Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000834 ( Pmc/Corpus ); précédent : 0008339; suivant : 0008350 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Quantitative Comparison of Photothermal Heat Generation between Gold Nanospheres and Nanorods</title>
<author>
<name sortKey="Qin, Zhenpeng" sort="Qin, Zhenpeng" uniqKey="Qin Z" first="Zhenpeng" last="Qin">Zhenpeng Qin</name>
<affiliation>
<nlm:aff id="a1">
<institution>Department of Mechanical Engineering, University of Minnesota</institution>
, Minneapolis, MN 55455,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yiru" sort="Wang, Yiru" uniqKey="Wang Y" first="Yiru" last="Wang">Yiru Wang</name>
<affiliation>
<nlm:aff id="a1">
<institution>Department of Mechanical Engineering, University of Minnesota</institution>
, Minneapolis, MN 55455,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Randrianalisoa, Jaona" sort="Randrianalisoa, Jaona" uniqKey="Randrianalisoa J" first="Jaona" last="Randrianalisoa">Jaona Randrianalisoa</name>
<affiliation>
<nlm:aff id="a2">
<institution>Groupe de Recherche en Sciences pour l’Ingénieur (GRESPI) - EA 4694, University of Reims Champagne-Ardenne</institution>
, 51687 Reims Cedex 2,
<country>France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Raeesi, Vahid" sort="Raeesi, Vahid" uniqKey="Raeesi V" first="Vahid" last="Raeesi">Vahid Raeesi</name>
<affiliation>
<nlm:aff id="a3">
<institution>Department of Materials Science and Engineering, University of Toronto</institution>
, Toronto, Ontario M5S 3G9,
<country>Canada</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chan, Warren C W" sort="Chan, Warren C W" uniqKey="Chan W" first="Warren C. W." last="Chan">Warren C. W. Chan</name>
<affiliation>
<nlm:aff id="a3">
<institution>Department of Materials Science and Engineering, University of Toronto</institution>
, Toronto, Ontario M5S 3G9,
<country>Canada</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a4">
<institution>Institute of Biomaterials and Biomedical Engineering, Department of Chemistry, Department of Chemical Engineering, University of Toronto</institution>
, Toronto, Ontario M5S 3G9,
<country>Canada</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a5">
<institution>Donnelly Center for Cellular and Biomolecular Research, University of Toronto</institution>
, Toronto, Ontario M5S 3E1,
<country>Canada</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lipi Ski, Wojciech" sort="Lipi Ski, Wojciech" uniqKey="Lipi Ski W" first="Wojciech" last="Lipi Ski">Wojciech Lipi Ski</name>
<affiliation>
<nlm:aff id="a6">
<institution>Research School of Engineering, The Australian National University</institution>
, Canberra, ACT 2601,
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bischof, John C" sort="Bischof, John C" uniqKey="Bischof J" first="John C." last="Bischof">John C. Bischof</name>
<affiliation>
<nlm:aff id="a1">
<institution>Department of Mechanical Engineering, University of Minnesota</institution>
, Minneapolis, MN 55455,
<country>USA</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a7">
<institution>Department of Biomedical Engineering, University of Minnesota</institution>
, Minneapolis, MN 55455,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27445172</idno>
<idno type="pmc">4956767</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4956767</idno>
<idno type="RBID">PMC:4956767</idno>
<idno type="doi">10.1038/srep29836</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000834</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000834</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Quantitative Comparison of Photothermal Heat Generation between Gold Nanospheres and Nanorods</title>
<author>
<name sortKey="Qin, Zhenpeng" sort="Qin, Zhenpeng" uniqKey="Qin Z" first="Zhenpeng" last="Qin">Zhenpeng Qin</name>
<affiliation>
<nlm:aff id="a1">
<institution>Department of Mechanical Engineering, University of Minnesota</institution>
, Minneapolis, MN 55455,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yiru" sort="Wang, Yiru" uniqKey="Wang Y" first="Yiru" last="Wang">Yiru Wang</name>
<affiliation>
<nlm:aff id="a1">
<institution>Department of Mechanical Engineering, University of Minnesota</institution>
, Minneapolis, MN 55455,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Randrianalisoa, Jaona" sort="Randrianalisoa, Jaona" uniqKey="Randrianalisoa J" first="Jaona" last="Randrianalisoa">Jaona Randrianalisoa</name>
<affiliation>
<nlm:aff id="a2">
<institution>Groupe de Recherche en Sciences pour l’Ingénieur (GRESPI) - EA 4694, University of Reims Champagne-Ardenne</institution>
, 51687 Reims Cedex 2,
<country>France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Raeesi, Vahid" sort="Raeesi, Vahid" uniqKey="Raeesi V" first="Vahid" last="Raeesi">Vahid Raeesi</name>
<affiliation>
<nlm:aff id="a3">
<institution>Department of Materials Science and Engineering, University of Toronto</institution>
, Toronto, Ontario M5S 3G9,
<country>Canada</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chan, Warren C W" sort="Chan, Warren C W" uniqKey="Chan W" first="Warren C. W." last="Chan">Warren C. W. Chan</name>
<affiliation>
<nlm:aff id="a3">
<institution>Department of Materials Science and Engineering, University of Toronto</institution>
, Toronto, Ontario M5S 3G9,
<country>Canada</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a4">
<institution>Institute of Biomaterials and Biomedical Engineering, Department of Chemistry, Department of Chemical Engineering, University of Toronto</institution>
, Toronto, Ontario M5S 3G9,
<country>Canada</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a5">
<institution>Donnelly Center for Cellular and Biomolecular Research, University of Toronto</institution>
, Toronto, Ontario M5S 3E1,
<country>Canada</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lipi Ski, Wojciech" sort="Lipi Ski, Wojciech" uniqKey="Lipi Ski W" first="Wojciech" last="Lipi Ski">Wojciech Lipi Ski</name>
<affiliation>
<nlm:aff id="a6">
<institution>Research School of Engineering, The Australian National University</institution>
, Canberra, ACT 2601,
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bischof, John C" sort="Bischof, John C" uniqKey="Bischof J" first="John C." last="Bischof">John C. Bischof</name>
<affiliation>
<nlm:aff id="a1">
<institution>Department of Mechanical Engineering, University of Minnesota</institution>
, Minneapolis, MN 55455,
<country>USA</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a7">
<institution>Department of Biomedical Engineering, University of Minnesota</institution>
, Minneapolis, MN 55455,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific Reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Gold nanoparticles (GNPs) are widely used for biomedical applications due to unique optical properties, established synthesis methods, and biological compatibility. Despite important applications of plasmonic heating in thermal therapy, imaging, and diagnostics, the lack of quantification in heat generation leads to difficulties in comparing the heating capability for new plasmonic nanostructures and predicting the therapeutic and diagnostic outcome. This study quantifies GNP heat generation by experimental measurements and theoretical predictions for gold nanospheres (GNS) and nanorods (GNR). Interestingly, the results show a GNP-type dependent agreement between experiment and theory. The measured heat generation of GNS matches well with theory, while the measured heat generation of GNR is only 30% of that predicted theoretically at peak absorption. This then leads to a surprising finding that the polydispersity, the deviation of nanoparticle size and shape from nominal value, significantly influences GNR heat generation (>70% reduction), while having a limited effect for GNS (<10% change). This work demonstrates that polydispersity is an important metric in quantitatively predicting plasmonic heat generation and provides a validated framework to quantitatively compare the heating capabilities between gold and other plasmonic nanostructures.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Burda, C" uniqKey="Burda C">C. Burda</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
<author>
<name sortKey="Narayanan, R" uniqKey="Narayanan R">R. Narayanan</name>
</author>
<author>
<name sortKey="El Sayed, M A" uniqKey="El Sayed M">M. A. El-Sayed</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grzelczak, M" uniqKey="Grzelczak M">M. Grzelczak</name>
</author>
<author>
<name sortKey="Perez Juste, J" uniqKey="Perez Juste J">J. Perez-Juste</name>
</author>
<author>
<name sortKey="Mulvaney, P" uniqKey="Mulvaney P">P. Mulvaney</name>
</author>
<author>
<name sortKey="Liz Marzan, L M" uniqKey="Liz Marzan L">L. M. Liz-Marzan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murphy, C J" uniqKey="Murphy C">C. J. Murphy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, Y" uniqKey="Sun Y">Y. Sun</name>
</author>
<author>
<name sortKey="Xia, Y" uniqKey="Xia Y">Y. Xia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wilson, R" uniqKey="Wilson R">R. Wilson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nam, J M" uniqKey="Nam J">J. M. Nam</name>
</author>
<author>
<name sortKey="Thaxton, C S" uniqKey="Thaxton C">C. S. Thaxton</name>
</author>
<author>
<name sortKey="Mirkin, C A" uniqKey="Mirkin C">C. A. Mirkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chan, W C" uniqKey="Chan W">W. C. Chan</name>
</author>
<author>
<name sortKey="Nie, S" uniqKey="Nie S">S. Nie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boisselier, E" uniqKey="Boisselier E">E. Boisselier</name>
</author>
<author>
<name sortKey="Astruc, D" uniqKey="Astruc D">D. Astruc</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qin, Z" uniqKey="Qin Z">Z. Qin</name>
</author>
<author>
<name sortKey="Bischof, J C" uniqKey="Bischof J">J. C. Bischof</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thanh, N T" uniqKey="Thanh N">N. T. Thanh</name>
</author>
<author>
<name sortKey="Rosenzweig, Z" uniqKey="Rosenzweig Z">Z. Rosenzweig</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Posthuma Trumpie, G A" uniqKey="Posthuma Trumpie G">G. A. Posthuma-Trumpie</name>
</author>
<author>
<name sortKey="Korf, J" uniqKey="Korf J">J. Korf</name>
</author>
<author>
<name sortKey="Van Amerongen, A" uniqKey="Van Amerongen A">A. van Amerongen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cho, K" uniqKey="Cho K">K. Cho</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Nie, S" uniqKey="Nie S">S. Nie</name>
</author>
<author>
<name sortKey="Chen, Z G" uniqKey="Chen Z">Z. G. Chen</name>
</author>
<author>
<name sortKey="Shin, D M" uniqKey="Shin D">D. M. Shin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hirsch, L R" uniqKey="Hirsch L">L. R. Hirsch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dreaden, E C" uniqKey="Dreaden E">E. C. Dreaden</name>
</author>
<author>
<name sortKey="Alkilany, A M" uniqKey="Alkilany A">A. M. Alkilany</name>
</author>
<author>
<name sortKey="Huang, X" uniqKey="Huang X">X. Huang</name>
</author>
<author>
<name sortKey="Murphy, C J" uniqKey="Murphy C">C. J. Murphy</name>
</author>
<author>
<name sortKey="El Sayed, M A" uniqKey="El Sayed M">M. A. El-Sayed</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chithrani, B D" uniqKey="Chithrani B">B. D. Chithrani</name>
</author>
<author>
<name sortKey="Ghazani, A A" uniqKey="Ghazani A">A. A. Ghazani</name>
</author>
<author>
<name sortKey="Chan, W C" uniqKey="Chan W">W. C. Chan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rejman, J" uniqKey="Rejman J">J. Rejman</name>
</author>
<author>
<name sortKey="Oberle, V" uniqKey="Oberle V">V. Oberle</name>
</author>
<author>
<name sortKey="Zuhorn, I S" uniqKey="Zuhorn I">I. S. Zuhorn</name>
</author>
<author>
<name sortKey="Hoekstra, D" uniqKey="Hoekstra D">D. Hoekstra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perrault, S D" uniqKey="Perrault S">S. D. Perrault</name>
</author>
<author>
<name sortKey="Walkey, C" uniqKey="Walkey C">C. Walkey</name>
</author>
<author>
<name sortKey="Jennings, T" uniqKey="Jennings T">T. Jennings</name>
</author>
<author>
<name sortKey="Fischer, H C" uniqKey="Fischer H">H. C. Fischer</name>
</author>
<author>
<name sortKey="Chan, W C" uniqKey="Chan W">W. C. Chan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lewinski, N" uniqKey="Lewinski N">N. Lewinski</name>
</author>
<author>
<name sortKey="Colvin, V" uniqKey="Colvin V">V. Colvin</name>
</author>
<author>
<name sortKey="Drezek, R" uniqKey="Drezek R">R. Drezek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jain, P K" uniqKey="Jain P">P. K. Jain</name>
</author>
<author>
<name sortKey="Lee, K S" uniqKey="Lee K">K. S. Lee</name>
</author>
<author>
<name sortKey="El Sayed, I H" uniqKey="El Sayed I">I. H. El-Sayed</name>
</author>
<author>
<name sortKey="El Sayed, M A" uniqKey="El Sayed M">M. A. El-Sayed</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prescott, S W" uniqKey="Prescott S">S. W. Prescott</name>
</author>
<author>
<name sortKey="Mulvaney, P" uniqKey="Mulvaney P">P. Mulvaney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stefan Kooij, E" uniqKey="Stefan Kooij E">E. Stefan Kooij</name>
</author>
<author>
<name sortKey="Poelsema, B" uniqKey="Poelsema B">B. Poelsema</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baffou, G" uniqKey="Baffou G">G. Baffou</name>
</author>
<author>
<name sortKey="Quidant, R" uniqKey="Quidant R">R. Quidant</name>
</author>
<author>
<name sortKey="Girard, C" uniqKey="Girard C">C. Girard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kessentini, S" uniqKey="Kessentini S">S. Kessentini</name>
</author>
<author>
<name sortKey="Barchiesi, D" uniqKey="Barchiesi D">D. Barchiesi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, H" uniqKey="Chen H">H. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Richardson, H H" uniqKey="Richardson H">H. H. Richardson</name>
</author>
<author>
<name sortKey="Carlson, M T" uniqKey="Carlson M">M. T. Carlson</name>
</author>
<author>
<name sortKey="Tandler, P J" uniqKey="Tandler P">P. J. Tandler</name>
</author>
<author>
<name sortKey="Hernandez, P" uniqKey="Hernandez P">P. Hernandez</name>
</author>
<author>
<name sortKey="Govorov, A O" uniqKey="Govorov A">A. O. Govorov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maestro, L M" uniqKey="Maestro L">L. M. Maestro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maestro, L M" uniqKey="Maestro L">L. M. Maestro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cho, E C" uniqKey="Cho E">E. C. Cho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johnson, P B" uniqKey="Johnson P">P. B. Johnson</name>
</author>
<author>
<name sortKey="Christy, R W" uniqKey="Christy R">R. W. Christy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ungureanu, C" uniqKey="Ungureanu C">C. Ungureanu</name>
</author>
<author>
<name sortKey="Rayavarapu, R G" uniqKey="Rayavarapu R">R. G. Rayavarapu</name>
</author>
<author>
<name sortKey="Manohar, S" uniqKey="Manohar S">S. Manohar</name>
</author>
<author>
<name sortKey="Van Leeuwen, T G" uniqKey="Van Leeuwen T">T. G. van Leeuwen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Draine, B T" uniqKey="Draine B">B. T. Draine</name>
</author>
<author>
<name sortKey="Flatau, P J" uniqKey="Flatau P">P. J. Flatau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yurkin, M A" uniqKey="Yurkin M">M. A. Yurkin</name>
</author>
<author>
<name sortKey="De Kanter, D" uniqKey="De Kanter D">D. De Kanter</name>
</author>
<author>
<name sortKey="Hoekstra, A G" uniqKey="Hoekstra A">A. G. Hoekstra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="R G, Barrera" uniqKey="R G B">Barrera R. G.</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khlebtsov, B" uniqKey="Khlebtsov B">B. Khlebtsov</name>
</author>
<author>
<name sortKey="Khanadeev, V" uniqKey="Khanadeev V">V. Khanadeev</name>
</author>
<author>
<name sortKey="Pylaev, T" uniqKey="Pylaev T">T. Pylaev</name>
</author>
<author>
<name sortKey="Khlebtsov, N" uniqKey="Khlebtsov N">N. Khlebtsov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, X C" uniqKey="Jiang X">X. C. Jiang</name>
</author>
<author>
<name sortKey="Brioude, A" uniqKey="Brioude A">A. Brioude</name>
</author>
<author>
<name sortKey="Pileni, M P" uniqKey="Pileni M">M. P. Pileni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Busbee, B D" uniqKey="Busbee B">B. D. Busbee</name>
</author>
<author>
<name sortKey="Obare, S O" uniqKey="Obare S">S. O. Obare</name>
</author>
<author>
<name sortKey="Murphy, C J" uniqKey="Murphy C">C. J. Murphy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scholl, J A" uniqKey="Scholl J">J. A. Scholl</name>
</author>
<author>
<name sortKey="Koh, A L" uniqKey="Koh A">A. L. Koh</name>
</author>
<author>
<name sortKey="Dionne, J A" uniqKey="Dionne J">J. A. Dionne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Quinten, M" uniqKey="Quinten M">M. Quinten</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hovel, H" uniqKey="Hovel H">H. Hövel</name>
</author>
<author>
<name sortKey="Fritz, S" uniqKey="Fritz S">S. Fritz</name>
</author>
<author>
<name sortKey="Hilger, A" uniqKey="Hilger A">A. Hilger</name>
</author>
<author>
<name sortKey="Kreibig, U" uniqKey="Kreibig U">U. Kreibig</name>
</author>
<author>
<name sortKey="Vollmer, M" uniqKey="Vollmer M">M. Vollmer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bosbach, J" uniqKey="Bosbach J">J. Bosbach</name>
</author>
<author>
<name sortKey="Hendrich, C" uniqKey="Hendrich C">C. Hendrich</name>
</author>
<author>
<name sortKey="Stietz, F" uniqKey="Stietz F">F. Stietz</name>
</author>
<author>
<name sortKey="Vartanyan, T" uniqKey="Vartanyan T">T. Vartanyan</name>
</author>
<author>
<name sortKey="Tr Ager, F" uniqKey="Tr Ager F">F. Tr\ager</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Novo, C" uniqKey="Novo C">C. Novo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kreibig, U" uniqKey="Kreibig U">U. Kreibig</name>
</author>
<author>
<name sortKey="Vollmer, M" uniqKey="Vollmer M">M. Vollmer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roper, D K" uniqKey="Roper D">D. K. Roper</name>
</author>
<author>
<name sortKey="Ahn, W" uniqKey="Ahn W">W. Ahn</name>
</author>
<author>
<name sortKey="Hoepfner, M" uniqKey="Hoepfner M">M. Hoepfner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Li, G" uniqKey="Li G">G. Li</name>
</author>
<author>
<name sortKey="Ding, Y" uniqKey="Ding Y">Y. Ding</name>
</author>
<author>
<name sortKey="Sun, S" uniqKey="Sun S">S. Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taylor, A B" uniqKey="Taylor A">A. B. Taylor</name>
</author>
<author>
<name sortKey="Siddiquee, A M" uniqKey="Siddiquee A">A. M. Siddiquee</name>
</author>
<author>
<name sortKey="Chon, J W M" uniqKey="Chon J">J. W. M. Chon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Link, S" uniqKey="Link S">S. Link</name>
</author>
<author>
<name sortKey="Wang, Z L" uniqKey="Wang Z">Z. L. Wang</name>
</author>
<author>
<name sortKey="El Sayed, M A" uniqKey="El Sayed M">M. A. El-Sayed</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jain, P K" uniqKey="Jain P">P. K. Jain</name>
</author>
<author>
<name sortKey="Eustis, S" uniqKey="Eustis S">S. Eustis</name>
</author>
<author>
<name sortKey="El Sayed, M A" uniqKey="El Sayed M">M. A. El-Sayed</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fan, Z" uniqKey="Fan Z">Z. Fan</name>
</author>
<author>
<name sortKey="Govorov, A O" uniqKey="Govorov A">A. O. Govorov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Funston, A M" uniqKey="Funston A">A. M. Funston</name>
</author>
<author>
<name sortKey="Novo, C" uniqKey="Novo C">C. Novo</name>
</author>
<author>
<name sortKey="Davis, T J" uniqKey="Davis T">T. J. Davis</name>
</author>
<author>
<name sortKey="Mulvaney, P" uniqKey="Mulvaney P">P. Mulvaney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Auguie, B" uniqKey="Auguie B">B. Auguié</name>
</author>
<author>
<name sortKey="Alonso G Mez, J L" uniqKey="Alonso G Mez J">J. L. Alonso-Gómez</name>
</author>
<author>
<name sortKey="Guerrero Martinez, A" uniqKey="Guerrero Martinez A">A. Guerrero-Martínez</name>
</author>
<author>
<name sortKey="Liz Marzan, L M" uniqKey="Liz Marzan L">L. M. Liz-Marzán</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qin, Z" uniqKey="Qin Z">Z. Qin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brioude, A" uniqKey="Brioude A">A. Brioude</name>
</author>
<author>
<name sortKey="Jiang, X C" uniqKey="Jiang X">X. C. Jiang</name>
</author>
<author>
<name sortKey="Pileni, M P" uniqKey="Pileni M">M. P. Pileni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frens, G" uniqKey="Frens G">G. Frens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hauck, T S" uniqKey="Hauck T">T. S. Hauck</name>
</author>
<author>
<name sortKey="Ghazani, A A" uniqKey="Ghazani A">A. A. Ghazani</name>
</author>
<author>
<name sortKey="Chan, W C" uniqKey="Chan W">W. C. Chan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perez Juste, J" uniqKey="Perez Juste J">J. Perez-Juste</name>
</author>
<author>
<name sortKey="Correa Duarte, M A" uniqKey="Correa Duarte M">M. A. Correa-Duarte</name>
</author>
<author>
<name sortKey="Liz Marzan, L M" uniqKey="Liz Marzan L">L. M. Liz-Marzan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Modest, M" uniqKey="Modest M">M. Modest</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coronado, E A" uniqKey="Coronado E">E. A. Coronado</name>
</author>
<author>
<name sortKey="Schatz, G C" uniqKey="Schatz G">G. C. Schatz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Randrianalisoa, J" uniqKey="Randrianalisoa J">J. Randrianalisoa</name>
</author>
<author>
<name sortKey="Baillis, D" uniqKey="Baillis D">D. Baillis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Randrianalisoa, J" uniqKey="Randrianalisoa J">J. Randrianalisoa</name>
</author>
<author>
<name sortKey="Baillis, D" uniqKey="Baillis D">D. Baillis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bohren, C F" uniqKey="Bohren C">C. F. Bohren</name>
</author>
<author>
<name sortKey="Huffman, D R" uniqKey="Huffman D">D. R. Huffman</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Sci Rep</journal-id>
<journal-id journal-id-type="iso-abbrev">Sci Rep</journal-id>
<journal-title-group>
<journal-title>Scientific Reports</journal-title>
</journal-title-group>
<issn pub-type="epub">2045-2322</issn>
<publisher>
<publisher-name>Nature Publishing Group</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27445172</article-id>
<article-id pub-id-type="pmc">4956767</article-id>
<article-id pub-id-type="pii">srep29836</article-id>
<article-id pub-id-type="doi">10.1038/srep29836</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Quantitative Comparison of Photothermal Heat Generation between Gold Nanospheres and Nanorods</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Qin</surname>
<given-names>Zhenpeng</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
<xref ref-type="author-notes" rid="n1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wang</surname>
<given-names>Yiru</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Randrianalisoa</surname>
<given-names>Jaona</given-names>
</name>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Raeesi</surname>
<given-names>Vahid</given-names>
</name>
<xref ref-type="aff" rid="a3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chan</surname>
<given-names>Warren C. W.</given-names>
</name>
<xref ref-type="aff" rid="a3">3</xref>
<xref ref-type="aff" rid="a4">4</xref>
<xref ref-type="aff" rid="a5">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lipiński</surname>
<given-names>Wojciech</given-names>
</name>
<xref ref-type="aff" rid="a6">6</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bischof</surname>
<given-names>John C.</given-names>
</name>
<xref ref-type="corresp" rid="c1">a</xref>
<xref ref-type="aff" rid="a1">1</xref>
<xref ref-type="aff" rid="a7">7</xref>
</contrib>
<aff id="a1">
<label>1</label>
<institution>Department of Mechanical Engineering, University of Minnesota</institution>
, Minneapolis, MN 55455,
<country>USA</country>
</aff>
<aff id="a2">
<label>2</label>
<institution>Groupe de Recherche en Sciences pour l’Ingénieur (GRESPI) - EA 4694, University of Reims Champagne-Ardenne</institution>
, 51687 Reims Cedex 2,
<country>France</country>
</aff>
<aff id="a3">
<label>3</label>
<institution>Department of Materials Science and Engineering, University of Toronto</institution>
, Toronto, Ontario M5S 3G9,
<country>Canada</country>
</aff>
<aff id="a4">
<label>4</label>
<institution>Institute of Biomaterials and Biomedical Engineering, Department of Chemistry, Department of Chemical Engineering, University of Toronto</institution>
, Toronto, Ontario M5S 3G9,
<country>Canada</country>
</aff>
<aff id="a5">
<label>5</label>
<institution>Donnelly Center for Cellular and Biomolecular Research, University of Toronto</institution>
, Toronto, Ontario M5S 3E1,
<country>Canada</country>
</aff>
<aff id="a6">
<label>6</label>
<institution>Research School of Engineering, The Australian National University</institution>
, Canberra, ACT 2601,
<country>Australia</country>
</aff>
<aff id="a7">
<label>7</label>
<institution>Department of Biomedical Engineering, University of Minnesota</institution>
, Minneapolis, MN 55455,
<country>USA</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="c1">
<label>a</label>
<email>bischof@umn.edu</email>
</corresp>
<fn id="n1">
<label>*</label>
<p>Present address: Department of Mechanical Engineering, Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA.</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>21</day>
<month>07</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="collection">
<year>2016</year>
</pub-date>
<volume>6</volume>
<elocation-id>29836</elocation-id>
<history>
<date date-type="received">
<day>25</day>
<month>04</month>
<year>2016</year>
</date>
<date date-type="accepted">
<day>21</day>
<month>06</month>
<year>2016</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2016, Macmillan Publishers Limited</copyright-statement>
<copyright-year>2016</copyright-year>
<copyright-holder>Macmillan Publishers Limited</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/4.0/">
<pmc-comment>author-paid</pmc-comment>
<license-p>This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
</license-p>
</license>
</permissions>
<abstract>
<p>Gold nanoparticles (GNPs) are widely used for biomedical applications due to unique optical properties, established synthesis methods, and biological compatibility. Despite important applications of plasmonic heating in thermal therapy, imaging, and diagnostics, the lack of quantification in heat generation leads to difficulties in comparing the heating capability for new plasmonic nanostructures and predicting the therapeutic and diagnostic outcome. This study quantifies GNP heat generation by experimental measurements and theoretical predictions for gold nanospheres (GNS) and nanorods (GNR). Interestingly, the results show a GNP-type dependent agreement between experiment and theory. The measured heat generation of GNS matches well with theory, while the measured heat generation of GNR is only 30% of that predicted theoretically at peak absorption. This then leads to a surprising finding that the polydispersity, the deviation of nanoparticle size and shape from nominal value, significantly influences GNR heat generation (>70% reduction), while having a limited effect for GNS (<10% change). This work demonstrates that polydispersity is an important metric in quantitatively predicting plasmonic heat generation and provides a validated framework to quantitatively compare the heating capabilities between gold and other plasmonic nanostructures.</p>
</abstract>
</article-meta>
</front>
<body>
<p>Advances in material synthesis have produced a library of plasmonic nanomaterials with varying size, shape and composition
<xref ref-type="bibr" rid="b1">1</xref>
<xref ref-type="bibr" rid="b2">2</xref>
<xref ref-type="bibr" rid="b3">3</xref>
<xref ref-type="bibr" rid="b4">4</xref>
. These nanostructures are used in many biomedical applications including disease diagnosis
<xref ref-type="bibr" rid="b5">5</xref>
<xref ref-type="bibr" rid="b6">6</xref>
<xref ref-type="bibr" rid="b7">7</xref>
and treatment based on their optical properties
<xref ref-type="bibr" rid="b8">8</xref>
<xref ref-type="bibr" rid="b9">9</xref>
. For instance, in diagnostics, nanoparticles have been used for visual labels for colorimetric bioassays including aggregation assays
<xref ref-type="bibr" rid="b10">10</xref>
and lateral flow dipstick tests
<xref ref-type="bibr" rid="b11">11</xref>
. For therapeutics, nanomaterials have been studied to serve as drug nano-carriers
<xref ref-type="bibr" rid="b12">12</xref>
, and photothermal agents for tumor ablation once delivered to the tumor
<xref ref-type="bibr" rid="b13">13</xref>
. For all of these applications, it is increasingly important to quantitatively understand the effects of nanoparticle size, shape and composition to ensure reproducible biosensing and effective therapies.</p>
<p>For instance, given a nanomaterial, the size and shape determine the optical properties and interactions with biological systems. In the case of gold nanospheres (GNS), the plasmon resonance and hence color can be tuned within the visible spectrum from clear pink to dark red by changing the diameter (30–100 nm), and in the case of gold nanorods (GNR), the plasmon resonance can be tuned in the visible to near-infrared (NIR) spectrum from 600 nm to 1400 nm by changing their aspect ratio
<xref ref-type="bibr" rid="b3">3</xref>
<xref ref-type="bibr" rid="b14">14</xref>
. The biological responses, including cellular uptake
<xref ref-type="bibr" rid="b15">15</xref>
, internationalization pathway
<xref ref-type="bibr" rid="b16">16</xref>
, peri-vascular distribution in tumor
<xref ref-type="bibr" rid="b17">17</xref>
and cytotoxicity
<xref ref-type="bibr" rid="b18">18</xref>
, also demonstrate a size- and shape-dependent behavior in recent studies. Although there have been both theoretical
<xref ref-type="bibr" rid="b19">19</xref>
<xref ref-type="bibr" rid="b20">20</xref>
<xref ref-type="bibr" rid="b21">21</xref>
<xref ref-type="bibr" rid="b22">22</xref>
<xref ref-type="bibr" rid="b23">23</xref>
and experimental
<xref ref-type="bibr" rid="b24">24</xref>
<xref ref-type="bibr" rid="b25">25</xref>
<xref ref-type="bibr" rid="b26">26</xref>
<xref ref-type="bibr" rid="b27">27</xref>
approaches to quantitatively account for photothermal heat generation from plasmonic nanostructures, there are no studies that integrate the experimental and theoretical approaches to quantify the heat generation, often leading to discrepancies
<xref ref-type="bibr" rid="b28">28</xref>
. This in turns leads to difficulties in predicting the therapeutic and diagnostic outcome and comparing the heat generating capability for new plasmonic nanostructures in biomedical applications.</p>
<p>In this study, we quantitatively measure the heat generation for GNPs, and examine the validity and conditions of agreement with theoretical predictions for the same nanostructures. Surprisingly, we showed that the agreement between experiment and theory is dependent on the type of GNP studied. Specifically, we found that the heat generation of GNS matches well with theoretical prediction, while the measured heat generation for GNR deviates significantly from theoretical prediction. This then led to an interesting finding that the polydispersity, i.e. the deviation of nanoparticle size and shape from nominal (i.e. average) value, significantly influences the optical properties of GNR including heat generation, but has limited influence on GNS. We further demonstrated the importance of accounting for the polydispersity by comparing the photothermal absorption for GNS and GNR with similar volume, leading to more realistic predictions. This work highlights the significance of polydispersity in determining the plasmonic nanoparticle heat generation and provides a framework to quantitatively compare the heating capability between plasmonic nanostructures.</p>
<sec disp-level="1">
<title>Results</title>
<sec disp-level="2">
<title>Dielectric constants and validation of discrete dipole approximation (DDA) with Mie theory</title>
<p>First, we calculated the size-dependent dielectric constants for GNS and GNR by correcting the bulk values measured by Johnson and Christy
<xref ref-type="bibr" rid="b29">29</xref>
. As shown in
<xref ref-type="supplementary-material" rid="S1">supplemental Figure S1</xref>
, the real part of the dielectric constant does not change significantly with size while the imaginary part changes dramatically, especially in the near infrared (NIR) domain. The size effect is only significant for dimension smaller than 20 nm. Thus, the size dependent dielectric properties were only used if the particle is smaller than 20 nm (at least one dimension). To validate and establish DDA simulation protocol, we compared the results from DDA with Mie theory for a number of different sized gold nanoparticles (10 to 100 nm) and found good agreement between the two methods.
<xref ref-type="supplementary-material" rid="S1">Supplemental Figure S2(A,B)</xref>
illustrates this comparison for a particle of 30 nm diameter.</p>
</sec>
<sec disp-level="2">
<title>Comparing measured and predicted optical extinction and absorption for GNS</title>
<p>Next, we evaluated the agreement between DDA-predicted and experimentally measured optical properties for GNS with different sizes based on the flowchart shown in
<xref ref-type="fig" rid="f1">Fig. 1</xref>
. As a first estimate, the mean diameter of the GNS was used to calculate the optical properties and good agreement with experimental measurement was observed as shown in
<xref ref-type="fig" rid="f2">Fig. 2</xref>
. Here we systematically compared the measurement and theoretical prediction for the optical extinction spectrum (UV–Vis and Equation 8 in
<italic>Experimental Section</italic>
), photothermal absorption efficiency (
<xref ref-type="disp-formula" rid="eq7">Equations 1</xref>
and
<xref ref-type="disp-formula" rid="eq20">9</xref>
) and absorption cross section (
<xref ref-type="disp-formula" rid="eq7">Equation 2</xref>
and 8, directly related to heat generation). For 15 nm GNS, the measured plasmon peak is broader than DDA prediction. The size-dependent dielectric constants (referred to as DDA nano in
<xref ref-type="fig" rid="f2">Fig. 2</xref>
) lead to a broader plasmon peak when compared with using the bulk dielectric constant, and a better agreement between DDA and experiment.</p>
</sec>
<sec disp-level="2">
<title>Comparing measured and predicted optical extinction and absorption GNR</title>
<p>The calculation of the optical properties for GNR is more involved than for GNS due to the asymmetry. For instance with GNS, only one particle orientation is needed due to the symmetry. However for GNR, we suggest averaging two incident light polarization directions and different GNR orientations which are defined by two angles θ and ϕ with respect to the wave vector direction (
<xref ref-type="supplementary-material" rid="S1">Supplemental Figure S6A</xref>
). Our calculations suggest with up to nine orientation directions of GNR with respect to the angle θ (defined as the angle between the rod longitudinal axis and the
<italic>x</italic>
-axis,
<xref ref-type="supplementary-material" rid="S1">Supplemental Figure S6A</xref>
) is needed to reduce the error to be within 1% (
<xref ref-type="supplementary-material" rid="S1">Supplemental Figure S6B</xref>
). We note our result differs from previous calculations suggesting averaging two directions is sufficient (along GNR long and short axis)
<xref ref-type="bibr" rid="b30">30</xref>
. In terms of dipole discretization, our calculation suggests 4 dipoles per nm gives an error within 1~2% over the entire considered wavelength interval (400–1000 nm,
<xref ref-type="supplementary-material" rid="S1">Supplemental Figure S7</xref>
). Previous studies have used different dipole numbers ranging from 10
<sup>4</sup>
~10
<sup>7</sup>
dipoles
<xref ref-type="bibr" rid="b30">30</xref>
<xref ref-type="bibr" rid="b31">31</xref>
<xref ref-type="bibr" rid="b32">32</xref>
or a dipole spacing of 1 nm
<xref ref-type="bibr" rid="b20">20</xref>
. Sufficient amount of dipoles are needed for accurate prediction of nanoparticle optical properties and are manifested in two ways. First, adequate dipoles are needed to closely model the geometry of the nanoparticle. Second, the surface-to-volume ratio of dipoles is an important factor since excessive dipoles on the surface lead to overestimation of the absorption efficiency
<xref ref-type="bibr" rid="b21">21</xref>
<xref ref-type="bibr" rid="b31">31</xref>
<xref ref-type="bibr" rid="b33">33</xref>
.</p>
<p>Next, we attempted to reconcile the optical properties of GNR between measurement and prediction. Unlike GNS, the UV–Vis measured optical spectrum does not agree well with DDA prediction with the nominal size of GNR as shown in
<xref ref-type="fig" rid="f3">Fig. 3</xref>
. Specifically, the measured longitudinal peak (in the NIR region, wavelength range 700−900 nm) is much wider than that theoretically predicted, and the peak position is red-shifted (i.e., to longer wavelength) relative to the prediction. We further explored the effect of dielectric constant, including the bulk values and size-dependent properties using the radius of the rod (
<italic>D/2</italic>
)
<xref ref-type="bibr" rid="b30">30</xref>
, the effective size (equal to
<inline-formula id="d33e380">
<inline-graphic id="d33e381" xlink:href="srep29836-m1.jpg"></inline-graphic>
</inline-formula>
), and anisotropic properties from ray-tracing calculation as shown in
<xref ref-type="fig" rid="f3">Fig. 3</xref>
. Size-dependent properties lead to broader plasmon peak and lower extinction coefficients, with the radius-modified dielectric constant giving the broadest and lowest peak. However, the size-dependent and anisotropic properties do not explain the differences between experiment and prediction including the broadening and red-shift of the measured spectrum.</p>
<p>Subsequently, we examined the polydispersity (i.e. size and shape distribution) of GNR and attempted to incorporate this variable into optical properties prediction. Through detailed TEM image analysis, the distribution of the length and diameter of GNR can be obtained (
<xref ref-type="fig" rid="f4">Fig. 4A,C</xref>
). There are both GNR (with varying diameter and length), and “byproducts” which mostly consist of spheres and cubes, in accordance with earlier reports
<xref ref-type="bibr" rid="b34">34</xref>
. We further showed that the aspect ratio of GNR can be approximated by a Gaussian distribution (
<italic>Supplemental Information</italic>
section 2,
<xref ref-type="supplementary-material" rid="S1">Table S1</xref>
and
<xref ref-type="supplementary-material" rid="S1">Figure S4</xref>
). We then calculated the optical properties (
<italic>C</italic>
<sub>abs,</sub>
<italic>C</italic>
<sub>sca</sub>
) of GNR using the nominal diameter (D) and length values (L) within one standard deviation (σ) of the mean (μ) of the Gaussian distribution. By properly weighting the optical properties according to their percentage distribution (
<xref ref-type="supplementary-material" rid="S1">Table S1</xref>
and
<xref ref-type="disp-formula" rid="eq21">Equation 11</xref>
), this led to a satisfactory agreement between experiment and theory for GNR as shown in
<xref ref-type="fig" rid="f4">Fig. 4E,G,H</xref>
including UV–Vis optical spectrum and quantitative measurement of photothermal conversion efficiency and absorption cross section. To further check the applicability of this approach, we reproduced the polydispersity data of a different nanorod (D = 10 nm, L = 40 nm) from Khlebtsov
<italic>et al</italic>
.
<xref ref-type="bibr" rid="b34">34</xref>
and obtained similar agreement when taking the polydispersity into account (Rod 2 in
<xref ref-type="fig" rid="f4">Fig. 4B,D</xref>
).</p>
<p>Furthermore, we tested the sensitivity of optical properties to size-dependent dielectric constants after incorporating polydispersity. Interestingly, the optical extinction spectrum does not change significantly when using size-dependent dielectric constants, as shown in
<xref ref-type="fig" rid="f5">Fig. 5</xref>
. The bulk and size-dependent dielectric constants (with radius, 4V/S and ray-tracing) all give similar predictions and agree well with the UV–Vis measurement.</p>
</sec>
<sec disp-level="2">
<title>Effects of polydispersity on GNS and GNR</title>
<p>Lastly, we examined the impact of polydispersity on the predicted optical properties for GNS and GNR. Here polydispersity is quantitatively defined as the ratio of standard deviation to the mean value (
<italic>σ</italic>
/
<italic>μ</italic>
), assuming a Gaussian distribution. As shown in
<xref ref-type="fig" rid="f6">Fig. 6</xref>
, the polydispersity leads to less than 10% change in the extinction peak and less than 5 nm shift in the resonant wavelength for GNS. In contrast for GNR, the same polydispersity range leads to more than 70% reduction in extinction peak, broader spectrum, and more than 20 nm red-shifts in the resonant wavelength. The differential impact of polydispersity originates from the sensitivity of the nanostructure to size and shape variation and has important implications in nanostructure design particularly for optical applications. For GNS, the spectrum and plasmon peak are less sensitive to the size change, and the spectrum tends to compensate for each other around the nominal size (
<xref ref-type="fig" rid="f6">Fig. 6</xref>
). For GNR, however, the optical extinction spectrum and plasmon peak are highly sensitive to the change in size and aspect ratio.</p>
</sec>
</sec>
<sec disp-level="1">
<title>Discussion</title>
<p>In this study, polydispersity was obtained by imaging GNR under TEM and analyzing the distribution of the size parameters (diameter and length). While the two GNR compared in this study have 3% and 8% byproducts, the percentage of the byproducts can go up to 10 to 20% as reported previously
<xref ref-type="bibr" rid="b35">35</xref>
<xref ref-type="bibr" rid="b36">36</xref>
. These byproducts, for instance cubes if in large quantities (not observed in this study), can lead to new peaks in the optical extinction spectrum
<xref ref-type="bibr" rid="b35">35</xref>
. The byproducts typically have plasmon resonance in the visible range (500–600 nm) with limited interaction in the near infrared range; however, they will lead to lower absorption of laser energy in the near infrared range if considering molar heating or heat generation per Au mass.</p>
<p>Comparing the heat generation from theoretical prediction and experimental measurement requires accuracy in both approaches. The accuracy of DDA prediction depends on the choice of the discretization. Smaller dipole spacing leads to more accurate results. From this study, over 250,000 dipoles are needed to generate results within 1% accuracy of Mie theory. Compared with Mie theory, DDA has the advantage that it can handle targets with complex geometry (i.e. nanorods). In addition, the substance constituting the target can be non-homogeneous and even with anisotropic properties. Furthermore, incorporating size-dependent properties leads to better agreement for small GNS (<20 nm,
<xref ref-type="fig" rid="f2">Figs 2B</xref>
and S5), and also broader plasmon peak. The broadening of the plasmon peak due to the size-dependent dielectric constant (i.e. electron scattering with boundary) is in agreement with previous observations from both experiment and calculations in the literature
<xref ref-type="bibr" rid="b20">20</xref>
<xref ref-type="bibr" rid="b37">37</xref>
. In addition to the electron-boundary scattering, other factors can contribute to the size-dependent dielectric functions for small particles including chemical interface damping (CID) and quantum effects
<xref ref-type="bibr" rid="b38">38</xref>
. The mechanism of CID, i.e. the fast energy transfer between nanoparticle and its immediate environment, is not well understood and the experimental study is challenged with polydisperse nanoparticle distribution, both of which lead to plasmon damping and spectrum broadening
<xref ref-type="bibr" rid="b39">39</xref>
<xref ref-type="bibr" rid="b40">40</xref>
. CID is typically represented by the
<italic>A</italic>
value in
<xref ref-type="disp-formula" rid="eq7">Equation 1</xref>
and
<italic>A</italic>
 = 1/3 is used in the literature for gold nanoparticles in water
<xref ref-type="bibr" rid="b34">34</xref>
<xref ref-type="bibr" rid="b41">41</xref>
. Quantum effect can take place for particles smaller than 10 nm
<xref ref-type="bibr" rid="b37">37</xref>
<xref ref-type="bibr" rid="b42">42</xref>
. For instance, we investigated a GNS with diameter 8.9 nm from NIST (NIST–RM8011,
<xref ref-type="supplementary-material" rid="S1">Supplemental Figure S5</xref>
) and found that the measured plasmon peak is significantly broadened compared with DDA prediction with bulk properties or size-dependent properties. The details of how to account for the quantum effect are discussed elsewhere
<xref ref-type="bibr" rid="b37">37</xref>
.</p>
<p>Currently we are unaware of any standard method to quantitatively measure the bulk heat generation resulting from laser nanostructure interactions. Previous studies have reported a variety of different methods including laser heating in a water droplet
<xref ref-type="bibr" rid="b25">25</xref>
, a cuvette in vacuum (isolating heat convection losses
<xref ref-type="bibr" rid="b43">43</xref>
), and cuvette in standard room temperature and pressure
<xref ref-type="bibr" rid="b24">24</xref>
. The reported results vary significantly among different studies
<xref ref-type="bibr" rid="b25">25</xref>
<xref ref-type="bibr" rid="b43">43</xref>
and a relative heat generation was frequently reported due to the lack of known heat generation
<xref ref-type="bibr" rid="b24">24</xref>
<xref ref-type="bibr" rid="b25">25</xref>
<xref ref-type="bibr" rid="b43">43</xref>
. Indirect measurement using photoacoustic imaging offers some insight into the photothermal absorption
<xref ref-type="bibr" rid="b28">28</xref>
. In this study, we have found that the heat generation calibration mitigates previous difficulties and is a key factor in obtaining accurate thermal measurement. Specifically, a known amount of energy by resistive heating was delivered using a small resistor in a cuvette
<xref ref-type="bibr" rid="b44">44</xref>
. The equilibrium temperature change was then linearly correlated with the energy input. This linear calibration curve was used to quantify the heat generation from laser GNP heating, leading to reproducible and accurate results within the test cuvette (
<xref ref-type="supplementary-material" rid="S1">Supplemental Figure S3</xref>
).</p>
<p>After validating DDA-predicted optical properties with experimental measurements, we then systematically analyzed the impact of polydispersity on the optical properties of plasmonic nanoparticles. Here we define the polydispersity as the ratio of standard deviation to the mean of Gaussian distribution (
<italic>σ</italic>
/
<italic>μ</italic>
). For GNS, the mean and standard deviation values refer to the diameter; while for GNR, the values refer to the length or aspect ratio. While polydispersity has a limited effect on GNS (
<xref ref-type="fig" rid="f6">Fig. 6</xref>
), it plays a dominate role in the optical properties of GNR and leads to broader spectrum and red-shift compared with the prediction using the nominal size. We attribute the strong polydispersity dependent GNR optical properties due to the large shift in the plasmon peak when varying the aspect ratio (
<xref ref-type="fig" rid="f6">Fig. 6C</xref>
). However for GNS, the polydispersity leads to the nanoparticle size variation which mainly alters the magnitude of the optical properties but does not shift the plasmonic peaks significantly (
<xref ref-type="fig" rid="f6">Fig. 6A</xref>
). More interestingly, the effect of size-dependent dielectric constants are insignificant when polydispersity of GNR was taken into account (
<xref ref-type="fig" rid="f5">Fig. 5</xref>
). This is likely due to the fact that polydispersity already broadens the GNR plasmonic peak, thus the additional broadening from size-dependent dielectric constants does not leads to significant changes.</p>
<p>It is worth clarifying that the photothermal conversion efficiency does not represent the ability of the plasmonic nanoparticles to generate heat. Instead, the photothermal conversion efficiency describes how the nanoparticle disposes the incident electromagnetic energy, either by absorption or scattering. This is easily perceived from the definition of the photothermal efficiency as the ratio of the heat generation and the laser power loss from experiment (
<italic>μ</italic>
<sub>measure</sub>
 = 
<italic>Q</italic>
/
<italic>P</italic>
<sub>laser</sub>
, where
<italic>Q</italic>
is the sample heat generation and
<italic>P</italic>
<sub>
<italic>laser</italic>
</sub>
is the laser power loss in the sample), or equivalently the ratio of absorption and extinction cross sections from prediction (
<italic>η</italic>
<sub>theory</sub>
 = 
<italic>C</italic>
<sub>abs</sub>
/
<italic>C</italic>
<sub>ext</sub>
). On the other hand, the heat generation capability of plasmonic nanoparticles is directly related to the absorption cross section, which can be determined by quantifying the nanoparticle heat generation (
<italic>C</italic>
<sub>abs</sub>
 = 
<italic>Q</italic>
/(
<italic>N</italic>
 · 
<italic>I</italic>
 · 
<italic>V</italic>
), where
<italic>N</italic>
is the number density of gold nanoparticles,
<italic>V</italic>
is the sample volume, and
<italic>I</italic>
is the laser intensity). For instance, increasing GNS size from 15 nm to 100 nm reduces the photothermal conversion efficiency from 100% to 54% (
<xref ref-type="fig" rid="f2">Fig. 2C</xref>
), but a 100 nm GNS generates 150 times more heat than a 15 nm GNS. In general, increasing the nanoparticle size leads to enhanced scattering, reducing the photothermal conversion efficiency
<xref ref-type="bibr" rid="b24">24</xref>
<xref ref-type="bibr" rid="b26">26</xref>
<xref ref-type="bibr" rid="b27">27</xref>
, but does not indicate that less heat is generated on a per nanoparticle basis. A similar trend is expected for nanoparticle aggregates or assemblies, i.e. several small nanoparticles linking with each other. These nanoparticle ensembles act as larger nanoparticles with increased absorption cross section (per nanoparticle) leading to lower photothermal conversion efficiency due to increased scattering.</p>
<p>For the GNR studied, the photothermal conversion efficiency does not depend on wavelength (99%,
<xref ref-type="fig" rid="f4">Fig. 4G</xref>
), however, the absorption cross section from GNR reduces by 7-fold by red-shifting 100 nm from absorption peak (
<xref ref-type="fig" rid="f4">Fig. 4H</xref>
). It is also worth mentioning that the GNR undergoes melting and shape change when subjected to ultra-short (such as femtosecond or nanosecond) laser pulses
<xref ref-type="bibr" rid="b45">45</xref>
<xref ref-type="bibr" rid="b46">46</xref>
. The shape change will have a significant impact on the optical properties including photothermal heat generation and conversion efficiency. This study focuses on the nanoparticle heating under continuous wave laser with the highest bulk temperature below 50 °C, and did not observe significant change in the absorption peak before and after laser irradiation (
<xref ref-type="supplementary-material" rid="S1">Supplemental Figure S8</xref>
). Furthermore, we focused on the behavior of individual GNR that is well separated from each other. When GNRs are linked close together to form dimers or more complex assemblies, the optical properties change dramatically due to the plasmon coupling and depend strongly on the relative position and orientation of individual particles within the assembly
<xref ref-type="bibr" rid="b47">47</xref>
<xref ref-type="bibr" rid="b48">48</xref>
<xref ref-type="bibr" rid="b49">49</xref>
<xref ref-type="bibr" rid="b50">50</xref>
.</p>
<p>This work has important implications especially for biomedical applications requiring an accurate estimation of heat generation from laser gold nanomaterial interactions such as photothermal therapy for cancer
<xref ref-type="bibr" rid="b13">13</xref>
and thermal contrast biosensing diagnostics
<xref ref-type="bibr" rid="b51">51</xref>
. While previous studies have focused on matching the plasmon peak (
<italic>λ</italic>
<sub>max</sub>
) between experiment and theory
<xref ref-type="bibr" rid="b30">30</xref>
<xref ref-type="bibr" rid="b52">52</xref>
, the magnitude of absorption, and thus the associated optical properties, are critical to determine the amount of heat generation. As shown in this work, the absorption efficiency of GNR can degrade significantly with polydispersity, in contrast to GNS. This is important since GNR are often advocated as more efficient light absorbers than GNS at their tuned plasmon resonances. For instance, it has been suggested that a GNR can absorb 3~5 times more light energy at the plasmon resonance than GNS with the same gold mass (i.e. only changing morphology)
<xref ref-type="bibr" rid="b22">22</xref>
; however, based on the present work this enhancement can diminish dramatically when taking into account the effect of polydispersity (ca. 10~20%,
<xref ref-type="fig" rid="f7">Fig. 7</xref>
). Our study speaks to the need for reporting polydispersity along with size and shape in order to accurately estimate the optical properties and hence heating potential under laser irradiation for GNR. It can be anticipated that polydispersity will also play an important role in photothermal conversion for other increasingly complicated gold nanomaterials (such as shell, cube, stars, horns etc.)
<xref ref-type="bibr" rid="b13">13</xref>
<xref ref-type="bibr" rid="b53">53</xref>
.</p>
</sec>
<sec disp-level="1">
<title>Conclusion</title>
<p>Plasmonic nanoparticle heating has been applied in thermal therapy, imaging, and diagnostics. However, the lack of quantification of the heat generation from plasmonic nanostructures has led to difficulties in predicting the therapeutic and diagnostic outcome of specific applications, and hinders our ability to compare the heat capabilities between new plasmonic nanostructures. In this study, we quantitatively compare the experimentally measured vs. predicted optical properties including heat generation of GNS and GNR. This revealed a surprising finding that polydispersity has a significantly different impact on the optical performance of plasmonic nanostructures. Specifically, changing the polydispersity (defined ratio of standard deviation to the mean of Gaussian distribution,
<italic>σ</italic>
/
<italic>μ</italic>
 = 0~20%) leads to less than 10% change in optical extinction and absorption for GNS, while the same polydispersity range results in more than a 70% reduction for GNR. This work demonstrates the importance of reporting both polydispersity and nominal size and shape for plasmonic nanostructures. Further, it provides a framework to use this information to quantitatively determine and compare heating between increasingly complex plasmonic nanostructures in the future.</p>
</sec>
<sec disp-level="1">
<title>Methods</title>
<p>Experimental and computational approaches to study GNP properties are discussed in this section. First, the synthesis and characterization of GNPs are discussed including the synthesis of GNS and GNR and laser heating measurement. Next, the computational framework for GNS optical properties is discussed including the input parameter (dielectric function) for the Mie theory and discrete dipole approximation (DDA). Mie theory is only established for simple geometries such as spheres and thus is used as an analytical benchmark for the DDA calculation which can handle complex geometries including the GNR.</p>
<sec disp-level="2">
<title>GNS and GNR synthesis and characterization</title>
<sec disp-level="3">
<title>GNS Synthesis</title>
<p>GNS were synthesized according to established protocols with a modification of the Frens method
<xref ref-type="bibr" rid="b54">54</xref>
. Basically, 1% sodium citrate (Sigma-Aldrich, unless otherwise specified) was used to make 15 nm gold nanoparticles by boiling gold chloride. For larger GNS, hydroquinone reduction was used to synthesize 30 nm, 60 nm, and 100 nm particles. Particle stability was maintained by adding Tween 20 during centrifugation and purification. Gold nanoparticle reference materials (RMs) from the National Institute of Standards and Technology (NIST) were also compared including primary particle diameters of nominally 10 nm, 30 nm, and 60 nm (NIST RMs 8011, 8012 and 8013).</p>
</sec>
<sec disp-level="3">
<title>GNR Synthesis</title>
<p>GNR were synthesized with standard protocols in previous publications
<xref ref-type="bibr" rid="b55">55</xref>
developed by the Murphy group
<xref ref-type="bibr" rid="b3">3</xref>
and the Liz-Marzan group
<xref ref-type="bibr" rid="b56">56</xref>
. Briefly, gold seed precursor solution was prepared by adding 375 μL of 0.01 M chilled sodium borohydride to 0.9 mL of 0.1 M gold chloride solution in 14.625 mL of 0.1 M CTAB surfactant. A second precursor solution is made by combining 48 mL of 0.01 M gold chloride and 9.8 mL of 0.01 M silver nitrate into a 1 L Erlenmeyer flask containing 933 mL of rapidly stirring 0.1 M CTAB. GNR growth is then initiated by aliquoting 6.86 mL of 0.1 M ascorbic acid and 12 mL of gold seed precursor solution into the flask and stirring overnight.</p>
</sec>
<sec disp-level="3">
<title>GNS and GNR Characterization</title>
<p>The gold nanoparticles were characterized by UV–Vis spectroscopy (Synergy HT, BioTek) for extinction spectrum, and transmission electron microscopy (TEM, Tecnai G2, FEI, 120 kV) for size distribution. For TEM, a drop of gold nanoparticle solution was placed on a TEM grid for 15 min and then dried with filter paper. After acquiring the TEM images, the size parameters (diameter for GNS, diameter and length for GNR) were analyzed using imaging processing software Fiji (ImageJ with plugins). For NIST GNSs, the optical properties and size distributions data were obtained from NIST Report of Investigation documents.</p>
</sec>
<sec disp-level="3">
<title>Laser Heating to Measure GNP Photothermal Absorption</title>
<p>1 mL of gold nanoparticle solution was loaded in a polystyrene cuvette. The solution is heated with a beam of laser at varying wavelengths (532 nm for GNS, 700 to 850 nm for GNR, ~200 mW, Spectral-Physics Millennia Vs and 3900 S) from the side and the temperature is recorded by four T-type thermocouples located in the corner of the cuvette while a small magnetic stirrer is placed inside the cuvette to obtain a uniform temperature reading (
<xref ref-type="supplementary-material" rid="S1">Supplemental Figure S3</xref>
). The solution is heated from room temperature to a steady temperature (i.e. balanced heat gain with loss to environment) which requires roughly 30 min to 45 min, and then allowed to cool down to room temperature (30 min). To accurately determine the amount of absorption and heat generation, we obtained a calibration curve by heating up a 100 Ω resistor with known voltage. The amount of heat generation shows a linear relationship with the temperature change between the steady temperature and room temperature (
<italic>Q</italic>
 = 16.855Δ
<italic>T</italic>
, mW), a condition that heat generation equilibrates with heat loss to the environment. The amount of heat generation from the laser heating is then determined from this calibrated linear relationship. The laser power entering and exiting the sample is measured by a power meter to determine the total laser power loss (
<italic>P</italic>
<sub>laser</sub>
). After accounting for the refractive index mismatch, the photothermal efficiency is calculated by</p>
<p>
<disp-formula id="eq2">
<inline-graphic id="d33e705" xlink:href="srep29836-m2.jpg"></inline-graphic>
</disp-formula>
</p>
<p>The measured absorption cross section of the nanoparticle is calculated by,</p>
<p>
<disp-formula id="eq3">
<inline-graphic id="d33e711" xlink:href="srep29836-m3.jpg"></inline-graphic>
</disp-formula>
</p>
<p>where
<italic>N</italic>
is the number density of gold nanoparticles (1/m
<sup>3</sup>
),
<italic>V</italic>
is the volume of the solution (1 mL),
<italic>I</italic>
is the laser intensity (W/m
<sup>2</sup>
),
<italic>P</italic>
<sub>avg</sub>
is the average laser power (W) at which the sample is irradiated, and
<italic>d</italic>
is the depth of the solution that laser travels through (i.e. 1 cm). Here the average laser power is taken in the form of logarithmic mean of the incident and transmitting laser power (
<italic>P</italic>
<sub>avg</sub>
 = (
<italic>P</italic>
<sub>in</sub>
<italic>P</italic>
<sub>out</sub>
)/(ln
<italic>P</italic>
<sub>in</sub>
−ln
<italic>P</italic>
<sub>out</sub>
)) to accurately account for the exponentially decaying laser intensity in the sample.</p>
</sec>
</sec>
<sec disp-level="2">
<title>Computation of GNP Optical Properties</title>
<sec disp-level="3">
<title>Dielectric Functions and Their Size & Directional Dependence</title>
<p>Complex dielectric functions (
<italic>ε</italic>
<sub>bulk</sub>
) for gold from Johnson and Christy
<xref ref-type="bibr" rid="b29">29</xref>
were used. Based on earlier investigations
<xref ref-type="bibr" rid="b42">42</xref>
, the size effect on dielectric functions can be captured by using a damping constant, γ(
<italic>L</italic>
<sub>eff</sub>
), to account for electron scattering with particle boundary:</p>
<p>
<disp-formula id="eq4">
<inline-graphic id="d33e788" xlink:href="srep29836-m4.jpg"></inline-graphic>
</disp-formula>
</p>
<p>where
<italic>γ</italic>
<sub>bulk</sub>
is the electron collision frequency in bulk material,
<italic>v</italic>
<sub>
<italic>F</italic>
</sub>
is the Fermi velocity,
<italic>A</italic>
is a scattering parameter (~0.33
<xref ref-type="bibr" rid="b41">41</xref>
), and
<italic>L</italic>
<sub>eff</sub>
is the mean-free-path (or effective length) of electron-boundary scattering. Given that
<italic>L</italic>
<sub>eff</sub>
refers to the average geometrical path of electrons from surface to surface of the particle, it is known from other fields of physics that such mean geometric path can be given by “the mean-beam-length of a radiation bundle in gas filled cavity”
<xref ref-type="bibr" rid="b57">57</xref>
,</p>
<p>
<disp-formula id="eq5">
<inline-graphic id="d33e822" xlink:href="srep29836-m5.jpg"></inline-graphic>
</disp-formula>
</p>
<p>where
<italic>V</italic>
is the volume and
<italic>S</italic>
is the surface area of the GNPs.
<xref ref-type="disp-formula" rid="eq7">Equation 4</xref>
was first used by Coronado
<italic>et al</italic>
.
<xref ref-type="bibr" rid="b58">58</xref>
to account for the size effect on dielectric function of spherical GNPs and leads to
<italic>L</italic>
<sub>eff</sub>
 = 4
<italic>a</italic>
/3 with particle radius
<italic>a</italic>
. According to the Drude permittivity model, the size dependent dielectric function can be written as</p>
<p>
<disp-formula id="eq6">
<inline-graphic id="d33e853" xlink:href="srep29836-m6.jpg"></inline-graphic>
</disp-formula>
</p>
<p>where
<italic>ε</italic>
<sub>exp</sub>
(
<italic>ω</italic>
) is the dielectric function of bulk sample measured from experiment,
<italic>ω</italic>
<sub>
<italic>p</italic>
</sub>
is the bulk plasmon frequency of gold.</p>
<p>Note that
<xref ref-type="disp-formula" rid="eq7">Equation 4</xref>
corresponds to the direction averaged paths within the nanoparticles. For GNR, the surface scattering in the transverse (i.e. width D in
<xref ref-type="fig" rid="f4">Fig. 4</xref>
) direction is intuitively expected to be more pronounced than that in the longitudinal (i.e. length L) direction, leading to a directionally dependent dielectric function. To estimate the surface scattering lengths in longitudinal and transverse directions and thus to quantify the effect of anisotropy on the dielectric function, we use a ray-tracing stochastic approach. In this approach, the effective lengths for transverse (
<italic>L</italic>
<sub>eff,
<italic>D</italic>
</sub>
) and longitudinal (
<italic>L</italic>
<sub>eff,
<italic>L</italic>
</sub>
) directions can be estimated by following relations respectively:</p>
<p>
<disp-formula id="eq7">
<inline-graphic id="d33e894" xlink:href="srep29836-m7.jpg"></inline-graphic>
</disp-formula>
</p>
<p>where
<italic>l</italic>
<sub>i, cyl</sub>
and
<italic>l</italic>
<sub>i, caps</sub>
are the path lengths of an electron “
<italic>i</italic>
” started from the cylindrical surface and end cap(s) to any other surface of the GNR respectively.
<italic>N</italic>
<sub>
<italic>S</italic>
</sub>
is the number of electron samples chosen as 10,000 here. The initial position and direction of each electron sample are chosen in a random manner as detailed elsewhere
<xref ref-type="bibr" rid="b59">59</xref>
<xref ref-type="bibr" rid="b60">60</xref>
.</p>
</sec>
<sec disp-level="3">
<title>Mie Theory Calculation</title>
<p>The Mie theory provides exact values of the far-field extinction, absorption and scattering efficiency and asymmetry factors for a spherical particle suspended in a non-absorbing host medium illuminated by an incident plane wave
<xref ref-type="bibr" rid="b61">61</xref>
</p>
<p>
<disp-formula id="eq8">
<inline-graphic id="d33e927" xlink:href="srep29836-m8.jpg"></inline-graphic>
</disp-formula>
</p>
<p>
<disp-formula id="eq9">
<inline-graphic id="d33e931" xlink:href="srep29836-m9.jpg"></inline-graphic>
</disp-formula>
</p>
<p>
<disp-formula id="eq10">
<inline-graphic id="d33e935" xlink:href="srep29836-m10.jpg"></inline-graphic>
</disp-formula>
</p>
<p>
<disp-formula id="eq11">
<inline-graphic id="d33e939" xlink:href="srep29836-m11.jpg"></inline-graphic>
</disp-formula>
</p>
<p>
<disp-formula id="eq12">
<inline-graphic id="d33e943" xlink:href="srep29836-m12.jpg"></inline-graphic>
</disp-formula>
</p>
<p>
<disp-formula id="eq13">
<inline-graphic id="d33e948" xlink:href="srep29836-m13.jpg"></inline-graphic>
</disp-formula>
</p>
<p>where
<italic>x</italic>
is the particle size parameter (=2π
<italic>a</italic>
/λ),
<italic>m</italic>
is the ratio of complex refractive index (
<inline-formula id="d33e960">
<inline-graphic id="d33e961" xlink:href="srep29836-m14.jpg"></inline-graphic>
</inline-formula>
) of the sphere to that of the surrounding medium (
<italic>n</italic>
<sub>
<italic>m</italic>
</sub>
),
<italic>ψ</italic>
<sub>
<italic>n</italic>
</sub>
and
<italic>ζ</italic>
<sub>
<italic>n</italic>
</sub>
are spherical Bessel functions, and the asterisk (*) and prime ( ′ ) indicate complex conjugate and derivative with respect to the argument
<italic>x</italic>
or
<italic>mx</italic>
, respectively.</p>
</sec>
</sec>
<sec disp-level="2">
<title>Discrete Dipole Approximation (DDA)</title>
<p>Discrete Dipole Approximation (DDA) is a discrete solution method of the integral form of Maxwell’s equations and allows the prediction of nanostructure optical properties with complex geometries beyond Mie theory.
<xref ref-type="bibr" rid="b26">26</xref>
Basically, the target structure is discretized into a finite array of dipoles (
<italic>N)</italic>
with each one located at position
<italic>r</italic>
<sub>j</sub>
(
<italic>j</italic>
 = 1,
<italic>N</italic>
). After solving 3 N complex linear equations with unknown dipole moments
<xref ref-type="bibr" rid="b31">31</xref>
, the extinction, absorption and scattering cross sections and asymmetry factor can by calculated by</p>
<p>
<disp-formula id="eq15">
<inline-graphic id="d33e1014" xlink:href="srep29836-m15.jpg"></inline-graphic>
</disp-formula>
</p>
<p>
<disp-formula id="eq16">
<inline-graphic id="d33e1018" xlink:href="srep29836-m16.jpg"></inline-graphic>
</disp-formula>
</p>
<p>
<disp-formula id="eq17">
<inline-graphic id="d33e1022" xlink:href="srep29836-m17.jpg"></inline-graphic>
</disp-formula>
</p>
<p>
<disp-formula id="eq18">
<inline-graphic id="d33e1026" xlink:href="srep29836-m18.jpg"></inline-graphic>
</disp-formula>
</p>
<p>where
<bold>z</bold>
is the direction of the incident plane wave of amplitude
<italic>E</italic>
<sub>inc</sub>
,
<bold>n</bold>
is a unit vector of the scattering direction,
<italic>d</italic>
Ω is the differential solid angle around of
<bold>n</bold>
,
<bold>E</bold>
<sub>inc,
<bold>I</bold>
</sub>
is the incident electric field vector on the dipole
<bold>i</bold>
,
<bold>P</bold>
<sub>
<bold>i</bold>
</sub>
is the dipole moment vector,
<italic> η</italic>
(=2π/λ) is the wave number, and
<italic>α</italic>
<sub>
<italic>i</italic>
</sub>
is the polarizability of the dipole
<bold>i</bold>
. The predicted photothermal conversion efficiency is defined as</p>
<p>
<disp-formula id="eq20">
<inline-graphic id="d33e1078" xlink:href="srep29836-m20.jpg"></inline-graphic>
</disp-formula>
</p>
<p>In this study, the DDA package DDSCAT 7.2 developed by Draine and Co-workers
<xref ref-type="bibr" rid="b31">31</xref>
was implemented. To generate spherical particles and rods with hemispherical end caps, we use the DDSCAT predefined programs, which create the target objects as regular arrays of dipoles of spacing
<italic>d</italic>
. The discrete dipole spacing should be small as compared to any structural length in the target geometry, and the wavelength of the electromagnetic wave (λ). A convenient “rule of thumb” developed to satisfy these criteria is</p>
<p>
<disp-formula id="eq21">
<inline-graphic id="d33e1090" xlink:href="srep29836-m21.jpg"></inline-graphic>
</disp-formula>
</p>
<sec disp-level="3">
<title>Orientation Averaged Optical Properties</title>
<p>For GNS, Equation 8 is valid for any orientation of the GNP with respect to the incident wave direction due to isotropy of spheres. However, these parameters have to be computed for various GNR orientations and then averaged since GNR are generally randomly oriented in an aqueous solution. DDSCAT code allows us to compute the cross sections in a set of directions and then determine the minimum number of directions for the orientation-averaged extinction, absorption, and scattering cross sections, and the orientation-averaged asymmetry factor.</p>
</sec>
<sec disp-level="3">
<title>Polydispersity</title>
<p>The nanoparticle size distribution was discretized into a number of bins (i.e. intervals,
<xref ref-type="supplementary-material" rid="S1">supplemental Table S1</xref>
and
<xref ref-type="supplementary-material" rid="S1">Figure S4</xref>
) and then weight-averaged to obtain the ensemble optical properties.</p>
<p>
<disp-formula id="eq22">
<inline-graphic id="d33e1110" xlink:href="srep29836-m22.jpg"></inline-graphic>
</disp-formula>
</p>
<p>with
<italic>N</italic>
<sub>rod</sub>
the number of bins for rods according to TEM image analysis.
<italic>n</italic>
<sub>rod,i</sub>
 = 
<italic>N</italic>
<sub>rod,
<italic>i</italic>
</sub>
/
<italic>N</italic>
<sub>rod</sub>
where
<italic>N</italic>
<sub>rod,
<italic>i</italic>
</sub>
is the number of rods whose sizes are inside the bin
<italic>i</italic>
;
<inline-formula id="d33e1147">
<inline-graphic id="d33e1148" xlink:href="srep29836-m23.jpg"></inline-graphic>
</inline-formula>
orientation-averaged
<italic>k</italic>
(i.e. extinction, absorption, or scattering) cross sections of a rod of size inside the bin
<italic>i</italic>
.</p>
</sec>
</sec>
</sec>
<sec disp-level="1">
<title>Additional Information</title>
<p>
<bold>How to cite this article</bold>
: Qin, Z.
<italic>et al</italic>
. Quantitative Comparison of Photothermal Heat Generation between Gold Nanospheres and Nanorods.
<italic>Sci. Rep.</italic>
<bold>6</bold>
, 29836; doi: 10.1038/srep29836 (2016).</p>
</sec>
<sec sec-type="supplementary-material" id="S1">
<title>Supplementary Material</title>
<supplementary-material id="d33e51" content-type="local-data">
<caption>
<title>Supplementary Information</title>
</caption>
<media xlink:href="srep29836-s1.pdf"></media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>This work is supported partially by McKnight Professorship, Kuhrmeyer Chair, and Minnesota Futures Grant from the University of Minnesota, and NSF/CBET Grant #1066343(JCB). ZQ has been supported by Doctoral Dissertation Fellowship (DDF) and Interdisciplinary Doctoral Fellowship (IDF). This work was carried out in part using computing resources at the ROMEO HPC Center hosted by the University of Reims Champagne-Ardenne and the University of Minnesota Supercomputing Institute. The authors thank Dr. Taner Akkin for access to lab lasers, and Dr. B.T. Draine (Princeton University) for making DDSCAT available. JR thanks the University of Reims Champagne-Ardenne for the Fellowship supporting his visit at the University of Minnesota. WCWC acknowledges the Canadian Institute of Health Research and Natural Sciences and Engineering Research Council of Canada for grant support.</p>
</ack>
<ref-list>
<ref id="b1">
<mixed-citation publication-type="journal">
<name>
<surname>Burda</surname>
<given-names>C.</given-names>
</name>
,
<name>
<surname>Chen</surname>
<given-names>X.</given-names>
</name>
,
<name>
<surname>Narayanan</surname>
<given-names>R.</given-names>
</name>
&
<name>
<surname>El-Sayed</surname>
<given-names>M. A.</given-names>
</name>
<article-title>Chemistry and properties of nanocrystals of different shapes</article-title>
.
<source>Chem. Rev.</source>
<volume>105</volume>
,
<fpage>1025</fpage>
<lpage>1102</lpage>
(
<year>2005</year>
).
<pub-id pub-id-type="pmid">15826010</pub-id>
</mixed-citation>
</ref>
<ref id="b2">
<mixed-citation publication-type="journal">
<name>
<surname>Grzelczak</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Perez-Juste</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Mulvaney</surname>
<given-names>P.</given-names>
</name>
&
<name>
<surname>Liz-Marzan</surname>
<given-names>L. M.</given-names>
</name>
<article-title>Shape control in gold nanoparticle synthesis</article-title>
.
<source>Chem. Soc. Rev.</source>
<volume>37</volume>
,
<fpage>1783</fpage>
<lpage>1791</lpage>
(
<year>2008</year>
).
<pub-id pub-id-type="pmid">18762828</pub-id>
</mixed-citation>
</ref>
<ref id="b3">
<mixed-citation publication-type="journal">
<name>
<surname>Murphy</surname>
<given-names>C. J.</given-names>
</name>
<etal></etal>
.
<article-title>Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications</article-title>
.
<source>J Phys Chem B</source>
<volume>109</volume>
,
<fpage>13857</fpage>
<lpage>13870</lpage>
(
<year>2005</year>
).
<pub-id pub-id-type="pmid">16852739</pub-id>
</mixed-citation>
</ref>
<ref id="b4">
<mixed-citation publication-type="journal">
<name>
<surname>Sun</surname>
<given-names>Y.</given-names>
</name>
&
<name>
<surname>Xia</surname>
<given-names>Y.</given-names>
</name>
<article-title>Shape-controlled synthesis of gold and silver nanoparticles</article-title>
.
<source>Science</source>
<volume>298</volume>
,
<fpage>2176</fpage>
<lpage>2179</lpage>
(
<year>2002</year>
).
<pub-id pub-id-type="pmid">12481134</pub-id>
</mixed-citation>
</ref>
<ref id="b5">
<mixed-citation publication-type="journal">
<name>
<surname>Wilson</surname>
<given-names>R.</given-names>
</name>
<article-title>The use of gold nanoparticles in diagnostics and detection</article-title>
.
<source>Chem. Soc. Rev.</source>
<volume>37</volume>
,
<fpage>2028</fpage>
<lpage>2045</lpage>
(
<year>2008</year>
).
<pub-id pub-id-type="pmid">18762845</pub-id>
</mixed-citation>
</ref>
<ref id="b6">
<mixed-citation publication-type="journal">
<name>
<surname>Nam</surname>
<given-names>J. M.</given-names>
</name>
,
<name>
<surname>Thaxton</surname>
<given-names>C. S.</given-names>
</name>
&
<name>
<surname>Mirkin</surname>
<given-names>C. A.</given-names>
</name>
<article-title>Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins</article-title>
.
<source>Science</source>
<volume>301</volume>
,
<fpage>1884</fpage>
<lpage>1886</lpage>
(
<year>2003</year>
).
<pub-id pub-id-type="pmid">14512622</pub-id>
</mixed-citation>
</ref>
<ref id="b7">
<mixed-citation publication-type="journal">
<name>
<surname>Chan</surname>
<given-names>W. C.</given-names>
</name>
&
<name>
<surname>Nie</surname>
<given-names>S.</given-names>
</name>
<article-title>Quantum dot bioconjugates for ultrasensitive nonisotopic detection</article-title>
.
<source>Science</source>
<volume>281</volume>
,
<fpage>2016</fpage>
<lpage>2018</lpage>
(
<year>1998</year>
).
<pub-id pub-id-type="pmid">9748158</pub-id>
</mixed-citation>
</ref>
<ref id="b8">
<mixed-citation publication-type="journal">
<name>
<surname>Boisselier</surname>
<given-names>E.</given-names>
</name>
&
<name>
<surname>Astruc</surname>
<given-names>D.</given-names>
</name>
<article-title>Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity</article-title>
.
<source>Chem. Soc. Rev.</source>
<volume>38</volume>
,
<fpage>1759</fpage>
<lpage>1782</lpage>
(
<year>2009</year>
).
<pub-id pub-id-type="pmid">19587967</pub-id>
</mixed-citation>
</ref>
<ref id="b9">
<mixed-citation publication-type="journal">
<name>
<surname>Qin</surname>
<given-names>Z.</given-names>
</name>
&
<name>
<surname>Bischof</surname>
<given-names>J. C.</given-names>
</name>
<article-title>Thermophysical and biological responses of gold nanoparticle laser heating</article-title>
.
<source>Chem. Soc. Rev.</source>
<volume>41</volume>
,
<fpage>1191</fpage>
<lpage>1217</lpage>
(
<year>2012</year>
).
<pub-id pub-id-type="pmid">21947414</pub-id>
</mixed-citation>
</ref>
<ref id="b10">
<mixed-citation publication-type="journal">
<name>
<surname>Thanh</surname>
<given-names>N. T.</given-names>
</name>
&
<name>
<surname>Rosenzweig</surname>
<given-names>Z.</given-names>
</name>
<article-title>Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles</article-title>
.
<source>Anal. Chem.</source>
<volume>74</volume>
,
<fpage>1624</fpage>
<lpage>1628</lpage>
(
<year>2002</year>
).
<pub-id pub-id-type="pmid">12033254</pub-id>
</mixed-citation>
</ref>
<ref id="b11">
<mixed-citation publication-type="journal">
<name>
<surname>Posthuma-Trumpie</surname>
<given-names>G. A.</given-names>
</name>
,
<name>
<surname>Korf</surname>
<given-names>J.</given-names>
</name>
&
<name>
<surname>van Amerongen</surname>
<given-names>A.</given-names>
</name>
<article-title>Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey</article-title>
.
<source>Anal. Bioanal Chem.</source>
<volume>393</volume>
,
<fpage>569</fpage>
<lpage>582</lpage>
(
<year>2009</year>
).
<pub-id pub-id-type="pmid">18696055</pub-id>
</mixed-citation>
</ref>
<ref id="b12">
<mixed-citation publication-type="journal">
<name>
<surname>Cho</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
,
<name>
<surname>Nie</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Chen</surname>
<given-names>Z. G.</given-names>
</name>
&
<name>
<surname>Shin</surname>
<given-names>D. M.</given-names>
</name>
<article-title>Therapeutic nanoparticles for drug delivery in cancer</article-title>
.
<source>Clin. Cancer Res.</source>
<volume>14</volume>
,
<fpage>1310</fpage>
<lpage>1316</lpage>
(
<year>2008</year>
).
<pub-id pub-id-type="pmid">18316549</pub-id>
</mixed-citation>
</ref>
<ref id="b13">
<mixed-citation publication-type="journal">
<name>
<surname>Hirsch</surname>
<given-names>L. R.</given-names>
</name>
<etal></etal>
.
<article-title>Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance</article-title>
.
<source>Proc. Natl. Acad. Sci. USA</source>
<volume>100</volume>
,
<fpage>13549</fpage>
<lpage>13554</lpage>
(
<year>2003</year>
).
<pub-id pub-id-type="pmid">14597719</pub-id>
</mixed-citation>
</ref>
<ref id="b14">
<mixed-citation publication-type="journal">
<name>
<surname>Dreaden</surname>
<given-names>E. C.</given-names>
</name>
,
<name>
<surname>Alkilany</surname>
<given-names>A. M.</given-names>
</name>
,
<name>
<surname>Huang</surname>
<given-names>X.</given-names>
</name>
,
<name>
<surname>Murphy</surname>
<given-names>C. J.</given-names>
</name>
&
<name>
<surname>El-Sayed</surname>
<given-names>M. A.</given-names>
</name>
<article-title>The golden age: gold nanoparticles for biomedicine</article-title>
.
<source>Chem. Soc. Rev.</source>
<volume>41</volume>
,
<fpage>2740</fpage>
<lpage>2779</lpage>
(
<year>2012</year>
).
<pub-id pub-id-type="pmid">22109657</pub-id>
</mixed-citation>
</ref>
<ref id="b15">
<mixed-citation publication-type="journal">
<name>
<surname>Chithrani</surname>
<given-names>B. D.</given-names>
</name>
,
<name>
<surname>Ghazani</surname>
<given-names>A. A.</given-names>
</name>
&
<name>
<surname>Chan</surname>
<given-names>W. C.</given-names>
</name>
<article-title>Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells</article-title>
.
<source>Nano Lett.</source>
<volume>6</volume>
,
<fpage>662</fpage>
<lpage>668</lpage>
(
<year>2006</year>
).
<pub-id pub-id-type="pmid">16608261</pub-id>
</mixed-citation>
</ref>
<ref id="b16">
<mixed-citation publication-type="journal">
<name>
<surname>Rejman</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Oberle</surname>
<given-names>V.</given-names>
</name>
,
<name>
<surname>Zuhorn</surname>
<given-names>I. S.</given-names>
</name>
&
<name>
<surname>Hoekstra</surname>
<given-names>D.</given-names>
</name>
<article-title>Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis</article-title>
.
<source>Biochem. J.</source>
<volume>377</volume>
,
<fpage>159</fpage>
<lpage>169</lpage>
(
<year>2004</year>
).
<pub-id pub-id-type="pmid">14505488</pub-id>
</mixed-citation>
</ref>
<ref id="b17">
<mixed-citation publication-type="journal">
<name>
<surname>Perrault</surname>
<given-names>S. D.</given-names>
</name>
,
<name>
<surname>Walkey</surname>
<given-names>C.</given-names>
</name>
,
<name>
<surname>Jennings</surname>
<given-names>T.</given-names>
</name>
,
<name>
<surname>Fischer</surname>
<given-names>H. C.</given-names>
</name>
&
<name>
<surname>Chan</surname>
<given-names>W. C.</given-names>
</name>
<article-title>Mediating tumor targeting efficiency of nanoparticles through design</article-title>
.
<source>Nano Lett.</source>
<volume>9</volume>
,
<fpage>1909</fpage>
<lpage>1915</lpage>
(
<year>2009</year>
).
<pub-id pub-id-type="pmid">19344179</pub-id>
</mixed-citation>
</ref>
<ref id="b18">
<mixed-citation publication-type="journal">
<name>
<surname>Lewinski</surname>
<given-names>N.</given-names>
</name>
,
<name>
<surname>Colvin</surname>
<given-names>V.</given-names>
</name>
&
<name>
<surname>Drezek</surname>
<given-names>R.</given-names>
</name>
<article-title>Cytotoxicity of nanoparticles</article-title>
.
<source>Small</source>
<volume>4</volume>
,
<fpage>26</fpage>
<lpage>49</lpage>
(
<year>2008</year>
).
<pub-id pub-id-type="pmid">18165959</pub-id>
</mixed-citation>
</ref>
<ref id="b19">
<mixed-citation publication-type="journal">
<name>
<surname>Jain</surname>
<given-names>P. K.</given-names>
</name>
,
<name>
<surname>Lee</surname>
<given-names>K. S.</given-names>
</name>
,
<name>
<surname>El-Sayed</surname>
<given-names>I. H.</given-names>
</name>
&
<name>
<surname>El-Sayed</surname>
<given-names>M. A.</given-names>
</name>
<article-title>Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine</article-title>
.
<source>J Phys Chem B</source>
<volume>110</volume>
,
<fpage>7238</fpage>
<lpage>7248</lpage>
(
<year>2006</year>
).
<pub-id pub-id-type="pmid">16599493</pub-id>
</mixed-citation>
</ref>
<ref id="b20">
<mixed-citation publication-type="journal">
<name>
<surname>Prescott</surname>
<given-names>S. W.</given-names>
</name>
&
<name>
<surname>Mulvaney</surname>
<given-names>P.</given-names>
</name>
<article-title>Gold nanorod extinction spectra</article-title>
.
<source>J. Appl. Phys.</source>
<volume>99</volume>
,
<fpage>123504</fpage>
(
<year>2006</year>
).</mixed-citation>
</ref>
<ref id="b21">
<mixed-citation publication-type="journal">
<name>
<surname>Stefan Kooij</surname>
<given-names>E.</given-names>
</name>
&
<name>
<surname>Poelsema</surname>
<given-names>B.</given-names>
</name>
<article-title>Shape and size effects in the optical properties of metallic nanorods</article-title>
.
<source>Phys. Chem. Chem. Phys.</source>
<volume>8</volume>
,
<fpage>3349</fpage>
<lpage>3357</lpage>
(
<year>2006</year>
).
<pub-id pub-id-type="pmid">16835684</pub-id>
</mixed-citation>
</ref>
<ref id="b22">
<mixed-citation publication-type="journal">
<name>
<surname>Baffou</surname>
<given-names>G.</given-names>
</name>
,
<name>
<surname>Quidant</surname>
<given-names>R.</given-names>
</name>
&
<name>
<surname>Girard</surname>
<given-names>C.</given-names>
</name>
<article-title>Heat generation in plasmonic nanostructures: Influence of morphology</article-title>
.
<source>Appl. Phys. Lett.</source>
<volume>94</volume>
,
<fpage>153109</fpage>
(
<year>2009</year>
).</mixed-citation>
</ref>
<ref id="b23">
<mixed-citation publication-type="journal">
<name>
<surname>Kessentini</surname>
<given-names>S.</given-names>
</name>
&
<name>
<surname>Barchiesi</surname>
<given-names>D.</given-names>
</name>
<article-title>Quantitative comparison of optimized nanorods, nanoshells and hollow nanospheres for photothermal therapy</article-title>
.
<source>Biomed. Opt. Express</source>
<volume>3</volume>
,
<fpage>590</fpage>
<lpage>604</lpage>
(
<year>2012</year>
).
<pub-id pub-id-type="pmid">22435104</pub-id>
</mixed-citation>
</ref>
<ref id="b24">
<mixed-citation publication-type="journal">
<name>
<surname>Chen</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
.
<article-title>Understanding the photothermal conversion efficiency of gold nanocrystals</article-title>
.
<source>Small</source>
<volume>6</volume>
,
<fpage>2272</fpage>
<lpage>2280</lpage>
(
<year>2010</year>
).
<pub-id pub-id-type="pmid">20827680</pub-id>
</mixed-citation>
</ref>
<ref id="b25">
<mixed-citation publication-type="journal">
<name>
<surname>Richardson</surname>
<given-names>H. H.</given-names>
</name>
,
<name>
<surname>Carlson</surname>
<given-names>M. T.</given-names>
</name>
,
<name>
<surname>Tandler</surname>
<given-names>P. J.</given-names>
</name>
,
<name>
<surname>Hernandez</surname>
<given-names>P.</given-names>
</name>
&
<name>
<surname>Govorov</surname>
<given-names>A. O.</given-names>
</name>
<article-title>Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions</article-title>
.
<source>Nano Lett.</source>
<volume>9</volume>
,
<fpage>1139</fpage>
<lpage>1146</lpage>
(
<year>2009</year>
).
<pub-id pub-id-type="pmid">19193041</pub-id>
</mixed-citation>
</ref>
<ref id="b26">
<mixed-citation publication-type="journal">
<name>
<surname>Maestro</surname>
<given-names>L. M.</given-names>
</name>
<etal></etal>
.
<article-title>Gold nanorods for optimized photothermal therapy: the influence of irradiating in the first and second biological windows</article-title>
.
<source>RSC Adv</source>
.
<volume>4</volume>
,
<fpage>54122</fpage>
<lpage>54129</lpage>
(
<year>2014</year>
).</mixed-citation>
</ref>
<ref id="b27">
<mixed-citation publication-type="journal">
<name>
<surname>Maestro</surname>
<given-names>L. M.</given-names>
</name>
<etal></etal>
.
<article-title>Quantum dot thermometry evaluation of geometry dependent heating efficiency in gold nanoparticles</article-title>
.
<source>Langmuir</source>
<volume>30</volume>
,
<fpage>1650</fpage>
<lpage>1658</lpage>
(
<year>2014</year>
).
<pub-id pub-id-type="pmid">24495155</pub-id>
</mixed-citation>
</ref>
<ref id="b28">
<mixed-citation publication-type="journal">
<name>
<surname>Cho</surname>
<given-names>E. C.</given-names>
</name>
<etal></etal>
.
<article-title>Measuring the Optical Absorption cross sections of Au-Ag Nanocages and Au Nanorods by Photoacoustic Imaging</article-title>
.
<source>J. Phys. Chem. C. Nanomater Interfaces</source>
<volume>113</volume>
,
<fpage>9023</fpage>
<lpage>9028</lpage>
(
<year>2009</year>
).
<pub-id pub-id-type="pmid">19680423</pub-id>
</mixed-citation>
</ref>
<ref id="b29">
<mixed-citation publication-type="journal">
<name>
<surname>Johnson</surname>
<given-names>P. B.</given-names>
</name>
&
<name>
<surname>Christy</surname>
<given-names>R. W.</given-names>
</name>
<article-title>Optical Constants of the Noble Metals</article-title>
.
<source>Phys.Rev.B</source>
<volume>6</volume>
,
<fpage>4370</fpage>
<lpage>4379</lpage>
(
<year>1972</year>
).</mixed-citation>
</ref>
<ref id="b30">
<mixed-citation publication-type="journal">
<name>
<surname>Ungureanu</surname>
<given-names>C.</given-names>
</name>
,
<name>
<surname>Rayavarapu</surname>
<given-names>R. G.</given-names>
</name>
,
<name>
<surname>Manohar</surname>
<given-names>S.</given-names>
</name>
&
<name>
<surname>van Leeuwen</surname>
<given-names>T. G.</given-names>
</name>
<article-title>Discrete dipole approximation simulations of gold nanorod optical properties: Choice of input parameters and comparison with experiment</article-title>
.
<source>J. Appl. Phys.</source>
<volume>105</volume>
,
<fpage>102032</fpage>
(
<year>2009</year>
).</mixed-citation>
</ref>
<ref id="b31">
<mixed-citation publication-type="journal">
<name>
<surname>Draine</surname>
<given-names>B. T.</given-names>
</name>
&
<name>
<surname>Flatau</surname>
<given-names>P. J.</given-names>
</name>
<article-title>Discrete-Dipole Approximation For Scattering Calculations</article-title>
.
<source>J. Opt. Soc. Am. A</source>
<volume>11</volume>
,
<fpage>1491</fpage>
<lpage>1499</lpage>
(
<year>1994</year>
).</mixed-citation>
</ref>
<ref id="b32">
<mixed-citation publication-type="journal">
<name>
<surname>Yurkin</surname>
<given-names>M. A.</given-names>
</name>
,
<name>
<surname>De Kanter</surname>
<given-names>D.</given-names>
</name>
&
<name>
<surname>Hoekstra</surname>
<given-names>A. G.</given-names>
</name>
<article-title>Accuracy of the discrete dipole approximation for simulation of optical properties of gold nanoparticles</article-title>
.
<source>J. Nanophotonics</source>
<volume>4</volume>
,
<fpage>041585</fpage>
<lpage>041515</lpage>
(
<year>2010</year>
).</mixed-citation>
</ref>
<ref id="b33">
<mixed-citation publication-type="journal">Sosa, I. O., Cecila Noguez &
<name>
<surname>R. G.</surname>
<given-names>Barrera</given-names>
</name>
<article-title>Optical Properties of Metal Nanoparticles with Arbitrary Shapes</article-title>
.
<source>J. Phys. Chem. B</source>
<volume>107</volume>
,
<fpage>6269</fpage>
<lpage>6275</lpage>
(
<year>2003</year>
).</mixed-citation>
</ref>
<ref id="b34">
<mixed-citation publication-type="journal">
<name>
<surname>Khlebtsov</surname>
<given-names>B.</given-names>
</name>
,
<name>
<surname>Khanadeev</surname>
<given-names>V.</given-names>
</name>
,
<name>
<surname>Pylaev</surname>
<given-names>T.</given-names>
</name>
&
<name>
<surname>Khlebtsov</surname>
<given-names>N.</given-names>
</name>
<article-title>A New T-Matrix Solvable Model for Nanorods: TEM-Based Ensemble Simulations Supported by Experiments</article-title>
.
<source>The Journal of Physical Chemistry C</source>
<volume>115</volume>
,
<fpage>6317</fpage>
<lpage>6323</lpage>
(
<year>2011</year>
).</mixed-citation>
</ref>
<ref id="b35">
<mixed-citation publication-type="journal">
<name>
<surname>Jiang</surname>
<given-names>X. C.</given-names>
</name>
,
<name>
<surname>Brioude</surname>
<given-names>A.</given-names>
</name>
&
<name>
<surname>Pileni</surname>
<given-names>M. P.</given-names>
</name>
<article-title>Gold nanorods: Limitations on their synthesis and optical properties</article-title>
.
<source>Colloids Surf. Physicochem. Eng. Aspects</source>
<volume>277</volume>
,
<fpage>201</fpage>
<lpage>206</lpage>
(
<year>2006</year>
).</mixed-citation>
</ref>
<ref id="b36">
<mixed-citation publication-type="journal">
<name>
<surname>Busbee</surname>
<given-names>B. D.</given-names>
</name>
,
<name>
<surname>Obare</surname>
<given-names>S. O.</given-names>
</name>
&
<name>
<surname>Murphy</surname>
<given-names>C. J.</given-names>
</name>
<article-title>An Improved Synthesis of High-Aspect-Ratio Gold Nanorods</article-title>
.
<source>Adv. Mater.</source>
<volume>15</volume>
,
<fpage>414</fpage>
<lpage>416</lpage>
(
<year>2003</year>
).</mixed-citation>
</ref>
<ref id="b37">
<mixed-citation publication-type="journal">
<name>
<surname>Scholl</surname>
<given-names>J. A.</given-names>
</name>
,
<name>
<surname>Koh</surname>
<given-names>A. L.</given-names>
</name>
&
<name>
<surname>Dionne</surname>
<given-names>J. A.</given-names>
</name>
<article-title>Quantum plasmon resonances of individual metallic nanoparticles</article-title>
.
<source>Nature</source>
<volume>483</volume>
,
<fpage>421</fpage>
<lpage>427</lpage>
(
<year>2012</year>
).
<pub-id pub-id-type="pmid">22437611</pub-id>
</mixed-citation>
</ref>
<ref id="b38">
<mixed-citation publication-type="other">
<name>
<surname>Quinten</surname>
<given-names>M.</given-names>
</name>
<article-title>Optical properties of nanoparticle systems: Mie and beyond</article-title>
. Ch. 8,
<fpage>233</fpage>
<lpage>244</lpage>
(John Wiley & Sons,
<year>2010</year>
).</mixed-citation>
</ref>
<ref id="b39">
<mixed-citation publication-type="journal">
<name>
<surname>Hövel</surname>
<given-names>H.</given-names>
</name>
,
<name>
<surname>Fritz</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Hilger</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Kreibig</surname>
<given-names>U.</given-names>
</name>
&
<name>
<surname>Vollmer</surname>
<given-names>M.</given-names>
</name>
<article-title>Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping</article-title>
.
<source>Phys. Rev. B</source>
<volume>48</volume>
,
<fpage>18178</fpage>
<lpage>18188</lpage>
(
<year>1993</year>
).</mixed-citation>
</ref>
<ref id="b40">
<mixed-citation publication-type="journal">
<name>
<surname>Bosbach</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Hendrich</surname>
<given-names>C.</given-names>
</name>
,
<name>
<surname>Stietz</surname>
<given-names>F.</given-names>
</name>
,
<name>
<surname>Vartanyan</surname>
<given-names>T.</given-names>
</name>
&
<name>
<surname>Tr\ager</surname>
<given-names>F.</given-names>
</name>
<article-title>Ultrafast Dephasing of Surface Plasmon Excitation in Silver Nanoparticles: Influence of Particle Size, Shape, and Chemical Surrounding</article-title>
.
<source>Phys. Rev. Lett.</source>
<volume>89</volume>
,
<fpage>257404</fpage>
(
<year>2002</year>
).
<pub-id pub-id-type="pmid">12484918</pub-id>
</mixed-citation>
</ref>
<ref id="b41">
<mixed-citation publication-type="journal">
<name>
<surname>Novo</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
.
<article-title>Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study</article-title>
.
<source>Phys. Chem. Chem. Phys.</source>
<volume>8</volume>
,
<fpage>3540</fpage>
<lpage>3546</lpage>
(
<year>2006</year>
).
<pub-id pub-id-type="pmid">16871343</pub-id>
</mixed-citation>
</ref>
<ref id="b42">
<mixed-citation publication-type="journal">
<name>
<surname>Kreibig</surname>
<given-names>U.</given-names>
</name>
&
<name>
<surname>Vollmer</surname>
<given-names>M.</given-names>
</name>
In
<source>Optical properties of metal clusters</source>
(Springer Science & Business Media, New York,
<year>1995</year>
).</mixed-citation>
</ref>
<ref id="b43">
<mixed-citation publication-type="journal">
<name>
<surname>Roper</surname>
<given-names>D. K.</given-names>
</name>
,
<name>
<surname>Ahn</surname>
<given-names>W.</given-names>
</name>
&
<name>
<surname>Hoepfner</surname>
<given-names>M.</given-names>
</name>
<article-title>Microscale Heat Transfer Transduced by Surface Plasmon Resonant Gold Nanoparticles</article-title>
.
<source>J. Phys. Chem. C. Nanomater Interfaces</source>
<volume>111</volume>
,
<fpage>3636</fpage>
<lpage>3641</lpage>
(
<year>2007</year>
).
<pub-id pub-id-type="pmid">19011696</pub-id>
</mixed-citation>
</ref>
<ref id="b44">
<mixed-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>G.</given-names>
</name>
,
<name>
<surname>Ding</surname>
<given-names>Y.</given-names>
</name>
&
<name>
<surname>Sun</surname>
<given-names>S.</given-names>
</name>
<article-title>Understanding the photothermal effect of gold nanostars and nanorods for biomedical applications</article-title>
.
<source>RSC Adv</source>
.
<volume>4</volume>
,
<fpage>30375</fpage>
<lpage>30383</lpage>
(
<year>2014</year>
).</mixed-citation>
</ref>
<ref id="b45">
<mixed-citation publication-type="journal">
<name>
<surname>Taylor</surname>
<given-names>A. B.</given-names>
</name>
,
<name>
<surname>Siddiquee</surname>
<given-names>A. M.</given-names>
</name>
&
<name>
<surname>Chon</surname>
<given-names>J. W. M.</given-names>
</name>
<article-title>Below Melting Point Photothermal Reshaping of Single Gold Nanorods Driven by Surface Diffusion</article-title>
.
<source>ACS Nano</source>
<volume>8</volume>
,
<fpage>12071</fpage>
<lpage>12079</lpage>
(
<year>2014</year>
).
<pub-id pub-id-type="pmid">25405517</pub-id>
</mixed-citation>
</ref>
<ref id="b46">
<mixed-citation publication-type="journal">
<name>
<surname>Link</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>Z. L.</given-names>
</name>
&
<name>
<surname>El-Sayed</surname>
<given-names>M. A.</given-names>
</name>
<article-title>How Does a Gold Nanorod Melt?</article-title>
<source>J. Phys. Chem. B</source>
<volume>104</volume>
,
<fpage>7867</fpage>
<lpage>7870</lpage>
(
<year>2000</year>
).</mixed-citation>
</ref>
<ref id="b47">
<mixed-citation publication-type="journal">
<name>
<surname>Jain</surname>
<given-names>P. K.</given-names>
</name>
,
<name>
<surname>Eustis</surname>
<given-names>S.</given-names>
</name>
&
<name>
<surname>El-Sayed</surname>
<given-names>M. A.</given-names>
</name>
<article-title>Plasmon Coupling in Nanorod Assemblies: Optical Absorption, Discrete Dipole Approximation Simulation, and Exciton-Coupling Model</article-title>
.
<source>The Journal of Physical Chemistry B</source>
<volume>110</volume>
,
<fpage>18243</fpage>
<lpage>18253</lpage>
(
<year>2006</year>
).
<pub-id pub-id-type="pmid">16970442</pub-id>
</mixed-citation>
</ref>
<ref id="b48">
<mixed-citation publication-type="journal">
<name>
<surname>Fan</surname>
<given-names>Z.</given-names>
</name>
&
<name>
<surname>Govorov</surname>
<given-names>A. O.</given-names>
</name>
<article-title>Plasmonic Circular Dichroism of Chiral Metal Nanoparticle Assemblies</article-title>
.
<source>Nano Letters</source>
<volume>10</volume>
,
<fpage>2580</fpage>
<lpage>2587</lpage>
(
<year>2010</year>
).
<pub-id pub-id-type="pmid">20536209</pub-id>
</mixed-citation>
</ref>
<ref id="b49">
<mixed-citation publication-type="journal">
<name>
<surname>Funston</surname>
<given-names>A. M.</given-names>
</name>
,
<name>
<surname>Novo</surname>
<given-names>C.</given-names>
</name>
,
<name>
<surname>Davis</surname>
<given-names>T. J.</given-names>
</name>
&
<name>
<surname>Mulvaney</surname>
<given-names>P.</given-names>
</name>
<article-title>Plasmon Coupling of Gold Nanorods at Short Distances and in Different Geometries</article-title>
.
<source>Nano Letters</source>
<volume>9</volume>
,
<fpage>1651</fpage>
<lpage>1658</lpage>
(
<year>2009</year>
).
<pub-id pub-id-type="pmid">19271775</pub-id>
</mixed-citation>
</ref>
<ref id="b50">
<mixed-citation publication-type="journal">
<name>
<surname>Auguié</surname>
<given-names>B.</given-names>
</name>
,
<name>
<surname>Alonso-Gómez</surname>
<given-names>J. L.</given-names>
</name>
,
<name>
<surname>Guerrero-Martínez</surname>
<given-names>A.</given-names>
</name>
&
<name>
<surname>Liz-Marzán</surname>
<given-names>L. M.</given-names>
</name>
<article-title>Fingers Crossed: Optical Activity of a Chiral Dimer of Plasmonic Nanorods</article-title>
.
<source>The Journal of Physical Chemistry Letters</source>
<volume>2</volume>
,
<fpage>846</fpage>
<lpage>851</lpage>
(
<year>2011</year>
).
<pub-id pub-id-type="pmid">26295617</pub-id>
</mixed-citation>
</ref>
<ref id="b51">
<mixed-citation publication-type="journal">
<name>
<surname>Qin</surname>
<given-names>Z.</given-names>
</name>
<etal></etal>
.
<article-title>Significantly improved analytical sensitivity of lateral flow immunoassays by using thermal contrast</article-title>
.
<source>Angew. Chem. Int. Ed Engl.</source>
<volume>51</volume>
,
<fpage>4358</fpage>
<lpage>4361</lpage>
(
<year>2012</year>
).
<pub-id pub-id-type="pmid">22447488</pub-id>
</mixed-citation>
</ref>
<ref id="b52">
<mixed-citation publication-type="journal">
<name>
<surname>Brioude</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Jiang</surname>
<given-names>X. C.</given-names>
</name>
&
<name>
<surname>Pileni</surname>
<given-names>M. P.</given-names>
</name>
<article-title>Optical properties of gold nanorods: DDA simulations supported by experiments</article-title>
.
<source>J Phys Chem B</source>
<volume>109</volume>
,
<fpage>13138</fpage>
<lpage>13142</lpage>
(
<year>2005</year>
).
<pub-id pub-id-type="pmid">16852635</pub-id>
</mixed-citation>
</ref>
<ref id="b53">
<mixed-citation publication-type="journal">
<name>
<surname>Chen</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
.
<article-title>Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents</article-title>
.
<source>Nano Lett.</source>
<volume>5</volume>
,
<fpage>473</fpage>
<lpage>477</lpage>
(
<year>2005</year>
).
<pub-id pub-id-type="pmid">15755097</pub-id>
</mixed-citation>
</ref>
<ref id="b54">
<mixed-citation publication-type="journal">
<name>
<surname>Frens</surname>
<given-names>G.</given-names>
</name>
<article-title>Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions</article-title>
.
<source>Nature</source>
<volume>241</volume>
,
<fpage>20</fpage>
<lpage>22</lpage>
(
<year>1973</year>
).</mixed-citation>
</ref>
<ref id="b55">
<mixed-citation publication-type="journal">
<name>
<surname>Hauck</surname>
<given-names>T. S.</given-names>
</name>
,
<name>
<surname>Ghazani</surname>
<given-names>A. A.</given-names>
</name>
&
<name>
<surname>Chan</surname>
<given-names>W. C.</given-names>
</name>
<article-title>Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells</article-title>
.
<source>Small</source>
<volume>4</volume>
,
<fpage>153</fpage>
<lpage>159</lpage>
(
<year>2008</year>
).
<pub-id pub-id-type="pmid">18081130</pub-id>
</mixed-citation>
</ref>
<ref id="b56">
<mixed-citation publication-type="journal">
<name>
<surname>Perez-Juste</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Correa-Duarte</surname>
<given-names>M. A.</given-names>
</name>
&
<name>
<surname>Liz-Marzan</surname>
<given-names>L. M.</given-names>
</name>
<article-title>Silica gels with tailored, gold nanorod-driven optical functionalities</article-title>
.
<source>Appl. Surf. Sci.</source>
<volume>226</volume>
,
<fpage>137</fpage>
(
<year>2004</year>
).</mixed-citation>
</ref>
<ref id="b57">
<mixed-citation publication-type="journal">
<name>
<surname>Modest</surname>
<given-names>M.</given-names>
</name>
<source>Radiative Heat Transfer</source>
. Ch. 20,
<fpage>628</fpage>
<lpage>633</lpage>
(Academic Press,
<year>2013</year>
).</mixed-citation>
</ref>
<ref id="b58">
<mixed-citation publication-type="journal">
<name>
<surname>Coronado</surname>
<given-names>E. A.</given-names>
</name>
&
<name>
<surname>Schatz</surname>
<given-names>G. C.</given-names>
</name>
<article-title>Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach</article-title>
.
<source>J. Chem. Phys.</source>
<volume>119</volume>
,
<fpage>3926</fpage>
<lpage>3934</lpage>
(
<year>2003</year>
).</mixed-citation>
</ref>
<ref id="b59">
<mixed-citation publication-type="journal">
<name>
<surname>Randrianalisoa</surname>
<given-names>J.</given-names>
</name>
&
<name>
<surname>Baillis</surname>
<given-names>D.</given-names>
</name>
<article-title>Combined Analytical and Phonon-Tracking Approaches to Model Thermal Conductivity of Etched and Annealed Nanoporous Silicon</article-title>
.
<source>Advanced Engineering Materials</source>
<volume>11</volume>
,
<fpage>852</fpage>
<lpage>861</lpage>
(
<year>2009</year>
).</mixed-citation>
</ref>
<ref id="b60">
<mixed-citation publication-type="journal">
<name>
<surname>Randrianalisoa</surname>
<given-names>J.</given-names>
</name>
&
<name>
<surname>Baillis</surname>
<given-names>D.</given-names>
</name>
<article-title>Radiative properties of densely packed spheres in semitransparent media: A new geometric optics approach</article-title>
.
<source>J. Quant. Spectrosc. Radiat. Transfer</source>
<volume>111</volume>
,
<fpage>1372</fpage>
(
<year>2010</year>
).</mixed-citation>
</ref>
<ref id="b61">
<mixed-citation publication-type="journal">
<name>
<surname>Bohren</surname>
<given-names>C. F.</given-names>
</name>
&
<name>
<surname>Huffman</surname>
<given-names>D. R.</given-names>
</name>
In
<source>Absorption and scattering of light by small particles</source>
(John Wiley & Sons,
<year>2008</year>
).</mixed-citation>
</ref>
</ref-list>
<fn-group>
<fn>
<p>
<bold>Author Contributions</bold>
Z.Q., J.R., W.L. and J.B. conceived the project. Z.Q. and Y.W. performed the laser heating and nanoparticle characterizations. V.R. and W.C. synthesized and provided gold nanorods. J.R. and Z.Q. performed numerical calculations. All authors edited and commented on the manuscript.</p>
</fn>
</fn-group>
</back>
<floats-group>
<fig id="f1">
<label>Figure 1</label>
<caption>
<title>Flow-chart for the combined theoretical and experimental approach.</title>
</caption>
<graphic xlink:href="srep29836-f1"></graphic>
</fig>
<fig id="f2">
<label>Figure 2</label>
<caption>
<title>Comparison of DDA computation with experiment (i.e. UV–Vis spectroscopy and photothermal measurement) for GNS.</title>
<p> (
<bold>A</bold>
) TEM images of 15 nm, 30 nm, 60 nm and 100 nm GNS; (
<bold>B</bold>
) Measured (UV–Vis) versus DDA-computed optical extinction spectrum; (
<bold>C</bold>
) Photothermal conversion efficiency (η) and absorption cross section (
<italic>C</italic>
<sub>abs</sub>
at 532 nm): quantitative measurement versus DDA prediction.</p>
</caption>
<graphic xlink:href="srep29836-f2"></graphic>
</fig>
<fig id="f3">
<label>Figure 3</label>
<caption>
<title>Predicted normalized efficiency factor
<italic>Q</italic>
<sup>*</sup>
of monodispersed GNR with nominal size, demonstrating a deviation from experimentally measured values.</title>
<p>Dielectric constants include bulk and size dependent properties based on radius, 4
<italic>V/S</italic>
, and ray-tracing which considers anisotropy of GNR. Nanorod nominal size:
<italic>D</italic>
 = 10.6 nm,
<italic>L</italic>
 = 40 nm.</p>
</caption>
<graphic xlink:href="srep29836-f3"></graphic>
</fig>
<fig id="f4">
<label>Figure 4</label>
<caption>
<title>Inclusion of polydispersity into prediction leads to agreement between DDA prediction and UV–Vis measurement for GNR.</title>
<p>Two GNR were studied with nominal sizes (
<bold>A</bold>
)
<italic>D</italic>
 = 10.6 nm and
<italic>L</italic>
 = 40 nm; (
<bold>B</bold>
)
<italic>D</italic>
 = 8.6 nm and
<italic>L</italic>
 = 27 nm; (
<bold>C,D</bold>
) Polydispersity measurement. The polydispersity data for Rod 2 was reproduced from Khlebstov
<italic>et al</italic>
. with permission
<xref ref-type="bibr" rid="b34">34</xref>
. (
<bold>E,F</bold>
) Measured (UV–Vis) versus DDA-computed optical extinction spectrum; (
<bold>G,H</bold>
) Photothermal conversion efficiency (η) and absorption cross section (
<italic>C</italic>
<sub>abs</sub>
): quantitative measurement versus DDA prediction for Rod 1 (peak refers to 740 nm).</p>
</caption>
<graphic xlink:href="srep29836-f4"></graphic>
</fig>
<fig id="f5">
<label>Figure 5</label>
<caption>
<title>Dielectric constants do not significantly change the optical properties of GNR (
<italic>D</italic>
 = 8.6 nm,
<italic>L</italic>
 = 27 nm) after incorporating polydispersity measured from TEM (shown in
<xref ref-type="fig" rid="f4">Fig. 4</xref>
).</title>
</caption>
<graphic xlink:href="srep29836-f5"></graphic>
</fig>
<fig id="f6">
<label>Figure 6</label>
<caption>
<title>Differential impact of polydispersity for GNS and GNR.</title>
<p>(
<bold>A,B</bold>
) Changing polydispersity does not significantly affect the optical properties of GNS (
<italic>D</italic>
 = 30 nm in this example); (
<bold>C,D</bold>
) polydispersity changes the optical properties of GNR including extinction peak and peak width. Polydispersity is modeled by fixing
<italic>D</italic>
 = 10 nm and varying
<italic>L</italic>
; (
<bold>E</bold>
) Summary of the impact of polydispersity on the optical properties (peak extinction efficiency) of GNS and GNR. Here polydispersity is defined as the standard deviation by the mean. (
<bold>F</bold>
) Impact of polydispersity on peak wavelength shift.</p>
</caption>
<graphic xlink:href="srep29836-f6"></graphic>
</fig>
<fig id="f7">
<label>Figure 7</label>
<caption>
<title>Incorporating polydispersity to predict plasmonic photothermal absorption and heat generation.</title>
<p>The absorption cross section of a GNS (15 nm) is compared with a GNR (Rod 1 in
<xref ref-type="fig" rid="f4">Fig. 4</xref>
at peak absorption, with similar gold volume with 15 nm GNS) with and without accounting polydispersity.</p>
</caption>
<graphic xlink:href="srep29836-f7"></graphic>
</fig>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000834  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000834  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024