRY and SF1. In this regard, we note an arginine to cysteine change at amino acid 17 (R17C) in the HMG box (
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. S6</xref>
), a site involved in electrostatic and hydrophobic interactions between SRY and its target DNA
<xref ref-type="bibr" rid="b32">32</xref>
.</p>
<p>Despite the co-evolution of SRY and TESCO in
<italic>M. minutoides</italic>
, the absolute activity of the SRY/SF1/TESCO nexus in this species is reduced to less than 10% of that in
<italic>M. musculus</italic>
, due to the severely impaired transactivating capacity of SRY and reduced response of TESCO to SF1.</p>
</sec>
<sec disp-level="2">
<title>Interaction of the X* chromosome with the weakened male sex-determining pathway</title>
<p>Even though the
<italic>Sry</italic>
pathway is weakened in
<italic>M. minutoides</italic>
, it is able to function in the presence of a normal X but not in the presence of an X*. We hypothesize that the X* chromosome carries a stronger pro-ovarian allele, a stronger anti-testis allele, or a weaker allele essential for testis-determining signalling, compared to a normal X. We further hypothesize that this X*-linked modifier gene favours ovarian development but does not cause XY sex reversal in combination with a strong
<italic>Sry</italic>
allele such as those in
<italic>M. musculus</italic>
or
<italic>M. mattheyi</italic>
. Only when combined with a weakened male sex-determining pathway such as that found in
<italic>M. minutoides</italic>
does XY femaleness result.</p>
<p>A similar scenario has been described previously in laboratory mice
<italic>M. musculus</italic>
, where additional copies of the X-linked
<italic>Dax1</italic>
gene in transgenic mice do not affect normal testis development in the presence of an
<italic>M. musculus</italic>
Y chromosome, but cause ovarian or ovotestis development
<xref ref-type="bibr" rid="b33">33</xref>
when combined with an
<italic>M. domesticus poschiavinus</italic>
Y chromosome carrying a weak
<italic>Sry</italic>
allele
<xref ref-type="bibr" rid="b34">34</xref>
. Nevertheless,
<italic>Dax1</italic>
does not seem to be involved in X*Y sex reversal in
<italic>M. minutoides</italic>
, as the X*-linked
<italic>Dax1</italic>
copy shows no sign of changes in either copy number or expression
<xref ref-type="bibr" rid="b13">13</xref>
. Therefore, a true test of the hypothesis that the X* harbours a pro-ovarian modifier gene rests on identification of suitable candidates for such a role and testing their activity in different mouse strains.</p>
</sec>
<sec disp-level="2">
<title>Origin and fixation of X* chromosome</title>
<p>The finding that the
<italic>Sry</italic>
-driven male pathway is compromised to some extent in
<italic>M. minutoides</italic>
logically suggests that it is the combination of a neomorphic gene on the X* chromosome and the weakened
<italic>Sry</italic>
pathway that underpin the X*Y sex reversal in
<italic>M. minutoides.</italic>
How might this unusual sex-determination system have arisen? Our findings lead us to propose the model illustrated in
<xref ref-type="fig" rid="f7">Fig. 7</xref>
. In this model, in a common ancestor to
<italic>M. mattheyi</italic>
and
<italic>M. minutoides</italic>
, TESCO acquired sequence variations that caused both decreased basal activity and reduced response to SF1. Subsequently, in an ancestor to
<italic>M. minutoides</italic>
, the SRY polyQ tract degenerated further, likely due to the rapid sequence evolution and degradation of the Y chromosome-linked genes and/or the CAG microsatellite instability
<xref ref-type="bibr" rid="b30">30</xref>
<xref ref-type="bibr" rid="b35">35</xref>
, causing diminished capacity to activate TESCO. With the activity of both SRY and its key target TESCO being compromised, the male pathway in
<italic>M. minutoides</italic>
became vulnerable to the influence of a modifier gene. It is conceivable that a subsequent chromosomal rearrangement event of the ancestral X created a tight linkage between this modifier and genes conferring enhanced reproductive outcome, thus generating the X*. In the presence of a weakened
<italic>M. minutoides</italic>
type
<italic>Sry</italic>
allele, the X*-borne modifier caused ovarian development, resulting in X*Y females with high fecundity and a skewed sex ratio.</p>
<p>In contrast to laboratory mouse models where sex reversed XY females are almost always sterile
<xref ref-type="bibr" rid="b36">36</xref>
, X*Y females in
<italic>M. minutoides</italic>
show enhanced reproductive performance compared with the XX and XX*
<xref ref-type="bibr" rid="b37">37</xref>
. Increased fecundity of X*Y over XX females has also been reported in several other rodent species with sex determination systems similar to that in
<italic>M. minutoides</italic>
, including the lemming
<italic>Myopus schisticolor</italic>
and
<italic>Dicrostonyx torquatus</italic>
<xref ref-type="bibr" rid="b38">38</xref>
<xref ref-type="bibr" rid="b39">39</xref>
, and the South American grass mouse
<italic>Akodon azarae</italic>
<xref ref-type="bibr" rid="b40">40</xref>
<xref ref-type="bibr" rid="b41">41</xref>
.</p>
<p>Another common feature of species with X*Y females is an expected female-biased sex ratio
<xref ref-type="bibr" rid="b38">38</xref>
<xref ref-type="bibr" rid="b41">41</xref>
, which has been suggested to contribute to the invasion and maintenance of the X* in certain circumstances
<xref ref-type="bibr" rid="b42">42</xref>
<xref ref-type="bibr" rid="b43">43</xref>
<xref ref-type="bibr" rid="b44">44</xref>
. Hence it is possible that the X* subsequently was stabilized in the population due to the reproductive advantage of X*Y females over XX and XX* and/or a selection for favouring a female-biased sex ratio or for restoring a 1:1 sex ratio after the invasion of a Y chromosome distorter
<xref ref-type="bibr" rid="b43">43</xref>
<xref ref-type="bibr" rid="b44">44</xref>
<xref ref-type="bibr" rid="b45">45</xref>
<xref ref-type="bibr" rid="b46">46</xref>
.</p>
</sec>
<sec disp-level="2">
<title>Implications for evolution of mammalian sex-determining systems independent of
<italic>Sry</italic>
</title>
<p>From the time when
<italic>Sry</italic>
first arose as a variant of the X-chromosomal gene
<italic>Sox3</italic>
<xref ref-type="bibr" rid="b47">47</xref>
<xref ref-type="bibr" rid="b48">48</xref>
<xref ref-type="bibr" rid="b49">49</xref>
and became the male sex determinant in a mammalian ancestor, most genes on the neo-Y chromosome began an inexorable process of loss or pseudogenization, thus resulting in the highly evolved and decayed Y chromosomes currently found in mammals
<xref ref-type="bibr" rid="b50">50</xref>
<xref ref-type="bibr" rid="b51">51</xref>
<xref ref-type="bibr" rid="b52">52</xref>
<xref ref-type="bibr" rid="b53">53</xref>
. Our data show that
<italic>Sry</italic>
function has deteriorated in
<italic>M. minutoides</italic>
, likely due to ongoing degradation of
<italic>Sry</italic>
in African pygmy mice. With the activities of both SRY and its target TESCO being compromised, the testis-determining pathway in
<italic>M. minutoides</italic>
is likely operating at a threshold level.</p>
<p>The current situation in
<italic>M. minutoides</italic>
may represent an intermediate state in which both
<italic>Sry</italic>
-dependent testis-determination and an X*-dependent dominant feminizing mechanism are in operation. With the further passage of evolutionary time, SRY’s polyQ tract may undergo further degradation in
<italic>M. minutoides</italic>
, as has already occurred in some identified
<italic>Sry</italic>
haplotypes. With the translocation of Y-linked essential male fertility genes to other chromosomes
<xref ref-type="bibr" rid="b54">54</xref>
<xref ref-type="bibr" rid="b55">55</xref>
, Y chromosome would no longer be required and would eventually be lost, supplanted by a neo-Y chromosome (and a new male sex-determining gene that should overpower the weakened
<italic>Sry</italic>
) or replaced by a XO/X*O sex determination system with a masculinizing X and a feminizing X* chromosome, as has likely occurred in the Japanese spiny rats
<italic>T. osimensis</italic>
and
<italic>T. tokunoshimensis</italic>
<xref ref-type="bibr" rid="b56">56</xref>
<xref ref-type="bibr" rid="b57">57</xref>
and the mole vole
<italic>E. lutescens</italic>
<xref ref-type="bibr" rid="b58">58</xref>
<xref ref-type="bibr" rid="b59">59</xref>
.</p>
<p>In this regard, another species of African pygmy mice,
<italic>M. triton</italic>
, has lost the Y chromosome, with both males and females having an XO karyotype
<xref ref-type="bibr" rid="b60">60</xref>
and may represent this ultimate evolutionary step. Undoubtedly, more examples remain to be discovered. Further study of these exceptions to the rule, in particular the identification of the X*-borne modifier gene(s) that cause X*Y sex reversal and genes that trigger sex development in the absence of
<italic>Sry</italic>
, will illuminate the normal process of sex development and identify new candidate genes whose loss of function might cause human disorders of sex development.</p>
</sec>
</sec>
<sec disp-level="1">
<title>Methods</title>
<sec disp-level="2">
<title>PCR amplification, cloning and Sanger sequencing</title>
<p>No live animals were used in this study. Genomic DNA was extracted from tissue of an XY individual of
<italic>M. minutoides</italic>
or
<italic>M. mattheyi</italic>
(specimens collected under permits 2003/PFHG/05/GUI, 1155 MDCS/CAB-1/kss
<xref ref-type="bibr" rid="b14">14</xref>
) using a Qiagen DNeasy kit and subject to PCR amplification (Takara LA PCR kit) with primers designed based on
<italic>M. musculus</italic>
sequence. Primer sequences are provided in
<xref ref-type="supplementary-material" rid="S1">Supplementary Table S1</xref>
. Eight (for
<italic>Sry</italic>
), four (for TESCO), or three (for each
<italic>Sf1</italic>
coding exon) independent clones from each PCR product were sequenced. Sequences were aligned using ClustalW
<xref ref-type="bibr" rid="b61">61</xref>
. Identity scores were calculated using GeneStream II
<xref ref-type="bibr" rid="b62">62</xref>
.</p>
</sec>
<sec disp-level="2">
<title>Phylogenetic reconstruction using TESCO sequence</title>
<p>TESCO sequences in
<italic>M. musculus</italic>
and
<italic>Rattus norvegicus</italic>
were retrieved from mm10 or rn6 reference genome, respectively. The maximum likelihood phylogeny was reconstructed using BEAST 2.0
<xref ref-type="bibr" rid="b63">63</xref>
and visualised using FigTree.
<italic>R. norvegicus</italic>
was included as an outgroup.</p>
</sec>
<sec disp-level="2">
<title>Expression analyses of SRY protein in stable mouse Sertoli-like 15P-1 cell lines</title>
<p>The
<italic>M. mattheyi</italic>
or
<italic>M. minutoides Sry</italic>
coding region with a preceding EGFP coding sequence inserted in frame was subcloned into pMIH retroviral vector
<xref ref-type="bibr" rid="b64">64</xref>
. Stable 15P-1 cell lines were established by infection of individual retrovirus produced as described
<xref ref-type="bibr" rid="b11">11</xref>
<xref ref-type="bibr" rid="b65">65</xref>
. Western blot and immunofluorescence analyses were performed as described
<xref ref-type="bibr" rid="b11">11</xref>
with anti–EGFP (Abcam, Ab5450) or anti–α-Tubulin (Sigma, T5168) antibodies.</p>
</sec>
<sec disp-level="2">
<title>Plasmids and luciferase reporter assays</title>
<p>Chimeric mutants musHBminQ and minHBmusQ in pMIH vector were generated using Quikchange method (Agilent). To generate TESCO luciferase reporter constructs,
<italic>M. musculus</italic>
TESCO in pTESCO-δ51-LucII (musTESCO-Luc)
<xref ref-type="bibr" rid="b5">5</xref>
was replaced with
<italic>M. mattheyi</italic>
or
<italic>M. minutoides</italic>
TESCO (mat/minTESCO-Luc). Mutagenesis of SF1 binding sites in musTESCO-Luc or the V3 site in minTESCO.b-Luc was carried out using Quikchange method (Agilent).</p>
<p>pcDNA-musSf1 plasmid containing
<italic>M. musculus Sf1</italic>
coding sequence has been described previously
<xref ref-type="bibr" rid="b66">66</xref>
. pcDNA-matSf1 was generated by replacing the EcoRI-BstXI fragment of pcDNA-musSf1 with a chemically synthesized DNA fragment (Integrated DNA technologies) containing the
<italic>M. mattheyi</italic>
-specific non-synonymous nucleotide change. To make pcDNA-minSf1,
<italic>M. minutoides Sf1</italic>
coding region was chemically synthesized (Integrated DNA technologies) and subsequently cloned into pcDNA3.1( + ) (Life Technologies).</p>
<p>Luciferase reporter assays were conducted as described
<xref ref-type="bibr" rid="b11">11</xref>
. Briefly, HEK293 cells were co-transfected with a TESCO luciferase construct, a pMIH empty vector or a pMIH construct containing various
<italic>Sry</italic>
or
<italic>Sry</italic>
mutant sequences, and an empty pcDNA3 or a pcDNA3 construct containing various
<italic>Sf1</italic>
sequence. A cytomegalovirus (CMV)-renilla luciferase plasmid
<xref ref-type="bibr" rid="b11">11</xref>
was included as a control for transfection efficiency. Multiplicity-adjusted
<italic>P</italic>
values were calculated using GraphPad Prism 6.</p>
</sec>
</sec>
<sec disp-level="1">
<title>Additional Information</title>
<p>
<bold>Accession codes:</bold>
DNA sequences were deposited into GenBank under the accession numbers KP063038-KP063042 (M. minutoides Sry), KP063043-KP063049 (M. mattheyi Sry), KP063050-KP063052 (M. minutoides and M. mattheyi TESCO), and KT340072-KT340073 (M. minutoides and M. mattheyi Sf1).</p>
<p>
<bold>How to cite this article</bold>
: Zhao, L.
<italic>et al</italic>
. Reduced Activity of SRY and its Target Enhancer
<italic>Sox9</italic>
-TESCO in a Mouse Species with X*Y Sex Reversal.
<italic>Sci. Rep.</italic>
<bold>7</bold>
, 41378; doi: 10.1038/srep41378 (2017).</p>
<p>
<bold>Publisher's note:</bold>
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p>
</sec>
<sec sec-type="supplementary-material" id="S1">
<title>Supplementary Material</title>
<supplementary-material id="d32e26" content-type="local-data">
<caption>
<title>Supplementary Information</title>
</caption>
<media xlink:href="srep41378-s1.pdf"></media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>We thank Robin Lovell-Badge for the musTESCO-Luc plasmid. Confocal microscopy was performed at the Australian Cancer Research Foundation/Institute for Molecular Bioscience Cancer Biology Imaging Facility. This work was supported by grants from the Australian Research Council and the National Health and Medical Research Council (NHMRC) of Australia. PK is a Senior Principal Research Fellow of the NHMRC.</p>
</ack>
<ref-list>
<ref id="b1">
<mixed-citation publication-type="journal">
<name>
<surname>Koopman</surname>
<given-names>P.</given-names>
</name>
,
<name>
<surname>Gubbay</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Vivian</surname>
<given-names>N.</given-names>
</name>
,
<name>
<surname>Goodfellow</surname>
<given-names>P.</given-names>
</name>
&
<name>
<surname>Lovell-Badge</surname>
<given-names>R.</given-names>
</name>
<article-title>Male development of chromosomally female mice transgenic for Sry</article-title>
.
<source>Nature</source>
<volume>351</volume>
,
<fpage>117</fpage>
<lpage>121</lpage>
(
<year>1991</year>
).
<pub-id pub-id-type="pmid">2030730</pub-id>
</mixed-citation>
</ref>
<ref id="b2">
<mixed-citation publication-type="journal">
<name>
<surname>Sinclair</surname>
<given-names>A. H.</given-names>
</name>
<etal></etal>
.
<article-title>A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif</article-title>
.
<source>Nature</source>
<volume>346</volume>
,
<fpage>240</fpage>
<lpage>244</lpage>
(
<year>1990</year>
).
<pub-id pub-id-type="pmid">1695712</pub-id>
</mixed-citation>
</ref>
<ref id="b3">
<mixed-citation publication-type="journal">
<name>
<surname>Gubbay</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
.
<article-title>A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes</article-title>
.
<source>Nature</source>
<volume>346</volume>
,
<fpage>245</fpage>
<lpage>250</lpage>
(
<year>1990</year>
).
<pub-id pub-id-type="pmid">2374589</pub-id>
</mixed-citation>
</ref>
<ref id="b4">
<mixed-citation publication-type="journal">
<name>
<surname>Bowles</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Schepers</surname>
<given-names>G.</given-names>
</name>
&
<name>
<surname>Koopman</surname>
<given-names>P.</given-names>
</name>
<article-title>Phylogeny of the SOX Family of Developmental Transcription Factors Based on Sequence and Structural Indicators</article-title>
.
<source>Dev. Biol.</source>
<volume>227</volume>
,
<fpage>239</fpage>
<lpage>255</lpage>
(
<year>2000</year>
).
<pub-id pub-id-type="pmid">11071752</pub-id>
</mixed-citation>
</ref>
<ref id="b5">
<mixed-citation publication-type="journal">
<name>
<surname>Sekido</surname>
<given-names>R.</given-names>
</name>
&
<name>
<surname>Lovell-Badge</surname>
<given-names>R.</given-names>
</name>
<article-title>Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer</article-title>
.
<source>Nature</source>
<volume>453</volume>
,
<fpage>930</fpage>
<lpage>934</lpage>
(
<year>2008</year>
).
<pub-id pub-id-type="pmid">18454134</pub-id>
</mixed-citation>
</ref>
<ref id="b6">
<mixed-citation publication-type="journal">
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Zheng</surname>
<given-names>M.</given-names>
</name>
<article-title>& Lau, Y.-F. The sex-determining factors SRY and SOX9 regulate similar target genes and promote testis cord formation during testicular differentiation</article-title>
.
<source>Cell Rep</source>
.
<volume>8</volume>
,
<fpage>723</fpage>
<lpage>733</lpage>
(
<year>2014</year>
).
<pub-id pub-id-type="pmid">25088423</pub-id>
</mixed-citation>
</ref>
<ref id="b7">
<mixed-citation publication-type="journal">
<name>
<surname>Svingen</surname>
<given-names>T.</given-names>
</name>
&
<name>
<surname>Koopman</surname>
<given-names>P.</given-names>
</name>
<article-title>Building the mammalian testis: origins, differentiation, and assembly of the component cell populations</article-title>
.
<source>Genes Dev.</source>
<volume>27</volume>
,
<fpage>2409</fpage>
<lpage>2426</lpage>
(
<year>2013</year>
).
<pub-id pub-id-type="pmid">24240231</pub-id>
</mixed-citation>
</ref>
<ref id="b8">
<mixed-citation publication-type="journal">
<name>
<surname>Zhao</surname>
<given-names>L.</given-names>
</name>
&
<name>
<surname>Koopman</surname>
<given-names>P.</given-names>
</name>
<article-title>SRY protein function in sex determination: thinking outside the box</article-title>
.
<source>Chromosome Res.</source>
<volume>20</volume>
,
<fpage>153</fpage>
<lpage>162</lpage>
(
<year>2012</year>
).
<pub-id pub-id-type="pmid">22161124</pub-id>
</mixed-citation>
</ref>
<ref id="b9">
<mixed-citation publication-type="journal">
<name>
<surname>O’Neill</surname>
<given-names>M. J.</given-names>
</name>
&
<name>
<surname>O’Neill</surname>
<given-names>R. J.</given-names>
</name>
<article-title>Whatever happened to SRY?</article-title>
<source>Cell. Mol. Life Sci.</source>
<volume>56</volume>
,
<fpage>883</fpage>
<lpage>893</lpage>
(
<year>1999</year>
).
<pub-id pub-id-type="pmid">11212323</pub-id>
</mixed-citation>
</ref>
<ref id="b10">
<mixed-citation publication-type="journal">
<name>
<surname>Bowles</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Cooper</surname>
<given-names>L.</given-names>
</name>
,
<name>
<surname>Berkman</surname>
<given-names>J.</given-names>
</name>
&
<name>
<surname>Koopman</surname>
<given-names>P.</given-names>
</name>
<article-title>Sry requires a CAG repeat domain for male sex determination in Mus musculus</article-title>
.
<source>Nat. Genet.</source>
<volume>22</volume>
,
<fpage>405</fpage>
<lpage>408</lpage>
(
<year>1999</year>
).
<pub-id pub-id-type="pmid">10431249</pub-id>
</mixed-citation>
</ref>
<ref id="b11">
<mixed-citation publication-type="journal">
<name>
<surname>Zhao</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
.
<article-title>Structure–function analysis of mouse Sry reveals dual essential roles of the C-terminal polyglutamine tract in sex determination</article-title>
.
<source>Proc. Natl. Acad. Sci. USA</source>
<volume>111</volume>
,
<fpage>11768</fpage>
<lpage>11773</lpage>
(
<year>2014</year>
).
<pub-id pub-id-type="pmid">25074915</pub-id>
</mixed-citation>
</ref>
<ref id="b12">
<mixed-citation publication-type="journal">
<name>
<surname>Veyrunes</surname>
<given-names>F.</given-names>
</name>
<etal></etal>
.
<article-title>A novel sex determination system in a close relative of the house mouse</article-title>
.
<source>Proc. R. Soc. B</source>
<volume>277</volume>
,
<fpage>1049</fpage>
<lpage>1056</lpage>
(
<year>2010</year>
).</mixed-citation>
</ref>
<ref id="b13">
<mixed-citation publication-type="journal">
<name>
<surname>Rahmoun</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
.
<article-title>Anatomical and molecular analyses of XY ovaries from the African pygmy mouse Mus minutoides</article-title>
.
<source>Sex. Dev.</source>
<volume>8</volume>
,
<fpage>356</fpage>
<lpage>363</lpage>
(
<year>2014</year>
).
<pub-id pub-id-type="pmid">25359508</pub-id>
</mixed-citation>
</ref>
<ref id="b14">
<mixed-citation publication-type="journal">
<name>
<surname>Veyrunes</surname>
<given-names>F.</given-names>
</name>
,
<name>
<surname>Perez</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Paintsil</surname>
<given-names>S. N. C.</given-names>
</name>
,
<name>
<surname>Fichet-Calvet</surname>
<given-names>E.</given-names>
</name>
&
<name>
<surname>Britton-Davidian</surname>
<given-names>J.</given-names>
</name>
<article-title>Insights into the evolutionary history of the X-linked sex reversal mutation in Mus minutoides: clues from sequence analyses of the Y-linked Sry gene</article-title>
.
<source>Sex. Dev.</source>
<volume>7</volume>
,
<fpage>244</fpage>
<lpage>252</lpage>
(
<year>2013</year>
).
<pub-id pub-id-type="pmid">23817242</pub-id>
</mixed-citation>
</ref>
<ref id="b15">
<mixed-citation publication-type="journal">
<name>
<surname>Britton-Davidian</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Robinson</surname>
<given-names>T. J.</given-names>
</name>
&
<name>
<surname>Veyrunes</surname>
<given-names>F.</given-names>
</name>
<article-title>Systematics and evolution of the African pygmy mice, subgenus Nannomys: A review</article-title>
.
<source>Acta Oecol.</source>
<volume>42</volume>
,
<fpage>41</fpage>
<lpage>49</lpage>
(
<year>2012</year>
).</mixed-citation>
</ref>
<ref id="b16">
<mixed-citation publication-type="journal">
<name>
<surname>Nagamine</surname>
<given-names>C. M.</given-names>
</name>
<article-title>The testis-determining gene, SRY, exists in multiple copies in Old World rodents</article-title>
.
<source>Genet. Res.</source>
<volume>64</volume>
,
<fpage>151</fpage>
<lpage>159</lpage>
(
<year>1994</year>
).
<pub-id pub-id-type="pmid">7698639</pub-id>
</mixed-citation>
</ref>
<ref id="b17">
<mixed-citation publication-type="journal">
<name>
<surname>Coward</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
.
<article-title>Polymorphism of a CAG trinucleotide repeat within Sry correlates with B6. YDom sex reversal</article-title>
.
<source>Nat. Genet.</source>
<volume>6</volume>
,
<fpage>245</fpage>
<lpage>250</lpage>
(
<year>1994</year>
).
<pub-id pub-id-type="pmid">8012385</pub-id>
</mixed-citation>
</ref>
<ref id="b18">
<mixed-citation publication-type="journal">
<name>
<surname>Albrecht</surname>
<given-names>K. H.</given-names>
</name>
&
<name>
<surname>Eicher</surname>
<given-names>E. M.</given-names>
</name>
<article-title>DNA sequence analysis of Sry alleles (subgenus Mus) implicates misregulation as the cause of C57BL/6J-Y(POS) sex reversal and defines the SRY functional unit</article-title>
.
<source>Genetics</source>
<volume>147</volume>
,
<fpage>1267</fpage>
<lpage>1277</lpage>
(
<year>1997</year>
).
<pub-id pub-id-type="pmid">9383069</pub-id>
</mixed-citation>
</ref>
<ref id="b19">
<mixed-citation publication-type="journal">
<name>
<surname>Lundrigan</surname>
<given-names>B.</given-names>
</name>
&
<name>
<surname>Tucker</surname>
<given-names>P.</given-names>
</name>
<article-title>Evidence for multiple functional copies of the male sex-determining locus, sry, in African murine rodents</article-title>
.
<source>J. Mol. Evol.</source>
<volume>45</volume>
,
<fpage>60</fpage>
<lpage>65</lpage>
(
<year>1997</year>
).
<pub-id pub-id-type="pmid">9211735</pub-id>
</mixed-citation>
</ref>
<ref id="b20">
<mixed-citation publication-type="journal">
<name>
<surname>Uhlenhaut</surname>
<given-names>N. H.</given-names>
</name>
<etal></etal>
.
<article-title>Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation</article-title>
.
<source>Cell</source>
<volume>139</volume>
,
<fpage>1130</fpage>
<lpage>1142</lpage>
(
<year>2009</year>
).
<pub-id pub-id-type="pmid">20005806</pub-id>
</mixed-citation>
</ref>
<ref id="b21">
<mixed-citation publication-type="journal">
<name>
<surname>Ludbrook</surname>
<given-names>L. M.</given-names>
</name>
<etal></etal>
.
<article-title>Excess DAX1 leads to XY ovotesticular disorder of sex development (DSD) in mice by inhibiting steroidogenic factor-1 (SF1) activation of the testis enhancer of SRY-box-9 (Sox9)</article-title>
.
<source>Endocrinology</source>
<volume>153</volume>
,
<fpage>1948</fpage>
<lpage>1958</lpage>
(
<year>2012</year>
).
<pub-id pub-id-type="pmid">22294746</pub-id>
</mixed-citation>
</ref>
<ref id="b22">
<mixed-citation publication-type="journal">
<name>
<surname>Bernard</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
.
<article-title>Wnt signaling in ovarian development inhibits Sf1 activation of Sox9 via the TESCO enhancer</article-title>
.
<source>Endocrinology</source>
<volume>153</volume>
,
<fpage>901</fpage>
<lpage>912</lpage>
(
<year>2012</year>
).
<pub-id pub-id-type="pmid">22128028</pub-id>
</mixed-citation>
</ref>
<ref id="b23">
<mixed-citation publication-type="journal">
<name>
<surname>Bagheri-Fam</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
.
<article-title>Sox9 gene regulation and the loss of the XY/XX sex-determining mechanism in the mole vole Ellobius lutescens</article-title>
.
<source>Chromosome Res.</source>
<volume>20</volume>
,
<fpage>191</fpage>
<lpage>199</lpage>
(
<year>2012</year>
).
<pub-id pub-id-type="pmid">22215485</pub-id>
</mixed-citation>
</ref>
<ref id="b24">
<mixed-citation publication-type="journal">
<name>
<surname>Kimura</surname>
<given-names>R.</given-names>
</name>
,
<name>
<surname>Murata</surname>
<given-names>C.</given-names>
</name>
,
<name>
<surname>Kuroki</surname>
<given-names>Y.</given-names>
</name>
&
<name>
<surname>Kuroiwa</surname>
<given-names>A.</given-names>
</name>
<article-title>Mutations in the testis-specific enhancer of SOX9 in the SRY independent sex-determining mechanism in the genus Tokudaia</article-title>
.
<source>PLoS ONE</source>
<volume>9</volume>
,
<fpage>e108779</fpage>
(
<year>2014</year>
).
<pub-id pub-id-type="pmid">25265165</pub-id>
</mixed-citation>
</ref>
<ref id="b25">
<mixed-citation publication-type="journal">
<name>
<surname>Bagheri-Fam</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Sinclair</surname>
<given-names>A. H.</given-names>
</name>
,
<name>
<surname>Koopman</surname>
<given-names>P.</given-names>
</name>
&
<name>
<surname>Harley</surname>
<given-names>V. R.</given-names>
</name>
<article-title>Conserved regulatory modules in the Sox9 testis-specific enhancer predict roles for SOX, TCF/LEF, Forkhead, DMRT, and GATA proteins in vertebrate sex determination</article-title>
.
<source>Int. J. Biochem. Cell Biol.</source>
<volume>42</volume>
,
<fpage>472</fpage>
<lpage>477</lpage>
(
<year>2010</year>
).
<pub-id pub-id-type="pmid">19616114</pub-id>
</mixed-citation>
</ref>
<ref id="b26">
<mixed-citation publication-type="journal">
<name>
<surname>Morohashi</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Honda</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Inomata</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Handa</surname>
<given-names>H.</given-names>
</name>
&
<name>
<surname>Omura</surname>
<given-names>T.</given-names>
</name>
<article-title>A common trans-acting factor, Ad4-binding protein, to the promoters of steroidogenic P-450s</article-title>
.
<source>J. Biol. Chem.</source>
<volume>267</volume>
,
<fpage>17913</fpage>
<lpage>17919</lpage>
(
<year>1992</year>
).
<pub-id pub-id-type="pmid">1517227</pub-id>
</mixed-citation>
</ref>
<ref id="b27">
<mixed-citation publication-type="journal">
<name>
<surname>Harley</surname>
<given-names>V. R.</given-names>
</name>
,
<name>
<surname>Lovell-Badge</surname>
<given-names>R.</given-names>
</name>
&
<name>
<surname>Goodfellow</surname>
<given-names>P. N.</given-names>
</name>
<article-title>Definition of a consensus DNA binding site for SRY</article-title>
.
<source>Nucleic Acids Res</source>
.
<volume>22</volume>
,
<fpage>1500</fpage>
<lpage>1501</lpage>
(
<year>1994</year>
).
<pub-id pub-id-type="pmid">8190643</pub-id>
</mixed-citation>
</ref>
<ref id="b28">
<mixed-citation publication-type="journal">
<name>
<surname>Chen</surname>
<given-names>Y. S.</given-names>
</name>
,
<name>
<surname>Racca</surname>
<given-names>J. D.</given-names>
</name>
,
<name>
<surname>Sequeira</surname>
<given-names>P. W.</given-names>
</name>
,
<name>
<surname>Phillips</surname>
<given-names>N. B.</given-names>
</name>
&
<name>
<surname>Weiss</surname>
<given-names>M. A.</given-names>
</name>
<article-title>Microsatellite-encoded domain in rodent Sry functions as a genetic capacitor to enable the rapid evolution of biological novelty</article-title>
.
<source>Proc. Natl. Acad. Sci. USA</source>
<volume>110</volume>
,
<fpage>E3061</fpage>
<lpage>3070</lpage>
(
<year>2013</year>
).
<pub-id pub-id-type="pmid">23901118</pub-id>
</mixed-citation>
</ref>
<ref id="b29">
<mixed-citation publication-type="journal">
<name>
<surname>Jiménez</surname>
<given-names>R.</given-names>
</name>
,
<name>
<surname>Barrionuevo</surname>
<given-names>F. J.</given-names>
</name>
&
<name>
<surname>Burgos</surname>
<given-names>M.</given-names>
</name>
<article-title>Natural exceptions to normal gonad development in mammals</article-title>
.
<source>Sex. Dev.</source>
<volume>7</volume>
,
<fpage>147</fpage>
<lpage>162</lpage>
(
<year>2013</year>
).
<pub-id pub-id-type="pmid">22626995</pub-id>
</mixed-citation>
</ref>
<ref id="b30">
<mixed-citation publication-type="journal">
<name>
<surname>Tucker</surname>
<given-names>P. K.</given-names>
</name>
&
<name>
<surname>Lundrigan</surname>
<given-names>B. L.</given-names>
</name>
<article-title>Rapid evolution of the sex determining locus in Old World mice and rats</article-title>
.
<source>Nature</source>
<volume>364</volume>
,
<fpage>715</fpage>
<lpage>717</lpage>
(
<year>1993</year>
).
<pub-id pub-id-type="pmid">8355784</pub-id>
</mixed-citation>
</ref>
<ref id="b31">
<mixed-citation publication-type="journal">
<name>
<surname>Whitfield</surname>
<given-names>L. S.</given-names>
</name>
,
<name>
<surname>Lovell-Badge</surname>
<given-names>R.</given-names>
</name>
&
<name>
<surname>Goodfellow</surname>
<given-names>P. N.</given-names>
</name>
<article-title>Rapid sequence evolution of the mammalian sex-determining gene SRY</article-title>
.
<source>Nature</source>
<volume>364</volume>
,
<fpage>713</fpage>
<lpage>715</lpage>
(
<year>1993</year>
).
<pub-id pub-id-type="pmid">8355783</pub-id>
</mixed-citation>
</ref>
<ref id="b32">
<mixed-citation publication-type="journal">
<name>
<surname>Werner</surname>
<given-names>M. H.</given-names>
</name>
,
<name>
<surname>Huth</surname>
<given-names>J. R.</given-names>
</name>
,
<name>
<surname>Gronenborn</surname>
<given-names>A. M.</given-names>
</name>
&
<name>
<surname>Marius Clore</surname>
<given-names>G.</given-names>
</name>
<article-title>Molecular basis of human 46X,Y sex reversal revealed from the three-dimensional solution structure of the human SRY-DNA complex</article-title>
.
<source>Cell</source>
<volume>81</volume>
,
<fpage>705</fpage>
<lpage>714</lpage>
(
<year>1995</year>
).
<pub-id pub-id-type="pmid">7774012</pub-id>
</mixed-citation>
</ref>
<ref id="b33">
<mixed-citation publication-type="journal">
<name>
<surname>Swain</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Narvaez</surname>
<given-names>V.</given-names>
</name>
,
<name>
<surname>Burgoyne</surname>
<given-names>P.</given-names>
</name>
,
<name>
<surname>Camerino</surname>
<given-names>G.</given-names>
</name>
&
<name>
<surname>Lovell-Badge</surname>
<given-names>R.</given-names>
</name>
<article-title>Dax1 antagonizes Sry action in mammalian sex determination</article-title>
.
<source>Nature</source>
<volume>391</volume>
,
<fpage>761</fpage>
<lpage>767</lpage>
(
<year>1998</year>
).
<pub-id pub-id-type="pmid">9486644</pub-id>
</mixed-citation>
</ref>
<ref id="b34">
<mixed-citation publication-type="journal">
<name>
<surname>Eicher</surname>
<given-names>E.</given-names>
</name>
,
<name>
<surname>Washburn</surname>
<given-names>L.</given-names>
</name>
,
<name>
<surname>Whitney</surname>
<given-names>J.</given-names>
</name>
&
<name>
<surname>Morrow</surname>
<given-names>K.</given-names>
</name>
<article-title>Mus poschiavinus Y chromosome in the C57BL/6J murine genome causes sex reversal</article-title>
.
<source>Science</source>
<volume>217</volume>
,
<fpage>535</fpage>
<lpage>537</lpage>
(
<year>1982</year>
).
<pub-id pub-id-type="pmid">7089579</pub-id>
</mixed-citation>
</ref>
<ref id="b35">
<mixed-citation publication-type="journal">
<name>
<surname>Charlesworth</surname>
<given-names>B.</given-names>
</name>
,
<name>
<surname>Sniegowski</surname>
<given-names>P.</given-names>
</name>
&
<name>
<surname>Stephan</surname>
<given-names>W.</given-names>
</name>
<article-title>The evolutionary dynamics of repetitive DNA in eukaryotes</article-title>
.
<source>Nature</source>
<volume>371</volume>
,
<fpage>215</fpage>
<lpage>220</lpage>
(
<year>1994</year>
).
<pub-id pub-id-type="pmid">8078581</pub-id>
</mixed-citation>
</ref>
<ref id="b36">
<mixed-citation publication-type="journal">
<name>
<surname>Taketo-Hosotani</surname>
<given-names>T.</given-names>
</name>
,
<name>
<surname>Nishioka</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Nagamine</surname>
<given-names>C. M.</given-names>
</name>
,
<name>
<surname>Villalpando</surname>
<given-names>I.</given-names>
</name>
&
<name>
<surname>Merchant-Larios</surname>
<given-names>H.</given-names>
</name>
<article-title>Development and fertility of ovaries in the B6. YDOM sex-reversed female mouse</article-title>
.
<source>Development</source>
<volume>107</volume>
,
<fpage>95</fpage>
<lpage>105</lpage>
(
<year>1989</year>
).
<pub-id pub-id-type="pmid">2534072</pub-id>
</mixed-citation>
</ref>
<ref id="b37">
<mixed-citation publication-type="journal">
<name>
<surname>Saunders</surname>
<given-names>P. A.</given-names>
</name>
<etal></etal>
.
<article-title>XY females do better than the XX in the African pygmy mouse, Mus minutoides</article-title>
.
<source>Evolution</source>
<volume>68</volume>
,
<fpage>2119</fpage>
<lpage>2127</lpage>
(
<year>2014</year>
).
<pub-id pub-id-type="pmid">24611447</pub-id>
</mixed-citation>
</ref>
<ref id="b38">
<mixed-citation publication-type="journal">
<name>
<surname>Fredga</surname>
<given-names>K.</given-names>
</name>
<article-title>Aberrant chromosomal sex-determining mechanisms in mammals, with special reference to species with XY females</article-title>
.
<source>Philos. Trans. R. Soc. Lond. B Biol. Sci</source>
.
<volume>322</volume>
,
<fpage>83</fpage>
<lpage>95</lpage>
(
<year>1988</year>
).
<pub-id pub-id-type="pmid">2907806</pub-id>
</mixed-citation>
</ref>
<ref id="b39">
<mixed-citation publication-type="journal">
<name>
<surname>Fredga</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Setterfield</surname>
<given-names>L.</given-names>
</name>
&
<name>
<surname>Mittwoch</surname>
<given-names>U.</given-names>
</name>
<article-title>Gonadal development and birth weight in X*X and X*Y females of the wood lemming, Myopus schisticolor</article-title>
.
<source>Cytogenet. Cell Genet.</source>
<volume>91</volume>
,
<fpage>97</fpage>
<lpage>101</lpage>
(
<year>2000</year>
).
<pub-id pub-id-type="pmid">11173838</pub-id>
</mixed-citation>
</ref>
<ref id="b40">
<mixed-citation publication-type="journal">
<name>
<surname>Espinosa</surname>
<given-names>M. B.</given-names>
</name>
&
<name>
<surname>Vitullo</surname>
<given-names>A. D.</given-names>
</name>
<article-title>Fast-developing preimplantation embryo progeny from heterogametic females in mammals</article-title>
.
<source>Zygote</source>
<volume>9</volume>
,
<fpage>289</fpage>
<lpage>292</lpage>
(
<year>2001</year>
).
<pub-id pub-id-type="pmid">11771894</pub-id>
</mixed-citation>
</ref>
<ref id="b41">
<mixed-citation publication-type="journal">
<name>
<surname>Espinosa</surname>
<given-names>M. B.</given-names>
</name>
&
<name>
<surname>Vitullo</surname>
<given-names>A. D.</given-names>
</name>
<article-title>Offspring Sex-Ratio and Reproductive Performance in Heterogametic Females of the South American Field Mouse Akodon Azarae</article-title>
.
<source>Hereditas</source>
<volume>124</volume>
,
<fpage>57</fpage>
<lpage>62</lpage>
(
<year>1996</year>
).
<pub-id pub-id-type="pmid">8690614</pub-id>
</mixed-citation>
</ref>
<ref id="b42">
<mixed-citation publication-type="journal">
<name>
<surname>Kozielska</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Weissing</surname>
<given-names>F. J.</given-names>
</name>
,
<name>
<surname>Beukeboom</surname>
<given-names>L. W.</given-names>
</name>
&
<name>
<surname>Pen</surname>
<given-names>I.</given-names>
</name>
<article-title>Segregation distortion and the evolution of sex-determining mechanisms</article-title>
.
<source>Heredity</source>
<volume>104</volume>
,
<fpage>100</fpage>
<lpage>112</lpage>
(
<year>2010</year>
).
<pub-id pub-id-type="pmid">19672280</pub-id>
</mixed-citation>
</ref>
<ref id="b43">
<mixed-citation publication-type="journal">
<name>
<surname>van Doorn</surname>
<given-names>G. S.</given-names>
</name>
&
<name>
<surname>Kirkpatrick</surname>
<given-names>M.</given-names>
</name>
<article-title>Turnover of sex chromosomes induced by sexual conflict</article-title>
.
<source>Nature</source>
<volume>449</volume>
,
<fpage>909</fpage>
<lpage>912</lpage>
(
<year>2007</year>
).
<pub-id pub-id-type="pmid">17943130</pub-id>
</mixed-citation>
</ref>
<ref id="b44">
<mixed-citation publication-type="journal">
<name>
<surname>Vuilleumier</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Lande</surname>
<given-names>R.</given-names>
</name>
,
<name>
<surname>Van Alphen</surname>
<given-names>J. J. M.</given-names>
</name>
&
<name>
<surname>Seehausen</surname>
<given-names>O.</given-names>
</name>
<article-title>Invasion and fixation of sex-reversal genes</article-title>
.
<source>J. Evol. Biol</source>
.
<volume>20</volume>
,
<fpage>913</fpage>
<lpage>920</lpage>
(
<year>2007</year>
).
<pub-id pub-id-type="pmid">17465902</pub-id>
</mixed-citation>
</ref>
<ref id="b45">
<mixed-citation publication-type="journal">
<name>
<surname>Bull</surname>
<given-names>J. J.</given-names>
</name>
&
<name>
<surname>Charnov</surname>
<given-names>E. L.</given-names>
</name>
<article-title>Changes in the heterogametic mechanism of sex determination</article-title>
.
<source>Heredity</source>
<volume>39</volume>
,
<fpage>1</fpage>
<lpage>14</lpage>
(
<year>1977</year>
).
<pub-id pub-id-type="pmid">268319</pub-id>
</mixed-citation>
</ref>
<ref id="b46">
<mixed-citation publication-type="journal">
<name>
<surname>van Doorn</surname>
<given-names>G. S.</given-names>
</name>
<article-title>Patterns and Mechanisms of Evolutionary Transitions between Genetic Sex-Determining Systems</article-title>
.
<source>Cold Spring Harb. Perspect. Biol</source>
.
<volume>6</volume>
(
<year>2014</year>
).</mixed-citation>
</ref>
<ref id="b47">
<mixed-citation publication-type="journal">
<name>
<surname>Foster</surname>
<given-names>J. W.</given-names>
</name>
&
<name>
<surname>Graves</surname>
<given-names>J. A.</given-names>
</name>
<article-title>An SRY-related sequence on the marsupial X chromosome: implications for the evolution of the mammalian testis-determining gene</article-title>
.
<source>Proc. Natl. Acad. Sci. USA</source>
<volume>91</volume>
,
<fpage>1927</fpage>
<lpage>1931</lpage>
(
<year>1994</year>
).
<pub-id pub-id-type="pmid">8127908</pub-id>
</mixed-citation>
</ref>
<ref id="b48">
<mixed-citation publication-type="journal">
<name>
<surname>Sutton</surname>
<given-names>E.</given-names>
</name>
<etal></etal>
.
<article-title>Identification of SOX3 as an XX male sex reversal gene in mice and humans</article-title>
.
<source>J. Clin. Invest.</source>
<volume>121</volume>
,
<fpage>328</fpage>
<lpage>341</lpage>
(
<year>2011</year>
).
<pub-id pub-id-type="pmid">21183788</pub-id>
</mixed-citation>
</ref>
<ref id="b49">
<mixed-citation publication-type="journal">
<name>
<surname>Stevanovlć</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Lovell-Badge</surname>
<given-names>R.</given-names>
</name>
,
<name>
<surname>Collignon</surname>
<given-names>J. m.</given-names>
</name>
&
<name>
<surname>Goodfellow</surname>
<given-names>P. N.</given-names>
</name>
<article-title>SOX3 is an X-linked gene related to SRY</article-title>
.
<source>Human Mol. Genet</source>
.
<volume>2</volume>
,
<fpage>2013</fpage>
<lpage>2018</lpage>
(
<year>1993</year>
).
<pub-id pub-id-type="pmid">8111369</pub-id>
</mixed-citation>
</ref>
<ref id="b50">
<mixed-citation publication-type="journal">
<name>
<surname>Charlesworth</surname>
<given-names>B.</given-names>
</name>
&
<name>
<surname>Charlesworth</surname>
<given-names>D.</given-names>
</name>
<article-title>The degeneration of Y chromosomes</article-title>
.
<source>Philos. Trans. R. Soc. Lond. B Biol. Sci</source>
.
<volume>355</volume>
,
<fpage>1563</fpage>
<lpage>1572</lpage>
(
<year>2000</year>
).
<pub-id pub-id-type="pmid">11127901</pub-id>
</mixed-citation>
</ref>
<ref id="b51">
<mixed-citation publication-type="journal">
<name>
<surname>Charlesworth</surname>
<given-names>B.</given-names>
</name>
<article-title>Model for evolution of Y chromosomes and dosage compensation</article-title>
.
<source>Proc. Natl. Acad. Sci. USA</source>
<volume>75</volume>
,
<fpage>5618</fpage>
<lpage>5622</lpage>
(
<year>1978</year>
).
<pub-id pub-id-type="pmid">281711</pub-id>
</mixed-citation>
</ref>
<ref id="b52">
<mixed-citation publication-type="journal">
<name>
<surname>Bachtrog</surname>
<given-names>D.</given-names>
</name>
<article-title>Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration</article-title>
.
<source>Nat. Rev. Genet.</source>
<volume>14</volume>
,
<fpage>113</fpage>
<lpage>124</lpage>
(
<year>2013</year>
).
<pub-id pub-id-type="pmid">23329112</pub-id>
</mixed-citation>
</ref>
<ref id="b53">
<mixed-citation publication-type="journal">
<name>
<surname>Bachtrog</surname>
<given-names>D.</given-names>
</name>
<article-title>A dynamic view of sex chromosome evolution</article-title>
.
<source>Curr. Opin. Genet. Dev</source>
.
<volume>16</volume>
,
<fpage>578</fpage>
<lpage>585</lpage>
(
<year>2006</year>
).
<pub-id pub-id-type="pmid">17055249</pub-id>
</mixed-citation>
</ref>
<ref id="b54">
<mixed-citation publication-type="journal">
<name>
<surname>Arakawa</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Nishida-Umehara</surname>
<given-names>C.</given-names>
</name>
,
<name>
<surname>Matsuda</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Sutou</surname>
<given-names>S.</given-names>
</name>
&
<name>
<surname>Suzuki</surname>
<given-names>H.</given-names>
</name>
<article-title>X-chromosomal localization of mammalian Y-linked genes in two XO species of the Ryukyu spiny rat</article-title>
.
<source>Cytogenet. Genome Res.</source>
<volume>99</volume>
,
<fpage>303</fpage>
<lpage>309</lpage>
(
<year>2002</year>
).
<pub-id pub-id-type="pmid">12900579</pub-id>
</mixed-citation>
</ref>
<ref id="b55">
<mixed-citation publication-type="journal">
<name>
<surname>Hughes</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Skaletsky</surname>
<given-names>H.</given-names>
</name>
,
<name>
<surname>Koutseva</surname>
<given-names>N.</given-names>
</name>
,
<name>
<surname>Pyntikova</surname>
<given-names>T.</given-names>
</name>
&
<name>
<surname>Page</surname>
<given-names>D.</given-names>
</name>
<article-title>Sex chromosome-to-autosome transposition events counter Y-chromosome gene loss in mammals</article-title>
.
<source>Genome Biol.</source>
<volume>16</volume>
,
<fpage>104</fpage>
(
<year>2015</year>
).
<pub-id pub-id-type="pmid">26017895</pub-id>
</mixed-citation>
</ref>
<ref id="b56">
<mixed-citation publication-type="journal">
<name>
<surname>Sutou</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Mitsui</surname>
<given-names>Y.</given-names>
</name>
&
<name>
<surname>Tsuchiya</surname>
<given-names>K.</given-names>
</name>
<article-title>Sex determination without the Y chromosome in two Japanese rodents Tokudaia osimensis osimensis and Tokudaia osimensis spp</article-title>
.
<source>Mamm. Genome</source>
<volume>12</volume>
,
<fpage>17</fpage>
<lpage>21</lpage>
(
<year>2001</year>
).
<pub-id pub-id-type="pmid">11178738</pub-id>
</mixed-citation>
</ref>
<ref id="b57">
<mixed-citation publication-type="journal">
<name>
<surname>Soullier</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Hanni</surname>
<given-names>C.</given-names>
</name>
,
<name>
<surname>Catzeflis</surname>
<given-names>F.</given-names>
</name>
,
<name>
<surname>Berta</surname>
<given-names>P.</given-names>
</name>
&
<name>
<surname>Laudet</surname>
<given-names>V.</given-names>
</name>
<article-title>Male sex determination in the spiny rat Tokudaia osimensis (Rodentia: Muridae) is not Sry dependent</article-title>
.
<source>Mamm. Genome</source>
<volume>9</volume>
,
<fpage>590</fpage>
<lpage>592</lpage>
(
<year>1998</year>
).
<pub-id pub-id-type="pmid">9657859</pub-id>
</mixed-citation>
</ref>
<ref id="b58">
<mixed-citation publication-type="journal">
<name>
<surname>Just</surname>
<given-names>W.</given-names>
</name>
<etal></etal>
.
<article-title>Absence of Sry in species of the vole Ellobius</article-title>
.
<source>Nat. Genet.</source>
<volume>11</volume>
,
<fpage>117</fpage>
<lpage>118</lpage>
(
<year>1995</year>
).
<pub-id pub-id-type="pmid">7550333</pub-id>
</mixed-citation>
</ref>
<ref id="b59">
<mixed-citation publication-type="journal">
<name>
<surname>Just</surname>
<given-names>W.</given-names>
</name>
<etal></etal>
.
<article-title>Ellobius lutescens: sex determination and sex chromosome</article-title>
.
<source>Sex. Dev.</source>
<volume>1</volume>
,
<fpage>211</fpage>
<lpage>221</lpage>
(
<year>2007</year>
).
<pub-id pub-id-type="pmid">18391532</pub-id>
</mixed-citation>
</ref>
<ref id="b60">
<mixed-citation publication-type="journal">
<name>
<surname>Jotterand-Bellomo</surname>
<given-names>M.</given-names>
</name>
<article-title>Chromosome analysis of five specimens of Mus bufo-triton (Muridae) from Burundi (Africa): three cytogenetic entities, a special type of chromosomal sex determination, taxonomy, and phylogeny</article-title>
.
<source>Cytogenet. Cell Genet.</source>
<volume>48</volume>
,
<fpage>88</fpage>
<lpage>91</lpage>
(
<year>1988</year>
).</mixed-citation>
</ref>
<ref id="b61">
<mixed-citation publication-type="journal">
<name>
<surname>Thompson</surname>
<given-names>J. D.</given-names>
</name>
,
<name>
<surname>Higgins</surname>
<given-names>D. G.</given-names>
</name>
&
<name>
<surname>Gibson</surname>
<given-names>T. J.</given-names>
</name>
<article-title>CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice</article-title>
.
<source>Nucleic Acids Res</source>
.
<volume>22</volume>
,
<fpage>4673</fpage>
<lpage>4680</lpage>
(
<year>1994</year>
).
<pub-id pub-id-type="pmid">7984417</pub-id>
</mixed-citation>
</ref>
<ref id="b62">
<mixed-citation publication-type="journal">
<name>
<surname>Pearson</surname>
<given-names>W. R.</given-names>
</name>
,
<name>
<surname>Wood</surname>
<given-names>T.</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>Z.</given-names>
</name>
&
<name>
<surname>Miller</surname>
<given-names>W.</given-names>
</name>
<article-title>Comparison of DNA sequences with protein sequences</article-title>
.
<source>Genomics</source>
<volume>46</volume>
,
<fpage>24</fpage>
<lpage>36</lpage>
(
<year>1997</year>
).
<pub-id pub-id-type="pmid">9403055</pub-id>
</mixed-citation>
</ref>
<ref id="b63">
<mixed-citation publication-type="journal">
<name>
<surname>Bouckaert</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
.
<article-title>BEAST 2: A software platform for Bayesian evolutionary analysis</article-title>
.
<source>PLoS Comput. Biol.</source>
<volume>10</volume>
,
<fpage>e1003537</fpage>
(
<year>2014</year>
).
<pub-id pub-id-type="pmid">24722319</pub-id>
</mixed-citation>
</ref>
<ref id="b64">
<mixed-citation publication-type="journal">
<name>
<surname>Lee</surname>
<given-names>E. F.</given-names>
</name>
<etal></etal>
.
<article-title>A novel BH3 ligand that selectively targets Mcl-1 reveals that apoptosis can proceed without Mcl-1 degradation</article-title>
.
<source>J. Cell Biol.</source>
<volume>180</volume>
,
<fpage>341</fpage>
<lpage>355</lpage>
(
<year>2008</year>
).
<pub-id pub-id-type="pmid">18209102</pub-id>
</mixed-citation>
</ref>
<ref id="b65">
<mixed-citation publication-type="journal">
<name>
<surname>Zhao</surname>
<given-names>L.</given-names>
</name>
,
<name>
<surname>Neumann</surname>
<given-names>B.</given-names>
</name>
,
<name>
<surname>Murphy</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Silke</surname>
<given-names>J.</given-names>
</name>
&
<name>
<surname>Gonda</surname>
<given-names>T. J.</given-names>
</name>
<article-title>Lack of reproducible growth inhibition by Schlafen1 and Schlafen2
<italic>in vitro</italic>
</article-title>
.
<source>Blood Cells Mol. Dis.</source>
<volume>41</volume>
,
<fpage>188</fpage>
<lpage>193</lpage>
(
<year>2008</year>
).
<pub-id pub-id-type="pmid">18479948</pub-id>
</mixed-citation>
</ref>
<ref id="b66">
<mixed-citation publication-type="journal">
<name>
<surname>Schepers</surname>
<given-names>G.</given-names>
</name>
,
<name>
<surname>Wilson</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Wilhelm</surname>
<given-names>D.</given-names>
</name>
&
<name>
<surname>Koopman</surname>
<given-names>P.</given-names>
</name>
<article-title>SOX8 is expressed during testis differentiation in mice and synergizes with SF1 to activate the Amh promoter
<italic>in vitro</italic>
</article-title>
.
<source>J. Biol. Chem.</source>
<volume>278</volume>
,
<fpage>28101</fpage>
<lpage>28108</lpage>
(
<year>2003</year>
).
<pub-id pub-id-type="pmid">12732652</pub-id>
</mixed-citation>
</ref>
</ref-list>
<fn-group>
<fn fn-type="COI-statement">
<p>The authors declare no competing financial interests.</p>
</fn>
<fn>
<p>
<bold>Author Contributions</bold>
L.Z. designed and performed research, analyzed the data, and wrote the manuscript; A.Q. helped interpret the data and edited the manuscript; E.T.N. performed research; F.V. helped design research, provided mouse tissue samples, and edited the manuscript; P.K. designed research and wrote the manuscript. All authors gave final approval for publication.</p>
</fn>
</fn-group>
</back>
<floats-group>
<fig id="f1">
<label>Figure 1</label>
<caption>
<title>
<italic>M. minutoides</italic>
SRY has a degraded C-terminal polyQ tract.</title>
<p>(
<bold>a</bold>
) PCR amplification of the full-length
<italic>Sry</italic>
coding region from
<italic>M. minutoides</italic>
or
<italic>M. mattheyi</italic>
. An
<italic>M. musculus</italic>
sample was included as a control. (
<bold>b</bold>
) Schematic of SRY proteins from three
<italic>Mus</italic>
species:
<italic>M. musculus</italic>
(musSRY),
<italic>M. mattheyi</italic>
(matSRY), and
<italic>M. minutoides</italic>
(minSRY). Brg, bridge domain. Numbers indicate the sequence identity scores compared to the same domain of musSRY. (
<bold>c</bold>
) Alignment of the deduced amino acid sequences of the C-terminal polyQ tract of SRY from the three
<italic>Mus</italic>
species. Glutamine blocks are highlighted in grey.</p>
</caption>
<graphic xlink:href="srep41378-f1"></graphic>
</fig>
<fig id="f2">
<label>Figure 2</label>
<caption>
<title>The degraded polyQ tract in
<italic>M. minutoides</italic>
SRY does not compromise protein stability.</title>
<p>(
<bold>a</bold>
) Schematic of EGFP-tagged matSRY and minSRY proteins (g-matSRY and g-minSRY, respectively). EGFP-tagged musSRY (g-musSRY) and musSRY lacking the polyQ domain (g-musSRYΔQ) are also shown here for comparison. (
<bold>b</bold>
) Both g-minSRY and g-matSRY were detected in 15P-1 stable cell lines by Western blotting using an anti–EGFP antibody. g-musSRY and g-musSRYΔQ were included as positive and negative controls, respectively. Predicted molecular weight: g-musSRY, 77.1 kDa; g-musSRY ΔQ, 47.9 kDa; g-minSRY, 50.7 kDa; g-matSRY, 59.9 kDa. A blot using anti–α-Tubulin served as loading control. Full-length blots are presented in
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. S15</xref>
. (
<bold>c</bold>
) Both g-matSRY and g-minSRY were detected in the nuclei of 15P-1 cells by immunofluorescence using an anti–EGFP antibody. g-musSRY and g-musSRYΔQ were included as positive and negative controls, respectively.</p>
</caption>
<graphic xlink:href="srep41378-f2"></graphic>
</fig>
<fig id="f3">
<label>Figure 3</label>
<caption>
<title>
<italic>M. minutoides</italic>
SRY fails to activate the
<italic>M. musculus</italic>
TESCO reporter due to the degeneration of its C-terminal polyQ tract.</title>
<p>(
<bold>a</bold>
) minSRY, unlike musSRY and matSRY, failed to synergize with musSF1 to activate a luciferase construct containing
<italic>M. musculus</italic>
TESCO (compare green arrows). (
<bold>b</bold>
) Similar to minSRY, the musHBminQ mutant failed to activate musTESCO-Luc in the presence of musSF1 (compare orange arrows), whereas the mutant minHBmusQ restored the transactivation ability to that of musSRY (compare blue arrows). The luciferase activity of musTESCO co-transfected with the empty vector in the absence of SF1 was set to 1. SRY constructs do not activate TESCO in the absence of SF1, and thus the −SF1 data essentially showed unchanged base level activities of the musTESCO-Luc reporter. Therefore, for simplicity, only the + SF1 data are presented here, as mean ± s.e.m (n = 3). Dashed lines indicate the level of baseline (empty vector + SF1). (**)
<italic>P</italic>
 < 0.01 vs. empty vector, or as indicated, one-way repeated measures ANOVA with Holm-Sidak multiple comparisons test. ns, not significant.</p>
</caption>
<graphic xlink:href="srep41378-f3"></graphic>
</fig>
<fig id="f4">
<label>Figure 4</label>
<caption>
<title>Markedly reduced enhancer activity of TESCO in
<italic>M. mattheyi</italic>
and
<italic>M. minutoides</italic>
.</title>
<p>(
<bold>a</bold>
) Maximum likelihood phylogeny using TESCO sequences. Numbers indicate percent sequence identity scores compared to musTESCO. (
<bold>b</bold>
) Schematic of TESCO enhancers from three
<italic>Mus</italic>
species. R4-6, SRY binding sites; F1-6, SF1 binding sites; Ei-v, evolutionarily conserved regions; V1-3, sequence variations between minTESCO a and b. Sequence changes at sites F1-4 may impair SF1 binding and are indicated with different colours. The F3 site predicted to have SF1 binding disrupted is removed from the matTESCO diagram. (
<bold>c</bold>
) Sequence comparison of F1-4 sites from the three species, and the mutants musTESCO.mut1/2. Sequence changes compared with musTESCO are in red and mutated sequences are underlined. Compared with musTESCO, mat/minTESCO showed markedly reduced activities in the presence of musSF1. Mutations of SF1 binding sites F1-4 in musTESCO to the corresponding sequence in matTESCO (musTESCO.mut1) or minTESCO (musTESCO.mut2) caused mildly reduced reporter activities in the presence of musSF1. Data are presented as TESCO luciferase activity normalized to co-transfected CMV-renilla luciferase activity. Error bars: s.e.m. (
<italic>n</italic>
 = 3). Dashed lines indicate the levels of musTESCO activity. (**)
<italic>P</italic>
 < 0.01 vs. musTESCO, one-way repeated measures ANOVA with Dunnett’s multiple comparisons test.</p>
</caption>
<graphic xlink:href="srep41378-f4"></graphic>
</fig>
<fig id="f5">
<label>Figure 5</label>
<caption>
<title>Sequence variations at the V3 site between two haplotypes of
<italic>M. minutoides</italic>
TESCO results in reduced enhancer activity.</title>
<p>(
<bold>a</bold>
) Sequence comparison of V1-3 between minTESCO haplotypes a and b. Sequence changes between the two haplotypes are in red. Mutated bases in minTESCO.b.mut are underlined. (
<bold>b</bold>
) Compared with minTESCO.a, minTESCO.b had its transcriptional activity (in the presence of musSF1) halved. minTESCO.b.mut with V3 site mutated to the corresponding sequence in minTESCO.a showed fully restored reporter activity in the presence of musSF1. Data are presented as TESCO luciferase activity normalized to co-transfected CMV-renilla luciferase activity. Error bars: s.e.m. (
<italic>n</italic>
 = 3). (**)
<italic>P</italic>
 < 0.01, one-way repeated measures ANOVA with Dunnett’s multiple comparisons test. ns, not significant.</p>
</caption>
<graphic xlink:href="srep41378-f5"></graphic>
</fig>
<fig id="f6">
<label>Figure 6</label>
<caption>
<title>Co-evolution of
<italic>Sry</italic>
and TESCO in
<italic>M. minutoides</italic>
.</title>
<p>(
<bold>a</bold>
,
<bold>b</bold>
) minSRY activated minTESCO.a/b in the presence of musSF1 (compare green arrows), albeit more weakly than musSRY and matSRY. (
<bold>c</bold>
,
<bold>d</bold>
) minSRY significantly outperformed musHBminQ in activating both minTESCO.a/b reporters (compare orange arrows). Conversely, minHBmusQ mutant significantly outperformed musSRY (compare blue arrows). The luciferase activity of each luciferase reporter co-transfected with the empty vector in the absence of SF1 was set to 1. SRY constructs do not activate TESCO in the absence of SF1, and thus the −SF1 data essentially showed unchanged base level activities of TESCO-Luc reporter. Therefore, for simplicity, only the + SF1 data are presented here as mean ± s.e.m (n = 3). Dashed lines indicate the levels of baseline (empty vector + musSF1) or synergistic activation by musSRY + musSF1. (*)
<italic>P</italic>
 < 0.05, (**)
<italic>P</italic>
 < 0.01 vs. empty vector, or as indicated, one-way repeated measures ANOVA with Holm-Sidak multiple comparisons test. ns, not significant.</p>
</caption>
<graphic xlink:href="srep41378-f6"></graphic>
</fig>
<fig id="f7">
<label>Figure 7</label>
<caption>
<title>A model for the evolution of the atypical sex determination system in
<italic>M. minutoides</italic>
.</title>
<p>In a common ancestor to
<italic>M. mattheyi</italic>
and
<italic>M. minutoides</italic>
, multiple sequence variations within TESCO occurred. This first strike significantly reduced the basal transcriptional activity of TESCO and attenuated its response to SF1. Subsequently, a second strike hit
<italic>Sry</italic>
in an ancestor to
<italic>M. minutoides</italic>
, causing a severe degradation of its polyQ tract. Such a degenerated SRY retains only weak capacity to activate TESCO and
<italic>Sox9</italic>
expression. Together, these genetic events have rendered the male sex-determining pathway vulnerable in
<italic>M. minutoides</italic>
, which may have facilitated the invasion and subsequent spread of the X* chromosome (and feminising modifier(s) thereon). The presence of X* chromosome in X*Y individuals overwrites the fragile male sex-determining pathway and leads to female sex reversal.</p>
</caption>
<graphic xlink:href="srep41378-f7"></graphic>
</fig>
<table-wrap position="float" id="t1">
<label>Table 1</label>
<caption>
<title>Multiple
<italic>Sry</italic>
copies are present in
<italic>M. minutoides</italic>
and
<italic>M. mattheyi</italic>
.</title>
</caption>
<table frame="hsides" rules="groups" border="1">
<colgroup>
<col align="left"></col>
<col align="center"></col>
<col align="center"></col>
<col align="center"></col>
</colgroup>
<thead valign="bottom">
<tr>
<th align="left" valign="top" charoff="50">Clone #</th>
<th align="center" valign="top" charoff="50">Haplotype</th>
<th align="center" valign="top" charoff="50">
<italic>Sry</italic>
DNA sequence variation</th>
<th align="center" valign="top" charoff="50">SRY protein sequence variation</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td colspan="4" align="left" valign="top" charoff="50">
<italic>M. minutoides</italic>
</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">1</td>
<td align="center" valign="top" charoff="50">a</td>
<td align="center" valign="top" charoff="50">c.514_534del</td>
<td align="center" valign="top" charoff="50">p.(E170_Q176del) in the polyQ domain</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">2</td>
<td align="center" valign="top" charoff="50">a</td>
<td align="center" valign="top" charoff="50">c.514_534del</td>
<td align="center" valign="top" charoff="50">p.(E170_Q176del) in the polyQ domain</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">3</td>
<td align="center" valign="top" charoff="50">b</td>
<td align="center" valign="top" charoff="50">c.[352A > G; 613_615del]</td>
<td align="center" valign="top" charoff="50">p.(T118A) in the bridge domain</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">4</td>
<td align="center" valign="top" charoff="50">c</td>
<td align="center" valign="top" charoff="50">c.[51T > C; 410A > G; 573T > C]</td>
<td align="center" valign="top" charoff="50">p.(D137G) in the polyQ domain</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">5</td>
<td align="center" valign="top" charoff="50">d</td>
<td align="center" valign="top" charoff="50">Same as the consensus</td>
<td align="center" valign="top" charoff="50">Same as the consensus</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">6</td>
<td align="center" valign="top" charoff="50">e</td>
<td align="center" valign="top" charoff="50">c.316A > G</td>
<td align="center" valign="top" charoff="50">p.(R106G) in the bridge domain</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">7
<sup>a</sup>
</td>
<td align="center" valign="top" charoff="50">d</td>
<td align="center" valign="top" charoff="50">Same as the consensus</td>
<td align="center" valign="top" charoff="50">Same as the consensus</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">8</td>
<td align="center" valign="top" charoff="50">d</td>
<td align="center" valign="top" charoff="50">Same as the consensus</td>
<td align="center" valign="top" charoff="50">Same as the consensus</td>
</tr>
<tr>
<td colspan="4" align="left" valign="top" charoff="50">
<italic>M. mattheyi</italic>
</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">1</td>
<td align="center" valign="top" charoff="50">a</td>
<td align="center" valign="top" charoff="50">c.971_973del</td>
<td align="center" valign="top" charoff="50">Same as the consensus</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">2</td>
<td align="center" valign="top" charoff="50">b</td>
<td align="center" valign="top" charoff="50">c.562_564del</td>
<td align="center" valign="top" charoff="50">p.(Q188del) in the polyQ domain</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">3</td>
<td align="center" valign="top" charoff="50">c</td>
<td align="center" valign="top" charoff="50">c.503_574del</td>
<td align="center" valign="top" charoff="50">p.(Q172_Q195del) in the polyQ domain</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">4
<sup>a</sup>
</td>
<td align="center" valign="top" charoff="50">d</td>
<td align="center" valign="top" charoff="50">Same as the consensus</td>
<td align="center" valign="top" charoff="50">Same as the consensus</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">5</td>
<td align="center" valign="top" charoff="50">b</td>
<td align="center" valign="top" charoff="50">c.562_564del</td>
<td align="center" valign="top" charoff="50">p.(Q188del) in the polyQ domain</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">6</td>
<td align="center" valign="top" charoff="50">e</td>
<td align="center" valign="top" charoff="50">c.503A > G</td>
<td align="center" valign="top" charoff="50">p.(H168R) in the polyQ domain</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">7</td>
<td align="center" valign="top" charoff="50">f</td>
<td align="center" valign="top" charoff="50">c.787C > T</td>
<td align="center" valign="top" charoff="50">Same as the consensus</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">8</td>
<td align="center" valign="top" charoff="50">g</td>
<td align="center" valign="top" charoff="50">c.451C > T</td>
<td align="center" valign="top" charoff="50">p.(Q150*); almost complete truncation of the polyQ domain</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="t1-fn1">
<p>
<sup>a</sup>
Reference clones used in cross-species sequence comparisons and subsequent experimental analyses.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000866 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000866 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:5290746
   |texte=   Reduced Activity of SRY and its Target Enhancer Sox9-TESCO in a Mouse Species with X*Y Sex Reversal
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:28155866" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024