Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000813 ( Pmc/Corpus ); précédent : 0008129; suivant : 0008140 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Metabolomic profiles delineate mycolactone signature in Buruli ulcer disease</title>
<author>
<name sortKey="Niang, Fatoumata" sort="Niang, Fatoumata" uniqKey="Niang F" first="Fatoumata" last="Niang">Fatoumata Niang</name>
<affiliation>
<nlm:aff id="a1">
<institution>Institut Pasteur, Unité d’Immunobiologie de l’Infection</institution>
, Paris,
<country>France</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">
<institution>CNRS URA 1961</institution>
, Paris,
<country>France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sarfo, Fred S" sort="Sarfo, Fred S" uniqKey="Sarfo F" first="Fred S." last="Sarfo">Fred S. Sarfo</name>
<affiliation>
<nlm:aff id="a3">
<institution>Komfo Anokye Teaching Hospital</institution>
, Kumasi,
<country>Ghana</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Frimpong, Michael" sort="Frimpong, Michael" uniqKey="Frimpong M" first="Michael" last="Frimpong">Michael Frimpong</name>
<affiliation>
<nlm:aff id="a4">
<institution>Kumasi Centre for Collaborative Research</institution>
, Kumasi,
<country>Ghana</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Guenin Mace, Laure" sort="Guenin Mace, Laure" uniqKey="Guenin Mace L" first="Laure" last="Guenin-Macé">Laure Guenin-Macé</name>
<affiliation>
<nlm:aff id="a1">
<institution>Institut Pasteur, Unité d’Immunobiologie de l’Infection</institution>
, Paris,
<country>France</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">
<institution>CNRS URA 1961</institution>
, Paris,
<country>France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wansbrough Jones, Mark" sort="Wansbrough Jones, Mark" uniqKey="Wansbrough Jones M" first="Mark" last="Wansbrough-Jones">Mark Wansbrough-Jones</name>
<affiliation>
<nlm:aff id="a5">
<institution>St George’s University of London</institution>
, London,
<country>United Kingdom</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Stinear, Timothy" sort="Stinear, Timothy" uniqKey="Stinear T" first="Timothy" last="Stinear">Timothy Stinear</name>
<affiliation>
<nlm:aff id="a6">
<institution>University of Melbourne, Doherty Institute for Infection and Immunity</institution>
, Melbourne,
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Phillips, Richard O" sort="Phillips, Richard O" uniqKey="Phillips R" first="Richard O." last="Phillips">Richard O. Phillips</name>
<affiliation>
<nlm:aff id="a3">
<institution>Komfo Anokye Teaching Hospital</institution>
, Kumasi,
<country>Ghana</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a7">
<institution>Kwame Nkrumah University of Science and Technology</institution>
, Kumasi,
<country>Ghana</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Demangel, Caroline" sort="Demangel, Caroline" uniqKey="Demangel C" first="Caroline" last="Demangel">Caroline Demangel</name>
<affiliation>
<nlm:aff id="a1">
<institution>Institut Pasteur, Unité d’Immunobiologie de l’Infection</institution>
, Paris,
<country>France</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">
<institution>CNRS URA 1961</institution>
, Paris,
<country>France</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26634444</idno>
<idno type="pmc">4669498</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4669498</idno>
<idno type="RBID">PMC:4669498</idno>
<idno type="doi">10.1038/srep17693</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000813</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000813</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Metabolomic profiles delineate mycolactone signature in Buruli ulcer disease</title>
<author>
<name sortKey="Niang, Fatoumata" sort="Niang, Fatoumata" uniqKey="Niang F" first="Fatoumata" last="Niang">Fatoumata Niang</name>
<affiliation>
<nlm:aff id="a1">
<institution>Institut Pasteur, Unité d’Immunobiologie de l’Infection</institution>
, Paris,
<country>France</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">
<institution>CNRS URA 1961</institution>
, Paris,
<country>France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sarfo, Fred S" sort="Sarfo, Fred S" uniqKey="Sarfo F" first="Fred S." last="Sarfo">Fred S. Sarfo</name>
<affiliation>
<nlm:aff id="a3">
<institution>Komfo Anokye Teaching Hospital</institution>
, Kumasi,
<country>Ghana</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Frimpong, Michael" sort="Frimpong, Michael" uniqKey="Frimpong M" first="Michael" last="Frimpong">Michael Frimpong</name>
<affiliation>
<nlm:aff id="a4">
<institution>Kumasi Centre for Collaborative Research</institution>
, Kumasi,
<country>Ghana</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Guenin Mace, Laure" sort="Guenin Mace, Laure" uniqKey="Guenin Mace L" first="Laure" last="Guenin-Macé">Laure Guenin-Macé</name>
<affiliation>
<nlm:aff id="a1">
<institution>Institut Pasteur, Unité d’Immunobiologie de l’Infection</institution>
, Paris,
<country>France</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">
<institution>CNRS URA 1961</institution>
, Paris,
<country>France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wansbrough Jones, Mark" sort="Wansbrough Jones, Mark" uniqKey="Wansbrough Jones M" first="Mark" last="Wansbrough-Jones">Mark Wansbrough-Jones</name>
<affiliation>
<nlm:aff id="a5">
<institution>St George’s University of London</institution>
, London,
<country>United Kingdom</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Stinear, Timothy" sort="Stinear, Timothy" uniqKey="Stinear T" first="Timothy" last="Stinear">Timothy Stinear</name>
<affiliation>
<nlm:aff id="a6">
<institution>University of Melbourne, Doherty Institute for Infection and Immunity</institution>
, Melbourne,
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Phillips, Richard O" sort="Phillips, Richard O" uniqKey="Phillips R" first="Richard O." last="Phillips">Richard O. Phillips</name>
<affiliation>
<nlm:aff id="a3">
<institution>Komfo Anokye Teaching Hospital</institution>
, Kumasi,
<country>Ghana</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a7">
<institution>Kwame Nkrumah University of Science and Technology</institution>
, Kumasi,
<country>Ghana</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Demangel, Caroline" sort="Demangel, Caroline" uniqKey="Demangel C" first="Caroline" last="Demangel">Caroline Demangel</name>
<affiliation>
<nlm:aff id="a1">
<institution>Institut Pasteur, Unité d’Immunobiologie de l’Infection</institution>
, Paris,
<country>France</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">
<institution>CNRS URA 1961</institution>
, Paris,
<country>France</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific Reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Infection of human skin with
<italic>Mycobacterium ulcerans</italic>
, the causative agent of Buruli ulcer, is associated with the systemic diffusion of a bacterial macrolide named mycolactone. Patients with progressive disease show alterations in their serum proteome, likely reflecting the inhibition of secreted protein production by mycolactone at the cellular level. Here, we used semi-quantitative metabolomics to characterize metabolic perturbations in serum samples of infected individuals, and human cells exposed to mycolactone. Among the 430 metabolites profiled across 20 patients and 20 healthy endemic controls, there were significant differences in the serum levels of hexoses, steroid hormones, acylcarnitines, purine, heme, bile acids, riboflavin and lysolipids. In parallel, analysis of 292 metabolites in human T cells treated or not with mycolactone showed alterations in hexoses, lysolipids and purine catabolites. Together, these data demonstrate that
<italic>M. ulcerans</italic>
infection causes systemic perturbations in the serum metabolome that can be ascribed to mycolactone. Of particular importance to Buruli ulcer pathogenesis is that changes in blood sugar homeostasis in infected patients are mirrored by alterations in hexose metabolism in mycolactone-exposed cells.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Yotsu, R R" uniqKey="Yotsu R">R. R. Yotsu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, G K" uniqKey="Huang G">G. K. Huang</name>
</author>
<author>
<name sortKey="Johnson, P D" uniqKey="Johnson P">P. D. Johnson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lavender, C J" uniqKey="Lavender C">C. J. Lavender</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Merritt, R W" uniqKey="Merritt R">R. W. Merritt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Walsh, D S" uniqKey="Walsh D">D. S. Walsh</name>
</author>
<author>
<name sortKey="Portaels, F" uniqKey="Portaels F">F. Portaels</name>
</author>
<author>
<name sortKey="Meyers, W M" uniqKey="Meyers W">W. M. Meyers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wansbrough Jones, M" uniqKey="Wansbrough Jones M">M. Wansbrough-Jones</name>
</author>
<author>
<name sortKey="Phillips, R" uniqKey="Phillips R">R. Phillips</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stinear, T" uniqKey="Stinear T">T. Stinear</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Etuaful, S" uniqKey="Etuaful S">S. Etuaful</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sarfo, F S" uniqKey="Sarfo F">F. S. Sarfo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guenin Mace, L" uniqKey="Guenin Mace L">L. Guenin-Mace</name>
</author>
<author>
<name sortKey="Oldenburg, R" uniqKey="Oldenburg R">R. Oldenburg</name>
</author>
<author>
<name sortKey="Chretien, F" uniqKey="Chretien F">F. Chretien</name>
</author>
<author>
<name sortKey="Demangel, C" uniqKey="Demangel C">C. Demangel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="George, K M" uniqKey="George K">K. M. George</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stinear, T P" uniqKey="Stinear T">T. P. Stinear</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hong, H" uniqKey="Hong H">H. Hong</name>
</author>
<author>
<name sortKey="Demangel, C" uniqKey="Demangel C">C. Demangel</name>
</author>
<author>
<name sortKey="Pidot, S J" uniqKey="Pidot S">S. J. Pidot</name>
</author>
<author>
<name sortKey="Leadlay, P F" uniqKey="Leadlay P">P. F. Leadlay</name>
</author>
<author>
<name sortKey="Stinear, T" uniqKey="Stinear T">T. Stinear</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Demangel, C" uniqKey="Demangel C">C. Demangel</name>
</author>
<author>
<name sortKey="Stinear, T P" uniqKey="Stinear T">T. P. Stinear</name>
</author>
<author>
<name sortKey="Cole, S T" uniqKey="Cole S">S. T. Cole</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hong, H" uniqKey="Hong H">H. Hong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sarfo, F S" uniqKey="Sarfo F">F. S. Sarfo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boulkroun, S" uniqKey="Boulkroun S">S. Boulkroun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guenin Mace, L" uniqKey="Guenin Mace L">L. Guenin-Mace</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guenin Mace, L" uniqKey="Guenin Mace L">L. Guenin-Mace</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Simmonds, R E" uniqKey="Simmonds R">R. E. Simmonds</name>
</author>
<author>
<name sortKey="Lali, F V" uniqKey="Lali F">F. V. Lali</name>
</author>
<author>
<name sortKey="Smallie, T" uniqKey="Smallie T">T. Smallie</name>
</author>
<author>
<name sortKey="Small, P L" uniqKey="Small P">P. L. Small</name>
</author>
<author>
<name sortKey="Foxwell, B M" uniqKey="Foxwell B">B. M. Foxwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hall, B" uniqKey="Hall B">B. Hall</name>
</author>
<author>
<name sortKey="Simmonds, R" uniqKey="Simmonds R">R. Simmonds</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hall, B S" uniqKey="Hall B">B. S. Hall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Phillips, R O" uniqKey="Phillips R">R. O. Phillips</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fyfe, J A M" uniqKey="Fyfe J">J. A. M. Fyfe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Phillips, R" uniqKey="Phillips R">R. Phillips</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spangenberg, T" uniqKey="Spangenberg T">T. Spangenberg</name>
</author>
<author>
<name sortKey="Kishi, Y" uniqKey="Kishi Y">Y. Kishi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Owen, O E" uniqKey="Owen O">O. E. Owen</name>
</author>
<author>
<name sortKey="Kalhan, S C" uniqKey="Kalhan S">S. C. Kalhan</name>
</author>
<author>
<name sortKey="Hanson, R W" uniqKey="Hanson R">R. W. Hanson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rinaldo, P" uniqKey="Rinaldo P">P. Rinaldo</name>
</author>
<author>
<name sortKey="Cowan, T M" uniqKey="Cowan T">T. M. Cowan</name>
</author>
<author>
<name sortKey="Matern, D" uniqKey="Matern D">D. Matern</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schooneman, M G" uniqKey="Schooneman M">M. G. Schooneman</name>
</author>
<author>
<name sortKey="Vaz, F M" uniqKey="Vaz F">F. M. Vaz</name>
</author>
<author>
<name sortKey="Houten, S M" uniqKey="Houten S">S. M. Houten</name>
</author>
<author>
<name sortKey="Soeters, M R" uniqKey="Soeters M">M. R. Soeters</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weiner, J" uniqKey="Weiner J">J. Weiner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lushchak, V I" uniqKey="Lushchak V">V. I. Lushchak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lefebvre, P" uniqKey="Lefebvre P">P. Lefebvre</name>
</author>
<author>
<name sortKey="Cariou, B" uniqKey="Cariou B">B. Cariou</name>
</author>
<author>
<name sortKey="Lien, F" uniqKey="Lien F">F. Lien</name>
</author>
<author>
<name sortKey="Kuipers, F" uniqKey="Kuipers F">F. Kuipers</name>
</author>
<author>
<name sortKey="Staels, B" uniqKey="Staels B">B. Staels</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nambu, S" uniqKey="Nambu S">S. Nambu</name>
</author>
<author>
<name sortKey="Matsui, T" uniqKey="Matsui T">T. Matsui</name>
</author>
<author>
<name sortKey="Goulding, C W" uniqKey="Goulding C">C. W. Goulding</name>
</author>
<author>
<name sortKey="Takahashi, S" uniqKey="Takahashi S">S. Takahashi</name>
</author>
<author>
<name sortKey="Ikeda Saito, M" uniqKey="Ikeda Saito M">M. Ikeda-Saito</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stinear, T P" uniqKey="Stinear T">T. P. Stinear</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hoxmeier, J C" uniqKey="Hoxmeier J">J. C. Hoxmeier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suhre, K" uniqKey="Suhre K">K. Suhre</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Sci Rep</journal-id>
<journal-id journal-id-type="iso-abbrev">Sci Rep</journal-id>
<journal-title-group>
<journal-title>Scientific Reports</journal-title>
</journal-title-group>
<issn pub-type="epub">2045-2322</issn>
<publisher>
<publisher-name>Nature Publishing Group</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26634444</article-id>
<article-id pub-id-type="pmc">4669498</article-id>
<article-id pub-id-type="pii">srep17693</article-id>
<article-id pub-id-type="doi">10.1038/srep17693</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Metabolomic profiles delineate mycolactone signature in Buruli ulcer disease</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Niang</surname>
<given-names>Fatoumata</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sarfo</surname>
<given-names>Fred S.</given-names>
</name>
<xref ref-type="aff" rid="a3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Frimpong</surname>
<given-names>Michael</given-names>
</name>
<xref ref-type="aff" rid="a4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Guenin-Macé</surname>
<given-names>Laure</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wansbrough-Jones</surname>
<given-names>Mark</given-names>
</name>
<xref ref-type="aff" rid="a5">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Stinear</surname>
<given-names>Timothy</given-names>
</name>
<xref ref-type="aff" rid="a6">6</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Phillips</surname>
<given-names>Richard O.</given-names>
</name>
<xref ref-type="aff" rid="a3">3</xref>
<xref ref-type="aff" rid="a7">7</xref>
<xref ref-type="author-notes" rid="n1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Demangel</surname>
<given-names>Caroline</given-names>
</name>
<xref ref-type="corresp" rid="c1">a</xref>
<xref ref-type="aff" rid="a1">1</xref>
<xref ref-type="aff" rid="a2">2</xref>
<xref ref-type="author-notes" rid="n1">*</xref>
</contrib>
<aff id="a1">
<label>1</label>
<institution>Institut Pasteur, Unité d’Immunobiologie de l’Infection</institution>
, Paris,
<country>France</country>
</aff>
<aff id="a2">
<label>2</label>
<institution>CNRS URA 1961</institution>
, Paris,
<country>France</country>
</aff>
<aff id="a3">
<label>3</label>
<institution>Komfo Anokye Teaching Hospital</institution>
, Kumasi,
<country>Ghana</country>
</aff>
<aff id="a4">
<label>4</label>
<institution>Kumasi Centre for Collaborative Research</institution>
, Kumasi,
<country>Ghana</country>
</aff>
<aff id="a5">
<label>5</label>
<institution>St George’s University of London</institution>
, London,
<country>United Kingdom</country>
</aff>
<aff id="a6">
<label>6</label>
<institution>University of Melbourne, Doherty Institute for Infection and Immunity</institution>
, Melbourne,
<country>Australia</country>
</aff>
<aff id="a7">
<label>7</label>
<institution>Kwame Nkrumah University of Science and Technology</institution>
, Kumasi,
<country>Ghana</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="c1">
<label>a</label>
<email>caroline.demangel@pasteur.fr</email>
</corresp>
<fn id="n1">
<label>*</label>
<p>These authors jointly supervised this work.</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>04</day>
<month>12</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="collection">
<year>2015</year>
</pub-date>
<volume>5</volume>
<elocation-id>17693</elocation-id>
<history>
<date date-type="received">
<day>21</day>
<month>07</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>02</day>
<month>11</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2015, Macmillan Publishers Limited</copyright-statement>
<copyright-year>2015</copyright-year>
<copyright-holder>Macmillan Publishers Limited</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/4.0/">
<pmc-comment>author-paid</pmc-comment>
<license-p>This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
</license-p>
</license>
</permissions>
<abstract>
<p>Infection of human skin with
<italic>Mycobacterium ulcerans</italic>
, the causative agent of Buruli ulcer, is associated with the systemic diffusion of a bacterial macrolide named mycolactone. Patients with progressive disease show alterations in their serum proteome, likely reflecting the inhibition of secreted protein production by mycolactone at the cellular level. Here, we used semi-quantitative metabolomics to characterize metabolic perturbations in serum samples of infected individuals, and human cells exposed to mycolactone. Among the 430 metabolites profiled across 20 patients and 20 healthy endemic controls, there were significant differences in the serum levels of hexoses, steroid hormones, acylcarnitines, purine, heme, bile acids, riboflavin and lysolipids. In parallel, analysis of 292 metabolites in human T cells treated or not with mycolactone showed alterations in hexoses, lysolipids and purine catabolites. Together, these data demonstrate that
<italic>M. ulcerans</italic>
infection causes systemic perturbations in the serum metabolome that can be ascribed to mycolactone. Of particular importance to Buruli ulcer pathogenesis is that changes in blood sugar homeostasis in infected patients are mirrored by alterations in hexose metabolism in mycolactone-exposed cells.</p>
</abstract>
</article-meta>
</front>
<body>
<p>Buruli ulcer (BU) is a necrotizing disease of the skin caused by infection with
<italic>Mycobacterium ulcerans</italic>
, the third most prevalent mycobacterial pathogen in humans after
<italic>M. tuberculosis</italic>
and
<italic>M. leprae</italic>
<xref ref-type="bibr" rid="b1">1</xref>
. How
<italic>M. ulcerans</italic>
is transmitted to humans is not fully understood, however there is increasing evidence that breaches in the skin barrier and exposure to contaminated environments are both required
<xref ref-type="bibr" rid="b2">2</xref>
<xref ref-type="bibr" rid="b3">3</xref>
<xref ref-type="bibr" rid="b4">4</xref>
<xref ref-type="bibr" rid="b5">5</xref>
. Since the 1980s, BU has spread in low-income developing countries of West Africa
<xref ref-type="bibr" rid="b6">6</xref>
. If not diagnosed or treated appropriately, it can result in irreversible deformity, functional disability and life-threatening secondary infections. The current diagnosis methods include acid-fast staining, culture or amplification of bacterial DNA from fine needle aspirates, swabs or skin biopsies
<xref ref-type="bibr" rid="b7">7</xref>
. Treatment consists of the daily administration of rifampicin and streptomycin for eight weeks
<xref ref-type="bibr" rid="b8">8</xref>
<xref ref-type="bibr" rid="b9">9</xref>
, and excision surgery of large lesions. Although effective, control programs are costly, reactive rather than pro-active, and globally unsuited to field conditions. In order to improve the detection and management of BU, it is essential to improve our understanding of the molecular and cellular mechanisms underpinning BU pathogenesis
<xref ref-type="bibr" rid="b10">10</xref>
.</p>
<p>
<italic>M. ulcerans</italic>
is unique amongst human pathogens in its capacity to produce a polyketide-derived macrolide called mycolactone
<xref ref-type="bibr" rid="b11">11</xref>
<xref ref-type="bibr" rid="b12">12</xref>
<xref ref-type="bibr" rid="b13">13</xref>
<xref ref-type="bibr" rid="b14">14</xref>
. Bacterial production of mycolactone is essential for BU formation, as shown by the avirulence of mycolactone-deficient strains of
<italic>M. ulcerans</italic>
in rodent models of infection. While bacteria grow primarily in host skin tissues, mycolactone gains access to the peripheral circulation
<xref ref-type="bibr" rid="b15">15</xref>
<xref ref-type="bibr" rid="b16">16</xref>
. Foodpad infection of mice with wild-type, but not mycolactone-deficient strains of
<italic>M. ulcerans</italic>
, induced intrinsic defects in blood T cells evidenced by their incapacity to produce cytokines upon activation
<italic>ex vivo</italic>
<xref ref-type="bibr" rid="b15">15</xref>
, suggesting that mycolactone modulates the functional biology of T cells at the systemic level.
<italic>In vitro</italic>
, mycolactone altered the expression of homing receptors by resting T cells, and the production of cytokines by activated T cells, without altering their viability
<xref ref-type="bibr" rid="b17">17</xref>
<xref ref-type="bibr" rid="b18">18</xref>
<xref ref-type="bibr" rid="b19">19</xref>
. Mycolactone was shown to operate at the post-transcriptional level, and independently of mTOR
<xref ref-type="bibr" rid="b17">17</xref>
<xref ref-type="bibr" rid="b20">20</xref>
. Although its precise mechanism of action remains to be elucidated, there is recent evidence that mycolactone blocks the co-translational translocation of secreted and membrane-bound proteins into the endoplasmic reticulum
<xref ref-type="bibr" rid="b21">21</xref>
<xref ref-type="bibr" rid="b22">22</xref>
. In line with this finding, the proteomic profiling of serum samples of patients with BU showed significant reductions in the level of multiple soluble proteins, including T cell cytokines
<xref ref-type="bibr" rid="b23">23</xref>
.</p>
<p>To further explore the physiological consequences of bacterial production of mycolactone in infected hosts, we compared the metabolic perturbations induced by infection with
<italic>M. ulcerans</italic>
in human hosts to those induced by mycolactone treatment in human cells. Since bacterially-produced mycolactone diffuses from cutaneous lesions into the peripheral circulation, we focused our analysis on serum samples. Jurkat T cells were selected as a model, because leukocytes are exposed to mycolactone during
<italic>M. ulcerans</italic>
infection
<xref ref-type="bibr" rid="b15">15</xref>
<xref ref-type="bibr" rid="b16">16</xref>
, and Jurkat T cells display the same functional defects as primary T cells upon exposure to mycolactone
<italic>in vitro</italic>
<xref ref-type="bibr" rid="b17">17</xref>
<xref ref-type="bibr" rid="b18">18</xref>
<xref ref-type="bibr" rid="b19">19</xref>
. In addition to provide novel insight into the molecular mechanisms underlying BU pathogenesis, our study delineates mycolactone signature in the serum metabolome of infected hosts.</p>
<sec disp-level="1">
<title>Methods</title>
<sec disp-level="2">
<title>Ethics statement</title>
<p>The ethics committee at the School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana approved the protocol of this study (CHRPE/11/28/06). All adult subjects provided written informed consent, and a parent or guardian of any child participant provided informed consent on their behalf. The review board also gave approval to document informed consent by use of thumbprints for illiterate participants. Studies using human subjects were performed in accordance with the approved guidelines and regulations.</p>
</sec>
<sec disp-level="2">
<title>Human studies</title>
<p>Two cohorts of patients and age- and gender-matched healthy controls were recruited for the purposes of this study (
<xref ref-type="table" rid="t1">Table 1</xref>
). The first cohort was used to compare the metabolic profiles of BU patients and controls from the same community. The second cohort was recruited subsequently, in order to confirm altered cortisol levels in BU patients, and detect an eventual association with lesion severity. Patients were from the middle forest belt of Ashanti Region of Ghana, from Buruli ulcer endemic villages near Tepa Government Hospital (Ahafo Ano North District), Agogo Presbyterian Hospital and Nkawie Government Hospital (Atwima Nwabiagya district). They were included in the study if they met the WHO clinical case definition of
<italic>M. ulcerans</italic>
disease; were not pregnant; were not receiving antibiotic treatment; had no history of tuberculosis, leprosy, or liver, kidney, or hearing impairment. On the day of clinical diagnosis, fine needle aspirates were taken for PCR amplification of
<italic>IS2404</italic>
repeat sequence of
<italic>M. ulcerans</italic>
<xref ref-type="bibr" rid="b24">24</xref>
. Punch biopsy specimens of 4 mm diameter were also stained for acid-fast bacilli and cultured on Lowenstein-Jensen slopes, as previously described
<xref ref-type="bibr" rid="b25">25</xref>
. Patients were started on streptomycin 15 mg/kg and rifampicin 10 mg/kg treatment daily for 8 weeks, as recommended by the WHO, at village health posts under direct observation. Blood samples were also collected at the day of clinical diagnosis of BU, before the initiation of antibiotic therapy. Patients were on empty stomach, in an overnight-fasted state. They were asked if they had taken antibiotic or other medication. Only those who had responded negatively and had confirmed BU were subsequently included in the study. Healthy individuals from the same endemic areas also provided serum samples to serve as a comparator. Serum sampling, freezing and storage were performed in a standardized manner, as follows. Blood samples (8 ml) were collected in the field in BD Vacutainer Serum separator tubes, mixed and left to clot according to the manufacturer’s recommendations. Tubes were then transported within 2 h on ice to the laboratory, for centrifugation and serum separation. The recovered serum (3–4 ml) was aliquoted in Eppendorf Safelock
<sup>TM</sup>
tubes and stored at −80
<sup>o</sup>
C. Samples of cohort 1 individuals were shipped to Institut Pasteur (Paris, France) on dry ice, thawed and re-aliquoted in 100 μl-containing Eppendorf Safelock tubes prior to shipping to Metabolon Inc. on dry ice. Serum samples of cohort 2 individuals were shipped to St George’s University of London on dry ice, and assayed for cortisol using Siemens Advia Centaur Competitive Immunoassay and Direct Chemiluminescent Technology.</p>
</sec>
<sec disp-level="2">
<title>Mycolactone</title>
<p>Mycolactone A/B was purified from
<italic>M. ulcerans</italic>
bacterial cell pellets (strain 1615, ATCC 35840) as previously described
<xref ref-type="bibr" rid="b11">11</xref>
. Mycolactone was quantified by measure of absorbance (λ
<sub>max</sub>
 = 362 nm; log ε = 4.29)
<xref ref-type="bibr" rid="b26">26</xref>
, and purity controlled by mass spectrometry. A stock solution (20 μM) was prepared in ethanol solvent that was diluted 1000X for T cell treatments. Controls exposed to the same volume of vehicle were included.</p>
</sec>
<sec disp-level="2">
<title>Cellular studies</title>
<p>Jurkat E6.1 (ATCC TIB-152
<sup>TM</sup>
) T cells were cultured in RPMI Glutamax
<sup>TM</sup>
(Life Technologies), supplemented with 10% heat-inactivated fetal calf serum (FCS) (Invitrogen) and penicillin/streptomycin (100 U
<italic>/</italic>
ml, 100 μg/ml). Cells in exponential phase of growth were exposed to 20 nM mycolactone (n = 6) or ethanol (n = 5) for 16 h. Cells were recovered and dried by two rounds of centrifugation at 750 g for 3 min, flash-frozen, and stored at −80 °C until analysis.</p>
</sec>
<sec disp-level="2">
<title>Metabolomic profiling</title>
<p>Semi-quantitative metabolomic analyses were performed by Metabolon Inc., as described (
<ext-link ext-link-type="uri" xlink:href="http://www.metabolon.com/">http://www.metabolon.com/</ext-link>
). On the day of extraction, serum samples (100 μl) or cell pellets (50 μl) were thawed on ice. Proteins were precipitated with methanol, using an automated liquid handler (Hamilton LabStar). The methanol contained four standards, which permitted the monitoring of extraction efficiency. The resulting extract was divided into three fractions that were placed briefly on a TurboVap® (Zymark) to remove the organic solvent, frozen and dried under vacuum. Samples destined to LC/MS analysis were reconstituted in acidic or basic LC-compatible solvents, each of which contained 11 or more injection standards at fixed concentrations. One aliquot was analyzed using acidic positive ion optimized conditions and the other using basic negative ion optimized conditions in two independent injections using separate dedicated columns. Extracts reconstituted in acidic conditions were gradient eluted using water and methanol both containing 0.1% formic acid, while the basic extracts, which also used water/methanol, contained 6.5 mM ammonium bicarbonate. The samples destined for GC/MS analysis were re-dried under vacuum desiccation for a minimum of 24 h prior to being derivatized under dried nitrogen using bistrimethyl-silyl-triflouroacetamide. Technical replicates created from a homogenous pool containing a small amount of all study samples were included. The UPLC-MS/MS platform used a Waters Acquity UPLC with Waters UPLC BEH C18 columns (2.1 × 100 mm, 1.7 μm) and a ThermoFisher LTQ mass spectrometer. GC-MS was performed on a Thermo-Finnigan Trace DSQ fast-scanning single-quadrupole MS. Metabolites were identified by automated comparison of the ion features in the experimental samples to a reference library of chemical standard entries that included retention time, molecular weight (
<italic>m</italic>
/
<italic>z</italic>
), preferred adducts, and in-source fragments as well as associated MS spectra. Peaks were quantified by area under the curve measurements. Raw area counts for each metabolite in each sample were normalized to correct for variation resulting from instrument inter-day, tuning differences by the median value for each run-day, therefore setting the medians to 1.0 for each run. Metabolites missing more than one value were excluded from the analysis.</p>
</sec>
<sec disp-level="2">
<title>Statistical analyses</title>
<p>Following log transformation and normalization, Principal Component Analysis (PCA) was used to identify the biochemicals discriminating patients from controls with a false discovery rate (
<italic>q</italic>
-value) inferior to 0.2. We then used Welch’s two-sample
<italic>t</italic>
-test to identify biochemicals differing significantly between the two groups (
<italic>p</italic>
 ≤ 0.05). The metabolomic analysis of Jurkat T cells being part of a larger study including multiple treatments, two-way ANOVA with contrasts was used to identify biochemicals differing significantly between mycolactone- and vehicle-treated groups. In both human and cell studies,
<italic>q</italic>
-values were calculated for each metabolite to take into account multiple comparisons. The GraphPad Prism software (v5.0d, La Jolla, CA) was used for box-and-whisker plot representation, with outliers identified by Tukey’s test.</p>
</sec>
</sec>
<sec disp-level="1">
<title>Results and Discussion</title>
<sec disp-level="2">
<title>Metabolomic profiling of BU</title>
<p>Serum samples were harvested from 20 patients with newly diagnosed BU lesions and 20 age- and gender-matched healthy controls from the same endemic community (Cohort 1,
<xref ref-type="table" rid="t1">Table 1</xref>
). Following solvent extraction, samples were split for analysis on liquid or gas chromatography platforms coupled with mass spectrometry. A total of 430 metabolites were identified, whose spectrometric signals were normalized and compared across patients and controls. PCA revealed a separate clustering between the patient and control populations (
<xref ref-type="fig" rid="f1">Fig. 1</xref>
), showing that BU disease is associated with significant metabolic alterations. Nineteen (4%) metabolites were discriminative (
<italic>p</italic>
-value < 0.01,
<italic>q</italic>
-value < 0.2). Among them, 11 were upregulated in patients relative to controls, whereas 8 were downregulated. Intermediates of glycolysis, pentose-phosphate pathway (PPP) and tricarboxylic acid cycle (TCA) were modulated, indicating that energy-generating pathways had been perturbed. Alterations in the peptide, lipid and nucleotide metabolic pathways were also observed. We used a Welch’s two-sample
<italic>t</italic>
-test (
<italic>p</italic>
 < 0.05) to gain further insight into metabolite differences between groups. Fifty-four metabolites (12%) were present at significantly different levels in patients with BU, compared to controls (
<xref ref-type="table" rid="t2">Table 2</xref>
). They clustered into the hexose, fatty acid, lysolipid, steroid hormones, purine and heme metabolism, leading us to examine these pathways in greater detail.</p>
</sec>
<sec disp-level="2">
<title>Hexoses</title>
<p>Compared to controls, patients with BU displayed elevated levels of all detected hexoses (glucose, fructose and mannose) (
<xref ref-type="fig" rid="f2">Fig. 2a</xref>
). These sugars enter the cells via common membrane transporters of the solute carrier (SLC)-2 family. The 15–50% increase in serum hexoses may thus indicate defective uptake by SLC2 transporters, or increased hepatic gluconeogenesis. The PPP requires glucose for the generation of pentoses (
<xref ref-type="fig" rid="f2">Fig. 2a</xref>
). We observed a relative accumulation of xylulose in patient serum (
<xref ref-type="table" rid="t2">Table 2</xref>
). Since serum levels of the xylulose precursor xylitol were unchanged, it suggested that generation of PPP intermediate xylulose-5-phosphate might be reduced. Finally, the TCA cycle intermediates citrate and malate were decreased in patients with BU, while alpha-ketoglutarate, succinate and fumarate were unchanged (
<xref ref-type="supplementary-material" rid="S1">Supplementary Figure S2</xref>
and
<xref ref-type="table" rid="t2">Table 2</xref>
). The TCA cycle is essential for the generation of ATP and precursors for various biosynthetic pathways. It requires equilibrated anaplerosis and cataplerosis (for entry and exit of TCA anions, respectively)
<xref ref-type="bibr" rid="b27">27</xref>
. In patients with BU, the imbalance between anaplerosis substrates (alpha-ketoglutarate) and cataplerosis substrates (citrate and malate) suggests that TCA cycle function may be impaired.</p>
<p>To determine if some of these effects could result from the action of mycolactone, we profiled the metabolome of Jurkat T cells exposed for 16 h to 20 nM of the purified factor, or vehicle as control. In accordance with previous studies
<xref ref-type="bibr" rid="b19">19</xref>
, this treatment decreased the production of membrane receptor CD62L without altering the cell viability (
<xref ref-type="supplementary-material" rid="S1">Supplementary Figure S1</xref>
). Total cell metabolites were extracted and analyzed similar to serum samples, leading to the identification and relative quantification of 292 metabolites. Among them, 59 differed significantly between experimental groups (
<xref ref-type="table" rid="t3">Table 3</xref>
). Notably, glucose, galactose and mannose were relatively less concentrated in mycolactone-exposed T cells (
<xref ref-type="fig" rid="f2">Fig. 2b</xref>
), arguing for a defect in cellular uptake by membrane transporters. Intracellular levels of glucose-1-phosphate and mannose-6-phosphate were downregulated in mycolactone-treated T cells (
<xref ref-type="table" rid="t3">Table 3</xref>
), indicative of altered glycolysis. Mycolactone also triggered the intracellular accumulation of acetylcarnitine, propionylcarnitine and butyrylcarnitine (
<xref ref-type="table" rid="t3">Table 3</xref>
). On the contrary, serum levels of palmitoylcarnitine and oleoylcarnitine were decreased in patients with BU (
<xref ref-type="table" rid="t2">Table 2</xref>
). Because they facilitate the transport of fatty acids across mitochondrial membranes, a rate-limiting step in fatty acid oxidation (FAO), circulating acylcarnitines are clinically-used biomarkers of FAO disorders
<xref ref-type="bibr" rid="b28">28</xref>
. At the cellular level, the accumulation of acylcarnitines correlates with reduced oxidation of glucose and insulin resistance
<xref ref-type="bibr" rid="b29">29</xref>
. The increased levels of serum hexoses in patients with BU may thus be due, at least partially, to mycolactone-induced defects in hexose uptake and FAO. With the exception of mannose, none of the above-described alterations were observed in patients with TB
<xref ref-type="bibr" rid="b30">30</xref>
.</p>
</sec>
<sec disp-level="2">
<title>Steroid hormones</title>
<p>Glucocorticoids assist in the regulation of glucose homeostasis through the stimulation of hepatic gluconeogenesis and downregulation of glucose transport systems. There was a relative augmentation in serum cholesterol and downstream glucocorticoid hormones cortisol in patients with BU (
<xref ref-type="fig" rid="f3">Fig. 3a</xref>
). Cortisone, a conversion product of cortisol with weaker glucocorticoid activity, was also increased whereas other steroidal hormones were not significantly impacted. To validate these findings with an independent and quantitative approach, an additional cohort of patients and controls was assayed for serum cortisol (Cohort 2,
<xref ref-type="table" rid="t1">Table 1</xref>
). In agreement with our metabolomics data, the mean cortisol level was higher in patients with BU, compared to controls (
<xref ref-type="fig" rid="f3">Fig. 3b</xref>
). Although variable, cortisol levels trended higher in patients with more severe lesions (
<xref ref-type="fig" rid="f3">Fig. 3b</xref>
). No relationship could be demonstrated between serum cortisol and paradoxical reaction, or the clinical form of lesions (nodule, plaque, oedema or ulcer). Together with the data in
<xref ref-type="fig" rid="f2">Fig. 2</xref>
, these observations suggest that glucocorticoid hormones may be induced in patients with progressive ulcers, in order to raise blood sugars. Since corticosteroids inhibit wound healing, increased circulation in patients may delay their clinical response to antibiotic treatment.</p>
</sec>
<sec disp-level="2">
<title>Purine catabolites</title>
<p>Patients with BU displayed elevated serum levels of the purine catabolites inosine and xanthine (
<xref ref-type="supplementary-material" rid="S1">Supplementary Figure S3a</xref>
and
<xref ref-type="table" rid="t2">Table 2</xref>
). These metabolites were not augmented in patients with active TB
<xref ref-type="bibr" rid="b30">30</xref>
, suggesting that they do not reflect a general response to mycobacterial infection. Interestingly, opposite variations were observed in T cells exposed to mycolactone (
<xref ref-type="supplementary-material" rid="S1">Supplementary Figure S3b</xref>
and
<xref ref-type="table" rid="t2">Table 2</xref>
), whereas adenine and guanine, and the pyrimidine catabolite uracil remained unchanged. Although the underlying molecular mechanism is unclear, increased serum inosine and xanthine may thus constitute specific traits of BU.</p>
</sec>
<sec disp-level="2">
<title>Gamma-glutamyl amino acids</title>
<p>Among the metabolites discriminating patients from controls was the gamma-glutamyl amino acid degradation product 5-oxoproline (
<xref ref-type="fig" rid="f1">Fig. 1</xref>
), which serum level was relatively lower in patients. Interestingly, patients also displayed reduced levels of gamma-glutamylisoleucine and gamma-glutamylmethionine (
<xref ref-type="table" rid="t2">Table 2</xref>
). Gamma-glutamyl amino acids result from the transfer of the gamma-glutamyl moiety of glutathione to acceptor amino acids by the liver enzyme gamma-glutamyl transferase (GGT). We reported previously that BU patients display normal serum GGT
<xref ref-type="bibr" rid="b23">23</xref>
. Since isoleucine and methionine were unchanged in patients versus controls in the present study, we can speculate that downregulation of their gamma-glutamyl derivatives is due to limited glutathione availability. Extracellular glutathione results from synthesis, consumption and extrusion by producing cells
<xref ref-type="bibr" rid="b31">31</xref>
. Binding of glutamate to cysteine is the first and rate-limiting step in the biosynthesis of this tripeptide. In Jurkat cells, mycolactone had mixed effects on the intracellular levels of gamma-glutamyl amino acids. It did not alter significantly the intracellular levels of cysteine, glutamate nor glutathione (reduced and oxidized forms). Although extracellular glutathione measurements would be required to confirm it, these data suggest that BU-associated alterations in serum gamma-glutamyl amino acids, and potentially glutathione and redox homeostasis, are independent of mycolactone.</p>
</sec>
<sec disp-level="2">
<title>Bile acids</title>
<p>Bile acids are synthesized from cholesterol by 7-alpha-hydroxylase (CYP7A1) in the liver (
<xref ref-type="fig" rid="f4">Fig. 4</xref>
). Bile acids facilitate cholesterol elimination, intestinal absorption and excretion of lipids and lipid-soluble molecules. They are also important signaling molecules regulating energy homeostasis, inflammation and liver regeneration
<xref ref-type="bibr" rid="b32">32</xref>
. Compared to controls, patients with BU displayed significantly higher levels of cholesterol (
<xref ref-type="fig" rid="f2">Fig. 2a</xref>
) and normal levels of 7-alpha-hydroxycholesterol and cholate, suggesting that precursors of bile acid synthesis are not limiting. Yet glycodeoxycholate, glycolithocholate sulfate and taurolithocholate 3-sulfate were significantly downregulated in patients with BU (
<xref ref-type="fig" rid="f4">Fig. 4</xref>
). No variation in bile acids was reported in patients with TB
<xref ref-type="bibr" rid="b30">30</xref>
. The reduced levels of bile acids in BU patients may be indicative of decreased synthesis, increased intestinal absorption or urinary excretion. Since bile acid synthesis requires contribution from the microbial community, they may also reflect changes in the intestinal flora.</p>
</sec>
<sec disp-level="2">
<title>Heme products</title>
<p>Heme, the most common porphyrin found in the human body, complexes with cellular proteins to form hemoglobin, myoglobin and cytochromes. Heme is synthesized from glycine and succinyl-CoA and can be oxidized into bilirubin and vasodilator carbon dioxide. In patients with BU, heme levels trended higher compared to controls. Conversely, the heme catabolic products biliverdin, bilirubin ZZ and EE were diminished in these subjects (
<xref ref-type="fig" rid="f5">Fig. 5</xref>
and
<xref ref-type="table" rid="t2">Table 2</xref>
). No such variation was detected in patients with TB, possibly because
<italic>M. tuberculosis</italic>
possesses its own heme-degrading enzyme MhuD, producing an unusual tetrapyrole called mycobilin
<xref ref-type="bibr" rid="b33">33</xref>
. The
<italic>M. ulcerans</italic>
MhuD gene orthologue (MUL_4167) is a predicted pseudogene due to the introduction of premature stop codon
<xref ref-type="bibr" rid="b34">34</xref>
. Consistent with this prediction, no metabolite with a mass corresponding to mycobilin was detected in the serum of patients with BU.</p>
</sec>
<sec disp-level="2">
<title>Riboflavin</title>
<p>Riboflavin (vitamin B2) was recently reported to be upregulated in mosquitoes exposed to live
<italic>M. ulcerans</italic>
, compared to untreated mosquitoes or mosquitoes exposed to dead bacteria
<xref ref-type="bibr" rid="b35">35</xref>
. Interestingly in the present work, patients with BU also displayed increased levels of riboflavin (
<xref ref-type="table" rid="t2">Table 2</xref>
). Inspection of the
<italic>M. ulcerans</italic>
genome predicts an intact riboflavin anabolic pathway.
<italic>M. ulcerans</italic>
is predicted to possess intact inosine-5′-monophosphate dehydrogenases (e.g. MUL_0901) and GMP synthase (MUL_0913) and the subsequent enzymes to convert these molecules to GTP and enter the riboflavin biosynthesis pathway. Increases in riboflavin are also consistent with the increased levels of the purine metabolism intermediates, inosine and xanthine (see above). The enhanced detection of riboflavin in infected hosts may thus reflect either bacterial growth, or the host response to infection. In any case, the observation that riboflavin levels are associated with
<italic>M. ulcerans</italic>
infection in both humans and mosquitoes suggest that it could potentially serve as a pathogen-specific correlate of infection.</p>
</sec>
<sec disp-level="2">
<title>Fibrinogen cleavage peptides</title>
<p>Upon vascular injury, soluble fibrinogen is cleaved into insoluble fibrin, which is the main component of blood clots. Fibrinogen A-α cleavage peptides ADSGEGDFXAEGGGVR and DSGEGDFXAEGGGVR were elevated in patients with BU (
<xref ref-type="supplementary-material" rid="S1">Supplementary Figure S4</xref>
and
<xref ref-type="table" rid="t2">Table 2</xref>
), likely reflecting vascular remodeling in lesions. Comparable augmentations were seen in patients with active TB and diabetes
<xref ref-type="bibr" rid="b30">30</xref>
<xref ref-type="bibr" rid="b36">36</xref>
, indicating that this process is not specific to BU.</p>
</sec>
<sec disp-level="2">
<title>Lysolipids</title>
<p>Phospholipids (also called glycerophospholipids) are the main lipid constituents of cell membranes. They are a highly diverse family of compounds containing diacylglycerol, a phosphate head group and organic molecules like ethanolamine or choline. Lysolipids and fatty acids are the natural products of their hydrolysis by phospholipases. Compared to controls, patients with BU displayed lower serum levels of choline and all detected lysophosphatidylcholine (LysoPC) compounds (
<xref ref-type="fig" rid="f6">Fig. 6a</xref>
and
<xref ref-type="table" rid="t2">Table 2</xref>
). Lysophosphatidylethanolamines (LysoPE) were comparably impacted. No such variations were reported in patients infected with
<italic>M. tuberculosis</italic>
<xref ref-type="bibr" rid="b30">30</xref>
, suggesting that they are specific to infection with
<italic>M. ulcerans</italic>
. In line with this hypothesis, several LysoPC compounds were decreased in mosquitoes exposed to live but not killed preparations of the bacteria
<xref ref-type="bibr" rid="b35">35</xref>
. Together with our observations in human patients, these data indicate that
<italic>M. ulcerans</italic>
interaction with its host may alter phospholipid turnover in biomembranes. In T cells exposed to mycolactone, two LysoPC species were decreased compared to controls (
<xref ref-type="fig" rid="f6">Fig. 6b</xref>
and
<xref ref-type="table" rid="t3">Table 3</xref>
), suggesting that mycolactone may contribute to these changes.</p>
</sec>
</sec>
<sec disp-level="1">
<title>Conclusion</title>
<p>Here, we report the metabolomic profiles of serum samples of patients infected with
<italic>M. ulcerans,</italic>
and mycolactone-exposed cells.
<xref ref-type="fig" rid="f7">Figure 7</xref>
summarizes our principal findings, and highlights which metabolites/pathways were modulated in both BU patients and mycolactone-exposed cells. Among them were hexoses, purine products and lysolipids, suggesting that mycolactone released by bacteria interferes with blood cell production of biochemical energy, membrane lipid turnover and degradation of nucleic acids. Interestingly, patients with BU also displayed distinctive downregulation of bile acids and heme products, and upregulation of riboflavin in serum. Intermediates of these metabolic pathways may have potential as biomarkers of BU progression, and inspire new avenues for therapeutic interventions.</p>
</sec>
<sec disp-level="1">
<title>Additional Information</title>
<p>
<bold>How to cite this article</bold>
: Niang, F.
<italic>et al.</italic>
Metabolomic profiles delineate mycolactone signature in Buruli ulcer disease.
<italic>Sci. Rep.</italic>
<bold>5</bold>
, 17693; doi: 10.1038/srep17693 (2015).</p>
</sec>
<sec sec-type="supplementary-material" id="S1">
<title>Supplementary Material</title>
<supplementary-material id="d33e26" content-type="local-data">
<caption>
<title>Supplementary Information</title>
</caption>
<media xlink:href="srep17693-s1.pdf"></media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>The authors wish to thank Magnus Fontes (Institut Pasteur) for help with PCA analysis. This work was supported by the Fondation de la Recherche Médicale (FRM 2012 DEQ20120323704), the Association Raoul Follereau and the Région Ile de France (dim130027).</p>
</ack>
<ref-list>
<ref id="b1">
<mixed-citation publication-type="journal">
<name>
<surname>Yotsu</surname>
<given-names>R. R.</given-names>
</name>
<italic>et al.</italic>
<article-title>Revisiting Buruli ulcer</article-title>
.
<source>J Dermatol</source>
;
<pub-id pub-id-type="doi">10.1111/1346-8138.13049</pub-id>
. (
<year>2015</year>
).</mixed-citation>
</ref>
<ref id="b2">
<mixed-citation publication-type="journal">
<name>
<surname>Huang</surname>
<given-names>G. K.</given-names>
</name>
&
<name>
<surname>Johnson</surname>
<given-names>P. D.</given-names>
</name>
<article-title>Epidemiology and management of Buruli ulcer</article-title>
.
<source>Expert Rev Anti Infe</source>
<volume>12</volume>
,
<fpage>855</fpage>
<lpage>865</lpage>
(
<year>2014</year>
).</mixed-citation>
</ref>
<ref id="b3">
<mixed-citation publication-type="journal">
<name>
<surname>Lavender</surname>
<given-names>C. J.</given-names>
</name>
<italic>et al.</italic>
<article-title>Risk of Buruli ulcer and detection of
<italic>Mycobacterium ulcerans</italic>
in mosquitoes in southeastern Australia</article-title>
.
<source>PLoS Negl Trop Dis</source>
<volume>5</volume>
,
<fpage>e1305</fpage>
(
<year>2011</year>
).
<pub-id pub-id-type="pmid">21949891</pub-id>
</mixed-citation>
</ref>
<ref id="b4">
<mixed-citation publication-type="journal">
<name>
<surname>Merritt</surname>
<given-names>R. W.</given-names>
</name>
<italic>et al.</italic>
<article-title>Ecology and transmission of Buruli ulcer disease: a systematic review</article-title>
.
<source>PLoS Negl Trop Dis</source>
<volume>4</volume>
,
<fpage>e911</fpage>
(
<year>2010</year>
).
<pub-id pub-id-type="pmid">21179505</pub-id>
</mixed-citation>
</ref>
<ref id="b5">
<mixed-citation publication-type="journal">
<name>
<surname>Walsh</surname>
<given-names>D. S.</given-names>
</name>
,
<name>
<surname>Portaels</surname>
<given-names>F.</given-names>
</name>
&
<name>
<surname>Meyers</surname>
<given-names>W. M.</given-names>
</name>
<article-title>Buruli ulcer (
<italic>Mycobacterium ulcerans</italic>
infection)</article-title>
.
<source>Trans R Soc Trop Med Hyg</source>
<volume>102</volume>
,
<fpage>969</fpage>
<lpage>978</lpage>
(
<year>2008</year>
).
<pub-id pub-id-type="pmid">18657836</pub-id>
</mixed-citation>
</ref>
<ref id="b6">
<mixed-citation publication-type="journal">
<name>
<surname>Wansbrough-Jones</surname>
<given-names>M.</given-names>
</name>
&
<name>
<surname>Phillips</surname>
<given-names>R.</given-names>
</name>
<article-title>Buruli ulcer: emerging from obscurity</article-title>
.
<source>Lancet</source>
<volume>367</volume>
,
<fpage>1849</fpage>
<lpage>1858</lpage>
(
<year>2006</year>
).
<pub-id pub-id-type="pmid">16753488</pub-id>
</mixed-citation>
</ref>
<ref id="b7">
<mixed-citation publication-type="journal">
<name>
<surname>Stinear</surname>
<given-names>T.</given-names>
</name>
<italic>et al.</italic>
<article-title>Identification and characterization of IS2404 and IS2606: two distinct repeated sequences for detection of
<italic>Mycobacterium ulcerans</italic>
by PCR</article-title>
.
<source>J Clin Microbiol</source>
<volume>37</volume>
,
<fpage>1018</fpage>
<lpage>1023</lpage>
(
<year>1999</year>
).
<pub-id pub-id-type="pmid">10074520</pub-id>
</mixed-citation>
</ref>
<ref id="b8">
<mixed-citation publication-type="journal">
<name>
<surname>Etuaful</surname>
<given-names>S.</given-names>
</name>
<italic>et al.</italic>
<article-title>Efficacy of the combination rifampin-streptomycin in preventing growth of
<italic>Mycobacterium ulcerans</italic>
in early lesions of Buruli ulcer in humans</article-title>
.
<source>Antimicrob Agents Chemother</source>
<volume>49</volume>
,
<fpage>3182</fpage>
<lpage>3186</lpage>
(
<year>2005</year>
).
<pub-id pub-id-type="pmid">16048922</pub-id>
</mixed-citation>
</ref>
<ref id="b9">
<mixed-citation publication-type="journal">
<name>
<surname>Sarfo</surname>
<given-names>F. S.</given-names>
</name>
<italic>et al.</italic>
<article-title>Clinical efficacy of combination of rifampin and streptomycin for treatment of
<italic>Mycobacterium ulcerans</italic>
disease</article-title>
.
<source>Antimicrob Agents Ch</source>
<volume>54</volume>
,
<fpage>3678</fpage>
<lpage>3685</lpage>
(
<year>2010</year>
).</mixed-citation>
</ref>
<ref id="b10">
<mixed-citation publication-type="journal">
<name>
<surname>Guenin-Mace</surname>
<given-names>L.</given-names>
</name>
,
<name>
<surname>Oldenburg</surname>
<given-names>R.</given-names>
</name>
,
<name>
<surname>Chretien</surname>
<given-names>F.</given-names>
</name>
&
<name>
<surname>Demangel</surname>
<given-names>C.</given-names>
</name>
<article-title>Pathogenesis of skin ulcers: lessons from the
<italic>Mycobacterium ulcerans</italic>
and
<italic>Leishmania spp</italic>
. pathogens</article-title>
.
<source>Cell Mol Life Sci</source>
(
<year>2014</year>
).</mixed-citation>
</ref>
<ref id="b11">
<mixed-citation publication-type="journal">
<name>
<surname>George</surname>
<given-names>K. M.</given-names>
</name>
,
<italic>et al.</italic>
<article-title>Mycolactone: a polyketide toxin from
<italic>Mycobacterium ulcerans</italic>
required for virulence</article-title>
.
<source>Science</source>
<volume>283</volume>
,
<fpage>854</fpage>
<lpage>857</lpage>
(
<year>1999</year>
).
<pub-id pub-id-type="pmid">9933171</pub-id>
</mixed-citation>
</ref>
<ref id="b12">
<mixed-citation publication-type="journal">
<name>
<surname>Stinear</surname>
<given-names>T. P.</given-names>
</name>
<italic>et al.</italic>
<article-title>Giant plasmid-encoded polyketide synthases produce the macrolide toxin of
<italic>Mycobacterium ulcerans</italic>
</article-title>
.
<source>Proc Natl Acad Sci USA</source>
<volume>101</volume>
,
<fpage>1345</fpage>
<lpage>1349</lpage>
(
<year>2004</year>
).
<pub-id pub-id-type="pmid">14736915</pub-id>
</mixed-citation>
</ref>
<ref id="b13">
<mixed-citation publication-type="journal">
<name>
<surname>Hong</surname>
<given-names>H.</given-names>
</name>
,
<name>
<surname>Demangel</surname>
<given-names>C.</given-names>
</name>
,
<name>
<surname>Pidot</surname>
<given-names>S. J.</given-names>
</name>
,
<name>
<surname>Leadlay</surname>
<given-names>P. F.</given-names>
</name>
&
<name>
<surname>Stinear</surname>
<given-names>T.</given-names>
</name>
<article-title>Mycolactones: immunosuppressive and cytotoxic polyketides produced by aquatic mycobacteria</article-title>
.
<source>Nat Prod Rep</source>
<volume>25</volume>
,
<fpage>447</fpage>
<lpage>454</lpage>
(
<year>2008</year>
).
<pub-id pub-id-type="pmid">18497894</pub-id>
</mixed-citation>
</ref>
<ref id="b14">
<mixed-citation publication-type="journal">
<name>
<surname>Demangel</surname>
<given-names>C.</given-names>
</name>
,
<name>
<surname>Stinear</surname>
<given-names>T. P.</given-names>
</name>
&
<name>
<surname>Cole</surname>
<given-names>S. T.</given-names>
</name>
<article-title>Buruli ulcer: reductive evolution enhances pathogenicity of
<italic>Mycobacterium ulcerans</italic>
</article-title>
.
<source>Nat Rev Microbiol</source>
<volume>7</volume>
,
<fpage>50</fpage>
<lpage>60</lpage>
(
<year>2009</year>
).
<pub-id pub-id-type="pmid">19079352</pub-id>
</mixed-citation>
</ref>
<ref id="b15">
<mixed-citation publication-type="journal">
<name>
<surname>Hong</surname>
<given-names>H.</given-names>
</name>
<italic>et al.</italic>
<article-title>Mycolactone diffuses from
<italic>Mycobacterium ulcerans</italic>
-infected tissues and targets mononuclear cells in peripheral blood and lymphoid organs</article-title>
.
<source>PLoS Negl Trop Dis</source>
<volume>2</volume>
,
<fpage>e325</fpage>
(
<year>2008</year>
).
<pub-id pub-id-type="pmid">18941518</pub-id>
</mixed-citation>
</ref>
<ref id="b16">
<mixed-citation publication-type="journal">
<name>
<surname>Sarfo</surname>
<given-names>F. S.</given-names>
</name>
<italic>et al.</italic>
<article-title>Mycolactone diffuses into the peripheral blood of buruli ulcer patients - implications for diagnosis and disease monitoring</article-title>
.
<source>PLoS Negl Trop Dis</source>
<volume>5</volume>
,
<fpage>e1237</fpage>
(
<year>2011</year>
).
<pub-id pub-id-type="pmid">21811642</pub-id>
</mixed-citation>
</ref>
<ref id="b17">
<mixed-citation publication-type="journal">
<name>
<surname>Boulkroun</surname>
<given-names>S.</given-names>
</name>
<italic>et al.</italic>
<article-title>Mycolactone suppresses T cell responsiveness by altering both early signaling and posttranslational events</article-title>
.
<source>J Immunol</source>
<volume>184</volume>
,
<fpage>1436</fpage>
<lpage>1444</lpage>
(
<year>2010</year>
).
<pub-id pub-id-type="pmid">20042571</pub-id>
</mixed-citation>
</ref>
<ref id="b18">
<mixed-citation publication-type="journal">
<name>
<surname>Guenin-Mace</surname>
<given-names>L.</given-names>
</name>
<italic>et al.</italic>
<article-title>Shaping mycolactone for therapeutic use against inflammatory disorders</article-title>
.
<source>Sci Transl Med</source>
<volume>7</volume>
, 289ra285 (
<year>2015</year>
).</mixed-citation>
</ref>
<ref id="b19">
<mixed-citation publication-type="journal">
<name>
<surname>Guenin-Mace</surname>
<given-names>L.</given-names>
</name>
<italic>et al.</italic>
<article-title>Mycolactone impairs T cell homing by suppressing microRNA control of L-selectin expression</article-title>
.
<source>Proc Natl Acad Sci USA</source>
<volume>108</volume>
,
<fpage>12833</fpage>
<lpage>12838</lpage>
(
<year>2011</year>
).
<pub-id pub-id-type="pmid">21768364</pub-id>
</mixed-citation>
</ref>
<ref id="b20">
<mixed-citation publication-type="journal">
<name>
<surname>Simmonds</surname>
<given-names>R. E.</given-names>
</name>
,
<name>
<surname>Lali</surname>
<given-names>F. V.</given-names>
</name>
,
<name>
<surname>Smallie</surname>
<given-names>T.</given-names>
</name>
,
<name>
<surname>Small</surname>
<given-names>P. L.</given-names>
</name>
&
<name>
<surname>Foxwell</surname>
<given-names>B. M.</given-names>
</name>
<article-title>Mycolactone inhibits monocyte cytokine production by a posttranscriptional mechanism</article-title>
.
<source>J Immunol</source>
<volume>182</volume>
,
<fpage>2194</fpage>
<lpage>2202</lpage>
(
<year>2009</year>
).
<pub-id pub-id-type="pmid">19201873</pub-id>
</mixed-citation>
</ref>
<ref id="b21">
<mixed-citation publication-type="journal">
<name>
<surname>Hall</surname>
<given-names>B.</given-names>
</name>
&
<name>
<surname>Simmonds</surname>
<given-names>R.</given-names>
</name>
<article-title>Pleiotropic molecular effects of the
<italic>Mycobacterium ulcerans</italic>
virulence factor mycolactone underlying the cell death and immunosuppression seen in Buruli ulcer</article-title>
.
<source>Biochem Soc Trans</source>
<volume>42</volume>
,
<fpage>177</fpage>
<lpage>183</lpage>
(
<year>2014</year>
).
<pub-id pub-id-type="pmid">24450648</pub-id>
</mixed-citation>
</ref>
<ref id="b22">
<mixed-citation publication-type="journal">
<name>
<surname>Hall</surname>
<given-names>B. S.</given-names>
</name>
<italic>et al.</italic>
<article-title>The pathogenic mechanism of the
<italic>Mycobacterium ulcerans</italic>
virulence factor, mycolactone, depends on blockade of protein translocation into the ER</article-title>
.
<source>PLoS Pathog</source>
<volume>10</volume>
,
<fpage>e1004061</fpage>
(
<year>2014</year>
).
<pub-id pub-id-type="pmid">24699819</pub-id>
</mixed-citation>
</ref>
<ref id="b23">
<mixed-citation publication-type="journal">
<name>
<surname>Phillips</surname>
<given-names>R. O.</given-names>
</name>
<italic>et al.</italic>
<article-title>Combined inflammatory and metabolic defects reflected by reduced serum protein levels in patients with Buruli ulcer disease</article-title>
.
<source>PLoS Negl Trop Dis</source>
<volume>8</volume>
,
<fpage>e2786</fpage>
(
<year>2014</year>
).
<pub-id pub-id-type="pmid">24722524</pub-id>
</mixed-citation>
</ref>
<ref id="b24">
<mixed-citation publication-type="journal">
<name>
<surname>Fyfe</surname>
<given-names>J. A. M.</given-names>
</name>
<italic>et al.</italic>
<article-title>Development and application of two multiplex real-time PCR assays for the detection of</article-title>
<source>Mycobacterium ulcerans in clinical and environmental samples. Appl Environ Microb</source>
<volume>73</volume>
,
<fpage>4733</fpage>
<lpage>4740</lpage>
(
<year>2007</year>
).</mixed-citation>
</ref>
<ref id="b25">
<mixed-citation publication-type="journal">
<name>
<surname>Phillips</surname>
<given-names>R.</given-names>
</name>
<italic>et al.</italic>
<article-title>Sensitivity of PCR targeting the IS2404 insertion sequence of
<italic>Mycobacterium ulcerans</italic>
in an assay using punch biopsy specimens for diagnosis of Buruli ulcer</article-title>
.
<source>J Clin Microbiol</source>
<volume>43</volume>
,
<fpage>3650</fpage>
<lpage>3656</lpage>
(
<year>2005</year>
).
<pub-id pub-id-type="pmid">16081892</pub-id>
</mixed-citation>
</ref>
<ref id="b26">
<mixed-citation publication-type="journal">
<name>
<surname>Spangenberg</surname>
<given-names>T.</given-names>
</name>
&
<name>
<surname>Kishi</surname>
<given-names>Y.</given-names>
</name>
<article-title>Highly sensitive, operationally simple, cost/time effective detection of the mycolactones from the human pathogen
<italic>Mycobacterium ulcerans</italic>
</article-title>
.
<source>Chem Commun</source>
<volume>46</volume>
,
<fpage>1410</fpage>
<lpage>1412</lpage>
(
<year>2010</year>
).</mixed-citation>
</ref>
<ref id="b27">
<mixed-citation publication-type="journal">
<name>
<surname>Owen</surname>
<given-names>O. E.</given-names>
</name>
,
<name>
<surname>Kalhan</surname>
<given-names>S. C.</given-names>
</name>
&
<name>
<surname>Hanson</surname>
<given-names>R. W.</given-names>
</name>
<article-title>The key role of anaplerosis and cataplerosis for citric acid cycle function</article-title>
.
<source>J Biol Chem</source>
<volume>277</volume>
,
<fpage>30409</fpage>
<lpage>30412</lpage>
(
<year>2002</year>
).
<pub-id pub-id-type="pmid">12087111</pub-id>
</mixed-citation>
</ref>
<ref id="b28">
<mixed-citation publication-type="journal">
<name>
<surname>Rinaldo</surname>
<given-names>P.</given-names>
</name>
,
<name>
<surname>Cowan</surname>
<given-names>T. M.</given-names>
</name>
&
<name>
<surname>Matern</surname>
<given-names>D.</given-names>
</name>
<article-title>Acylcarnitine profile analysis</article-title>
.
<source>Genet Med</source>
<volume>10</volume>
,
<fpage>151</fpage>
<lpage>156</lpage>
(
<year>2008</year>
).
<pub-id pub-id-type="pmid">18281923</pub-id>
</mixed-citation>
</ref>
<ref id="b29">
<mixed-citation publication-type="journal">
<name>
<surname>Schooneman</surname>
<given-names>M. G.</given-names>
</name>
,
<name>
<surname>Vaz</surname>
<given-names>F. M.</given-names>
</name>
,
<name>
<surname>Houten</surname>
<given-names>S. M.</given-names>
</name>
&
<name>
<surname>Soeters</surname>
<given-names>M. R.</given-names>
</name>
<article-title>Acylcarnitines: reflecting or inflicting insulin resistance?</article-title>
<source>Diabetes</source>
<volume>62</volume>
,
<fpage>1</fpage>
<lpage>8</lpage>
(
<year>2013</year>
).
<pub-id pub-id-type="pmid">23258903</pub-id>
</mixed-citation>
</ref>
<ref id="b30">
<mixed-citation publication-type="journal">
<name>
<surname>Weiner</surname>
<given-names>J.</given-names>
</name>
<italic>et al.</italic>
<article-title>Biomarkers of inflammation, immunosuppression and stress with active disease are revealed by metabolomic profiling of tuberculosis patients</article-title>
.
<source>Plos One</source>
<volume>7</volume>
(
<year>2012</year>
).</mixed-citation>
</ref>
<ref id="b31">
<mixed-citation publication-type="journal">
<name>
<surname>Lushchak</surname>
<given-names>V. I.</given-names>
</name>
<article-title>Glutathione homeostasis and functions: potential targets for medical interventions</article-title>
.
<source>J Amino Acids</source>
<volume>2012</volume>
,
<fpage>736837</fpage>
(
<year>2012</year>
).
<pub-id pub-id-type="pmid">22500213</pub-id>
</mixed-citation>
</ref>
<ref id="b32">
<mixed-citation publication-type="journal">
<name>
<surname>Lefebvre</surname>
<given-names>P.</given-names>
</name>
,
<name>
<surname>Cariou</surname>
<given-names>B.</given-names>
</name>
,
<name>
<surname>Lien</surname>
<given-names>F.</given-names>
</name>
,
<name>
<surname>Kuipers</surname>
<given-names>F.</given-names>
</name>
&
<name>
<surname>Staels</surname>
<given-names>B.</given-names>
</name>
<article-title>Role of bile acids and bile acid receptors in metabolic regulation</article-title>
.
<source>Physiol Rev</source>
<volume>89</volume>
,
<fpage>147</fpage>
<lpage>191</lpage>
(
<year>2009</year>
).
<pub-id pub-id-type="pmid">19126757</pub-id>
</mixed-citation>
</ref>
<ref id="b33">
<mixed-citation publication-type="journal">
<name>
<surname>Nambu</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Matsui</surname>
<given-names>T.</given-names>
</name>
,
<name>
<surname>Goulding</surname>
<given-names>C. W.</given-names>
</name>
,
<name>
<surname>Takahashi</surname>
<given-names>S.</given-names>
</name>
&
<name>
<surname>Ikeda-Saito</surname>
<given-names>M.</given-names>
</name>
<article-title>A new way to degrade heme: the
<italic>Mycobacterium tuberculosis</italic>
enzyme MhuD catalyzes heme degradation without generating CO</article-title>
.
<source>J Biol Chem</source>
<volume>288</volume>
,
<fpage>10101</fpage>
<lpage>10109</lpage>
(
<year>2013</year>
).
<pub-id pub-id-type="pmid">23420845</pub-id>
</mixed-citation>
</ref>
<ref id="b34">
<mixed-citation publication-type="journal">
<name>
<surname>Stinear</surname>
<given-names>T. P.</given-names>
</name>
<italic>et al.</italic>
<article-title>Reductive evolution and niche adaptation inferred from the genome of
<italic>Mycobacterium ulcerans</italic>
, the causative agent of Buruli ulcer</article-title>
.
<source>Genome Res</source>
<volume>17</volume>
,
<fpage>192</fpage>
<lpage>200</lpage>
(
<year>2007</year>
).
<pub-id pub-id-type="pmid">17210928</pub-id>
</mixed-citation>
</ref>
<ref id="b35">
<mixed-citation publication-type="journal">
<name>
<surname>Hoxmeier</surname>
<given-names>J. C.</given-names>
</name>
<italic>et al.</italic>
<article-title>Analysis of the metabolome of
<italic>Anopheles gambiae</italic>
mosquito after exposure to
<italic>Mycobacterium ulcerans</italic>
</article-title>
.
<source>Sci Rep</source>
<volume>5</volume>
,
<fpage>9242</fpage>
(
<year>2015</year>
).
<pub-id pub-id-type="pmid">25784490</pub-id>
</mixed-citation>
</ref>
<ref id="b36">
<mixed-citation publication-type="journal">
<name>
<surname>Suhre</surname>
<given-names>K.</given-names>
</name>
<italic>et al.</italic>
<article-title>Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting</article-title>
.
<source>Plos One</source>
<volume>5</volume>
,
<fpage>e13953</fpage>
(
<year>2010</year>
).
<pub-id pub-id-type="pmid">21085649</pub-id>
</mixed-citation>
</ref>
</ref-list>
<fn-group>
<fn>
<p>
<bold>Author Contributions</bold>
C.D. and R.O.P. conceived the experiments; S.F., M.F., M.W.-J. and R.O.P. selected human participants and collected samples; L.G.-M. performed the Jurkat T cell studies; F.N., T.S. and C.D. analyzed the data; F.N. and C.D. prepared the figures and edited the text. All authors reviewed the manuscript.</p>
</fn>
</fn-group>
</back>
<floats-group>
<fig id="f1">
<label>Figure 1</label>
<caption>
<title>Metabolic signature of BU.</title>
<p>PCA scatterplot of serum metabolites in patients with BU and controls. The most discriminating biochemicals (
<italic>q-</italic>
value ≤ 0.2) are shown, with their
<italic>p</italic>
-value and variation coefficient (Fold change) across groups (Blue: relatively increased; Yellow: relatively decreased in patients versus controls).</p>
</caption>
<graphic xlink:href="srep17693-f1"></graphic>
</fig>
<fig id="f2">
<label>Figure 2</label>
<caption>
<title>Increased serum hexoses in BU patients mirror decreased hexose concentrations in mycolactone-exposed cells.</title>
<p>(
<bold>a</bold>
) Differential serum levels of the detected hexoses in BU patients versus controls, shown as box and whiskers and in the context of energy-generating metabolic pathways. Biochemicals in bold red were relatively increased in patients versus controls. Those in bold black were detected at comparable levels. Those in grey were not detected. (
<bold>b</bold>
) Differential concentrations of detected hexoses in mycolactone- and vehicle-treated Jurkat T cells, shown as box and whiskers. *p < 0.05, ***p < 0.001.</p>
</caption>
<graphic xlink:href="srep17693-f2"></graphic>
</fig>
<fig id="f3">
<label>Figure 3</label>
<caption>
<title>Increased serum glucocorticoids in BU patients.</title>
<p>(
<bold>a</bold>
) Differential serum levels of glucocorticoid hormones and cholesterol in BU patients and controls. (
<bold>b</bold>
) Absolute concentrations of serum cortisol in BU patients versus controls (left), and patients with different ulcer category (right). Data are presented as box and whiskers. *p < 0.05, **p < 0.01.</p>
</caption>
<graphic xlink:href="srep17693-f3"></graphic>
</fig>
<fig id="f4">
<label>Figure 4</label>
<caption>
<title>Decreased bile acids levels in the serum of BU patients.</title>
<p>Differential serum levels of detected bile acids in patients and controls, shown as box and whiskers and in the context of their metabolic pathways. Biochemicals in bold red were relatively increased in patients versus controls. Those in bold green were relatively decreased. Those in grey were not detected. **p < 0.01, ***p < 0.001.</p>
</caption>
<graphic xlink:href="srep17693-f4"></graphic>
</fig>
<fig id="f5">
<label>Figure 5</label>
<caption>
<title>Decreased levels of heme catabolic products in the serum of BU patients.</title>
<p>Differential serum levels of biliverdin and bilirubin in patients and controls, shown as box and whiskers and in the context of the heme metabolic pathway. Biochemicals in bold green were relatively decreased in patients versus controls. Those in bold black were detected at comparable levels. Those in grey were not detected. *p < 0.05.</p>
</caption>
<graphic xlink:href="srep17693-f5"></graphic>
</fig>
<fig id="f6">
<label>Figure 6</label>
<caption>
<title>Decreased serum lysolipids in BU patients.</title>
<p>(
<bold>a</bold>
) Differential levels of choline and representative lysolipids in patients and controls, shown as box and whiskers and in the context of their metabolic pathway. Biochemicals in bold green were relatively decreased in patients versus controls. Those in bold black were detected at comparable levels. Those in grey were not detected. (
<bold>b</bold>
) Differential levels of the detected lysolipids in mycolactone- and vehicle-treated Jurkat T cells, presented as box and whiskers *p < 0.05, **p < 0.01.</p>
</caption>
<graphic xlink:href="srep17693-f6"></graphic>
</fig>
<fig id="f7">
<label>Figure 7</label>
<caption>
<title>Metabolic alterations in patients with BU and mycolactone-exposed T cells partially overlap.</title>
<p>Metabolic alterations are grouped by biochemical pathway/biochemical structure, within boxes entitled with the corresponding metabolic pathway. In white: metabolites in this pathway were detected at higher levels in BU patients
<italic>vs</italic>
controls, or mycolactone-treated cells
<italic>vs</italic>
controls. In black: inversely.</p>
</caption>
<graphic xlink:href="srep17693-f7"></graphic>
</fig>
<table-wrap position="float" id="t1">
<label>Table 1</label>
<caption>
<title>Human cohort description.</title>
</caption>
<table frame="hsides" rules="groups" border="1">
<colgroup>
<col align="left"></col>
<col align="center"></col>
<col align="center"></col>
</colgroup>
<thead valign="bottom">
<tr>
<th align="left" valign="top" charoff="50">Cohort 1</th>
<th align="center" valign="top" charoff="50">Healthy controls (n = 20)</th>
<th align="center" valign="top" charoff="50">Patients with BU (n = 20)</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td align="left" valign="top" charoff="50">Age, median (range), years</td>
<td align="center" valign="top" charoff="50">12 (6–35)</td>
<td align="center" valign="top" charoff="50">13 (7–35)</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Sex, no. Male/no. Femelle</td>
<td align="center" valign="top" charoff="50">12/8</td>
<td align="center" valign="top" charoff="50">12/8</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Ulcer category</td>
<td align="center" valign="top" charoff="50"> </td>
<td align="center" valign="top" charoff="50"> </td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">I (lesion size ≤5 cm in widest diameter)</td>
<td align="center" valign="top" charoff="50"> </td>
<td align="center" valign="top" charoff="50">7</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">II (lesion size ≤15 cm in widest diameter)</td>
<td align="center" valign="top" charoff="50"> </td>
<td align="center" valign="top" charoff="50">13</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">
<bold>Cohort 2</bold>
</td>
<td align="center" valign="top" charoff="50">
<bold>Healthy controls (n = 29)</bold>
</td>
<td align="center" valign="top" charoff="50">
<bold>Patients with BU (n = 38)</bold>
</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Age, median (range), years</td>
<td align="center" valign="top" charoff="50">13 (5–63)</td>
<td align="center" valign="top" charoff="50">13 (5–75)</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Sex, no. Male/no. Femelle</td>
<td align="center" valign="top" charoff="50">14/15</td>
<td align="center" valign="top" charoff="50">18/20</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Ulcer category</td>
<td align="center" valign="top" charoff="50"> </td>
<td align="center" valign="top" charoff="50"> </td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">I (lesion size ≤5 cm in widest diameter)</td>
<td align="center" valign="top" charoff="50"> </td>
<td align="center" valign="top" charoff="50">16</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">II (lesion size ≤15 cm in widest diameter)</td>
<td align="center" valign="top" charoff="50"> </td>
<td align="center" valign="top" charoff="50">10</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">III (lesion size >15 cm in widest diameter or multiple lesions)</td>
<td align="center" valign="top" charoff="50"> </td>
<td align="center" valign="top" charoff="50">12</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap position="float" id="t2">
<label>Table 2</label>
<caption>
<title>Metabolic signature of BU in human patients.</title>
</caption>
<table frame="hsides" rules="groups" border="1">
<colgroup>
<col align="left"></col>
<col align="center"></col>
<col align="center"></col>
<col align="center"></col>
<col align="center"></col>
<col align="center"></col>
</colgroup>
<thead valign="bottom">
<tr>
<th align="left" valign="top" charoff="50">Metabolism</th>
<th align="center" valign="top" charoff="50">Biochemical Pathway</th>
<th align="center" valign="top" charoff="50">Metabolite</th>
<th align="center" valign="top" charoff="50">Fold change (Patient
<italic>vs</italic>
Ctrl)</th>
<th align="center" valign="top" charoff="50">p-value</th>
<th align="center" valign="top" charoff="50">q-value</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td rowspan="5" align="left" valign="middle" charoff="50">Amino acid</td>
<td align="center" valign="top" charoff="50">Histidine</td>
<td align="center" valign="top" charoff="50">histidine</td>
<td align="center" valign="top" charoff="50">0,85</td>
<td align="center" valign="top" charoff="50">0,002</td>
<td align="center" valign="top" charoff="50">0,090</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">Lysine</td>
<td align="center" valign="top" charoff="50">N6-acetyllysine</td>
<td align="center" valign="top" charoff="50">0,80</td>
<td align="center" valign="top" charoff="50">0,010</td>
<td align="center" valign="top" charoff="50">0,172</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">Phenylalanine and Tyrosine</td>
<td align="center" valign="top" charoff="50">p-cresol sulfate</td>
<td align="center" valign="top" charoff="50">0,64</td>
<td align="center" valign="top" charoff="50">0,006</td>
<td align="center" valign="top" charoff="50">0,146</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">Cysteine and Methionine</td>
<td align="center" valign="top" charoff="50">S-methylcysteine</td>
<td align="center" valign="top" charoff="50">0,67</td>
<td align="center" valign="top" charoff="50">0,049</td>
<td align="center" valign="top" charoff="50">0,388</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">Glutathione</td>
<td align="center" valign="top" charoff="50">5-oxoproline</td>
<td align="center" valign="top" charoff="50">0,84</td>
<td align="center" valign="top" charoff="50">0,002</td>
<td align="center" valign="top" charoff="50">0,090</td>
</tr>
<tr>
<td rowspan="7" align="left" valign="middle" charoff="50">Peptide</td>
<td rowspan="3" align="center" valign="middle" charoff="50">Dipeptide</td>
<td align="center" valign="top" charoff="50">glycylvaline</td>
<td align="center" valign="top" charoff="50">2,03</td>
<td align="center" valign="top" charoff="50">0,000</td>
<td align="center" valign="top" charoff="50">0,023</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">isoleucylglycine</td>
<td align="center" valign="top" charoff="50">1,21</td>
<td align="center" valign="top" charoff="50">0,038</td>
<td align="center" valign="top" charoff="50">0,334</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">phenylalanylleucine</td>
<td align="center" valign="top" charoff="50">1,60</td>
<td align="center" valign="top" charoff="50">0,008</td>
<td align="center" valign="top" charoff="50">0,169</td>
</tr>
<tr>
<td rowspan="2" align="center" valign="middle" charoff="50">Gamma-glutamyl amino acid</td>
<td align="center" valign="top" charoff="50">gamma-glutamylisoleucine</td>
<td align="center" valign="top" charoff="50">0,77</td>
<td align="center" valign="top" charoff="50">0,046</td>
<td align="center" valign="top" charoff="50">0,386</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">gamma-glutamylmethionine</td>
<td align="center" valign="top" charoff="50">0,81</td>
<td align="center" valign="top" charoff="50">0,025</td>
<td align="center" valign="top" charoff="50">0,295</td>
</tr>
<tr>
<td rowspan="2" align="center" valign="middle" charoff="50">Fibrinogen cleavage peptide</td>
<td align="center" valign="top" charoff="50">ADSGEGDFXAEGGGVR</td>
<td align="center" valign="top" charoff="50">1,47</td>
<td align="center" valign="top" charoff="50">0,029</td>
<td align="center" valign="top" charoff="50">0,316</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">DSGEGDFXAEGGGVR</td>
<td align="center" valign="top" charoff="50">1,63</td>
<td align="center" valign="top" charoff="50">0,002</td>
<td align="center" valign="top" charoff="50">0,090</td>
</tr>
<tr>
<td rowspan="4" align="left" valign="middle" charoff="50">Carbohydrate</td>
<td rowspan="2" align="center" valign="middle" charoff="50">Hexose</td>
<td align="center" valign="top" charoff="50">fructose</td>
<td align="center" valign="top" charoff="50">1,50</td>
<td align="center" valign="top" charoff="50">0,031</td>
<td align="center" valign="top" charoff="50">0,316</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">mannose</td>
<td align="center" valign="top" charoff="50">1,51</td>
<td align="center" valign="top" charoff="50">0,000</td>
<td align="center" valign="top" charoff="50">0,023</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">Glycolysis and Gluconeogenesis</td>
<td align="center" valign="top" charoff="50">glucose</td>
<td align="center" valign="top" charoff="50">1,15</td>
<td align="center" valign="top" charoff="50">0,001</td>
<td align="center" valign="top" charoff="50">0,090</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">Nucleotide Sugar and Pentose</td>
<td align="center" valign="top" charoff="50">xylulose</td>
<td align="center" valign="top" charoff="50">1,40</td>
<td align="center" valign="top" charoff="50">0,003</td>
<td align="center" valign="top" charoff="50">0,119</td>
</tr>
<tr>
<td rowspan="2" align="left" valign="middle" charoff="50">Energy</td>
<td rowspan="2" align="center" valign="middle" charoff="50">TCA cycle</td>
<td align="center" valign="top" charoff="50">citrate</td>
<td align="center" valign="top" charoff="50">0,84</td>
<td align="center" valign="top" charoff="50">0,012</td>
<td align="center" valign="top" charoff="50">0,184</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">malate</td>
<td align="center" valign="top" charoff="50">0,67</td>
<td align="center" valign="top" charoff="50">0,001</td>
<td align="center" valign="top" charoff="50">0,090</td>
</tr>
<tr>
<td rowspan="25" align="left" valign="middle" charoff="50">Lipid</td>
<td rowspan="5" align="center" valign="middle" charoff="50">Monohydroxy fatty acid</td>
<td align="center" valign="top" charoff="50">4-hydroxybutyrate (GHB)</td>
<td align="center" valign="top" charoff="50">0,72</td>
<td align="center" valign="top" charoff="50">0,048</td>
<td align="center" valign="top" charoff="50">0,388</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">2-hydroxyoctanoate</td>
<td align="center" valign="top" charoff="50">0,74</td>
<td align="center" valign="top" charoff="50">0,028</td>
<td align="center" valign="top" charoff="50">0,316</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">3-hydroxyoctanoate</td>
<td align="center" valign="top" charoff="50">0,74</td>
<td align="center" valign="top" charoff="50">0,011</td>
<td align="center" valign="top" charoff="50">0,181</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">2-hydroxystearate</td>
<td align="center" valign="top" charoff="50">1,18</td>
<td align="center" valign="top" charoff="50">0,011</td>
<td align="center" valign="top" charoff="50">0,181</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">2-hydroxypalmitate</td>
<td align="center" valign="top" charoff="50">1,21</td>
<td align="center" valign="top" charoff="50">0,006</td>
<td align="center" valign="top" charoff="50">0,146</td>
</tr>
<tr>
<td rowspan="2" align="center" valign="middle" charoff="50">Beta-oxidation</td>
<td align="center" valign="top" charoff="50">palmitoylcarnitine</td>
<td align="center" valign="top" charoff="50">0,66</td>
<td align="center" valign="top" charoff="50">0,012</td>
<td align="center" valign="top" charoff="50">0,181</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">oleoylcarnitine</td>
<td align="center" valign="top" charoff="50">0,63</td>
<td align="center" valign="top" charoff="50">0,008</td>
<td align="center" valign="top" charoff="50">0,169</td>
</tr>
<tr>
<td rowspan="3" align="center" valign="middle" charoff="50">Bile acid</td>
<td align="center" valign="top" charoff="50">glycodeoxycholate</td>
<td align="center" valign="top" charoff="50">0,58</td>
<td align="center" valign="top" charoff="50">0,010</td>
<td align="center" valign="top" charoff="50">0,172</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">glycolithocholate sulfate</td>
<td align="center" valign="top" charoff="50">0,33</td>
<td align="center" valign="top" charoff="50">0,000</td>
<td align="center" valign="top" charoff="50">0,023</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">taurolithocholate 3-sulfate</td>
<td align="center" valign="top" charoff="50">0,42</td>
<td align="center" valign="top" charoff="50">0,006</td>
<td align="center" valign="top" charoff="50">0,146</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">Glycerolipid</td>
<td align="center" valign="top" charoff="50">choline</td>
<td align="center" valign="top" charoff="50">0,91</td>
<td align="center" valign="top" charoff="50">0,035</td>
<td align="center" valign="top" charoff="50">0,334</td>
</tr>
<tr>
<td rowspan="9" align="center" valign="middle" charoff="50">Lysolipid</td>
<td align="center" valign="top" charoff="50">1-oleoylglycerophosphoethanolamine</td>
<td align="center" valign="top" charoff="50">0,71</td>
<td align="center" valign="top" charoff="50">0,009</td>
<td align="center" valign="top" charoff="50">0,169</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">2-oleoylglycerophosphoethanolamine</td>
<td align="center" valign="top" charoff="50">0,74</td>
<td align="center" valign="top" charoff="50">0,032</td>
<td align="center" valign="top" charoff="50">0,316</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">1-linoleoylglycerophosphoethanolamine</td>
<td align="center" valign="top" charoff="50">0,73</td>
<td align="center" valign="top" charoff="50">0,028</td>
<td align="center" valign="top" charoff="50">0,316</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">1-palmitoylglycerophosphocholine</td>
<td align="center" valign="top" charoff="50">0,88</td>
<td align="center" valign="top" charoff="50">0,042</td>
<td align="center" valign="top" charoff="50">0,367</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">2-palmitoylglycerophosphocholine</td>
<td align="center" valign="top" charoff="50">0,73</td>
<td align="center" valign="top" charoff="50">0,024</td>
<td align="center" valign="top" charoff="50">0,284</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">1-oleoylglycerophosphocholine</td>
<td align="center" valign="top" charoff="50">0,83</td>
<td align="center" valign="top" charoff="50">0,038</td>
<td align="center" valign="top" charoff="50">0,334</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">1-linoleoylglycerophosphocholine</td>
<td align="center" valign="top" charoff="50">0,74</td>
<td align="center" valign="top" charoff="50">0,005</td>
<td align="center" valign="top" charoff="50">0,146</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">2-linoleoylglycerophosphocholine</td>
<td align="center" valign="top" charoff="50">0,70</td>
<td align="center" valign="top" charoff="50">0,005</td>
<td align="center" valign="top" charoff="50">0,146</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">1-dihomo-linoleoylglycerophosphocholine</td>
<td align="center" valign="top" charoff="50">0,73</td>
<td align="center" valign="top" charoff="50">0,009</td>
<td align="center" valign="top" charoff="50">0,169</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">Monoacylglycerol</td>
<td align="center" valign="top" charoff="50">1-stearoylglycerol (1-monostearin)</td>
<td align="center" valign="top" charoff="50">1,25</td>
<td align="center" valign="top" charoff="50">0,038</td>
<td align="center" valign="top" charoff="50">0,334</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">Sphingolipid</td>
<td align="center" valign="top" charoff="50">sphinganine</td>
<td align="center" valign="top" charoff="50">0,55</td>
<td align="center" valign="top" charoff="50">0,001</td>
<td align="center" valign="top" charoff="50">0,090</td>
</tr>
<tr>
<td rowspan="3" align="center" valign="middle" charoff="50">Sterol/Steroid</td>
<td align="center" valign="top" charoff="50">cholesterol</td>
<td align="center" valign="top" charoff="50">1,13</td>
<td align="center" valign="top" charoff="50">0,020</td>
<td align="center" valign="top" charoff="50">0,243</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">cortisol</td>
<td align="center" valign="top" charoff="50">1,42</td>
<td align="center" valign="top" charoff="50">0,018</td>
<td align="center" valign="top" charoff="50">0,237</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">cortisone</td>
<td align="center" valign="top" charoff="50">1,26</td>
<td align="center" valign="top" charoff="50">0,007</td>
<td align="center" valign="top" charoff="50">0,157</td>
</tr>
<tr>
<td rowspan="2" align="left" valign="middle" charoff="50">Nucleotide</td>
<td rowspan="2" align="center" valign="middle" charoff="50">Purine</td>
<td align="center" valign="top" charoff="50">xanthine</td>
<td align="center" valign="top" charoff="50">1,27</td>
<td align="center" valign="top" charoff="50">0,004</td>
<td align="center" valign="top" charoff="50">0,146</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">inosine</td>
<td align="center" valign="top" charoff="50">2,01</td>
<td align="center" valign="top" charoff="50">0,004</td>
<td align="center" valign="top" charoff="50">0,146</td>
</tr>
<tr>
<td rowspan="3" align="left" valign="middle" charoff="50">Cofactor</td>
<td rowspan="3" align="center" valign="middle" charoff="50">Heme</td>
<td align="center" valign="top" charoff="50">bilirubin (Z,Z)</td>
<td align="center" valign="top" charoff="50">0,44</td>
<td align="center" valign="top" charoff="50">0,037</td>
<td align="center" valign="top" charoff="50">0,334</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">bilirubin (E,E)</td>
<td align="center" valign="top" charoff="50">0,28</td>
<td align="center" valign="top" charoff="50">0,014</td>
<td align="center" valign="top" charoff="50">0,204</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">biliverdin</td>
<td align="center" valign="top" charoff="50">0,66</td>
<td align="center" valign="top" charoff="50">0,019</td>
<td align="center" valign="top" charoff="50">0,243</td>
</tr>
<tr>
<td rowspan="2" align="left" valign="middle" charoff="50">Vitamin</td>
<td align="center" valign="top" charoff="50">Riboflavin</td>
<td align="center" valign="top" charoff="50">riboflavin (Vitamin B2)</td>
<td align="center" valign="top" charoff="50">1,82</td>
<td align="center" valign="top" charoff="50">0,048</td>
<td align="center" valign="top" charoff="50">0,388</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">Tocopherol</td>
<td align="center" valign="top" charoff="50">gamma-CEHC</td>
<td align="center" valign="top" charoff="50">0,67</td>
<td align="center" valign="top" charoff="50">0,017</td>
<td align="center" valign="top" charoff="50">0,236</td>
</tr>
<tr>
<td rowspan="4" align="left" valign="middle" charoff="50">Xenobiotic</td>
<td rowspan="4" align="center" valign="middle" charoff="50">Chemical</td>
<td align="center" valign="top" charoff="50">4-methylcatechol sulfate</td>
<td align="center" valign="top" charoff="50">0,74</td>
<td align="center" valign="top" charoff="50">0,016</td>
<td align="center" valign="top" charoff="50">0,221</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">hexaethylene glycol</td>
<td align="center" valign="top" charoff="50">1,20</td>
<td align="center" valign="top" charoff="50">0,030</td>
<td align="center" valign="top" charoff="50">0,316</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">octaethylene glycol</td>
<td align="center" valign="top" charoff="50">1,15</td>
<td align="center" valign="top" charoff="50">0,031</td>
<td align="center" valign="top" charoff="50">0,316</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">pentaethylene glycol</td>
<td align="center" valign="top" charoff="50">1,13</td>
<td align="center" valign="top" charoff="50">0,049</td>
<td align="center" valign="top" charoff="50">0,388</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap position="float" id="t3">
<label>Table 3</label>
<caption>
<title>Metabolic signature of mycolactone in human T cells.</title>
</caption>
<table frame="hsides" rules="groups" border="1">
<colgroup>
<col align="left"></col>
<col align="center"></col>
<col align="center"></col>
<col align="center"></col>
<col align="center"></col>
<col align="center"></col>
</colgroup>
<thead valign="bottom">
<tr>
<th align="left" valign="top" charoff="50">Metabolism</th>
<th align="center" valign="top" charoff="50">Biochemical Pathway</th>
<th align="center" valign="top" charoff="50">Metabolite</th>
<th align="center" valign="top" charoff="50">Fold change (Myco
<italic>vs</italic>
Ctrl)</th>
<th align="center" valign="top" charoff="50">p-value</th>
<th align="center" valign="top" charoff="50">q-value</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td rowspan="21" align="left" valign="middle" charoff="50">Amino acid</td>
<td rowspan="2" align="center" valign="middle" charoff="50">Glycine, Serine and Threonine</td>
<td align="center" valign="top" charoff="50">betaine</td>
<td align="center" valign="top" charoff="50">1,38</td>
<td align="center" valign="top" charoff="50">0,003</td>
<td align="center" valign="top" charoff="50">0,028</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">beta-alanine</td>
<td align="center" valign="top" charoff="50">1,41</td>
<td align="center" valign="top" charoff="50">0,038</td>
<td align="center" valign="top" charoff="50">0,109</td>
</tr>
<tr>
<td rowspan="3" align="center" valign="middle" charoff="50">Glutamate</td>
<td align="center" valign="top" charoff="50">glutamate</td>
<td align="center" valign="top" charoff="50">0,77</td>
<td align="center" valign="top" charoff="50">0,011</td>
<td align="center" valign="top" charoff="50">0,065</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">pyroglutamine</td>
<td align="center" valign="top" charoff="50">1,31</td>
<td align="center" valign="top" charoff="50">0,023</td>
<td align="center" valign="top" charoff="50">0,089</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">gamma-aminobutyrate (GABA)</td>
<td align="center" valign="top" charoff="50">1,43</td>
<td align="center" valign="top" charoff="50">0,014</td>
<td align="center" valign="top" charoff="50">0,066</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">Histidine</td>
<td align="center" valign="top" charoff="50">histidine</td>
<td align="center" valign="top" charoff="50">0,78</td>
<td align="center" valign="top" charoff="50">0,017</td>
<td align="center" valign="top" charoff="50">0,072</td>
</tr>
<tr>
<td rowspan="2" align="center" valign="middle" charoff="50">Lysine</td>
<td align="center" valign="top" charoff="50">lysine</td>
<td align="center" valign="top" charoff="50">0,46</td>
<td align="center" valign="top" charoff="50">0,008</td>
<td align="center" valign="top" charoff="50">0,053</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">2-aminoadipate</td>
<td align="center" valign="top" charoff="50">0,53</td>
<td align="center" valign="top" charoff="50">0,000</td>
<td align="center" valign="top" charoff="50">0,005</td>
</tr>
<tr>
<td rowspan="2" align="center" valign="middle" charoff="50">Phenylalanine and Tyrosine</td>
<td align="center" valign="top" charoff="50">phenylalanine</td>
<td align="center" valign="top" charoff="50">0,79</td>
<td align="center" valign="top" charoff="50">0,026</td>
<td align="center" valign="top" charoff="50">0,089</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">tyrosine</td>
<td align="center" valign="top" charoff="50">0,71</td>
<td align="center" valign="top" charoff="50">0,002</td>
<td align="center" valign="top" charoff="50">0,024</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">Tryptophan</td>
<td align="center" valign="top" charoff="50">tryptophan</td>
<td align="center" valign="top" charoff="50">0,77</td>
<td align="center" valign="top" charoff="50">0,025</td>
<td align="center" valign="top" charoff="50">0,089</td>
</tr>
<tr>
<td rowspan="2" align="center" valign="middle" charoff="50">Valine, Leucine and Isoleucine</td>
<td align="center" valign="top" charoff="50">leucine</td>
<td align="center" valign="top" charoff="50">0,80</td>
<td align="center" valign="top" charoff="50">0,031</td>
<td align="center" valign="top" charoff="50">0,100</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">valine</td>
<td align="center" valign="top" charoff="50">0,81</td>
<td align="center" valign="top" charoff="50">0,049</td>
<td align="center" valign="top" charoff="50">0,128</td>
</tr>
<tr>
<td rowspan="3" align="center" valign="middle" charoff="50">Cysteine and Methionine</td>
<td align="center" valign="top" charoff="50">taurine</td>
<td align="center" valign="top" charoff="50">1,34</td>
<td align="center" valign="top" charoff="50">0,027</td>
<td align="center" valign="top" charoff="50">0,089</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">methionine</td>
<td align="center" valign="top" charoff="50">0,76</td>
<td align="center" valign="top" charoff="50">0,023</td>
<td align="center" valign="top" charoff="50">0,089</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">2-hydroxybutyrate (AHB)</td>
<td align="center" valign="top" charoff="50">1,25</td>
<td align="center" valign="top" charoff="50">0,047</td>
<td align="center" valign="top" charoff="50">0,124</td>
</tr>
<tr>
<td rowspan="3" align="center" valign="middle" charoff="50">Urea cycle, Arginine and Proline</td>
<td align="center" valign="top" charoff="50">dimethylarginine (SDMA + ADMA)</td>
<td align="center" valign="top" charoff="50">0,65</td>
<td align="center" valign="top" charoff="50">0,010</td>
<td align="center" valign="top" charoff="50">0,063</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">N-acetylornithine</td>
<td align="center" valign="top" charoff="50">0,79</td>
<td align="center" valign="top" charoff="50">0,024</td>
<td align="center" valign="top" charoff="50">0,089</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">argininosuccinate</td>
<td align="center" valign="top" charoff="50">0,43</td>
<td align="center" valign="top" charoff="50">0,009</td>
<td align="center" valign="top" charoff="50">0,056</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">Creatine</td>
<td align="center" valign="top" charoff="50">creatine</td>
<td align="center" valign="top" charoff="50">1,44</td>
<td align="center" valign="top" charoff="50">0,001</td>
<td align="center" valign="top" charoff="50">0,018</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">Polyamine</td>
<td align="center" valign="top" charoff="50">putrescine</td>
<td align="center" valign="top" charoff="50">1,84</td>
<td align="center" valign="top" charoff="50">0,001</td>
<td align="center" valign="top" charoff="50">0,015</td>
</tr>
<tr>
<td rowspan="15" align="left" valign="middle" charoff="50">Peptide</td>
<td rowspan="9" align="center" valign="middle" charoff="50">Dipeptide</td>
<td align="center" valign="top" charoff="50">glycylproline</td>
<td align="center" valign="top" charoff="50">0,68</td>
<td align="center" valign="top" charoff="50">0,036</td>
<td align="center" valign="top" charoff="50">0,106</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">glycylleucine</td>
<td align="center" valign="top" charoff="50">0,69</td>
<td align="center" valign="top" charoff="50">0,039</td>
<td align="center" valign="top" charoff="50">0,109</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">glycylthreonine</td>
<td align="center" valign="top" charoff="50">0,70</td>
<td align="center" valign="top" charoff="50">0,003</td>
<td align="center" valign="top" charoff="50">0,031</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">prolylglycine</td>
<td align="center" valign="top" charoff="50">0,58</td>
<td align="center" valign="top" charoff="50">0,004</td>
<td align="center" valign="top" charoff="50">0,034</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">prolylalanine</td>
<td align="center" valign="top" charoff="50">0,56</td>
<td align="center" valign="top" charoff="50">0,004</td>
<td align="center" valign="top" charoff="50">0,034</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">prolylglutamine</td>
<td align="center" valign="top" charoff="50">0,58</td>
<td align="center" valign="top" charoff="50">0,005</td>
<td align="center" valign="top" charoff="50">0,039</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">cysteinylglycine</td>
<td align="center" valign="top" charoff="50">0,58</td>
<td align="center" valign="top" charoff="50">0,031</td>
<td align="center" valign="top" charoff="50">0,100</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">prolylglutamate</td>
<td align="center" valign="top" charoff="50">0,62</td>
<td align="center" valign="top" charoff="50">0,013</td>
<td align="center" valign="top" charoff="50">0,065</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">phenylalanylaspartate</td>
<td align="center" valign="top" charoff="50">0,61</td>
<td align="center" valign="top" charoff="50">0,008</td>
<td align="center" valign="top" charoff="50">0,053</td>
</tr>
<tr>
<td rowspan="6" align="center" valign="middle" charoff="50">Gamma-glutamyl amino acid</td>
<td align="center" valign="top" charoff="50">gamma-glutamylvaline</td>
<td align="center" valign="top" charoff="50">1,77</td>
<td align="center" valign="top" charoff="50">0,000</td>
<td align="center" valign="top" charoff="50">0,004</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">gamma-glutamylleucine</td>
<td align="center" valign="top" charoff="50">1,58</td>
<td align="center" valign="top" charoff="50">0,001</td>
<td align="center" valign="top" charoff="50">0,018</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">gamma-glutamylisoleucine</td>
<td align="center" valign="top" charoff="50">1,40</td>
<td align="center" valign="top" charoff="50">0,012</td>
<td align="center" valign="top" charoff="50">0,065</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">gamma-glutamylmethionine</td>
<td align="center" valign="top" charoff="50">0,57</td>
<td align="center" valign="top" charoff="50">0,006</td>
<td align="center" valign="top" charoff="50">0,047</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">gamma-glutamylglutamine</td>
<td align="center" valign="top" charoff="50">0,62</td>
<td align="center" valign="top" charoff="50">0,000</td>
<td align="center" valign="top" charoff="50">0,007</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">gamma-glutamylthreonine</td>
<td align="center" valign="top" charoff="50">2,10</td>
<td align="center" valign="top" charoff="50">0,000</td>
<td align="center" valign="top" charoff="50">0,000</td>
</tr>
<tr>
<td rowspan="8" align="left" valign="middle" charoff="50">Carbohydrate</td>
<td align="center" valign="top" charoff="50">Aminosugar</td>
<td align="center" valign="top" charoff="50">Isobar: UDP-acetylglucosamine, UDP-acetylgalactosamine</td>
<td align="center" valign="top" charoff="50">1,45</td>
<td align="center" valign="top" charoff="50">0,017</td>
<td align="center" valign="top" charoff="50">0,072</td>
</tr>
<tr>
<td rowspan="5" align="center" valign="middle" charoff="50">Hexose</td>
<td align="center" valign="top" charoff="50">galactose</td>
<td align="center" valign="top" charoff="50">0,54</td>
<td align="center" valign="top" charoff="50">0,012</td>
<td align="center" valign="top" charoff="50">0,065</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">6′-sialyllactose</td>
<td align="center" valign="top" charoff="50">2,30</td>
<td align="center" valign="top" charoff="50">0,000</td>
<td align="center" valign="top" charoff="50">0,005</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">mannose</td>
<td align="center" valign="top" charoff="50">0,39</td>
<td align="center" valign="top" charoff="50">0,014</td>
<td align="center" valign="top" charoff="50">0,066</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">mannose-6-phosphate</td>
<td align="center" valign="top" charoff="50">0,53</td>
<td align="center" valign="top" charoff="50">0,012</td>
<td align="center" valign="top" charoff="50">0,065</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">sorbitol</td>
<td align="center" valign="top" charoff="50">1,30</td>
<td align="center" valign="top" charoff="50">0,042</td>
<td align="center" valign="top" charoff="50">0,114</td>
</tr>
<tr>
<td rowspan="2" align="center" valign="middle" charoff="50">Glycolysis</td>
<td align="center" valign="top" charoff="50">glucose 1-phosphate</td>
<td align="center" valign="top" charoff="50">0,58</td>
<td align="center" valign="top" charoff="50">0,033</td>
<td align="center" valign="top" charoff="50">0,100</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">glucose</td>
<td align="center" valign="top" charoff="50">0,46</td>
<td align="center" valign="top" charoff="50">0,023</td>
<td align="center" valign="top" charoff="50">0,089</td>
</tr>
<tr>
<td rowspan="8" align="left" valign="middle" charoff="50">Lipid</td>
<td rowspan="2" align="center" valign="middle" charoff="50">Beta-oxidation</td>
<td align="center" valign="top" charoff="50">propionylcarnitine</td>
<td align="center" valign="top" charoff="50">1,80</td>
<td align="center" valign="top" charoff="50">0,001</td>
<td align="center" valign="top" charoff="50">0,018</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">butyrylcarnitine</td>
<td align="center" valign="top" charoff="50">2,84</td>
<td align="center" valign="top" charoff="50">0,002</td>
<td align="center" valign="top" charoff="50">0,021</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">Carnitine</td>
<td align="center" valign="top" charoff="50">acetylcarnitine</td>
<td align="center" valign="top" charoff="50">1,34</td>
<td align="center" valign="top" charoff="50">0,013</td>
<td align="center" valign="top" charoff="50">0,065</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">Glycerolipid</td>
<td align="center" valign="top" charoff="50">choline phosphate</td>
<td align="center" valign="top" charoff="50">1,27</td>
<td align="center" valign="top" charoff="50">0,026</td>
<td align="center" valign="top" charoff="50">0,089</td>
</tr>
<tr>
<td rowspan="2" align="center" valign="middle" charoff="50">Lysolipid</td>
<td align="center" valign="top" charoff="50">1-myristoylglycerophosphocholine</td>
<td align="center" valign="top" charoff="50">0,60</td>
<td align="center" valign="top" charoff="50">0,033</td>
<td align="center" valign="top" charoff="50">0,100</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">1-pentadecanoylglycerophosphocholine</td>
<td align="center" valign="top" charoff="50">0,64</td>
<td align="center" valign="top" charoff="50">0,038</td>
<td align="center" valign="top" charoff="50">0,109</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">Neurotransmitter</td>
<td align="center" valign="top" charoff="50">acetylcholine</td>
<td align="center" valign="top" charoff="50">9,40</td>
<td align="center" valign="top" charoff="50">0,000</td>
<td align="center" valign="top" charoff="50">0,000</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">Sterol/Steroid</td>
<td align="center" valign="top" charoff="50">lathosterol</td>
<td align="center" valign="top" charoff="50">1,66</td>
<td align="center" valign="top" charoff="50">0,025</td>
<td align="center" valign="top" charoff="50">0,089</td>
</tr>
<tr>
<td rowspan="5" align="left" valign="middle" charoff="50">Nucleotide</td>
<td rowspan="5" align="center" valign="middle" charoff="50">Purine</td>
<td align="center" valign="top" charoff="50">xanthine</td>
<td align="center" valign="top" charoff="50">0,72</td>
<td align="center" valign="top" charoff="50">0,002</td>
<td align="center" valign="top" charoff="50">0,024</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">hypoxanthine</td>
<td align="center" valign="top" charoff="50">0,66</td>
<td align="center" valign="top" charoff="50">0,020</td>
<td align="center" valign="top" charoff="50">0,084</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">inosine</td>
<td align="center" valign="top" charoff="50">0,60</td>
<td align="center" valign="top" charoff="50">0,015</td>
<td align="center" valign="top" charoff="50">0,070</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">inosine 5’-monophosphate (IMP)</td>
<td align="center" valign="top" charoff="50">0,68</td>
<td align="center" valign="top" charoff="50">0,042</td>
<td align="center" valign="top" charoff="50">0,114</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">N1-methyladenosine</td>
<td align="center" valign="top" charoff="50">0,70</td>
<td align="center" valign="top" charoff="50">0,033</td>
<td align="center" valign="top" charoff="50">0,100</td>
</tr>
<tr>
<td rowspan="2" align="left" valign="middle" charoff="50">Cofactor and Vitamin</td>
<td align="center" valign="top" charoff="50">Biotin</td>
<td align="center" valign="top" charoff="50">biotin</td>
<td align="center" valign="top" charoff="50">1,94</td>
<td align="center" valign="top" charoff="50">0,000</td>
<td align="center" valign="top" charoff="50">0,000</td>
</tr>
<tr>
<td align="center" valign="top" charoff="50">Pantothenate and CoA</td>
<td align="center" valign="top" charoff="50">pantothenate</td>
<td align="center" valign="top" charoff="50">1,51</td>
<td align="center" valign="top" charoff="50">0,000</td>
<td align="center" valign="top" charoff="50">0,004</td>
</tr>
</tbody>
</table>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000813  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000813  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024