Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000746 ( Pmc/Corpus ); précédent : 0007459; suivant : 0007470 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Gains and losses of coral skeletal porosity changes with ocean acidification acclimation</title>
<author>
<name sortKey="Fantazzini, Paola" sort="Fantazzini, Paola" uniqKey="Fantazzini P" first="Paola" last="Fantazzini">Paola Fantazzini</name>
<affiliation>
<nlm:aff id="a1">
<institution>Department of Physics and Astronomy, University of Bologna</institution>
, Viale Berti Pichat 6/2, 40127 Bologna,
<country>Italy</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">
<institution>Centro Enrico Fermi</institution>
, Piazza del Viminale 1, 00184 Rome,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mengoli, Stefano" sort="Mengoli, Stefano" uniqKey="Mengoli S" first="Stefano" last="Mengoli">Stefano Mengoli</name>
<affiliation>
<nlm:aff id="a3">
<institution>Department of Management, University of Bologna</institution>
, Via Capo di Lucca 34, 40126 Bologna,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pasquini, Luca" sort="Pasquini, Luca" uniqKey="Pasquini L" first="Luca" last="Pasquini">Luca Pasquini</name>
<affiliation>
<nlm:aff id="a1">
<institution>Department of Physics and Astronomy, University of Bologna</institution>
, Viale Berti Pichat 6/2, 40127 Bologna,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bortolotti, Villiam" sort="Bortolotti, Villiam" uniqKey="Bortolotti V" first="Villiam" last="Bortolotti">Villiam Bortolotti</name>
<affiliation>
<nlm:aff id="a4">
<institution>Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna</institution>
, Via Terracini 28, 40131 Bologna,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brizi, Leonardo" sort="Brizi, Leonardo" uniqKey="Brizi L" first="Leonardo" last="Brizi">Leonardo Brizi</name>
<affiliation>
<nlm:aff id="a1">
<institution>Department of Physics and Astronomy, University of Bologna</institution>
, Viale Berti Pichat 6/2, 40127 Bologna,
<country>Italy</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">
<institution>Centro Enrico Fermi</institution>
, Piazza del Viminale 1, 00184 Rome,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mariani, Manuel" sort="Mariani, Manuel" uniqKey="Mariani M" first="Manuel" last="Mariani">Manuel Mariani</name>
<affiliation>
<nlm:aff id="a1">
<institution>Department of Physics and Astronomy, University of Bologna</institution>
, Viale Berti Pichat 6/2, 40127 Bologna,
<country>Italy</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">
<institution>Centro Enrico Fermi</institution>
, Piazza del Viminale 1, 00184 Rome,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Di Giosia, Matteo" sort="Di Giosia, Matteo" uniqKey="Di Giosia M" first="Matteo" last="Di Giosia">Matteo Di Giosia</name>
<affiliation>
<nlm:aff id="a5">
<institution>Department of Chemistry ‘G. Ciamician', University of Bologna</institution>
, Via F. Selmi 2, 40126 Bologna,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fermani, Simona" sort="Fermani, Simona" uniqKey="Fermani S" first="Simona" last="Fermani">Simona Fermani</name>
<affiliation>
<nlm:aff id="a5">
<institution>Department of Chemistry ‘G. Ciamician', University of Bologna</institution>
, Via F. Selmi 2, 40126 Bologna,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Capaccioni, Bruno" sort="Capaccioni, Bruno" uniqKey="Capaccioni B" first="Bruno" last="Capaccioni">Bruno Capaccioni</name>
<affiliation>
<nlm:aff id="a6">
<institution>Department of Biological, Geological and Environmental Sciences, Section of Geology, University of Bologna</institution>
, Piazza di Porta S. Donato 1, 40126 Bologna,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Caroselli, Erik" sort="Caroselli, Erik" uniqKey="Caroselli E" first="Erik" last="Caroselli">Erik Caroselli</name>
<affiliation>
<nlm:aff id="a7">
<institution>Marine Science Group, Department of Biological, Geological and Environmental Sciences, Section of Biology, University of Bologna</institution>
, Via F. Selmi 3, 40126 Bologna,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Prada, Fiorella" sort="Prada, Fiorella" uniqKey="Prada F" first="Fiorella" last="Prada">Fiorella Prada</name>
<affiliation>
<nlm:aff id="a7">
<institution>Marine Science Group, Department of Biological, Geological and Environmental Sciences, Section of Biology, University of Bologna</institution>
, Via F. Selmi 3, 40126 Bologna,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zaccanti, Francesco" sort="Zaccanti, Francesco" uniqKey="Zaccanti F" first="Francesco" last="Zaccanti">Francesco Zaccanti</name>
<affiliation>
<nlm:aff id="a7">
<institution>Marine Science Group, Department of Biological, Geological and Environmental Sciences, Section of Biology, University of Bologna</institution>
, Via F. Selmi 3, 40126 Bologna,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Levy, Oren" sort="Levy, Oren" uniqKey="Levy O" first="Oren" last="Levy">Oren Levy</name>
<affiliation>
<nlm:aff id="a8">
<institution>The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University</institution>
, Ramat-Gan 52900,
<country>Israel</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dubinsky, Zvy" sort="Dubinsky, Zvy" uniqKey="Dubinsky Z" first="Zvy" last="Dubinsky">Zvy Dubinsky</name>
<affiliation>
<nlm:aff id="a8">
<institution>The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University</institution>
, Ramat-Gan 52900,
<country>Israel</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kaandorp, Jaap A" sort="Kaandorp, Jaap A" uniqKey="Kaandorp J" first="Jaap A." last="Kaandorp">Jaap A. Kaandorp</name>
<affiliation>
<nlm:aff id="a9">
<institution>Section Computational Science, Faculty of Science, University of Amsterdam</institution>
, Science Park 904, room C3.147, 1090 GE Amsterdam,
<country>The Netherlands</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Konglerd, Pirom" sort="Konglerd, Pirom" uniqKey="Konglerd P" first="Pirom" last="Konglerd">Pirom Konglerd</name>
<affiliation>
<nlm:aff id="a9">
<institution>Section Computational Science, Faculty of Science, University of Amsterdam</institution>
, Science Park 904, room C3.147, 1090 GE Amsterdam,
<country>The Netherlands</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hammel, Jorg U" sort="Hammel, Jorg U" uniqKey="Hammel J" first="Jörg U." last="Hammel">Jörg U. Hammel</name>
<affiliation>
<nlm:aff id="a10">
<institution>Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Outstation at DESY</institution>
, Building 25c Notkestr. 85, D-22607 Hamburg,
<country>Germany</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dauphin, Yannicke" sort="Dauphin, Yannicke" uniqKey="Dauphin Y" first="Yannicke" last="Dauphin">Yannicke Dauphin</name>
<affiliation>
<nlm:aff id="a11">
<institution>Micropaléontologie, UFR TEB Université P. & M. Curie</institution>
, 75252 Paris,
<country>France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cuif, Jean Pierre" sort="Cuif, Jean Pierre" uniqKey="Cuif J" first="Jean-Pierre" last="Cuif">Jean-Pierre Cuif</name>
<affiliation>
<nlm:aff id="a11">
<institution>Micropaléontologie, UFR TEB Université P. & M. Curie</institution>
, 75252 Paris,
<country>France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Weaver, James C" sort="Weaver, James C" uniqKey="Weaver J" first="James C." last="Weaver">James C. Weaver</name>
<affiliation>
<nlm:aff id="a12">
<institution>Wyss Institute for Biologically Inspired Engineering at Harvard University</institution>
, 60 Oxford Street, Cambridge, Massachusetts 02138,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fabricius, Katharina E" sort="Fabricius, Katharina E" uniqKey="Fabricius K" first="Katharina E." last="Fabricius">Katharina E. Fabricius</name>
<affiliation>
<nlm:aff id="a13">
<institution>Australian Institute of Marine Science</institution>
, PMB 3, Townsville, 4810 Queensland,
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wagermaier, Wolfgang" sort="Wagermaier, Wolfgang" uniqKey="Wagermaier W" first="Wolfgang" last="Wagermaier">Wolfgang Wagermaier</name>
<affiliation>
<nlm:aff id="a14">
<institution>Department of Biomaterials, Max Planck Institute of Colloids and Interfaces</institution>
, 14424 Potsdam,
<country>Germany</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fratzl, Peter" sort="Fratzl, Peter" uniqKey="Fratzl P" first="Peter" last="Fratzl">Peter Fratzl</name>
<affiliation>
<nlm:aff id="a14">
<institution>Department of Biomaterials, Max Planck Institute of Colloids and Interfaces</institution>
, 14424 Potsdam,
<country>Germany</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Falini, Giuseppe" sort="Falini, Giuseppe" uniqKey="Falini G" first="Giuseppe" last="Falini">Giuseppe Falini</name>
<affiliation>
<nlm:aff id="a5">
<institution>Department of Chemistry ‘G. Ciamician', University of Bologna</institution>
, Via F. Selmi 2, 40126 Bologna,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Goffredo, Stefano" sort="Goffredo, Stefano" uniqKey="Goffredo S" first="Stefano" last="Goffredo">Stefano Goffredo</name>
<affiliation>
<nlm:aff id="a7">
<institution>Marine Science Group, Department of Biological, Geological and Environmental Sciences, Section of Biology, University of Bologna</institution>
, Via F. Selmi 3, 40126 Bologna,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26183259</idno>
<idno type="pmc">4518299</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4518299</idno>
<idno type="RBID">PMC:4518299</idno>
<idno type="doi">10.1038/ncomms8785</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000746</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000746</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Gains and losses of coral skeletal porosity changes with ocean acidification acclimation</title>
<author>
<name sortKey="Fantazzini, Paola" sort="Fantazzini, Paola" uniqKey="Fantazzini P" first="Paola" last="Fantazzini">Paola Fantazzini</name>
<affiliation>
<nlm:aff id="a1">
<institution>Department of Physics and Astronomy, University of Bologna</institution>
, Viale Berti Pichat 6/2, 40127 Bologna,
<country>Italy</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">
<institution>Centro Enrico Fermi</institution>
, Piazza del Viminale 1, 00184 Rome,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mengoli, Stefano" sort="Mengoli, Stefano" uniqKey="Mengoli S" first="Stefano" last="Mengoli">Stefano Mengoli</name>
<affiliation>
<nlm:aff id="a3">
<institution>Department of Management, University of Bologna</institution>
, Via Capo di Lucca 34, 40126 Bologna,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pasquini, Luca" sort="Pasquini, Luca" uniqKey="Pasquini L" first="Luca" last="Pasquini">Luca Pasquini</name>
<affiliation>
<nlm:aff id="a1">
<institution>Department of Physics and Astronomy, University of Bologna</institution>
, Viale Berti Pichat 6/2, 40127 Bologna,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bortolotti, Villiam" sort="Bortolotti, Villiam" uniqKey="Bortolotti V" first="Villiam" last="Bortolotti">Villiam Bortolotti</name>
<affiliation>
<nlm:aff id="a4">
<institution>Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna</institution>
, Via Terracini 28, 40131 Bologna,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brizi, Leonardo" sort="Brizi, Leonardo" uniqKey="Brizi L" first="Leonardo" last="Brizi">Leonardo Brizi</name>
<affiliation>
<nlm:aff id="a1">
<institution>Department of Physics and Astronomy, University of Bologna</institution>
, Viale Berti Pichat 6/2, 40127 Bologna,
<country>Italy</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">
<institution>Centro Enrico Fermi</institution>
, Piazza del Viminale 1, 00184 Rome,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mariani, Manuel" sort="Mariani, Manuel" uniqKey="Mariani M" first="Manuel" last="Mariani">Manuel Mariani</name>
<affiliation>
<nlm:aff id="a1">
<institution>Department of Physics and Astronomy, University of Bologna</institution>
, Viale Berti Pichat 6/2, 40127 Bologna,
<country>Italy</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">
<institution>Centro Enrico Fermi</institution>
, Piazza del Viminale 1, 00184 Rome,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Di Giosia, Matteo" sort="Di Giosia, Matteo" uniqKey="Di Giosia M" first="Matteo" last="Di Giosia">Matteo Di Giosia</name>
<affiliation>
<nlm:aff id="a5">
<institution>Department of Chemistry ‘G. Ciamician', University of Bologna</institution>
, Via F. Selmi 2, 40126 Bologna,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fermani, Simona" sort="Fermani, Simona" uniqKey="Fermani S" first="Simona" last="Fermani">Simona Fermani</name>
<affiliation>
<nlm:aff id="a5">
<institution>Department of Chemistry ‘G. Ciamician', University of Bologna</institution>
, Via F. Selmi 2, 40126 Bologna,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Capaccioni, Bruno" sort="Capaccioni, Bruno" uniqKey="Capaccioni B" first="Bruno" last="Capaccioni">Bruno Capaccioni</name>
<affiliation>
<nlm:aff id="a6">
<institution>Department of Biological, Geological and Environmental Sciences, Section of Geology, University of Bologna</institution>
, Piazza di Porta S. Donato 1, 40126 Bologna,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Caroselli, Erik" sort="Caroselli, Erik" uniqKey="Caroselli E" first="Erik" last="Caroselli">Erik Caroselli</name>
<affiliation>
<nlm:aff id="a7">
<institution>Marine Science Group, Department of Biological, Geological and Environmental Sciences, Section of Biology, University of Bologna</institution>
, Via F. Selmi 3, 40126 Bologna,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Prada, Fiorella" sort="Prada, Fiorella" uniqKey="Prada F" first="Fiorella" last="Prada">Fiorella Prada</name>
<affiliation>
<nlm:aff id="a7">
<institution>Marine Science Group, Department of Biological, Geological and Environmental Sciences, Section of Biology, University of Bologna</institution>
, Via F. Selmi 3, 40126 Bologna,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zaccanti, Francesco" sort="Zaccanti, Francesco" uniqKey="Zaccanti F" first="Francesco" last="Zaccanti">Francesco Zaccanti</name>
<affiliation>
<nlm:aff id="a7">
<institution>Marine Science Group, Department of Biological, Geological and Environmental Sciences, Section of Biology, University of Bologna</institution>
, Via F. Selmi 3, 40126 Bologna,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Levy, Oren" sort="Levy, Oren" uniqKey="Levy O" first="Oren" last="Levy">Oren Levy</name>
<affiliation>
<nlm:aff id="a8">
<institution>The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University</institution>
, Ramat-Gan 52900,
<country>Israel</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dubinsky, Zvy" sort="Dubinsky, Zvy" uniqKey="Dubinsky Z" first="Zvy" last="Dubinsky">Zvy Dubinsky</name>
<affiliation>
<nlm:aff id="a8">
<institution>The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University</institution>
, Ramat-Gan 52900,
<country>Israel</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kaandorp, Jaap A" sort="Kaandorp, Jaap A" uniqKey="Kaandorp J" first="Jaap A." last="Kaandorp">Jaap A. Kaandorp</name>
<affiliation>
<nlm:aff id="a9">
<institution>Section Computational Science, Faculty of Science, University of Amsterdam</institution>
, Science Park 904, room C3.147, 1090 GE Amsterdam,
<country>The Netherlands</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Konglerd, Pirom" sort="Konglerd, Pirom" uniqKey="Konglerd P" first="Pirom" last="Konglerd">Pirom Konglerd</name>
<affiliation>
<nlm:aff id="a9">
<institution>Section Computational Science, Faculty of Science, University of Amsterdam</institution>
, Science Park 904, room C3.147, 1090 GE Amsterdam,
<country>The Netherlands</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hammel, Jorg U" sort="Hammel, Jorg U" uniqKey="Hammel J" first="Jörg U." last="Hammel">Jörg U. Hammel</name>
<affiliation>
<nlm:aff id="a10">
<institution>Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Outstation at DESY</institution>
, Building 25c Notkestr. 85, D-22607 Hamburg,
<country>Germany</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dauphin, Yannicke" sort="Dauphin, Yannicke" uniqKey="Dauphin Y" first="Yannicke" last="Dauphin">Yannicke Dauphin</name>
<affiliation>
<nlm:aff id="a11">
<institution>Micropaléontologie, UFR TEB Université P. & M. Curie</institution>
, 75252 Paris,
<country>France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cuif, Jean Pierre" sort="Cuif, Jean Pierre" uniqKey="Cuif J" first="Jean-Pierre" last="Cuif">Jean-Pierre Cuif</name>
<affiliation>
<nlm:aff id="a11">
<institution>Micropaléontologie, UFR TEB Université P. & M. Curie</institution>
, 75252 Paris,
<country>France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Weaver, James C" sort="Weaver, James C" uniqKey="Weaver J" first="James C." last="Weaver">James C. Weaver</name>
<affiliation>
<nlm:aff id="a12">
<institution>Wyss Institute for Biologically Inspired Engineering at Harvard University</institution>
, 60 Oxford Street, Cambridge, Massachusetts 02138,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fabricius, Katharina E" sort="Fabricius, Katharina E" uniqKey="Fabricius K" first="Katharina E." last="Fabricius">Katharina E. Fabricius</name>
<affiliation>
<nlm:aff id="a13">
<institution>Australian Institute of Marine Science</institution>
, PMB 3, Townsville, 4810 Queensland,
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wagermaier, Wolfgang" sort="Wagermaier, Wolfgang" uniqKey="Wagermaier W" first="Wolfgang" last="Wagermaier">Wolfgang Wagermaier</name>
<affiliation>
<nlm:aff id="a14">
<institution>Department of Biomaterials, Max Planck Institute of Colloids and Interfaces</institution>
, 14424 Potsdam,
<country>Germany</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fratzl, Peter" sort="Fratzl, Peter" uniqKey="Fratzl P" first="Peter" last="Fratzl">Peter Fratzl</name>
<affiliation>
<nlm:aff id="a14">
<institution>Department of Biomaterials, Max Planck Institute of Colloids and Interfaces</institution>
, 14424 Potsdam,
<country>Germany</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Falini, Giuseppe" sort="Falini, Giuseppe" uniqKey="Falini G" first="Giuseppe" last="Falini">Giuseppe Falini</name>
<affiliation>
<nlm:aff id="a5">
<institution>Department of Chemistry ‘G. Ciamician', University of Bologna</institution>
, Via F. Selmi 2, 40126 Bologna,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Goffredo, Stefano" sort="Goffredo, Stefano" uniqKey="Goffredo S" first="Stefano" last="Goffredo">Stefano Goffredo</name>
<affiliation>
<nlm:aff id="a7">
<institution>Marine Science Group, Department of Biological, Geological and Environmental Sciences, Section of Biology, University of Bologna</institution>
, Via F. Selmi 3, 40126 Bologna,
<country>Italy</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature Communications</title>
<idno type="eISSN">2041-1723</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Ocean acidification is predicted to impact ecosystems reliant on calcifying organisms, potentially reducing the socioeconomic benefits these habitats provide. Here we investigate the acclimation potential of stony corals living along a pH gradient caused by a Mediterranean CO
<sub>2</sub>
vent that serves as a natural long-term experimental setting. We show that in response to reduced skeletal mineralization at lower pH, corals increase their skeletal macroporosity (features >10 μm) in order to maintain constant linear extension rate, an important criterion for reproductive output. At the nanoscale, the coral skeleton's structural features are not altered. However, higher skeletal porosity, and reduced bulk density and stiffness may contribute to reduce population density and increase damage susceptibility under low pH conditions. Based on these observations, the almost universally employed measure of coral biomineralization, the rate of linear extension, might not be a reliable metric for assessing coral health and resilience in a warming and acidifying ocean.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Stocker, T F" uniqKey="Stocker T">T. F. Stocker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sabine, C L" uniqKey="Sabine C">C. L. Sabine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Six, K D" uniqKey="Six K">K. D. Six</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodolfo Metalpa, R" uniqKey="Rodolfo Metalpa R">R. Rodolfo-Metalpa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hoegh Guldberg, O" uniqKey="Hoegh Guldberg O">O. Hoegh-Guldberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dove, S" uniqKey="Dove S">S. Dove</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pandolfi, J M" uniqKey="Pandolfi J">J. M. Pandolfi</name>
</author>
<author>
<name sortKey="Connolly, S R" uniqKey="Connolly S">S. R. Connolly</name>
</author>
<author>
<name sortKey="Marshall, D J" uniqKey="Marshall D">D. J. Marshall</name>
</author>
<author>
<name sortKey="Cohen, A L" uniqKey="Cohen A">A. L. Cohen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Orr, J C" uniqKey="Orr J">J. C. Orr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Touratier, F" uniqKey="Touratier F">F. Touratier</name>
</author>
<author>
<name sortKey="Goyet, C" uniqKey="Goyet C">C. Goyet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yilmaz, A" uniqKey="Yilmaz A">A. Yilmaz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Calvo, E" uniqKey="Calvo E">E. Calvo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ziveri, P" uniqKey="Ziveri P">P. Ziveri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goffredo, S" uniqKey="Goffredo S">S. Goffredo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fantazzini, P" uniqKey="Fantazzini P">P. Fantazzini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Laine, J" uniqKey="Laine J">J. Laine</name>
</author>
<author>
<name sortKey="Labady, M" uniqKey="Labady M">M. Labady</name>
</author>
<author>
<name sortKey="Albornoz, A" uniqKey="Albornoz A">A. Albornoz</name>
</author>
<author>
<name sortKey="Yunes, S" uniqKey="Yunes S">S. Yunes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Caroselli, E" uniqKey="Caroselli E">E. Caroselli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carricart Ganivet, J P" uniqKey="Carricart Ganivet J">J. P. Carricart-Ganivet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crook, E D" uniqKey="Crook E">E. D. Crook</name>
</author>
<author>
<name sortKey="Cohen, A L" uniqKey="Cohen A">A. L. Cohen</name>
</author>
<author>
<name sortKey="Rebolledo Vieyra, M" uniqKey="Rebolledo Vieyra M">M. Rebolledo-Vieyra</name>
</author>
<author>
<name sortKey="Hernandez, L" uniqKey="Hernandez L">L. Hernandez</name>
</author>
<author>
<name sortKey="Paytan, A" uniqKey="Paytan A">A. Paytan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iglesias Prieto, R" uniqKey="Iglesias Prieto R">R. Iglesias-Prieto</name>
</author>
<author>
<name sortKey="Galindo Martinez, C T" uniqKey="Galindo Martinez C">C. T. Galindo-Martinez</name>
</author>
<author>
<name sortKey="Enriquez, S" uniqKey="Enriquez S">S. Enriquez</name>
</author>
<author>
<name sortKey="Carricart Ganivet, J P" uniqKey="Carricart Ganivet J">J. P. Carricart-Ganivet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goffredo, S" uniqKey="Goffredo S">S. Goffredo</name>
</author>
<author>
<name sortKey="Caroselli, E" uniqKey="Caroselli E">E. Caroselli</name>
</author>
<author>
<name sortKey="Mattioli, G" uniqKey="Mattioli G">G. Mattioli</name>
</author>
<author>
<name sortKey="Pignotti, E" uniqKey="Pignotti E">E. Pignotti</name>
</author>
<author>
<name sortKey="Zaccanti, F" uniqKey="Zaccanti F">F. Zaccanti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goffredo, S" uniqKey="Goffredo S">S. Goffredo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goffredo, S" uniqKey="Goffredo S">S. Goffredo</name>
</author>
<author>
<name sortKey="Caroselli, E" uniqKey="Caroselli E">E. Caroselli</name>
</author>
<author>
<name sortKey="Mattioli, G" uniqKey="Mattioli G">G. Mattioli</name>
</author>
<author>
<name sortKey="Pignotti, E" uniqKey="Pignotti E">E. Pignotti</name>
</author>
<author>
<name sortKey="Zaccanti, F" uniqKey="Zaccanti F">F. Zaccanti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Airi, V" uniqKey="Airi V">V. Airi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wooldridge, S A" uniqKey="Wooldridge S">S. A. Wooldridge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Capaccioni, B" uniqKey="Capaccioni B">B. Capaccioni</name>
</author>
<author>
<name sortKey="Tassi, F" uniqKey="Tassi F">F. Tassi</name>
</author>
<author>
<name sortKey="Vaselli, O" uniqKey="Vaselli O">O. Vaselli</name>
</author>
<author>
<name sortKey="Tedesco, D" uniqKey="Tedesco D">D. Tedesco</name>
</author>
<author>
<name sortKey="Poreda, R" uniqKey="Poreda R">R. Poreda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zibrowius, H Les" uniqKey="Zibrowius H">H. Les Zibrowius</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jokiel, R L" uniqKey="Jokiel R">R. L. Jokiel</name>
</author>
<author>
<name sortKey="Maragos, J E" uniqKey="Maragos J">J. E. Maragos</name>
</author>
<author>
<name sortKey="Franzisket, L" uniqKey="Franzisket L">L. Franzisket</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davies, P S" uniqKey="Davies P">P. S. Davies</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Walsh, S J" uniqKey="Walsh S">S.-J. Walsh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Manger, G E" uniqKey="Manger G">G. E. Manger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Borgia, G C" uniqKey="Borgia G">G. C. Borgia</name>
</author>
<author>
<name sortKey="Brown, R J S" uniqKey="Brown R">R. J. S. Brown</name>
</author>
<author>
<name sortKey="Fantazzini, P" uniqKey="Fantazzini P">P. Fantazzini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bortolotti, V" uniqKey="Bortolotti V">V. Bortolotti</name>
</author>
<author>
<name sortKey="Brown, R J S" uniqKey="Brown R">R. J. S. Brown</name>
</author>
<author>
<name sortKey="Fantazzini, P" uniqKey="Fantazzini P">P. Fantazzini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cowan, B" uniqKey="Cowan B">B. Cowan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goffredo, S" uniqKey="Goffredo S">S. Goffredo</name>
</author>
<author>
<name sortKey="Mattioli, G" uniqKey="Mattioli G">G. Mattioli</name>
</author>
<author>
<name sortKey="Zaccanti, F" uniqKey="Zaccanti F">F. Zaccanti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lough, J M" uniqKey="Lough J">J. M. Lough</name>
</author>
<author>
<name sortKey="Barnes, D J" uniqKey="Barnes D">D. J. Barnes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schindelin, J" uniqKey="Schindelin J">J. Schindelin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oliver, W C" uniqKey="Oliver W">W. C. Oliver</name>
</author>
<author>
<name sortKey="Pharr, G M" uniqKey="Pharr G">G. M. Pharr</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Nat Commun</journal-id>
<journal-id journal-id-type="iso-abbrev">Nat Commun</journal-id>
<journal-title-group>
<journal-title>Nature Communications</journal-title>
</journal-title-group>
<issn pub-type="epub">2041-1723</issn>
<publisher>
<publisher-name>Nature Pub. Group</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26183259</article-id>
<article-id pub-id-type="pmc">4518299</article-id>
<article-id pub-id-type="pii">ncomms8785</article-id>
<article-id pub-id-type="doi">10.1038/ncomms8785</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Gains and losses of coral skeletal porosity changes with ocean acidification acclimation</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Fantazzini</surname>
<given-names>Paola</given-names>
</name>
<xref ref-type="corresp" rid="c1">a</xref>
<xref ref-type="aff" rid="a1">1</xref>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mengoli</surname>
<given-names>Stefano</given-names>
</name>
<xref ref-type="aff" rid="a3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Pasquini</surname>
<given-names>Luca</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bortolotti</surname>
<given-names>Villiam</given-names>
</name>
<xref ref-type="aff" rid="a4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Brizi</surname>
<given-names>Leonardo</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mariani</surname>
<given-names>Manuel</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Di Giosia</surname>
<given-names>Matteo</given-names>
</name>
<xref ref-type="aff" rid="a5">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Fermani</surname>
<given-names>Simona</given-names>
</name>
<xref ref-type="aff" rid="a5">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Capaccioni</surname>
<given-names>Bruno</given-names>
</name>
<xref ref-type="aff" rid="a6">6</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Caroselli</surname>
<given-names>Erik</given-names>
</name>
<xref ref-type="aff" rid="a7">7</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Prada</surname>
<given-names>Fiorella</given-names>
</name>
<xref ref-type="aff" rid="a7">7</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zaccanti</surname>
<given-names>Francesco</given-names>
</name>
<xref ref-type="aff" rid="a7">7</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Levy</surname>
<given-names>Oren</given-names>
</name>
<xref ref-type="aff" rid="a8">8</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dubinsky</surname>
<given-names>Zvy</given-names>
</name>
<xref ref-type="aff" rid="a8">8</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kaandorp</surname>
<given-names>Jaap A.</given-names>
</name>
<xref ref-type="aff" rid="a9">9</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Konglerd</surname>
<given-names>Pirom</given-names>
</name>
<xref ref-type="aff" rid="a9">9</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hammel</surname>
<given-names>Jörg U.</given-names>
</name>
<xref ref-type="aff" rid="a10">10</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dauphin</surname>
<given-names>Yannicke</given-names>
</name>
<xref ref-type="aff" rid="a11">11</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Cuif</surname>
<given-names>Jean-Pierre</given-names>
</name>
<xref ref-type="aff" rid="a11">11</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Weaver</surname>
<given-names>James C.</given-names>
</name>
<xref ref-type="aff" rid="a12">12</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Fabricius</surname>
<given-names>Katharina E.</given-names>
</name>
<xref ref-type="aff" rid="a13">13</xref>
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0001-7671-4358</contrib-id>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wagermaier</surname>
<given-names>Wolfgang</given-names>
</name>
<xref ref-type="aff" rid="a14">14</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Fratzl</surname>
<given-names>Peter</given-names>
</name>
<xref ref-type="aff" rid="a14">14</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Falini</surname>
<given-names>Giuseppe</given-names>
</name>
<xref ref-type="corresp" rid="c2">b</xref>
<xref ref-type="aff" rid="a5">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Goffredo</surname>
<given-names>Stefano</given-names>
</name>
<xref ref-type="corresp" rid="c3">c</xref>
<xref ref-type="aff" rid="a7">7</xref>
</contrib>
<aff id="a1">
<label>1</label>
<institution>Department of Physics and Astronomy, University of Bologna</institution>
, Viale Berti Pichat 6/2, 40127 Bologna,
<country>Italy</country>
</aff>
<aff id="a2">
<label>2</label>
<institution>Centro Enrico Fermi</institution>
, Piazza del Viminale 1, 00184 Rome,
<country>Italy</country>
</aff>
<aff id="a3">
<label>3</label>
<institution>Department of Management, University of Bologna</institution>
, Via Capo di Lucca 34, 40126 Bologna,
<country>Italy</country>
</aff>
<aff id="a4">
<label>4</label>
<institution>Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna</institution>
, Via Terracini 28, 40131 Bologna,
<country>Italy</country>
</aff>
<aff id="a5">
<label>5</label>
<institution>Department of Chemistry ‘G. Ciamician', University of Bologna</institution>
, Via F. Selmi 2, 40126 Bologna,
<country>Italy</country>
</aff>
<aff id="a6">
<label>6</label>
<institution>Department of Biological, Geological and Environmental Sciences, Section of Geology, University of Bologna</institution>
, Piazza di Porta S. Donato 1, 40126 Bologna,
<country>Italy</country>
</aff>
<aff id="a7">
<label>7</label>
<institution>Marine Science Group, Department of Biological, Geological and Environmental Sciences, Section of Biology, University of Bologna</institution>
, Via F. Selmi 3, 40126 Bologna,
<country>Italy</country>
</aff>
<aff id="a8">
<label>8</label>
<institution>The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University</institution>
, Ramat-Gan 52900,
<country>Israel</country>
</aff>
<aff id="a9">
<label>9</label>
<institution>Section Computational Science, Faculty of Science, University of Amsterdam</institution>
, Science Park 904, room C3.147, 1090 GE Amsterdam,
<country>The Netherlands</country>
</aff>
<aff id="a10">
<label>10</label>
<institution>Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Outstation at DESY</institution>
, Building 25c Notkestr. 85, D-22607 Hamburg,
<country>Germany</country>
</aff>
<aff id="a11">
<label>11</label>
<institution>Micropaléontologie, UFR TEB Université P. & M. Curie</institution>
, 75252 Paris,
<country>France</country>
</aff>
<aff id="a12">
<label>12</label>
<institution>Wyss Institute for Biologically Inspired Engineering at Harvard University</institution>
, 60 Oxford Street, Cambridge, Massachusetts 02138,
<country>USA</country>
</aff>
<aff id="a13">
<label>13</label>
<institution>Australian Institute of Marine Science</institution>
, PMB 3, Townsville, 4810 Queensland,
<country>Australia</country>
</aff>
<aff id="a14">
<label>14</label>
<institution>Department of Biomaterials, Max Planck Institute of Colloids and Interfaces</institution>
, 14424 Potsdam,
<country>Germany</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="c1">
<label>a</label>
<email>paola.fantazzini@unibo.it</email>
</corresp>
<corresp id="c2">
<label>b</label>
<email>giuseppe.falini@unibo.it</email>
</corresp>
<corresp id="c3">
<label>c</label>
<email>s.goffredo@unibo.it</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>17</day>
<month>07</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="collection">
<year>2015</year>
</pub-date>
<volume>6</volume>
<elocation-id>7785</elocation-id>
<history>
<date date-type="received">
<day>30</day>
<month>12</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>10</day>
<month>06</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</copyright-statement>
<copyright-year>2015</copyright-year>
<copyright-holder>Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/4.0/">
<pmc-comment>author-paid</pmc-comment>
<license-p>This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
</license-p>
</license>
</permissions>
<abstract>
<p>Ocean acidification is predicted to impact ecosystems reliant on calcifying organisms, potentially reducing the socioeconomic benefits these habitats provide. Here we investigate the acclimation potential of stony corals living along a pH gradient caused by a Mediterranean CO
<sub>2</sub>
vent that serves as a natural long-term experimental setting. We show that in response to reduced skeletal mineralization at lower pH, corals increase their skeletal macroporosity (features >10 μm) in order to maintain constant linear extension rate, an important criterion for reproductive output. At the nanoscale, the coral skeleton's structural features are not altered. However, higher skeletal porosity, and reduced bulk density and stiffness may contribute to reduce population density and increase damage susceptibility under low pH conditions. Based on these observations, the almost universally employed measure of coral biomineralization, the rate of linear extension, might not be a reliable metric for assessing coral health and resilience in a warming and acidifying ocean.</p>
</abstract>
<abstract abstract-type="web-summary">
<p>
<inline-graphic id="i1" xlink:href="ncomms8785-i1.jpg"></inline-graphic>
Global warming and ocean acidification impact coral ecosystems. Here, the authors show higher skeletal porosity and reduced bulk density at lower pH in corals living along a natural pH gradient in the Mediterranean, which may contribute to reduce population density and increase damage susceptibility.</p>
</abstract>
</article-meta>
</front>
<body>
<p>Climate change is among the biggest threats to the health of marine ecosystems. Rising atmospheric carbon dioxide partial pressure (pCO
<sub>2</sub>
)
<xref ref-type="bibr" rid="b1">1</xref>
increases ocean surface pCO
<sub>2</sub>
due to CO
<sub>2</sub>
diffusion across the air-water interface, leading to ocean acidification (OA)
<xref ref-type="bibr" rid="b2">2</xref>
. Since global warming and OA are coupled and are predicted to act synergistically
<xref ref-type="bibr" rid="b3">3</xref>
<xref ref-type="bibr" rid="b4">4</xref>
, the future health of marine ecosystems and their corresponding long-term economic impacts on human coastal populations remain uncertain
<xref ref-type="bibr" rid="b5">5</xref>
<xref ref-type="bibr" rid="b6">6</xref>
<xref ref-type="bibr" rid="b7">7</xref>
. It is therefore of great interest to understand how increasing atmospheric CO
<sub>2</sub>
concentrations will affect these marine habitats and the species that inhabit them.</p>
<p>Since the early 1800s, ocean pH has decreased from 8.2 by
<italic>ca.</italic>
0.1 U
<xref ref-type="bibr" rid="b8">8</xref>
and, if CO
<sub>2</sub>
emissions continue at their current rates, the average sea surface pH is predicted to drop to 7.8 by the year 2100 (ref.
<xref ref-type="bibr" rid="b1">1</xref>
). The Mediterranean Sea, with its closed circulation patterns and limited water exchange with the adjacent Atlantic Ocean, has already undergone a larger decrease in surface pH compared with the global average
<xref ref-type="bibr" rid="b9">9</xref>
, making it an ideal site for OA studies
<xref ref-type="bibr" rid="b10">10</xref>
<xref ref-type="bibr" rid="b11">11</xref>
<xref ref-type="bibr" rid="b12">12</xref>
<xref ref-type="bibr" rid="b13">13</xref>
.</p>
<p>Near Panarea Island, off the southwestern coast of Italy, lies a series of active volcanic vents in the seabed releasing CO
<sub>2</sub>
emissions that acidify the surrounding seawater, making this location an ideal natural laboratory for OA studies. The underwater CO
<sub>2</sub>
emissions generate a stable pH gradient with levels matching several Intergovernmental Panel on Climate Change (IPCC) sea surface pH predictions associated with different atmospheric CO
<sub>2</sub>
emission scenarios for the end of the century
<xref ref-type="bibr" rid="b1">1</xref>
.</p>
<p>The present study investigates the effects of environmental pH on skeletal structures and growth at multiple length scales in the solitary scleractinian coral
<italic>Balanop</italic>
<italic>hyllia europaea</italic>
living along the pH gradient. We studied 74 corals of similar age (mean age of 12 years) that had spent their lives at the CO
<sub>2</sub>
-pH gradient. Using a combination of scanning electron microscopy (SEM), atomic force microscopy (AFM), small-angle X-ray scattering (SAXS), micro computed tomography (μCT), nanoindentation, hydrostatic weight measurement and time-domain nuclear magnetic resonance (TD-NMR), we document the skeletal mass, bulk volume, pore volume, porosity, biomineral density, bulk density, hardness, stiffness (ratio between elastic stress and strain), biometry data, net calcification rate and linear extension rate for each coral. Weight measurements combined with TD-NMR data represent a non-destructive technique for quantifying skeletal porosity over length scales spanning from tens of nanometres to tens of micrometres
<xref ref-type="bibr" rid="b14">14</xref>
<xref ref-type="bibr" rid="b15">15</xref>
, whereas μCT analysis permits a detailed large-scale quantitative 3D analysis of skeletal architecture, including the interseptal regions.</p>
<p>We show that in response to depressed calcification at lower pH, corals increase their skeletal porosity maintaining constant linear extension rate, which is important for reaching critical size at sexual maturity. However, higher skeletal porosity and reduced bulk density and stiffness may contribute to reduced mechanical strength, increasing damage susceptibility, which could result in increased mortality in an acidic environment.</p>
<sec disp-level="1" sec-type="results">
<title>Results</title>
<sec disp-level="2">
<title>Study site and seawater carbonate chemistry</title>
<p>The four sites around the main vent are reported in
<xref ref-type="fig" rid="f1">Fig. 1</xref>
. Site 1 (S1) has an average total scale pH (pH
<sub>TS</sub>
) of 8.1, equivalent to the average surface pH of modern oceans. S2's average pH
<sub>TS</sub>
of 7.9 aligns with IPCC's predictions of a conservative CO
<sub>2</sub>
emissions scenario (Representative Concentration Pathway (RCP6.0)), and the average pH
<sub>TS</sub>
of 7.7 for S3 fits the predictions of the ‘business-as-usual' CO
<sub>2</sub>
emissions scenario (RCP8.5). Since no corals were found at S4 (within the vent crater, pH
<sub>TS</sub>
7.4), only S1–3, which had growing coral populations and pH
<sub>TS</sub>
values ranging from 8.1 to 7.7, were included in the present study. Of the measured parameters at the three sites along the pH gradient (pH
<sub>TS</sub>
, total alkalinity, temperature and salinity), only pH
<sub>TS</sub>
differed significantly across sites (
<italic>N</italic>
=103–110;
<italic>P</italic>
<0.001, Kruskal–Wallis
<italic>χ</italic>
<sup>2</sup>
-test). The changing pH was accompanied by significant shifts in carbonate–bicarbonate equilibria, with aragonite saturation (Ω
<sub>arag</sub>
) decreasing by >30% from S1 to S3 (
<xref ref-type="fig" rid="f1">Fig. 1</xref>
,
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 1</xref>
,
<xref ref-type="supplementary-material" rid="S1">Supplementary Note 1</xref>
).</p>
</sec>
<sec disp-level="2">
<title>Multi-scale analysis of coral skeletal properties</title>
<p>Combined results of SEM, μCT, AFM and TD-NMR skeletal analyses of corals growing at each study site revealed the detailed, multi-scale structural organization of the skeletons of
<italic>B. europaea</italic>
(
<xref ref-type="fig" rid="f2">Fig. 2</xref>
,
<xref ref-type="supplementary-material" rid="S1">Supplementary Figs 1–3</xref>
).</p>
<p>At the macroscale (relating to feature sizes >10 μm), linear extension rate (averaging
<italic>ca.</italic>
1 mm per year) did not vary among sites (
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 2</xref>
), whereas net calcification rate (
<italic>N</italic>
=44;
<italic>P</italic>
<0.01, robust
<italic>t</italic>
-statistics test) and skeletal bulk density (
<italic>N</italic>
=44,
<italic>P</italic>
<0.001, robust
<italic>t</italic>
-statistics test) significantly declined (
<xref ref-type="fig" rid="f3">Fig. 3</xref>
,
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 3</xref>
) and skeletal porosity and macroscale porosity increased (
<italic>N</italic>
=44;
<italic>P</italic>
<0.001, robust
<italic>t</italic>
-statistics test,
<xref ref-type="fig" rid="f3">Fig. 3</xref>
,
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 1</xref>
, and
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 3</xref>
). The differences between S1 and S3 were
<italic>ca.</italic>
−18% for net calcification rate,
<italic>ca.</italic>
−7% for bulk density,
<italic>ca.</italic>
+21% for porosity and
<italic>ca.</italic>
+30% for macroscale porosity (
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 2</xref>
). The corallite interseptal volume fraction from μCT (
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 4</xref>
) showed a difference among sites (
<italic>N</italic>
=30;
<italic>P</italic>
<0.05, F and Kruskal–Wallis
<italic>χ</italic>
<sup>2</sup>
-tests,
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 4</xref>
) but no significant dependence on pH (
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 5</xref>
). The biometric data for the corallites (
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 5</xref>
) did not vary among sites.</p>
<p>At the micro/macroscale, skeletal stiffness significantly declined with decreasing pH (
<italic>n</italic>
=122;
<italic>P</italic>
<0.001, robust
<italic>t</italic>
-statistics test,
<xref ref-type="fig" rid="f3">Fig. 3</xref>
,
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 6</xref>
,
<xref ref-type="supplementary-material" rid="S1">Supplementary Tables 4 and 6</xref>
), whereas skeletal microscale porosity did not vary among sites (
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 2</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 1</xref>
).</p>
<p>At smaller length scales (at the micro and nanoscales), SEM and AFM showed that the organization of the aragonite fibre bundles (
<xref ref-type="fig" rid="f2">Fig. 2c,g,k</xref>
) and the morphology and packing of the constituent mineral grains (
<xref ref-type="fig" rid="f2">Fig. 2d,h,l</xref>
) appeared similar among corals from the three different sites, confirming that the basic biomineralization products were not affected by reduced pH
<xref ref-type="bibr" rid="b13">13</xref>
(
<xref ref-type="fig" rid="f2">Fig. 2</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 2</xref>
). Skeletal biomineral hardness did not change among sites (
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 7</xref>
,
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 4</xref>
). Also, skeletal biomineral density values were similar across sites and consistent with those measured in previous studies
<xref ref-type="bibr" rid="b16">16</xref>
(
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 2</xref>
). Similar results were obtained from both SAXS and TD-NMR analyses, which revealed that nanoscale porosity did not change significantly with changing pH (
<xref ref-type="supplementary-material" rid="S1">Supplementary Figs 1e and 8–10</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Tables 2 and 4</xref>
).</p>
<p>The principal component analysis identified three major components: growth, skeletal porosity and biomineral density (
<xref ref-type="supplementary-material" rid="S1">Supplementary Tables 7 and 8</xref>
). Only the first two components depended significantly on pH (
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 9</xref>
).</p>
<p>In summary, skeletal nano and microstructural features, linear extension rate, interseptal volume fraction and corallite biometry of
<italic>B. europaea</italic>
did not change significantly with decreasing pH, despite a clear reduction in net calcification rates. This reduction in net calcification rate was accompanied by an increase in skeletal porosity (
<xref ref-type="fig" rid="f3">Fig. 3f</xref>
,
<italic>N</italic>
=44;
<italic>P</italic>
<0.001, robust
<italic>t</italic>
-statistics test) and a consequent decrease in skeletal bulk density and stiffness.</p>
</sec>
</sec>
<sec disp-level="1" sec-type="discussion">
<title>Discussion</title>
<p>Results of the present study complement previous research on
<italic>B. europaea</italic>
at this same vent site, which revealed no changes in skeletal calcium carbonate polymorph, organic matrix content, aragonite fibre thickness and skeletal hardness in corals growing along the pH gradient
<xref ref-type="bibr" rid="b13">13</xref>
. There was, however, a significant reduction in population density along the pH gradient, decreasing by a factor of 3 with increasing proximity to the vent crater centre (that is, from S1 to S3)
<xref ref-type="bibr" rid="b13">13</xref>
.</p>
<p>
<xref ref-type="fig" rid="f4">Figure 4</xref>
summarizes these results at the ocean, population, macro, micro and nanoscales for
<italic>B. europaea</italic>
. At the macroscale, increasing acidity was associated with a reduction in net calcification rate and a parallel increase in skeletal porosity, coupled with a decrease in skeletal bulk density. Linear extension rate and corallite shape (biometry and interseptal volume fraction) did not depend on pH, probably as a result of the compensation of reduced net calcification rate by increased skeletal porosity. At the micro/macroscale, the declining skeletal stiffness with decreasing pH could be coupled to an increased volume fraction of pores having a size comparable to the indentation area (that is, at the border between the micro and macroscales). At the nanoscale, porosity, biomineral hardness and density were not significantly affected by pH. These results, bolstered by qualitative SEM and AFM analyses, suggest that the ‘building blocks' produced by the biomineralization process are substantially unaffected, but the increase in skeletal porosity is both a gain and a loss for the coral. In fact, in an acidic environment, where the net calcification is depressed, enhanced macroporosity keeps linear extension rate constant, potentially meeting functional reproductive needs (for example, the ability to reach critical size at sexual maturity); however, it also reduces the mechanical strength of the skeletons, increasing damage susceptibility, which could result in increased mortality and the observed population density decline
<xref ref-type="bibr" rid="b13">13</xref>
.</p>
<p>While the results reported here for
<italic>B. europaea</italic>
may not be representative of the generalized response of all coral species to OA, they are consistent with field observations made on other reef-building scleractinians. For example, while maintaining constant skeletal linear extension, decreased rates of calcification and losses in bulk skeletal density as a function of reduced aragonite saturation have been observed in
<italic>Montasraea annularis</italic>
<xref ref-type="bibr" rid="b17">17</xref>
and
<italic>Porites astreoides</italic>
<xref ref-type="bibr" rid="b18">18</xref>
. While low aragonite saturation as a sole driver for the observed reduction in coral calcification has been discussed
<xref ref-type="bibr" rid="b19">19</xref>
, our conclusions regarding a balance between reduced net calcification rate and increased macroporosity to maintain constant linear extension can explain the outcomes of those studies
<xref ref-type="bibr" rid="b17">17</xref>
<xref ref-type="bibr" rid="b18">18</xref>
. In fact bulk density depends both on biomineral density and porosity. Our multi-scale analysis shows that all the skeletal features at the nano and microscales, including biomineral density, are unchanged. The decrease of bulk density with decreasing pH depends on the increase of macroporosity, leaving the linear extension rate constant.</p>
<p>Our findings, together with the well-described detrimental effects of heat stress on the scleractinian zooxanthellate coral
<italic>B. europaea</italic>
<xref ref-type="bibr" rid="b16">16</xref>
<xref ref-type="bibr" rid="b20">20</xref>
<xref ref-type="bibr" rid="b21">21</xref>
<xref ref-type="bibr" rid="b22">22</xref>
<xref ref-type="bibr" rid="b23">23</xref>
, provide several independent and consistent clues regarding the sensitivity of this species to global climate change predicted for the coming decades. Together with results from previous studies
<xref ref-type="bibr" rid="b24">24</xref>
, we demonstrate that the almost universally employed measure of coral biomineralization, namely the rate of linear extension, might not be a reliable metric for assessing coral health and resilience in a warming and acidifying ocean. Indeed, although the coral's ability to maintain linear extension rate and gross skeletal morphology under conditions of decreasing oceanic pH could allow it to reach sexual maturity, it could reduce skeletal resistance to environmental challenges, affecting the long-term survivability of the species.</p>
</sec>
<sec disp-level="1" sec-type="methods">
<title>Methods</title>
<sec disp-level="2">
<title>Study site</title>
<p>Off the southwestern coast of Italy, near the island of Panarea, an area delimited by the islets of Dattilo, Bottaro, Lisca Nera and Lisca Bianca (
<xref ref-type="fig" rid="f1">Fig. 1</xref>
) is characterized by underwater volcanic CO
<sub>2</sub>
vents. The main vent, a crater measuring 20 m × 14 m and ∼10-m deep, generates a persistent column of CO
<sub>2</sub>
bubbles that rise from the seabed to the sea surface. In this hydrothermally stable setting with ambient temperature, CO
<sub>2</sub>
emissions establish a pH gradient that extends ∼34 m from the centre of this crater to its periphery
<xref ref-type="bibr" rid="b13">13</xref>
. Three sites along this pH gradient were chosen for study. Distances (
<italic>d</italic>
) from the main crater centre and mean pH
<sub>TS</sub>
values of the three sites from which corals were collected are: S1 (the control site),
<italic>d</italic>
=34 m, pH
<sub>TS</sub>
=8.07; S2,
<italic>d</italic>
=13 m, pH
<sub>TS</sub>
=7.87; S3,
<italic>d</italic>
=9 m, pH
<sub>TS</sub>
=7.74. Water depth varies from 11.6 m within the crater to 8.8 m at the crater edge (S2) to 9.2 m at the outer margins (S1), where the local pH matches that of the surrounding seawater. The study site has stable hydrothermal–chemical properties
<xref ref-type="bibr" rid="b25">25</xref>
.</p>
</sec>
<sec disp-level="2">
<title>The corals</title>
<p>
<italic>B. europaea</italic>
(
<xref ref-type="fig" rid="f1">Fig. 1</xref>
) is a solitary zooxanthellate scleractinian coral endemic to the Mediterranean Sea found at depths ranging from 0 to 50 m
<xref ref-type="bibr" rid="b26">26</xref>
. Specimens of
<italic>B. europaea</italic>
were randomly collected by SCUBA diving at the three study sites along the pH gradient (26 from S1, 26 from S2 and 22 from S3) between November 2010 and May 2013. This sample size was chosen to limit damage on the natural population, which significantly diminishes in the most acidic sites
<xref ref-type="bibr" rid="b13">13</xref>
, and was considered suitable for properly describing the skeletal properties, as shown in previous studies
<xref ref-type="bibr" rid="b13">13</xref>
<xref ref-type="bibr" rid="b14">14</xref>
. Biometric data were recorded for the specimens (that is, width-to-length, width-to-height and height-to-length ratios,
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 5</xref>
). Nanoindentation, hydrostatic weight measurement, SEM, AFM, SAXS, μCT and TD-NMR analyses were performed on a subsample of specimens from each site.</p>
</sec>
<sec disp-level="2">
<title>Coral sample cleaning</title>
<p>Coral skeletons were submerged in 1% solution of sodium hypochlorite for 3 days to dissolve polyp tissue. After washing with deionized water and drying at 50 °C for 3–4 days, each coral was examined under a binocular microscope to remove fragments of sediment, rock and encrusting organisms
<xref ref-type="bibr" rid="b16">16</xref>
.</p>
</sec>
<sec disp-level="2">
<title>Weight measurements</title>
<p>The buoyant method, usually applied for corals
<xref ref-type="bibr" rid="b27">27</xref>
<xref ref-type="bibr" rid="b28">28</xref>
<xref ref-type="bibr" rid="b29">29</xref>
, was used to measure the total volume occupied by the coral skeleton (called bulk volume,
<italic>V</italic>
<sub>B</sub>
), the bulk density (
<italic>d</italic>
<sub>b</sub>
, ratio of the mass to
<italic>V</italic>
<sub>B</sub>
), the biomineral density (
<italic>d</italic>
<sub>r</sub>
, ratio of the biomineral mass to biomineral volume, excluding pore volume connected to the external surface, also called real density or micro-density) and the apparent porosity (or effective or connected porosity,
<italic>P</italic>
<sub>A</sub>
)
<xref ref-type="bibr" rid="b30">30</xref>
(ratio of the pore volume connected to the external surface (
<italic>V</italic>
<sub>A</sub>
) to
<italic>V</italic>
<sub>B</sub>
). This method is based on the Archimedean principle applied to a specimen after full saturation with the same fluid in which it is submerged (water in our case). It is worth to underline that the pore volume (
<italic>V</italic>
<sub>A</sub>
) measured by the buoyant method is only the volume of the pores that can be saturated with water, that is, connected with the external surface. Pores inside the biomineral that are not connected to the external surface (occluded pores) are not measured. An estimate of the occluded porosity gave a negligible maximum value of ∼3% (in porosity units) (
<xref ref-type="supplementary-material" rid="S1">Supplementary Note 2</xref>
), which was homogeneous among sites. For coherence with coral literature, for the apparent porosity we use the term porosity.</p>
<p>The skeletons were weighed with a precision balance to determine the dry mass (
<italic>m</italic>
) and then placed inside a dryer chamber and evacuated with a rotary mechanical pump down to a vacuum of 10
<sup>−2</sup>
 mbar. After 6 hours, water was gently introduced to fully saturate the samples. The pump was switched off, the chamber was vented to the ambient atmosphere, and the masses of the fully water-saturated samples (
<italic>m</italic>
<sub>s</sub>
) determined. With a hydrostatic balance, the masses of saturated samples fully immersed in water (
<italic>m</italic>
<sub>h</sub>
) were determined. The skeletal parameters were calculated (
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 2</xref>
) by means of the following operational definitions:
<italic>ρ</italic>
<sub>w</sub>
=water density,
<italic>V</italic>
<sub>A</sub>
=(
<italic>m</italic>
<sub>s</sub>
<italic>m</italic>
)/
<italic>ρ</italic>
<sub>w</sub>
;
<italic>V</italic>
<sub>B</sub>
=(
<italic>m</italic>
<sub>s</sub>
<italic>m</italic>
<sub>h</sub>
)/
<italic>ρ</italic>
<sub>w</sub>
;
<italic>P</italic>
<sub>A</sub>
=
<italic>V</italic>
<sub>A</sub>
/
<italic>V</italic>
<sub>B</sub>
=(
<italic>m</italic>
<sub>s</sub>
<italic>m</italic>
)/(
<italic>m</italic>
<sub>s</sub>
<italic>m</italic>
<sub>h</sub>
);
<italic>d</italic>
<sub>b</sub>
=
<italic>m</italic>
/
<italic>V</italic>
<sub>B</sub>
;
<italic>d</italic>
<sub>r</sub>
=
<italic>m</italic>
/(
<italic>V</italic>
<sub>B</sub>
<italic>V</italic>
<sub>A</sub>
).</p>
<p>After weight measurement, the fully saturated samples were removed from the water container and rapidly placed on wet paper to remove excess water on the external surface. Each specimen was then placed in the bottom of a glass tube, which was then sealed for TD-NMR measurements.</p>
</sec>
<sec disp-level="2">
<title>TD-NMR method and parameter definitions</title>
<p>This technique (
<xref ref-type="supplementary-material" rid="S1">Supplementary Note 3</xref>
) was applied to obtain skeletal ‘pore-size' distributions by the analysis of quasi-continuous distributions of the transverse relaxation time
<italic>T</italic>
<sub>2</sub>
(ref.
<xref ref-type="bibr" rid="b14">14</xref>
) by means of the algorithm UPEN
<xref ref-type="bibr" rid="b31">31</xref>
, implemented in the UpenWin software
<xref ref-type="bibr" rid="b32">32</xref>
.
<xref ref-type="supplementary-material" rid="S1">Supplementary Figure 1a</xref>
shows examples of
<italic>T</italic>
<sub>2</sub>
distributions for specimens of
<italic>B. europaea</italic>
. In all cases, the slope of the distribution presented a strong increase at a specific
<italic>T</italic>
<sub>2</sub>
value, the ‘cutoff', revealing a sharp boundary between two distinct pore classes. This point was chosen as the boundary between smaller (shorter
<italic>T</italic>
<sub>2</sub>
) and larger (longer
<italic>T</italic>
<sub>2</sub>
) pores. The ratio of the area under the distribution for
<italic>T</italic>
<sub>2</sub>
larger than the cutoff to the total area under the distribution, called ‘macroscale pore volume fraction' (
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 1b</xref>
), indicates the fraction as a percentage of the pore volume in the macroscale. On the basis of the comparison with mercury intrusion porosimetry data, the sizes of pores in the macroscale pore volume fraction, corresponding to the major fraction of pores, are >10–20 μm. The tail in the distribution is about 3 orders of magnitude long and should correspond to smaller pore sizes up to tens of nanometres
<xref ref-type="bibr" rid="b14">14</xref>
. The distribution with
<italic>T</italic>
<sub>2</sub>
<3 ms was chosen to identify the signal corresponding to water in the smallest pores or size-scale, which we refer to here as ‘nanoscale pore volume fraction'. The remaining fraction of the distribution is called ‘microscale pore volume fraction'. The nano, micro and macroscale pore volume fractions multiplied by the skeletal porosity (
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 2</xref>
) produced the TD-NMR nano, micro and macroscale porosities, respectively.</p>
</sec>
<sec disp-level="2">
<title>TD-NMR apparatus and data acquisition</title>
<p>A homebuilt relaxometre based on a 0.2 T permanent magnet operating at 8 MHz was used for acquisition of the transverse relaxation curve of the
<sup>1</sup>
H nuclei of water molecules saturating the cleaned coral skeletons. The relaxometer was equipped with a coil ∼2 cm in diameter to analyse the entire coral and a Spinmaster console (Stelar, Mede, Pavia, Italy) for automatic pulse sequence transmission and data acquisition. The transverse relaxation data were acquired by using the Carr–Purcell–Meiboom–Gill sequence
<xref ref-type="bibr" rid="b33">33</xref>
with a 200 μs echo time. Sixteen corals from S1, 16 corals from S2 and 12 corals from S3 were analysed.</p>
</sec>
<sec disp-level="2">
<title>SEM images</title>
<p>To investigate the meso and macroscale organization of the aragonite fibre bundles, SEM analyses were performed. The cleaned coral skeletons were mounted (uncoated) to conductive carbon tape and examined with a Tescan Vega3 GMU (Czech Republic) variable pressure scanning electron microscope. Three corals per site were analysed.</p>
</sec>
<sec disp-level="2">
<title>Evaluation of net calcification rate</title>
<p>The age of each coral was determined based on growth band analysis via computerized tomography
<xref ref-type="bibr" rid="b22">22</xref>
<xref ref-type="bibr" rid="b34">34</xref>
. The linear extension rate was obtained by dividing the length of each sample (maximum axis of the oral disc) by its age. The net calcification rate was calculated as: net calcification rate=bulk density × linear extension rate
<xref ref-type="bibr" rid="b21">21</xref>
<xref ref-type="bibr" rid="b35">35</xref>
(
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 2</xref>
).</p>
</sec>
<sec disp-level="2">
<title>μCT analysis</title>
<p>To compute the corallite interseptal volume fraction (ratio of the total pore space volume inside the corallite to the total volume occupied by the corallite itself), μCT analyses were acquired and the convex hull approach was followed. μCT scans of coral skeletons were performed with a GE phoenix X-ray Nanotom S. The voxel sizes in the scans varied from 2.91 to 13.25 μm depending on the actual size of the investigated coral sample. All image processing steps in the analysis were performed with the open source software FIJI
<xref ref-type="bibr" rid="b36">36</xref>
.
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 3</xref>
shows different views of the 3D volume renderings obtained from three corals of the same age from each of the three study sites. Ten corals from each site were analysed.</p>
</sec>
<sec disp-level="2">
<title>Nanoindentation</title>
<p>To analyse mechanical properties of the coral skeletons, skeletal stiffness (Young's modulus) and hardness were determined by Oliver–Pharr analysis of load-depth curves
<xref ref-type="bibr" rid="b37">37</xref>
, using a Nanoindentation Tester, model NHT-TTX by CSM Instruments, Switzerland, equipped with a Berkovich diamond tip (opening angle=142.3°). On each sample, a minimum of 10 indentation tests were carried out, in the oral region, with a minimum distance of 30 μm between two tests (the total number of tests for each site is reported in
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 4</xref>
). To avoid influence from the embedding resin, a minimum distance of 100 μm from the skeleton/resin boundaries was always maintained.</p>
</sec>
<sec disp-level="2">
<title>SAXS analysis</title>
<p>To obtain information on skeletal porosity at the nanoscale, SAXS analyses (
<xref ref-type="supplementary-material" rid="S1">Supplementary Note 4</xref>
) were performed on three corals per site. Sections were mounted onto a laboratory SAXS apparatus with a rotating anode X-ray generator (Bruker, AXS, Karlsruhe, Germany) operating with a copper anode. Light microscopy images of the three specimens are shown in
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 8</xref>
together with X-ray radiographies taken with the SAXS instrument.</p>
</sec>
<sec disp-level="2">
<title>AFM analysis</title>
<p>To study the morphology and packing of skeletal mineral grains at the nanoscale, AFM images were acquired. Samples were lightly polished using diamond paste, cleaned with milli-Q water and observed using a Veeco AFM Dimension 3100 Nanoscope III, Plainview, NY. The probe consisted of a cantilever with an integrated silicon nitride tip. Samples were imaged at room temperature and in air using tapping mode phase contrast imaging.</p>
</sec>
<sec disp-level="2">
<title>Statistical analysis</title>
<p>Statistical analyses (analysis of variance, multivariate, principal components and quantile analysis) were performed using the Statistical Package STATA 9.0 (StataCorp LP). To test the significance of the differences among sites, parametric (F) or non-parametric (Kruskal–Wallis
<italic>χ</italic>
<sup>2</sup>
) tests were run. Non-parametric tests were performed for data that did not assume normal distributions. Multivariate regression analyses were performed to investigate the relationships between one dependent and one or several independent variables, using ordinary least squares robust to outliers. The model is described by the
<xref ref-type="disp-formula" rid="eq1">equation (1)</xref>
:</p>
<p>
<disp-formula id="eq1">
<inline-graphic id="d33e1297" xlink:href="ncomms8785-m1.jpg"></inline-graphic>
</disp-formula>
</p>
<p>where the index
<italic>i</italic>
refers to the
<italic>i</italic>
-observation,
<italic>x</italic>
<sub>
<italic>j</italic>
</sub>
is an independent variable,
<italic>y</italic>
<sub>
<italic>i</italic>
</sub>
is the value of the dependent variable and
<italic>ɛ</italic>
<sub>
<italic>i</italic>
</sub>
is the corresponding error. The constants
<italic>a</italic>
,
<italic>b</italic>
<sub>
<italic>j</italic>
</sub>
(
<italic>j</italic>
=1,
<italic>M</italic>
) are the best-fit parameters, to be determined by the best fit. Quantile analysis was performed to study the previous relationships for homogeneous groups of values of the dependent variable. This analysis was used to give a more comprehensive picture of the effect of the independent variable (pH) on the dependent variables of
<xref ref-type="fig" rid="f3">Fig. 3</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 1</xref>
, as it can show different effects of the independent variable in different ranges of the dependent variable.</p>
</sec>
</sec>
<sec disp-level="1">
<title>Additional information</title>
<p>
<bold>How to cite this article:</bold>
Fantazzini, P.
<italic>et al</italic>
. Gains and losses of coral skeletal porosity changes with ocean acidification acclimation.
<italic>Nat. Commun.</italic>
6:7785 doi: 10.1038/ncomms8785 (2015).</p>
</sec>
<sec sec-type="supplementary-material" id="S1">
<title>Supplementary Material</title>
<supplementary-material id="d33e18" content-type="local-data">
<caption>
<title>Supplementary Information</title>
<p>Supplementary Figures 1-10, Supplementary Tables 1-9, Supplementary Notes 1-4 and Supplementary References.</p>
</caption>
<media xlink:href="ncomms8785-s1.pdf"></media>
</supplementary-material>
<supplementary-material id="d33e24" content-type="local-data">
<caption>
<title>Supplementary Movie 1</title>
<p>Balanophyllia europaea close to the crater</p>
</caption>
<media xlink:href="ncomms8785-s2.mov"></media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007–2013)/ERC grant agreement n° 249930—CoralWarm: Corals and global warming: the Mediterranean versus the Red Sea. Bartolo Basile, Francesco Sesso and Eolo Sub diving center assisted in the field. Francesca Gizzi and Giorgia Polimeni helped during preparation and participated in field surveys. The Scientific Diving School collaborated with the underwater activities. We are grateful to Ingrid Zenke (MPI Potsdam) for help with the SAXS measurements, Michela Reggi for sample preparation, Gianni Neto and Francesco Sesso for the images in the Panarea site.</p>
</ack>
<ref-list>
<ref id="b1">
<mixed-citation publication-type="journal">
<name>
<surname>Stocker</surname>
<given-names>T. F.</given-names>
</name>
<etal></etal>
. in
<source>Climate Change 2013: The Physical Science Basis</source>
Cambridge Univ. Press (
<year>2013</year>
).</mixed-citation>
</ref>
<ref id="b2">
<mixed-citation publication-type="journal">
<name>
<surname>Sabine</surname>
<given-names>C. L.</given-names>
</name>
<etal></etal>
.
<article-title>The oceanic sink for anthropogenic CO
<sub>2</sub>
</article-title>
.
<source>Science</source>
<volume>305</volume>
,
<fpage>367</fpage>
<lpage>371</lpage>
(
<year>2004</year>
).
<pub-id pub-id-type="pmid">15256665</pub-id>
</mixed-citation>
</ref>
<ref id="b3">
<mixed-citation publication-type="journal">
<name>
<surname>Six</surname>
<given-names>K. D.</given-names>
</name>
<etal></etal>
.
<article-title>Global warming amplified by reduced sulphur fluxes as a result of ocean acidification</article-title>
.
<source>Nat. Clim. Change</source>
<volume>3</volume>
,
<fpage>975</fpage>
<lpage>978</lpage>
(
<year>2013</year>
).</mixed-citation>
</ref>
<ref id="b4">
<mixed-citation publication-type="journal">
<name>
<surname>Rodolfo-Metalpa</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
.
<article-title>Coral and mollusc resistance to ocean acidification adversely affected by warming</article-title>
.
<source>Nat. Clim. Change</source>
<volume>1</volume>
,
<fpage>308</fpage>
<lpage>312</lpage>
(
<year>2011</year>
).</mixed-citation>
</ref>
<ref id="b5">
<mixed-citation publication-type="journal">
<name>
<surname>Hoegh-Guldberg</surname>
<given-names>O.</given-names>
</name>
<etal></etal>
.
<article-title>Coral reefs under rapid climate change and ocean acidification</article-title>
.
<source>Science</source>
<volume>318</volume>
,
<fpage>1737</fpage>
<lpage>1742</lpage>
(
<year>2007</year>
).
<pub-id pub-id-type="pmid">18079392</pub-id>
</mixed-citation>
</ref>
<ref id="b6">
<mixed-citation publication-type="journal">
<name>
<surname>Dove</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
.
<article-title>Future reef decalcification under a business-as-usual CO
<sub>2</sub>
emission scenario</article-title>
.
<source>Proc. Natl Acad. Sci. USA</source>
<volume>110</volume>
,
<fpage>15342</fpage>
<lpage>15347</lpage>
(
<year>2013</year>
).
<pub-id pub-id-type="pmid">24003127</pub-id>
</mixed-citation>
</ref>
<ref id="b7">
<mixed-citation publication-type="journal">
<name>
<surname>Pandolfi</surname>
<given-names>J. M.</given-names>
</name>
,
<name>
<surname>Connolly</surname>
<given-names>S. R.</given-names>
</name>
,
<name>
<surname>Marshall</surname>
<given-names>D. J.</given-names>
</name>
&
<name>
<surname>Cohen</surname>
<given-names>A. L.</given-names>
</name>
<article-title>Projecting coral reef futures under global warming and ocean acidification</article-title>
.
<source>Science</source>
<volume>333</volume>
,
<fpage>418</fpage>
<lpage>422</lpage>
(
<year>2011</year>
).
<pub-id pub-id-type="pmid">21778392</pub-id>
</mixed-citation>
</ref>
<ref id="b8">
<mixed-citation publication-type="journal">
<name>
<surname>Orr</surname>
<given-names>J. C.</given-names>
</name>
<etal></etal>
.
<article-title>Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms</article-title>
.
<source>Nature</source>
<volume>437</volume>
,
<fpage>681</fpage>
<lpage>686</lpage>
(
<year>2005</year>
).
<pub-id pub-id-type="pmid">16193043</pub-id>
</mixed-citation>
</ref>
<ref id="b9">
<mixed-citation publication-type="journal">
<name>
<surname>Touratier</surname>
<given-names>F.</given-names>
</name>
&
<name>
<surname>Goyet</surname>
<given-names>C.</given-names>
</name>
<article-title>Impact of the Eastern Mediterranean transient on the distribution of anthropogenic CO
<sub>2</sub>
and first estimate of acidification for the Mediterranean Sea</article-title>
.
<source>Deep-Sea Res. I</source>
<volume>58</volume>
,
<fpage>1</fpage>
<lpage>15</lpage>
(
<year>2011</year>
).</mixed-citation>
</ref>
<ref id="b10">
<mixed-citation publication-type="journal">
<name>
<surname>Yilmaz</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
.
<article-title>Impact of acidification on biological, chemical and physical systems in the Mediterranean and Black Sea Mediterranean</article-title>
.
<source>Mediterranean Sci. Committee (CIESM), Monograph Ser.</source>
<volume>36</volume>
,
<fpage>124</fpage>
(
<year>2008</year>
).</mixed-citation>
</ref>
<ref id="b11">
<mixed-citation publication-type="journal">
<name>
<surname>Calvo</surname>
<given-names>E.</given-names>
</name>
<etal></etal>
.
<article-title>Effects of climate change on Mediterranean marine ecosystems: the case of the Catalan Sea</article-title>
.
<source>Climate Res.</source>
<volume>50</volume>
,
<fpage>1</fpage>
<lpage>29</lpage>
(
<year>2011</year>
).</mixed-citation>
</ref>
<ref id="b12">
<mixed-citation publication-type="other">
<name>
<surname>Ziveri</surname>
<given-names>P.</given-names>
</name>
<article-title>Research turns to acidification and warming in the Mediterranean Sea, IMBER (Integrated Marine Biogeochemistry and Ecosystem Research)</article-title>
.
<ext-link ext-link-type="uri" xlink:href="http://www.imber.info/index.php/News/Newsletters/Issue-n-20-May-2012">http://www.imber.info/index.php/News/Newsletters/Issue-n-20-May-2012</ext-link>
(
<year>2012</year>
).</mixed-citation>
</ref>
<ref id="b13">
<mixed-citation publication-type="journal">
<name>
<surname>Goffredo</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
.
<article-title>Biomineralization control related to population density under ocean acidification</article-title>
.
<source>Nat. Clim. Change</source>
<volume>4</volume>
,
<fpage>593</fpage>
<lpage>597</lpage>
(
<year>2014</year>
).</mixed-citation>
</ref>
<ref id="b14">
<mixed-citation publication-type="journal">
<name>
<surname>Fantazzini</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
.
<article-title>Time-Domain NMR study of Mediterranean scleractinian corals reveals skeletal-porosity sensitivity to environmental changes</article-title>
.
<source>Environ. Sci. Technol.</source>
<volume>47</volume>
,
<fpage>12679</fpage>
<lpage>12686</lpage>
(
<year>2013</year>
).
<pub-id pub-id-type="pmid">24144399</pub-id>
</mixed-citation>
</ref>
<ref id="b15">
<mixed-citation publication-type="journal">
<name>
<surname>Laine</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Labady</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Albornoz</surname>
<given-names>A.</given-names>
</name>
&
<name>
<surname>Yunes</surname>
<given-names>S.</given-names>
</name>
<article-title>Porosities and pore sizes in coralline calcium carbonate</article-title>
.
<source>Mater. Charact.</source>
<volume>59</volume>
,
<fpage>1522</fpage>
<lpage>1525</lpage>
(
<year>2008</year>
).</mixed-citation>
</ref>
<ref id="b16">
<mixed-citation publication-type="journal">
<name>
<surname>Caroselli</surname>
<given-names>E.</given-names>
</name>
<etal></etal>
.
<article-title>Environmental implications of skeletal micro-density and porosity variation in two scleractinian corals</article-title>
.
<source>Zoology</source>
<volume>114</volume>
,
<fpage>255</fpage>
<lpage>264</lpage>
(
<year>2011</year>
).
<pub-id pub-id-type="pmid">21924883</pub-id>
</mixed-citation>
</ref>
<ref id="b17">
<mixed-citation publication-type="journal">
<name>
<surname>Carricart-Ganivet</surname>
<given-names>J. P.</given-names>
</name>
<article-title>Sea surface temperature and the growth of the West Atlantic reef-building coral
<italic>Montastraea annularis</italic>
</article-title>
.
<source>J. Exp. Marine Biol. Ecol.</source>
<volume>302</volume>
,
<fpage>249</fpage>
<lpage>260</lpage>
(
<year>2004</year>
).</mixed-citation>
</ref>
<ref id="b18">
<mixed-citation publication-type="journal">
<name>
<surname>Crook</surname>
<given-names>E. D.</given-names>
</name>
,
<name>
<surname>Cohen</surname>
<given-names>A. L.</given-names>
</name>
,
<name>
<surname>Rebolledo-Vieyra</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Hernandez</surname>
<given-names>L.</given-names>
</name>
&
<name>
<surname>Paytan</surname>
<given-names>A.</given-names>
</name>
<article-title>Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification</article-title>
.
<source>Proc. Natl Acad. Sci. USA</source>
<volume>110</volume>
,
<fpage>11044</fpage>
<lpage>11049</lpage>
(
<year>2013</year>
).
<pub-id pub-id-type="pmid">23776217</pub-id>
</mixed-citation>
</ref>
<ref id="b19">
<mixed-citation publication-type="journal">
<name>
<surname>Iglesias-Prieto</surname>
<given-names>R.</given-names>
</name>
,
<name>
<surname>Galindo-Martinez</surname>
<given-names>C. T.</given-names>
</name>
,
<name>
<surname>Enriquez</surname>
<given-names>S.</given-names>
</name>
&
<name>
<surname>Carricart-Ganivet</surname>
<given-names>J. P.</given-names>
</name>
<article-title>Attributing reductions in coral calcification to the saturation state of aragonite, comments on the effects of persistent naturals acidification</article-title>
.
<source>Proc. Natl Acad. Sci. USA</source>
<volume>111</volume>
,
<fpage>E300</fpage>
<lpage>E301</lpage>
(
<year>2014</year>
).
<pub-id pub-id-type="pmid">24398532</pub-id>
</mixed-citation>
</ref>
<ref id="b20">
<mixed-citation publication-type="journal">
<name>
<surname>Goffredo</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Caroselli</surname>
<given-names>E.</given-names>
</name>
,
<name>
<surname>Mattioli</surname>
<given-names>G.</given-names>
</name>
,
<name>
<surname>Pignotti</surname>
<given-names>E.</given-names>
</name>
&
<name>
<surname>Zaccanti</surname>
<given-names>F.</given-names>
</name>
<article-title>Variation in biometry and demography of solitary corals with environmental factors in the Mediterranean Sea</article-title>
.
<source>Mar. Biol.</source>
<volume>152</volume>
,
<fpage>351</fpage>
<lpage>361</lpage>
(
<year>2007</year>
).</mixed-citation>
</ref>
<ref id="b21">
<mixed-citation publication-type="journal">
<name>
<surname>Goffredo</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
.
<article-title>Inferred level of calcification decreases along an increasing temperature gradient in a Mediterranean endemic coral</article-title>
.
<source>Limnol. Oceanogr.</source>
<volume>54</volume>
,
<fpage>930</fpage>
<lpage>937</lpage>
(
<year>2009</year>
).</mixed-citation>
</ref>
<ref id="b22">
<mixed-citation publication-type="journal">
<name>
<surname>Goffredo</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Caroselli</surname>
<given-names>E.</given-names>
</name>
,
<name>
<surname>Mattioli</surname>
<given-names>G.</given-names>
</name>
,
<name>
<surname>Pignotti</surname>
<given-names>E.</given-names>
</name>
&
<name>
<surname>Zaccanti</surname>
<given-names>F.</given-names>
</name>
<article-title>Relationships between growth, population structure and sea surface temperature in the temperate solitary coral
<italic>Balanophyllia europaea</italic>
(Scleractinia, Dendrophylliidae)</article-title>
.
<source>Coral Reefs</source>
<volume>27</volume>
,
<fpage>623</fpage>
<lpage>632</lpage>
(
<year>2008</year>
).</mixed-citation>
</ref>
<ref id="b23">
<mixed-citation publication-type="journal">
<name>
<surname>Airi</surname>
<given-names>V.</given-names>
</name>
<etal></etal>
.
<article-title>Reproductive efficiency of a Mediterranean endemic zooxanthellate coral decreases with increasing temperature along a wide latitudinal gradient</article-title>
.
<source>PLoS ONE</source>
<volume>9</volume>
,
<fpage>e91792</fpage>
(
<year>2014</year>
).
<pub-id pub-id-type="pmid">24618568</pub-id>
</mixed-citation>
</ref>
<ref id="b24">
<mixed-citation publication-type="journal">
<name>
<surname>Wooldridge</surname>
<given-names>S. A.</given-names>
</name>
<article-title>Assessing coral health and resilience in a warming ocean: Why looks can be deceptive</article-title>
.
<source>Bioessays</source>
<volume>36</volume>
,
<fpage>1041</fpage>
<lpage>1049</lpage>
(
<year>2014</year>
).
<pub-id pub-id-type="pmid">25303686</pub-id>
</mixed-citation>
</ref>
<ref id="b25">
<mixed-citation publication-type="journal">
<name>
<surname>Capaccioni</surname>
<given-names>B.</given-names>
</name>
,
<name>
<surname>Tassi</surname>
<given-names>F.</given-names>
</name>
,
<name>
<surname>Vaselli</surname>
<given-names>O.</given-names>
</name>
,
<name>
<surname>Tedesco</surname>
<given-names>D.</given-names>
</name>
&
<name>
<surname>Poreda</surname>
<given-names>R.</given-names>
</name>
<article-title>Submarine gas burst at Panarea Island (southern Italy) on 3 November 2002: A magmatic versus hydrothermal episode</article-title>
.
<source>J. Geophys. Res.</source>
<volume>112</volume>
,
<fpage>B05201</fpage>
(
<year>2007</year>
).</mixed-citation>
</ref>
<ref id="b26">
<mixed-citation publication-type="journal">
<name>
<surname>Zibrowius</surname>
<given-names>H. Les</given-names>
</name>
<article-title>scleractiniaires de la Méditerranée et del'Atlantique nord-oriental</article-title>
.
<source>Mem. Inst. Oceanogr</source>
<volume>11</volume>
,
<fpage>1</fpage>
<lpage>284</lpage>
(
<year>1980</year>
).</mixed-citation>
</ref>
<ref id="b27">
<mixed-citation publication-type="journal">
<name>
<surname>Jokiel</surname>
<given-names>R. L.</given-names>
</name>
,
<name>
<surname>Maragos</surname>
<given-names>J. E.</given-names>
</name>
&
<name>
<surname>Franzisket</surname>
<given-names>L.</given-names>
</name>
In:
<source>Coral Reef Research Methods</source>
eds Stoddart D. R., Johannes R. E.
<bold>5</bold>
<fpage>529</fpage>
<lpage>542</lpage>
UNESCO (
<year>1978</year>
).</mixed-citation>
</ref>
<ref id="b28">
<mixed-citation publication-type="journal">
<name>
<surname>Davies</surname>
<given-names>P. S.</given-names>
</name>
<article-title>Short-term growth measurements of corals using an accurate buoyant weighing technique</article-title>
.
<source>Mar. Biol.</source>
<volume>101</volume>
,
<fpage>389</fpage>
<lpage>395</lpage>
(
<year>1989</year>
).</mixed-citation>
</ref>
<ref id="b29">
<mixed-citation publication-type="other">
<name>
<surname>Walsh</surname>
<given-names>S.-J.</given-names>
</name>
in Proceedings of 12th International Coral Reef Symposium, Cairns, Australia, 9–13 July 2012 .</mixed-citation>
</ref>
<ref id="b30">
<mixed-citation publication-type="journal">
<name>
<surname>Manger</surname>
<given-names>G. E.</given-names>
</name>
<article-title>Porosity and bulk density of sedimentary rocks</article-title>
.
<source>Geol. Survey Bull</source>
<bold>1144–E</bold>
(
<year>(1963</year>
).</mixed-citation>
</ref>
<ref id="b31">
<mixed-citation publication-type="journal">
<name>
<surname>Borgia</surname>
<given-names>G. C.</given-names>
</name>
,
<name>
<surname>Brown</surname>
<given-names>R. J. S.</given-names>
</name>
&
<name>
<surname>Fantazzini</surname>
<given-names>P.</given-names>
</name>
<article-title>Examples of marginal resolution of NMR relaxation peaks using UPEN and diagnostics</article-title>
.
<source>Magn. Reson. Imaging</source>
<volume>19</volume>
,
<fpage>473</fpage>
<lpage>475</lpage>
(
<year>2001</year>
).
<pub-id pub-id-type="pmid">11445333</pub-id>
</mixed-citation>
</ref>
<ref id="b32">
<mixed-citation publication-type="journal">
<name>
<surname>Bortolotti</surname>
<given-names>V.</given-names>
</name>
,
<name>
<surname>Brown</surname>
<given-names>R. J. S.</given-names>
</name>
&
<name>
<surname>Fantazzini</surname>
<given-names>P.</given-names>
</name>
<source>UpenWin: a Software to Invert Multi-Exponential Decay Data; </source>
<ext-link ext-link-type="uri" xlink:href="http://www.unibo.it/PortaleEn/Research/Services+for+companies/UpenWin.htm">http://www.unibo.it/PortaleEn/Research/Services+for+companies/UpenWin.htm</ext-link>
(
<year>2009</year>
).</mixed-citation>
</ref>
<ref id="b33">
<mixed-citation publication-type="journal">
<name>
<surname>Cowan</surname>
<given-names>B.</given-names>
</name>
<source>Nuclear Magnetic Resonance and Relaxation</source>
Cambridge Univ. Press (
<year>1997</year>
).</mixed-citation>
</ref>
<ref id="b34">
<mixed-citation publication-type="journal">
<name>
<surname>Goffredo</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Mattioli</surname>
<given-names>G.</given-names>
</name>
&
<name>
<surname>Zaccanti</surname>
<given-names>F.</given-names>
</name>
<article-title>Growth and population dynamics model of the Mediterranean solitary coral
<italic>Balanophyllia europaea</italic>
(Scleractinia Dendrophylliidae)</article-title>
.
<source>Coral Reefs</source>
<volume>23</volume>
,
<fpage>433</fpage>
<lpage>443</lpage>
(
<year>2004</year>
).</mixed-citation>
</ref>
<ref id="b35">
<mixed-citation publication-type="journal">
<name>
<surname>Lough</surname>
<given-names>J. M.</given-names>
</name>
&
<name>
<surname>Barnes</surname>
<given-names>D. J.</given-names>
</name>
<article-title>Environmental controls on growth and of the massive coral
<italic>Porites</italic>
</article-title>
.
<source>J. Exp. Mar. Biol. Ecol.</source>
<volume>245</volume>
,
<fpage>225</fpage>
<lpage>243</lpage>
(
<year>2000</year>
).
<pub-id pub-id-type="pmid">10699212</pub-id>
</mixed-citation>
</ref>
<ref id="b36">
<mixed-citation publication-type="journal">
<name>
<surname>Schindelin</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
.
<article-title>Fiji: an open-source platform for biological-image analysis</article-title>
.
<source>Nat. Methods</source>
<volume>9</volume>
,
<fpage>676</fpage>
<lpage>682</lpage>
(
<year>2012</year>
).
<pub-id pub-id-type="pmid">22743772</pub-id>
</mixed-citation>
</ref>
<ref id="b37">
<mixed-citation publication-type="journal">
<name>
<surname>Oliver</surname>
<given-names>W. C.</given-names>
</name>
&
<name>
<surname>Pharr</surname>
<given-names>G. M.</given-names>
</name>
<article-title>An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments</article-title>
.
<source>J. Mater. Res.</source>
<volume>7</volume>
,
<fpage>1564</fpage>
<lpage>1583</lpage>
(
<year>1992</year>
).</mixed-citation>
</ref>
</ref-list>
<fn-group>
<fn>
<p>
<bold>Author contributions</bold>
S.G., G.F., P.F., L.P. and Z.D. conceived and designed the research. E.C., F.P., S.G. and B.C. collected the samples and performed the diving field work. L.B., M.M., M.D.G., E.C., F.P., P.K., J.U.H., Y.D., J-P.C., J.C.W., W.W. and G.F. performed the laboratory analyses. P.F., S.M., L.P., V.B., L.B., M.M., E.C., F.P., J.A.K., P.K., J.U.H., Y.D., J-P.C., J.C.W., W.W., P.F., G.F. and S.G. analysed the data. All authors wrote the manuscript and participated in the scientific discussion.</p>
</fn>
</fn-group>
</back>
<floats-group>
<fig id="f1">
<label>Figure 1</label>
<caption>
<title>Study location.</title>
<p>Located off the southwestern coast of Italy (
<bold>a</bold>
), near Panarea Island (
<bold>b</bold>
), there are underwater volcanic vents releasing persistent gaseous emissions (98–99% CO
<sub>2</sub>
without instrumentally detectable toxic compounds), resulting in a stable pH gradient. Four sites at various distances from the primary vent were initially selected for study. No temperature difference exists among the four study sites throughout the year. (
<bold>c</bold>
) Ranges of measured pH
<sub>TS</sub>
(number of observations [
<italic>n</italic>
]=103–110 per site) and Ω
<sub>arag</sub>
(
<italic>n</italic>
=96–104 per site) values at the four sites, showing consistent increases in both pH
<sub>TS</sub>
and Ω
<sub>arag</sub>
from the vent crater to its periphery. (
<bold>d</bold>
) Bathymetric profile of the sites with associated mean pH
<sub>TS</sub>
and Ω
<sub>arag</sub>
values. No corals were found at Site 4, characterized by the lowest pH (mean pH
<sub>TS</sub>
7.4). Living specimens of
<italic>Balanophyllia europaea</italic>
, photographed at night with expanded tentacles (
<bold>e</bold>
) and during the day with contracted tentacles (
<bold>f</bold>
); marker 5 mm.</p>
</caption>
<graphic xlink:href="ncomms8785-f1"></graphic>
</fig>
<fig id="f2">
<label>Figure 2</label>
<caption>
<title>Skeletal morphology of
<italic>Balanophyllia europaea</italic>
growing under different pH conditions from the macroscale to the nanoscale.</title>
<p>Each row in the figure corresponds to a different study site and sample age is 9–11 years. Images are representative of all observed skeletons. (
<bold>a</bold>
,
<bold>e</bold>
,
<bold>i</bold>
) Low magnification SEM images of coral skeletons, marker 5 mm. (
<bold>b</bold>
,
<bold>f</bold>
,
<bold>j</bold>
) Internal sections of corallites from μCT images, marker 5 mm. (
<bold>c</bold>
,
<bold>g</bold>
,
<bold>k</bold>
) SEM images of entire skeletal fibres from fractured septae, marker 10 μm. (
<bold>d</bold>
,
<bold>h</bold>
,
<bold>l</bold>
) AFM images of mineral grains on the skeletal fibre surfaces, marker 50 nm.</p>
</caption>
<graphic xlink:href="ncomms8785-f2"></graphic>
</fig>
<fig id="f3">
<label>Figure 3</label>
<caption>
<title>Scatterplots of skeletal parameters, and correlation analysis between porosity and net calcification rate.</title>
<p>Site 1=blue, Site 2=green, Site 3=red. Straight lines represent the best-fit linear regression (mean, solid line), 25% quantile and 75% quantile (dashed lines). (
<bold>a</bold>
<bold>e</bold>
) Skeletal parameters (
<italic>y</italic>
-axes) plotted against pH
<sub>TS</sub>
. (
<bold>f</bold>
) Scatterplot of porosity (
<italic>P</italic>
<sub>A</sub>
) versus net calcification rate in corals from Sites 1 to 3. For
<bold>a</bold>
<bold>d</bold>
,
<bold>f</bold>
<italic>N</italic>
=44; for
<bold>e</bold>
<italic>n</italic>
=122. ***
<italic>P</italic>
<0.001; **
<italic>P</italic>
<0.01; *
<italic>P</italic>
<0.05, robust
<italic>t</italic>
-statistics test.</p>
</caption>
<graphic xlink:href="ncomms8785-f3"></graphic>
</fig>
<fig id="f4">
<label>Figure 4</label>
<caption>
<title>Summary of responses in
<italic>Balanophyllia europaea</italic>
skeletal parameters as a function of pH from the ocean to the nanoscale.</title>
<p>The significant decline in population density with pH was measured in previously published research
<xref ref-type="bibr" rid="b13">13</xref>
. Net calcification rate and bulk density decrease with decreasing pH, whereas porosity (
<italic>P</italic>
<sub>A</sub>
) increases, preserving the linear extension rate and corallite shape (biometry and interseptal volume fraction as measured by μCT do not correlate with pH). The increase in porosity is associated with a decrease in skeletal stiffness. At the nanoscale, the ‘building blocks' (the fundamental structural components of the coral skeleton, aragonite fibre bundles and their constituent mineral grains) produced by the biomineralization process are substantially unaffected by increased acidity. Green boxes denote parameters found to have a direct relationship with pH, blue boxes denote parameters that have an inverse relationship and red boxes denote parameters found to have no relationship with pH. The significances of the regression of each parameter (dependent variable) with pH (independent variable) are indicated; ***
<italic>P</italic>
<0.001; **
<italic>P</italic>
<0.01; NS indicates no significance. Micro and nanoscale structure observations by SEM and AFM represent qualitative data.</p>
</caption>
<graphic xlink:href="ncomms8785-f4"></graphic>
</fig>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000746  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000746  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024