Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000688 ( Pmc/Corpus ); précédent : 0006879; suivant : 0006890 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Surface Density-of-States Engineering of Anatase TiO
<sub>2</sub>
by Small Polyols for Enhanced Visible-Light Photocurrent Generation</title>
<author>
<name sortKey="Aubert, Remko" sort="Aubert, Remko" uniqKey="Aubert R" first="Remko" last="Aubert">Remko Aubert</name>
<affiliation>
<nlm:aff id="aff1">Department of Chemistry,
<institution>KU Leuven</institution>
, Celestijnenlaan 200F, B-3001 Heverlee,
<country>Belgium</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kenens, Bart" sort="Kenens, Bart" uniqKey="Kenens B" first="Bart" last="Kenens">Bart Kenens</name>
<affiliation>
<nlm:aff id="aff1">Department of Chemistry,
<institution>KU Leuven</institution>
, Celestijnenlaan 200F, B-3001 Heverlee,
<country>Belgium</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chamtouri, Maha" sort="Chamtouri, Maha" uniqKey="Chamtouri M" first="Maha" last="Chamtouri">Maha Chamtouri</name>
<affiliation>
<nlm:aff id="aff1">Department of Chemistry,
<institution>KU Leuven</institution>
, Celestijnenlaan 200F, B-3001 Heverlee,
<country>Belgium</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fujita, Yasuhiko" sort="Fujita, Yasuhiko" uniqKey="Fujita Y" first="Yasuhiko" last="Fujita">Yasuhiko Fujita</name>
<affiliation>
<nlm:aff id="aff1">Department of Chemistry,
<institution>KU Leuven</institution>
, Celestijnenlaan 200F, B-3001 Heverlee,
<country>Belgium</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fortuni, Beatrice" sort="Fortuni, Beatrice" uniqKey="Fortuni B" first="Beatrice" last="Fortuni">Beatrice Fortuni</name>
<affiliation>
<nlm:aff id="aff1">Department of Chemistry,
<institution>KU Leuven</institution>
, Celestijnenlaan 200F, B-3001 Heverlee,
<country>Belgium</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lu, Gang" sort="Lu, Gang" uniqKey="Lu G" first="Gang" last="Lu">Gang Lu</name>
<affiliation>
<nlm:aff id="aff1">Department of Chemistry,
<institution>KU Leuven</institution>
, Celestijnenlaan 200F, B-3001 Heverlee,
<country>Belgium</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">KLOFE, SICAM,
<institution>Nanjing Tech University</institution>
, 30 South Puzhu Road, Nanjing 211816, Jiangsu,
<country>People’s Republic of China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hutchison, James A" sort="Hutchison, James A" uniqKey="Hutchison J" first="James A." last="Hutchison">James A. Hutchison</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Université de Strasbourg & CNRS UMR 7006</institution>
, Strasbourg 67000,
<country>France</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">School of Chemistry and Bio21 Institute,
<institution>University of Melbourne</institution>
, Parkville, Victoria 3010,
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Inose, Tomoko" sort="Inose, Tomoko" uniqKey="Inose T" first="Tomoko" last="Inose">Tomoko Inose</name>
<affiliation>
<nlm:aff id="aff5">RIES,
<institution>Hokkaido University</institution>
, N20W10, Kita, Sapporo 001-0020,
<country>Japan</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Uji I, Hiroshi" sort="Uji I, Hiroshi" uniqKey="Uji I H" first="Hiroshi" last="Uji-I">Hiroshi Uji-I</name>
<affiliation>
<nlm:aff id="aff1">Department of Chemistry,
<institution>KU Leuven</institution>
, Celestijnenlaan 200F, B-3001 Heverlee,
<country>Belgium</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">RIES,
<institution>Hokkaido University</institution>
, N20W10, Kita, Sapporo 001-0020,
<country>Japan</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">29104949</idno>
<idno type="pmc">5664144</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5664144</idno>
<idno type="RBID">PMC:5664144</idno>
<idno type="doi">10.1021/acsomega.7b00853</idno>
<date when="2017">2017</date>
<idno type="wicri:Area/Pmc/Corpus">000688</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000688</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Surface Density-of-States Engineering of Anatase TiO
<sub>2</sub>
by Small Polyols for Enhanced Visible-Light Photocurrent Generation</title>
<author>
<name sortKey="Aubert, Remko" sort="Aubert, Remko" uniqKey="Aubert R" first="Remko" last="Aubert">Remko Aubert</name>
<affiliation>
<nlm:aff id="aff1">Department of Chemistry,
<institution>KU Leuven</institution>
, Celestijnenlaan 200F, B-3001 Heverlee,
<country>Belgium</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kenens, Bart" sort="Kenens, Bart" uniqKey="Kenens B" first="Bart" last="Kenens">Bart Kenens</name>
<affiliation>
<nlm:aff id="aff1">Department of Chemistry,
<institution>KU Leuven</institution>
, Celestijnenlaan 200F, B-3001 Heverlee,
<country>Belgium</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chamtouri, Maha" sort="Chamtouri, Maha" uniqKey="Chamtouri M" first="Maha" last="Chamtouri">Maha Chamtouri</name>
<affiliation>
<nlm:aff id="aff1">Department of Chemistry,
<institution>KU Leuven</institution>
, Celestijnenlaan 200F, B-3001 Heverlee,
<country>Belgium</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fujita, Yasuhiko" sort="Fujita, Yasuhiko" uniqKey="Fujita Y" first="Yasuhiko" last="Fujita">Yasuhiko Fujita</name>
<affiliation>
<nlm:aff id="aff1">Department of Chemistry,
<institution>KU Leuven</institution>
, Celestijnenlaan 200F, B-3001 Heverlee,
<country>Belgium</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fortuni, Beatrice" sort="Fortuni, Beatrice" uniqKey="Fortuni B" first="Beatrice" last="Fortuni">Beatrice Fortuni</name>
<affiliation>
<nlm:aff id="aff1">Department of Chemistry,
<institution>KU Leuven</institution>
, Celestijnenlaan 200F, B-3001 Heverlee,
<country>Belgium</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lu, Gang" sort="Lu, Gang" uniqKey="Lu G" first="Gang" last="Lu">Gang Lu</name>
<affiliation>
<nlm:aff id="aff1">Department of Chemistry,
<institution>KU Leuven</institution>
, Celestijnenlaan 200F, B-3001 Heverlee,
<country>Belgium</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">KLOFE, SICAM,
<institution>Nanjing Tech University</institution>
, 30 South Puzhu Road, Nanjing 211816, Jiangsu,
<country>People’s Republic of China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hutchison, James A" sort="Hutchison, James A" uniqKey="Hutchison J" first="James A." last="Hutchison">James A. Hutchison</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Université de Strasbourg & CNRS UMR 7006</institution>
, Strasbourg 67000,
<country>France</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">School of Chemistry and Bio21 Institute,
<institution>University of Melbourne</institution>
, Parkville, Victoria 3010,
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Inose, Tomoko" sort="Inose, Tomoko" uniqKey="Inose T" first="Tomoko" last="Inose">Tomoko Inose</name>
<affiliation>
<nlm:aff id="aff5">RIES,
<institution>Hokkaido University</institution>
, N20W10, Kita, Sapporo 001-0020,
<country>Japan</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Uji I, Hiroshi" sort="Uji I, Hiroshi" uniqKey="Uji I H" first="Hiroshi" last="Uji-I">Hiroshi Uji-I</name>
<affiliation>
<nlm:aff id="aff1">Department of Chemistry,
<institution>KU Leuven</institution>
, Celestijnenlaan 200F, B-3001 Heverlee,
<country>Belgium</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">RIES,
<institution>Hokkaido University</institution>
, N20W10, Kita, Sapporo 001-0020,
<country>Japan</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">ACS Omega</title>
<idno type="eISSN">2470-1343</idno>
<imprint>
<date when="2017">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p content-type="toc-graphic">
<graphic xlink:href="ao-2017-00853e_0004" id="ab-tgr1"></graphic>
</p>
<p>Enhancement of visible-light photocurrent generation by sol–gel anatase TiO
<sub>2</sub>
films was achieved by binding small polyol molecules to the TiO
<sub>2</sub>
surface. Binding ethylene glycol onto the surface, enhancement factors up to 2.8 were found in visible-light photocurrent generation experiments. Density functional theory calculations identified midgap energy states that emerge as a result of the binding of a range of polyols to the TiO
<sub>2</sub>
surface. The presence and energy of the midgap state is predicted to depend sensitively on the structure of the polyol, correlating well with the photocurrent generation results. Together, these results suggest a new, facile, and cost-effective route to precise surface band gap engineering of TiO
<sub>2</sub>
toward visible-light-induced photocatalysis and energy storage.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Crabtree, G W" uniqKey="Crabtree G">G. W. Crabtree</name>
</author>
<author>
<name sortKey="Lewis, N S" uniqKey="Lewis N">N. S. Lewis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Malato, S" uniqKey="Malato S">S. Malato</name>
</author>
<author>
<name sortKey="Blanco, J" uniqKey="Blanco J">J. Blanco</name>
</author>
<author>
<name sortKey="Vidal, A" uniqKey="Vidal A">A. Vidal</name>
</author>
<author>
<name sortKey="Richter, C" uniqKey="Richter C">C. Richter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bahnemann, D" uniqKey="Bahnemann D">D. Bahnemann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chong, M N" uniqKey="Chong M">M. N. Chong</name>
</author>
<author>
<name sortKey="Jin, B" uniqKey="Jin B">B. Jin</name>
</author>
<author>
<name sortKey="Chow, C W K" uniqKey="Chow C">C. W. K. Chow</name>
</author>
<author>
<name sortKey="Saint, C" uniqKey="Saint C">C. Saint</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fujishima, A" uniqKey="Fujishima A">A. Fujishima</name>
</author>
<author>
<name sortKey="Tryk, D X0a A" uniqKey="Tryk D">D. A. Tryk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heller, A" uniqKey="Heller A">A. Heller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Paz, Y" uniqKey="Paz Y">Y. Paz</name>
</author>
<author>
<name sortKey="Luo, Z" uniqKey="Luo Z">Z. Luo</name>
</author>
<author>
<name sortKey="Rabenberg, L" uniqKey="Rabenberg L">L. Rabenberg</name>
</author>
<author>
<name sortKey="Heller, A" uniqKey="Heller A">A. Heller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brabec, C J" uniqKey="Brabec C">C. J. Brabec</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De X0a Arco, L G" uniqKey="De X0a Arco L">L. G. De Arco</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Schlenker, C W" uniqKey="Schlenker C">C. W. Schlenker</name>
</author>
<author>
<name sortKey="Ryu, K" uniqKey="Ryu K">K. Ryu</name>
</author>
<author>
<name sortKey="Thompson, M E" uniqKey="Thompson M">M. E. Thompson</name>
</author>
<author>
<name sortKey="Zhou, C W" uniqKey="Zhou C">C. W. Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lin, Y Z" uniqKey="Lin Y">Y. Z. Lin</name>
</author>
<author>
<name sortKey="Li, Y F" uniqKey="Li Y">Y. F. Li</name>
</author>
<author>
<name sortKey="Zhan, X W" uniqKey="Zhan X">X. W. Zhan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcdonald, S A" uniqKey="Mcdonald S">S. A. McDonald</name>
</author>
<author>
<name sortKey="Konstantatos, G" uniqKey="Konstantatos G">G. Konstantatos</name>
</author>
<author>
<name sortKey="Zhang, S G" uniqKey="Zhang S">S. G. Zhang</name>
</author>
<author>
<name sortKey="Cyr, P W" uniqKey="Cyr P">P. W. Cyr</name>
</author>
<author>
<name sortKey="Klem, E J D" uniqKey="Klem E">E. J. D. Klem</name>
</author>
<author>
<name sortKey="Levina, L" uniqKey="Levina L">L. Levina</name>
</author>
<author>
<name sortKey="Sargent, E H" uniqKey="Sargent E">E. H. Sargent</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fujishima, A" uniqKey="Fujishima A">A. Fujishima</name>
</author>
<author>
<name sortKey="Honda, K" uniqKey="Honda K">K. Honda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gray, H B" uniqKey="Gray H">H. B. Gray</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kudo, A" uniqKey="Kudo A">A. Kudo</name>
</author>
<author>
<name sortKey="Miseki, Y" uniqKey="Miseki Y">Y. Miseki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Linic, S" uniqKey="Linic S">S. Linic</name>
</author>
<author>
<name sortKey="Christopher, P" uniqKey="Christopher P">P. Christopher</name>
</author>
<author>
<name sortKey="Ingram, D B" uniqKey="Ingram D">D. B. Ingram</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roy, S C" uniqKey="Roy S">S. C. Roy</name>
</author>
<author>
<name sortKey="Varghese, O K" uniqKey="Varghese O">O. K. Varghese</name>
</author>
<author>
<name sortKey="Paulose, M" uniqKey="Paulose M">M. Paulose</name>
</author>
<author>
<name sortKey="Grimes, C A" uniqKey="Grimes C">C. A. Grimes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lewis, N S" uniqKey="Lewis N">N. S. Lewis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carp, O" uniqKey="Carp O">O. Carp</name>
</author>
<author>
<name sortKey="Huisman, C L" uniqKey="Huisman C">C. L. Huisman</name>
</author>
<author>
<name sortKey="Reller, A" uniqKey="Reller A">A. Reller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Diebold, U" uniqKey="Diebold U">U. Diebold</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fujishima, A" uniqKey="Fujishima A">A. Fujishima</name>
</author>
<author>
<name sortKey="Zhang, X T" uniqKey="Zhang X">X. T. Zhang</name>
</author>
<author>
<name sortKey="Tryk, D A" uniqKey="Tryk D">D. A. Tryk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
<author>
<name sortKey="Mao, S S" uniqKey="Mao S">S. S. Mao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Asahi, R" uniqKey="Asahi R">R. Asahi</name>
</author>
<author>
<name sortKey="Morikawa, T" uniqKey="Morikawa T">T. Morikawa</name>
</author>
<author>
<name sortKey="Ohwaki, T" uniqKey="Ohwaki T">T. Ohwaki</name>
</author>
<author>
<name sortKey="Aoki, K" uniqKey="Aoki K">K. Aoki</name>
</author>
<author>
<name sortKey="Taga, Y" uniqKey="Taga Y">Y. Taga</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ihara, T" uniqKey="Ihara T">T. Ihara</name>
</author>
<author>
<name sortKey="Miyoshi, M" uniqKey="Miyoshi M">M. Miyoshi</name>
</author>
<author>
<name sortKey="Iriyama, Y" uniqKey="Iriyama Y">Y. Iriyama</name>
</author>
<author>
<name sortKey="Matsumoto, O" uniqKey="Matsumoto O">O. Matsumoto</name>
</author>
<author>
<name sortKey="Sugihara, S" uniqKey="Sugihara S">S. Sugihara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jang, D M" uniqKey="Jang D">D. M. Jang</name>
</author>
<author>
<name sortKey="Kwak, I H" uniqKey="Kwak I">I. H. Kwak</name>
</author>
<author>
<name sortKey="Kwon, E L" uniqKey="Kwon E">E. L. Kwon</name>
</author>
<author>
<name sortKey="Jung, C S" uniqKey="Jung C">C. S. Jung</name>
</author>
<author>
<name sortKey="Im, H S" uniqKey="Im H">H. S. Im</name>
</author>
<author>
<name sortKey="Park, K" uniqKey="Park K">K. Park</name>
</author>
<author>
<name sortKey="Park, J" uniqKey="Park J">J. Park</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ohno, T" uniqKey="Ohno T">T. Ohno</name>
</author>
<author>
<name sortKey="Akiyoshi, M" uniqKey="Akiyoshi M">M. Akiyoshi</name>
</author>
<author>
<name sortKey="Umebayashi, T" uniqKey="Umebayashi T">T. Umebayashi</name>
</author>
<author>
<name sortKey="Asai, K" uniqKey="Asai K">K. Asai</name>
</author>
<author>
<name sortKey="Mitsui, T" uniqKey="Mitsui T">T. Mitsui</name>
</author>
<author>
<name sortKey="Matsumura, M" uniqKey="Matsumura M">M. Matsumura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chung, I" uniqKey="Chung I">I. Chung</name>
</author>
<author>
<name sortKey="Lee, B" uniqKey="Lee B">B. Lee</name>
</author>
<author>
<name sortKey="He, J Q" uniqKey="He J">J. Q. He</name>
</author>
<author>
<name sortKey="Chang, R P H" uniqKey="Chang R">R. P. H. Chang</name>
</author>
<author>
<name sortKey="Kanatzidis, M G" uniqKey="Kanatzidis M">M. G. Kanatzidis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Narayan, M R" uniqKey="Narayan M">M. R. Narayan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yan, Z P" uniqKey="Yan Z">Z. P. Yan</name>
</author>
<author>
<name sortKey="Yu, X X" uniqKey="Yu X">X. X. Yu</name>
</author>
<author>
<name sortKey="Zhang, Y Y" uniqKey="Zhang Y">Y. Y. Zhang</name>
</author>
<author>
<name sortKey="Jia, H X" uniqKey="Jia H">H. X. Jia</name>
</author>
<author>
<name sortKey="Sun, Z J" uniqKey="Sun Z">Z. J. Sun</name>
</author>
<author>
<name sortKey="Du, P W" uniqKey="Du P">P. W. Du</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shi, X" uniqKey="Shi X">X. Shi</name>
</author>
<author>
<name sortKey="Ueno, K" uniqKey="Ueno K">K. Ueno</name>
</author>
<author>
<name sortKey="Takabayashi, N" uniqKey="Takabayashi N">N. Takabayashi</name>
</author>
<author>
<name sortKey="Misawa, H" uniqKey="Misawa H">H. Misawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jha, A" uniqKey="Jha A">A. Jha</name>
</author>
<author>
<name sortKey="Yasarapudi, V B" uniqKey="Yasarapudi V">V. B. Yasarapudi</name>
</author>
<author>
<name sortKey="Jasbeer, H" uniqKey="Jasbeer H">H. Jasbeer</name>
</author>
<author>
<name sortKey="Kanimozhi, C" uniqKey="Kanimozhi C">C. Kanimozhi</name>
</author>
<author>
<name sortKey="Patil, S" uniqKey="Patil S">S. Patil</name>
</author>
<author>
<name sortKey="Dasgupta, J" uniqKey="Dasgupta J">J. Dasgupta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lin, Z H" uniqKey="Lin Z">Z. H. Lin</name>
</author>
<author>
<name sortKey="Xie, Y N" uniqKey="Xie Y">Y. N. Xie</name>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y. Yang</name>
</author>
<author>
<name sortKey="Wang, S H" uniqKey="Wang S">S. H. Wang</name>
</author>
<author>
<name sortKey="Zhu, G" uniqKey="Zhu G">G. Zhu</name>
</author>
<author>
<name sortKey="Wang, Z L" uniqKey="Wang Z">Z. L. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rajh, T" uniqKey="Rajh T">T. Rajh</name>
</author>
<author>
<name sortKey="Chen, L X" uniqKey="Chen L">L. X. Chen</name>
</author>
<author>
<name sortKey="Lukas, K" uniqKey="Lukas K">K. Lukas</name>
</author>
<author>
<name sortKey="Liu, T" uniqKey="Liu T">T. Liu</name>
</author>
<author>
<name sortKey="Thurnauer, M C" uniqKey="Thurnauer M">M. C. Thurnauer</name>
</author>
<author>
<name sortKey="Tiede, D M" uniqKey="Tiede D">D. M. Tiede</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sevinc, P C" uniqKey="Sevinc P">P. C. Sevinc</name>
</author>
<author>
<name sortKey="Dhital, B" uniqKey="Dhital B">B. Dhital</name>
</author>
<author>
<name sortKey="Rao, V G" uniqKey="Rao V">V. G. Rao</name>
</author>
<author>
<name sortKey="Wang, Y M" uniqKey="Wang Y">Y. M. Wang</name>
</author>
<author>
<name sortKey="Lu, H P" uniqKey="Lu H">H. P. Lu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, H" uniqKey="Huang H">H. Huang</name>
</author>
<author>
<name sortKey="Han, X" uniqKey="Han X">X. Han</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Wang, S" uniqKey="Wang S">S. Wang</name>
</author>
<author>
<name sortKey="Chu, P K" uniqKey="Chu P">P. K. Chu</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, H" uniqKey="Huang H">H. Huang</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
<author>
<name sortKey="Dong, F" uniqKey="Dong F">F. Dong</name>
</author>
<author>
<name sortKey="Chu, P K" uniqKey="Chu P">P. K. Chu</name>
</author>
<author>
<name sortKey="Zhang, T" uniqKey="Zhang T">T. Zhang</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ganduglia Pirovano, M X0a V" uniqKey="Ganduglia Pirovano M">M. V. Ganduglia-Pirovano</name>
</author>
<author>
<name sortKey="Hofmann, A" uniqKey="Hofmann A">A. Hofmann</name>
</author>
<author>
<name sortKey="Sauer, J" uniqKey="Sauer J">J. Sauer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shkrob, I A" uniqKey="Shkrob I">I. A. Shkrob</name>
</author>
<author>
<name sortKey="Sauer, M C" uniqKey="Sauer M">M. C. Sauer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shkrob, I A" uniqKey="Shkrob I">I. A. Shkrob</name>
</author>
<author>
<name sortKey="Sauer, M C" uniqKey="Sauer M">M. C. Sauer</name>
</author>
<author>
<name sortKey="Gosztola, D" uniqKey="Gosztola D">D. Gosztola</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, W T" uniqKey="Chen W">W. T. Chen</name>
</author>
<author>
<name sortKey="Chan, A" uniqKey="Chan A">A. Chan</name>
</author>
<author>
<name sortKey="Al Azri, Z H N" uniqKey="Al Azri Z">Z. H. N. Al-Azri</name>
</author>
<author>
<name sortKey="Dosado, A G" uniqKey="Dosado A">A. G. Dosado</name>
</author>
<author>
<name sortKey="Nadeem, M A" uniqKey="Nadeem M">M. A. Nadeem</name>
</author>
<author>
<name sortKey="Sun Waterhouse, D" uniqKey="Sun Waterhouse D">D. Sun-Waterhouse</name>
</author>
<author>
<name sortKey="Idriss, H" uniqKey="Idriss H">H. Idriss</name>
</author>
<author>
<name sortKey="Waterhouse, G I N" uniqKey="Waterhouse G">G. I. N. Waterhouse</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kenens, B" uniqKey="Kenens B">B. Kenens</name>
</author>
<author>
<name sortKey="Chamtouri, M" uniqKey="Chamtouri M">M. Chamtouri</name>
</author>
<author>
<name sortKey="Aubert, R" uniqKey="Aubert R">R. Aubert</name>
</author>
<author>
<name sortKey="Miyakawa, K" uniqKey="Miyakawa K">K. Miyakawa</name>
</author>
<author>
<name sortKey="Hayasaka, Y" uniqKey="Hayasaka Y">Y. Hayasaka</name>
</author>
<author>
<name sortKey="Naiki, H" uniqKey="Naiki H">H. Naiki</name>
</author>
<author>
<name sortKey="Watanabe, H" uniqKey="Watanabe H">H. Watanabe</name>
</author>
<author>
<name sortKey="Inose, T" uniqKey="Inose T">T. Inose</name>
</author>
<author>
<name sortKey="Fujita, Y" uniqKey="Fujita Y">Y. Fujita</name>
</author>
<author>
<name sortKey="Lu, G" uniqKey="Lu G">G. Lu</name>
</author>
<author>
<name sortKey="Masuhara, A" uniqKey="Masuhara A">A. Masuhara</name>
</author>
<author>
<name sortKey="Uji I, H" uniqKey="Uji I H">H. Uji-i</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perdew, J P" uniqKey="Perdew J">J. P. Perdew</name>
</author>
<author>
<name sortKey="Burke, K" uniqKey="Burke K">K. Burke</name>
</author>
<author>
<name sortKey="Ernzerhof, M" uniqKey="Ernzerhof M">M. Ernzerhof</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soler, J M" uniqKey="Soler J">J. M. Soler</name>
</author>
<author>
<name sortKey="Artacho, E" uniqKey="Artacho E">E. Artacho</name>
</author>
<author>
<name sortKey="Gale, J D" uniqKey="Gale J">J. D. Gale</name>
</author>
<author>
<name sortKey="Garcia, A" uniqKey="Garcia A">A. Garcia</name>
</author>
<author>
<name sortKey="Junquera, J" uniqKey="Junquera J">J. Junquera</name>
</author>
<author>
<name sortKey="Ordejon, P" uniqKey="Ordejon P">P. Ordejon</name>
</author>
<author>
<name sortKey="Sanchez Portal, D" uniqKey="Sanchez Portal D">D. Sanchez-Portal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Troullier, N" uniqKey="Troullier N">N. Troullier</name>
</author>
<author>
<name sortKey="Martins, J L" uniqKey="Martins J">J. L. Martins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, H G" uniqKey="Yang H">H. G. Yang</name>
</author>
<author>
<name sortKey="Sun, C H" uniqKey="Sun C">C. H. Sun</name>
</author>
<author>
<name sortKey="Qiao, S Z" uniqKey="Qiao S">S. Z. Qiao</name>
</author>
<author>
<name sortKey="Zou, J" uniqKey="Zou J">J. Zou</name>
</author>
<author>
<name sortKey="Liu, G" uniqKey="Liu G">G. Liu</name>
</author>
<author>
<name sortKey="Smith, S C" uniqKey="Smith S">S. C. Smith</name>
</author>
<author>
<name sortKey="Cheng, H M" uniqKey="Cheng H">H. M. Cheng</name>
</author>
<author>
<name sortKey="Lu, G Q" uniqKey="Lu G">G. Q. Lu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yamakata, A" uniqKey="Yamakata A">A. Yamakata</name>
</author>
<author>
<name sortKey="Ishibashi, T" uniqKey="Ishibashi T">T. Ishibashi</name>
</author>
<author>
<name sortKey="Onishi, H" uniqKey="Onishi H">H. Onishi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Su, C" uniqKey="Su C">C. Su</name>
</author>
<author>
<name sortKey="Hong, B Y" uniqKey="Hong B">B. Y. Hong</name>
</author>
<author>
<name sortKey="Tseng, C M" uniqKey="Tseng C">C. M. Tseng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boys, S F" uniqKey="Boys S">S. F. Boys</name>
</author>
<author>
<name sortKey="Bernardi, F" uniqKey="Bernardi F">F. Bernardi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Monkhorst, H J" uniqKey="Monkhorst H">H. J. Monkhorst</name>
</author>
<author>
<name sortKey="Pack, J D" uniqKey="Pack J">J. D. Pack</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article" xml:lang="EN">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">ACS Omega</journal-id>
<journal-id journal-id-type="iso-abbrev">ACS Omega</journal-id>
<journal-id journal-id-type="publisher-id">ao</journal-id>
<journal-id journal-id-type="coden">acsodf</journal-id>
<journal-title-group>
<journal-title>ACS Omega</journal-title>
</journal-title-group>
<issn pub-type="epub">2470-1343</issn>
<publisher>
<publisher-name>American Chemical Society</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">29104949</article-id>
<article-id pub-id-type="pmc">5664144</article-id>
<article-id pub-id-type="doi">10.1021/acsomega.7b00853</article-id>
<article-categories>
<subj-group>
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Surface Density-of-States Engineering of Anatase TiO
<sub>2</sub>
by Small Polyols for Enhanced Visible-Light Photocurrent Generation</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" id="ath1">
<name>
<surname>Aubert</surname>
<given-names>Remko</given-names>
</name>
<xref rid="aff1" ref-type="aff"></xref>
</contrib>
<contrib contrib-type="author" id="ath2">
<name>
<surname>Kenens</surname>
<given-names>Bart</given-names>
</name>
<xref rid="aff1" ref-type="aff"></xref>
</contrib>
<contrib contrib-type="author" id="ath3">
<name>
<surname>Chamtouri</surname>
<given-names>Maha</given-names>
</name>
<xref rid="aff1" ref-type="aff"></xref>
</contrib>
<contrib contrib-type="author" id="ath4">
<name>
<surname>Fujita</surname>
<given-names>Yasuhiko</given-names>
</name>
<xref rid="aff1" ref-type="aff"></xref>
</contrib>
<contrib contrib-type="author" id="ath5">
<name>
<surname>Fortuni</surname>
<given-names>Beatrice</given-names>
</name>
<xref rid="aff1" ref-type="aff"></xref>
</contrib>
<contrib contrib-type="author" id="ath6">
<name>
<surname>Lu</surname>
<given-names>Gang</given-names>
</name>
<xref rid="aff1" ref-type="aff"></xref>
<xref rid="aff2" ref-type="aff"></xref>
</contrib>
<contrib contrib-type="author" id="ath7">
<name>
<surname>Hutchison</surname>
<given-names>James A.</given-names>
</name>
<xref rid="aff3" ref-type="aff">§</xref>
<xref rid="aff4" ref-type="aff"></xref>
</contrib>
<contrib contrib-type="author" id="ath8">
<name>
<surname>Inose</surname>
<given-names>Tomoko</given-names>
</name>
<xref rid="aff5" ref-type="aff"></xref>
</contrib>
<contrib contrib-type="author" corresp="yes" id="ath9">
<name>
<surname>Uji-i</surname>
<given-names>Hiroshi</given-names>
</name>
<xref rid="cor1" ref-type="other">*</xref>
<xref rid="aff1" ref-type="aff"></xref>
<xref rid="aff5" ref-type="aff"></xref>
</contrib>
<aff id="aff1">
<label></label>
Department of Chemistry,
<institution>KU Leuven</institution>
, Celestijnenlaan 200F, B-3001 Heverlee,
<country>Belgium</country>
</aff>
<aff id="aff2">
<label></label>
KLOFE, SICAM,
<institution>Nanjing Tech University</institution>
, 30 South Puzhu Road, Nanjing 211816, Jiangsu,
<country>People’s Republic of China</country>
</aff>
<aff id="aff3">
<label>§</label>
<institution>Université de Strasbourg & CNRS UMR 7006</institution>
, Strasbourg 67000,
<country>France</country>
</aff>
<aff id="aff4">
<label></label>
School of Chemistry and Bio21 Institute,
<institution>University of Melbourne</institution>
, Parkville, Victoria 3010,
<country>Australia</country>
</aff>
<aff id="aff5">
<label></label>
RIES,
<institution>Hokkaido University</institution>
, N20W10, Kita, Sapporo 001-0020,
<country>Japan</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">
<label>*</label>
E-mail:
<email>hiroshi.ujii@kuleuven.be</email>
,
<email>hiroshi.ujii@es.hokudai.ac.jp</email>
.</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>02</day>
<month>10</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="ppub">
<day>31</day>
<month>10</month>
<year>2017</year>
</pub-date>
<volume>2</volume>
<issue>10</issue>
<fpage>6309</fpage>
<lpage>6313</lpage>
<history>
<date date-type="received">
<day>23</day>
<month>06</month>
<year>2017</year>
</date>
<date date-type="accepted">
<day>16</day>
<month>08</month>
<year>2017</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2017 American Chemical Society</copyright-statement>
<copyright-year>2017</copyright-year>
<copyright-holder>American Chemical Society</copyright-holder>
<license>
<license-p>This is an open access article published under an ACS AuthorChoice
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/page/policy/authorchoice_termsofuse.html">License</ext-link>
, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.</license-p>
</license>
</permissions>
<abstract>
<p content-type="toc-graphic">
<graphic xlink:href="ao-2017-00853e_0004" id="ab-tgr1"></graphic>
</p>
<p>Enhancement of visible-light photocurrent generation by sol–gel anatase TiO
<sub>2</sub>
films was achieved by binding small polyol molecules to the TiO
<sub>2</sub>
surface. Binding ethylene glycol onto the surface, enhancement factors up to 2.8 were found in visible-light photocurrent generation experiments. Density functional theory calculations identified midgap energy states that emerge as a result of the binding of a range of polyols to the TiO
<sub>2</sub>
surface. The presence and energy of the midgap state is predicted to depend sensitively on the structure of the polyol, correlating well with the photocurrent generation results. Together, these results suggest a new, facile, and cost-effective route to precise surface band gap engineering of TiO
<sub>2</sub>
toward visible-light-induced photocatalysis and energy storage.</p>
</abstract>
<custom-meta-group>
<custom-meta>
<meta-name>document-id-old-9</meta-name>
<meta-value>ao7b00853</meta-value>
</custom-meta>
<custom-meta>
<meta-name>document-id-new-14</meta-name>
<meta-value>ao-2017-00853e</meta-value>
</custom-meta>
<custom-meta>
<meta-name>ccc-price</meta-name>
<meta-value></meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>Introduction</title>
<p>An increasing number of important processes are now being transitioned to using sunlight as their energy source,
<sup>
<xref ref-type="bibr" rid="ref1">1</xref>
,
<xref ref-type="bibr" rid="ref2">2</xref>
</sup>
including pollutant degradation,
<sup>
<xref ref-type="bibr" rid="ref3">3</xref>
<xref ref-type="bibr" rid="ref7">7</xref>
</sup>
photocurrent generation,
<sup>
<xref ref-type="bibr" rid="ref8">8</xref>
<xref ref-type="bibr" rid="ref11">11</xref>
</sup>
and high energy content chemical synthesis.
<sup>
<xref ref-type="bibr" rid="ref12">12</xref>
<xref ref-type="bibr" rid="ref16">16</xref>
</sup>
In designing devices for these applications, a fine balance must be struck between the energy-conversion efficiency of the device, the lifetime of the end product, and other factors, such as material cost/abundance, toxicity, and physicochemical stability.
<sup>
<xref ref-type="bibr" rid="ref17">17</xref>
</sup>
Because of its good performance in the latter categories, titanium dioxide (TiO
<sub>2</sub>
) is commonly used as a photoactive material in devices.
<sup>
<xref ref-type="bibr" rid="ref18">18</xref>
<xref ref-type="bibr" rid="ref20">20</xref>
</sup>
Furthermore, the energy levels of the valence and conduction bands (CBs) of TiO
<sub>2</sub>
envelop the oxidation and reduction energies of H
<sub>2</sub>
O, respectively, making it especially suitable for water-splitting applications.
<sup>
<xref ref-type="bibr" rid="ref12">12</xref>
,
<xref ref-type="bibr" rid="ref14">14</xref>
,
<xref ref-type="bibr" rid="ref15">15</xref>
</sup>
</p>
<p>One of the biggest drawbacks in the TiO
<sub>2</sub>
applications is its wide band gap (∼3.2 eV for the most active crystal form, anatase TiO
<sub>2</sub>
). This limits the spectral range of absorbable solar photons to the UV region (λ < 400 nm); only about 5% of the light reaches the earth’s surface.
<sup>
<xref ref-type="bibr" rid="ref17">17</xref>
,
<xref ref-type="bibr" rid="ref21">21</xref>
</sup>
Much effort has been expended to increase the visible-light activity of TiO
<sub>2</sub>
, including elementary doping,
<sup>
<xref ref-type="bibr" rid="ref22">22</xref>
<xref ref-type="bibr" rid="ref25">25</xref>
</sup>
dye sensitization,
<sup>
<xref ref-type="bibr" rid="ref26">26</xref>
<xref ref-type="bibr" rid="ref28">28</xref>
</sup>
plasmonic enhancement,
<sup>
<xref ref-type="bibr" rid="ref15">15</xref>
,
<xref ref-type="bibr" rid="ref29">29</xref>
</sup>
and surface modification by organic molecules.
<sup>
<xref ref-type="bibr" rid="ref30">30</xref>
<xref ref-type="bibr" rid="ref32">32</xref>
</sup>
Although visible-light activity was achieved in these approaches, sacrifices were also made in terms of material performance. For example, although elementary doping engineers the band gap in a way that enables visible photoactivity, it usually also reduces the physicochemical stability of TiO
<sub>2</sub>
. In the case of surface modification with organic molecules and dye sensitization, most of the progress was made using aromatic compounds as charge-transfer agents.
<sup>
<xref ref-type="bibr" rid="ref32">32</xref>
,
<xref ref-type="bibr" rid="ref33">33</xref>
</sup>
These compounds are generally not very soluble in water, limiting their application potential, and their degradation during photocatalytic processes is a constant issue. A more serious drawback when using aromatic charge-transfer agents is that they are often toxic and can negatively impact the environment.</p>
<p>In this work, we present a solution to the latter problem, demonstrating that visible-light activity of TiO
<sub>2</sub>
can be enhanced by adding simple, relatively nontoxic, water soluble organic surface-binding agents, small polyols. Despite the lack of charge-transfer moieties and/or absorption bands in the visible region in these polyols, an increase in TiO
<sub>2</sub>
visible-light activity by up to 2.8 times is observed in their presence in photocurrent generation experiments. The mechanism of enhancement is revealed by density functional theory (DFT) calculations, which show that polyol binding to TiO
<sub>2</sub>
results in generation of mid-band-gap energy states that can interact with visible photons. The energy of these mid-band-gap states is found to depend on the polyol structure, allowing surface DOS engineering and optimization of TiO
<sub>2</sub>
visible photoactivity in a facile and cost-effective manner.</p>
</sec>
<sec id="sec2">
<title>Results and Discussion</title>
<p>The effect of the molecular adsorption on the photoactivity of sol–gel derived anatase TiO
<sub>2</sub>
films on fluorine tin oxide (FTO) in visible light was found in photocurrent generation experiments, an analysis tool successfully employed in similar studies on semiconductor photoactivity.
<sup>
<xref ref-type="bibr" rid="ref34">34</xref>
,
<xref ref-type="bibr" rid="ref35">35</xref>
</sup>
The photocurrent was measured using an electrochemical analyzer and a three-electrode cell consisting of the TiO
<sub>2</sub>
film as the working electrode (W.E.), a Pt wire counter electrode (C.E.), and an AgCl/Ag reference electrode (R.E.), all immersed in a 0.1 M KOH aqueous electrolyte bath (
<xref rid="fig1" ref-type="fig">Figure
<xref rid="fig1" ref-type="fig">1</xref>
</xref>
). The cell was designed such that a 150 W solar simulator lamp could irradiate the TiO
<sub>2</sub>
film with a 430 nm long-pass filter available to isolate the contribution of visible light (λ > 430 nm,
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsomega.7b00853/suppl_file/ao7b00853_si_001.pdf">Figure S1</ext-link>
).</p>
<fig id="fig1" position="float">
<label>Figure 1</label>
<caption>
<p>Schematic representation of the used setup in photocurrent generation experiments.</p>
</caption>
<graphic xlink:href="ao-2017-00853e_0006" id="gr2" position="float"></graphic>
</fig>
<p>The effect of the molecular adsorption on the photoactivity of sol–gel derived anatase TiO
<sub>2</sub>
films on fluorine tin oxide (FTO) in visible light was found in photocurrent generation experiments. To investigate the effect of polyol molecules on photocatalytic activity in visible light, the activity was compared before and after addition of polyol molecules to the electrolyte. During a measurement, the lamp light was alternatively blocked or allowed to impinge on the TiO
<sub>2</sub>
film, for alternating 30 s periods, creating a block-wave pattern in the measured photocurrent (
<xref rid="fig2" ref-type="fig">Figure
<xref rid="fig2" ref-type="fig">2</xref>
</xref>
a). The initial photoactivity was determined using three on–off cycles of 60 s and averaging the step heights between the light and dark periods. Subsequently, the polyol was added as indicated with the arrow in
<xref rid="fig2" ref-type="fig">Figure
<xref rid="fig2" ref-type="fig">2</xref>
</xref>
a so that the change in the photocatalytic activity of the same sol–gel film can be compared. The final concentration of the polyol in the electrolyte is set to be ∼1.8 M. The newly created system was allowed to mix for 120 s, and then the activity was resolved using another three cycles. Note that although about 200 times smaller compared with activity in full solar spectral (full) light, including UV light (
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsomega.7b00853/suppl_file/ao7b00853_si_001.pdf">Figure S1</ext-link>
), our TiO
<sub>2</sub>
films are slightly visible-active even before addition of molecules. This could be due to oxygen vacancies on the surface that have emerged during preparation or calcination.
<sup>
<xref ref-type="bibr" rid="ref23">23</xref>
,
<xref ref-type="bibr" rid="ref36">36</xref>
</sup>
This activity, however, is crucial for the quantitative analysis of the effect of the added polyols because the enhancement factor (EF) in this study is given by the ratio between the photocurrent before and after polyol addition to the same sol–gel TiO
<sub>2</sub>
film.</p>
<fig id="fig2" position="float">
<label>Figure 2</label>
<caption>
<p>(a) Typical photocurrent generation experiments before and after adding polyols in the electrolyte. The result with glycerol is shown as an example. (b) Photocurrents found before (red) and after (blue) addition of the specific molecule in the electrolyte. (c) Enhancement factors of each molecule derived from the values in (b).</p>
</caption>
<graphic xlink:href="ao-2017-00853e_0001" id="gr3" position="float"></graphic>
</fig>
<p>To understand this effect, we have studied several polyol molecules, as shown in
<xref rid="sch1" ref-type="scheme">Scheme
<xref rid="sch1" ref-type="scheme">1</xref>
</xref>
. Among them, we first investigated the effect of the number of −OH groups and thus the hole-scavenging effect of ethanol (EtOH), ethylene glycol (EG), and glycerol (GC). Higher enhancement can be predicted when having more OH groups due to increase of the hole-scavenging power, expected to be in the order of EtOH < EG < GC. The photocurrent activities for these molecules and H
<sub>2</sub>
O as control are displayed in
<xref rid="fig2" ref-type="fig">Figure
<xref rid="fig2" ref-type="fig">2</xref>
</xref>
b. As can be seen in the figure, every sol–gel film shows different photocurrent activity even before polyol addition due to the heterogeneous feature of the sol–gel film. As mentioned before, for the quantitative analysis, the ratios between activities before (red bars) and after (blue bars) polyol addition are given as the enhancement factor (EF) for each molecule in visible light (
<xref rid="fig2" ref-type="fig">Figure
<xref rid="fig2" ref-type="fig">2</xref>
</xref>
c). It is clear that visible activity is enhanced upon addition of all used molecules. Addition of EG shows the highest EFs (>2.8), whereas EtOH and GC show similar EFs, less than 2. This result suggests that the number of −OH groups is not responsible only for the enhancement.</p>
<fig id="sch1" position="float">
<label>Scheme 1</label>
<caption>
<title>Chemical Structures of the Investigated Molecules</title>
</caption>
<graphic xlink:href="ao-2017-00853e_0005" id="gr1" position="float"></graphic>
</fig>
<p>To investigate the influence of the molecules on the visible photocatalytic activity more precisely, the experiment was conducted using TiO
<sub>2</sub>
films that were pretreated with polyol molecules; namely, the sol–gel film was immersed in each polyol for 68 h and subsequently rinsed with water and isopropanol several times and dried with Ar gas. These pretreated sol–gel films were subjected to the photocurrent experiment using pure 1 M KOH electrolyte without adding polyols to the electrolyte. In such a way, we can discuss only the effect of adsorbed polyol molecules on the TiO
<sub>2</sub>
surface and can avoid the unexpected effect of the polyols in the electrolyte, such as the continuous hole-scavenging effect by the molecular adsorption and desorption dynamics.</p>
<p>In this pretreatment study, the series of polyol molecules was expanded with propylene glycol (PG) and 1,3-propanediol (PD) (
<xref rid="sch1" ref-type="scheme">Scheme
<xref rid="sch1" ref-type="scheme">1</xref>
</xref>
). PD has one extra carbon compared with EG, which could affect adsorption of polyols on the TiO
<sub>2</sub>
surface. PG is very similar to EG and thus could similarly adsorb on the surface as EG but it is a stronger electron donor than EG.
<xref rid="fig3" ref-type="fig">Figure
<xref rid="fig3" ref-type="fig">3</xref>
</xref>
shows that the photocurrent EF obtained on TiO
<sub>2</sub>
sol–gel films is pretreated with H
<sub>2</sub>
O, EtOH, EG, PG, PD, and GC. Note that the sol–gel film treated with H
<sub>2</sub>
O was used as the control. In this pretreatment experiment, after the photocurrent experiments with visible light, the sample was irradiated with UV light until all of the adsorbed molecules decomposed. Then EF was calculated using the value of the photocurrent on the freshly treated film and that from the UV-irradiated film. In such a way, quantitative estimation of EF was realized on the same sol–gel film. As shown in
<xref rid="fig3" ref-type="fig">Figure
<xref rid="fig3" ref-type="fig">3</xref>
</xref>
, the films treated with EtOH and polyols exhibit higher EF compared to the control, indicating these molecules strongly adsorb and remain on the surface of TiO
<sub>2</sub>
even after the several rinsing processes and affect on the photocurrent activity. The EFs for these molecules are found in the order of EG > PG > GC > PD > EtOH > H
<sub>2</sub>
O.</p>
<fig id="fig3" position="float">
<label>Figure 3</label>
<caption>
<p>Enhancement factors of photocurrent generation obtained with TiO
<sub>2</sub>
sol–gel films pretreated without and with EtOH, EG, PG, PD, and GC.</p>
</caption>
<graphic xlink:href="ao-2017-00853e_0002" id="gr4" position="float"></graphic>
</fig>
<p>Further, the very similar EF values found in the pretreatment experiment (
<xref rid="fig3" ref-type="fig">Figure
<xref rid="fig3" ref-type="fig">3</xref>
</xref>
) and those in the addition experiment (
<xref rid="fig2" ref-type="fig">Figure
<xref rid="fig2" ref-type="fig">2</xref>
</xref>
c) suggest that the polyol–TiO
<sub>2</sub>
interaction, once established, is of similar nature in both cases.</p>
<p>To investigate this interaction in more depth, we have tried to obtain additional evidence for molecular functionalization and the type of adsorption of the molecules to the surface using Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy. The restricted sensitivity of these spectroscopic tools combined with the limited layer thickness of the functionalized layer, however, made it too hard to obtain the extra evidence in this way.</p>
<p>Polyols adsorbed on semiconductor surfaces have been studied in the past. In 2004, a number of articles were published regarding hole-scavenging by polyol molecules on TiO
<sub>2</sub>
surfaces.
<sup>
<xref ref-type="bibr" rid="ref37">37</xref>
,
<xref ref-type="bibr" rid="ref38">38</xref>
</sup>
It is known that hole-scavenging decreases the recombination rate of the generated excitons and thus improves the photocatalytic activity. More recently, increased photocatalytic activity in UV light was shown for Au/TiO
<sub>2</sub>
systems in the presence of several polyols, where increased photocatalytic activities were recorded with hole-scavenging being the likely explanation.
<sup>
<xref ref-type="bibr" rid="ref39">39</xref>
</sup>
Interestingly, in both experiments on the hole-scavenging efficiency by polyols (found to increase with the number of hydroxyl groups per molecule)
<sup>
<xref ref-type="bibr" rid="ref38">38</xref>
</sup>
and catalytic performance studies of TiO
<sub>2</sub>
in the presence of polyols,
<sup>
<xref ref-type="bibr" rid="ref41">41</xref>
</sup>
the order of enhancement factors was found to be GC > EG > EtOH > H
<sub>2</sub>
O under UV irradiation. Further, on the basis of their similar hole-scavenging efficiencies, PD and EG should show comparable EFs.
<sup>
<xref ref-type="bibr" rid="ref38">38</xref>
</sup>
Our results obtained only with visible light (>430 nm), however, are not consistent with these trends.</p>
<p>To understand the trend found in this study, we calculated the surface local density of state (DOS) of anatase TiO
<sub>2</sub>
with and without molecule adsorption. Recently, we have predicted that EG adsorption onto the TiO
<sub>2</sub>
surface can give rise to midgap energy states in its surface density of state (DOS).
<sup>
<xref ref-type="bibr" rid="ref40">40</xref>
</sup>
Such midgap energy states can facilitate electron excitations into the conduction band (CB) of TiO
<sub>2</sub>
by light with lower energy and thus improve the photoactivity in visible light. Here, we present an expansion of the DFT calculations with the investigated molecules in this report. The DFT calculation has been conducted within the generalized gradient approximation (GGA) using the Perdew–Burke–Ernzerhof (PBE) functional
<sup>
<xref ref-type="bibr" rid="ref39">39</xref>
</sup>
in the SIESTA computational code.
<sup>
<xref ref-type="bibr" rid="ref40">40</xref>
</sup>
A double-ζ basis set of localized atomic orbitals and Troullier–Martins pseudopotentials were used for the valence and core electrons, respectively.
<sup>
<xref ref-type="bibr" rid="ref41">41</xref>
</sup>
Two layers of the TiO
<sub>2</sub>
slab is used to model the adsorption of molecules, as depicted in
<xref rid="sch1" ref-type="scheme">Scheme
<xref rid="sch1" ref-type="scheme">1</xref>
</xref>
on the {001} and {101} facets. All of the structures were relaxed until less than 0.05 eV/Å. A Monkhorst–Pack grid was used for the density-of-state (DOS) calculations.</p>
<p>
<xref rid="fig4" ref-type="fig">Figure
<xref rid="fig4" ref-type="fig">4</xref>
</xref>
shows the surface DOS of TiO
<sub>2</sub>
with adsorption of H
<sub>2</sub>
O, EtOH, EG, PG, PD, and GC, where only the results for a {001} facet are shown because the more thermally stable yet less photoactive {101} facet yields no midgap states likely due to the inability of the molecules to attach dissociatively to the surface.
<sup>
<xref ref-type="bibr" rid="ref19">19</xref>
,
<xref ref-type="bibr" rid="ref44">44</xref>
</sup>
As shown in
<xref rid="fig4" ref-type="fig">Figure
<xref rid="fig4" ref-type="fig">4</xref>
</xref>
, an extra energy state is found for EG, GC, and PG but not for EtOH, H
<sub>2</sub>
O, and PD (
<xref rid="fig4" ref-type="fig">Figure
<xref rid="fig4" ref-type="fig">4</xref>
</xref>
). Moreover, the position of the localized midgap state induced by EG is ∼2 eV below the CB, whereas the positions for PG and GC are ∼2.5 eV below it. The presence of these midgap states could associate with efficient electron excitation under visible light besides the hole-scavenging effect. Indeed, the maximum EF was found with EG, whereas PG and GC show the second highest EF among the molecules. The enhancement observed for EtOH and PD is smaller than that of EG, PG, and GC and yet higher than that of H
<sub>2</sub>
O, which is most likely due to the hole-scavenging effect. Therefore, taking into account both the extra midgap state and hole-scavenging effect, EFs found in the order of EG > PG > GC > PD > EtOH > H
<sub>2</sub>
O nicely correlate with our calculation.</p>
<fig id="fig4" position="float">
<label>Figure 4</label>
<caption>
<p>DFT-calculated density-of-states (DOSs) plot for the investigated molecules (H
<sub>2</sub>
O, EtOH, EG, PG, PD, and GC) dissociatively adsorbed on a {001} TiO
<sub>2</sub>
facet. The right end of the figure shows the position of the newly created midgap states in the electronic structure of the TiO
<sub>2</sub>
surface.</p>
</caption>
<graphic xlink:href="ao-2017-00853e_0003" id="gr5" position="float"></graphic>
</fig>
<p>The absence of this correlation in other studies on polyol-enhanced TiO
<sub>2</sub>
photocatalysis can be attributed to the light source employed. Other studies used UV light or sunlight including UV light, whereas the present study used only visible light (430 < λ < 750 nm). Because of the high photoresponse of TiO
<sub>2</sub>
in UV light, the response of the system to those wavelengths could conceal the effect of the midgap states. Because we use only visible light (λ > 430 nm) in our irradiation experiments (
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsomega.7b00853/suppl_file/ao7b00853_si_001.pdf">Figure S1</ext-link>
), the effect of the midgap states is more pronounced in the photocurrent generation experiments. The differences in enhancement when using either wavelength range is demonstrated in
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsomega.7b00853/suppl_file/ao7b00853_si_001.pdf">Figure S2</ext-link>
for the sol–gel TiO
<sub>2</sub>
surfaces treated with EG.</p>
<p>Supported by infrared (IR) spectroscopy
<sup>
<xref ref-type="bibr" rid="ref45">45</xref>
</sup>
and X-ray absorption near edge structure (XANES) spectroscopy measurements,
<sup>
<xref ref-type="bibr" rid="ref38">38</xref>
</sup>
a possible interaction of polyol molecules with defect sites on the TiO
<sub>2</sub>
surface was suggested previously, involving an octahedrally coordinated Ti-atom chelated by two hydroxyl groups of the polyol. In other studies, the interaction between hydroxyl groups and TiO
<sub>2</sub>
was used to anchor larger molecules to the semiconductor surface.
<sup>
<xref ref-type="bibr" rid="ref32">32</xref>
,
<xref ref-type="bibr" rid="ref33">33</xref>
</sup>
From our results, we conclude that the interaction of polyols with the surface is of great importance to surface DOS engineering. According to our calculation, all molecules showing midgap energy states also feature a noncoordinating hydroxyl group (
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsomega.7b00853/suppl_file/ao7b00853_si_001.pdf">Figure S4B–D</ext-link>
). When the number of backbone carbon atoms is increased above two, two different Ti atoms can be bound by the hydroxyl groups on either end of the molecule, converting the free hydroxyl group into a binding oxygen atom (
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsomega.7b00853/suppl_file/ao7b00853_si_001.pdf">Figure S4E</ext-link>
). The presence of a free hydroxyl group for EG, PG, and GC but not for PD and the presence and absence, respectively, of a midgap energy state, as predicted by DFT, further supports this scenario.</p>
</sec>
<sec id="sec3">
<title>Conclusions</title>
<p>In conclusion, the photocatalytic performance of TiO
<sub>2</sub>
films in visible light was improved by applying several small polyols to the surface. For a select number of polyols with similarities in the carbon backbone, the performance increase was found to be higher due to the appearance of an extra mid-band-gap energy state. With these results, the efficiency of photocatalysis, energy storage, or direct energy production using solar light can be further increased, supporting a worldwide transition from conventional to sustainable energy sources.</p>
</sec>
<sec id="sec4">
<title>Experimental Section</title>
<p>Anatase TiO
<sub>2</sub>
films on FTO were prepared using a sol–gel method, with Ti(OPr)
<sub>4</sub>
as the precursor salt and the annealing temperature of 475 °C.
<sup>
<xref ref-type="bibr" rid="ref46">46</xref>
</sup>
Full saturation of the TiO
<sub>2</sub>
surface with polyol molecules was achieved by either immersing the samples in the pure compound for 68 h or by adding the pure compound to the electrolyte medium during photocurrent generation experiments, as will be discussed further below.</p>
<p>In a typical experiment, the photocurrent was measured using an electrochemical analyzer and a three-electrode cell consisting of the TiO
<sub>2</sub>
film as the working electrode (W.E.), a Pt wire counter electrode (C.E.), and an AgCl/Ag reference electrode (R.E.), all immersed in a 0.1 M KOH aqueous electrolyte bath (
<xref rid="fig1" ref-type="fig">Figure
<xref rid="fig1" ref-type="fig">1</xref>
</xref>
). The cell was designed such that a 150 W solar simulator lamp could irradiate the TiO
<sub>2</sub>
film with a 430 nm long-pass filter available to isolate the contribution of visible light (OD > 5 below 430 nm,
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsomega.7b00853/suppl_file/ao7b00853_si_001.pdf">Figure S5</ext-link>
). The Ohmic contact between the TiO
<sub>2</sub>
film and the wiring was improved using Cu tape and an In/Ga paste.</p>
<p>All of the polyols employed here as well as the Ti(OPr)
<sub>4</sub>
were purchased from Sigma-Aldrich, with a purity of at least 98%, and used without further purification. Both the electrochemical analyzer and the AgCl/Ag reference electrode were purchased at CH instruments. The solar simulator, model number 67005, was provided by Newport, Oriental Intruments. The 430 nm long-pass filter, HQ430LP, was purchased at Chroma.</p>
<p>We used density functional theory (DFT) calculations within the generalized gradient approximation (GGA) within the Perdew–Burke–Ernzerhof (PBE) form,
<sup>
<xref ref-type="bibr" rid="ref41">41</xref>
</sup>
as implemented in the SIESTA code.
<sup>
<xref ref-type="bibr" rid="ref42">42</xref>
</sup>
The core electrons were replaced by Troullier–Martins pseudopotentials.
<sup>
<xref ref-type="bibr" rid="ref43">43</xref>
</sup>
A double-ζ basis set of localized atomic orbitals was used for the valence electrons. A mesh cutoff energy of 300 Ry has been imposed for real-space integration. All structures have been relaxed until forces were less than 0.05 eV/Å. In the calculations, a vacuum interval of more than 15 Å was used to avoid the interaction between the periodic slabs. The surface area of anatase TiO
<sub>2</sub>
{001} used in the calculations is 7.57 Å × 7.57 Å. When relaxing the atomic structures, the sampling of the Brillouin zone was restricted to the Γ point and a (10 × 10 × 1) Monkhorst–Pack grid was used later on for DOS calculations.
<sup>
<xref ref-type="bibr" rid="ref47">47</xref>
,
<xref ref-type="bibr" rid="ref48">48</xref>
</sup>
</p>
</sec>
</body>
<back>
<notes id="notes-1" notes-type="si">
<title>Supporting Information Available</title>
<p>The Supporting Information is available free of charge on the
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org">ACS Publications website</ext-link>
at DOI:
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/abs/10.1021/acsomega.7b00853">10.1021/acsomega.7b00853</ext-link>
.
<list id="silist" list-type="simple">
<list-item>
<p>Brief description photocurrent experiments and supporting figures (
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsomega.7b00853/suppl_file/ao7b00853_si_001.pdf">PDF</ext-link>
)</p>
</list-item>
</list>
</p>
</notes>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<supplementary-material content-type="local-data" id="sifile1">
<media xlink:href="ao7b00853_si_001.pdf">
<caption>
<p>ao7b00853_si_001.pdf</p>
</caption>
</media>
</supplementary-material>
</sec>
<notes id="notes-2">
<title>Author Contributions</title>
<p>The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.</p>
</notes>
<notes id="notes-3" notes-type="COI-statement">
<p>The authors declare no competing financial interest.</p>
</notes>
<ack>
<title>Acknowledgments</title>
<p>This work was supported by the JST PRESTO program and the European Research Council (ERC) grant (PLASMHACAT #280064). Support from the Research Foundation, Flanders (FWO) (G0B5514N, G081916N, G056314N, and G025912N) and KU Leuven Research Fund (GOA 2011/03, OT/12/059, IDO/12/008, and C14/15/053) and funding from the Belgian Federal Science Policy Office (IAP-VI/27) and JSPS KAKENHI (JP17H03003, JP17H05244, and JP17H05458) are gratefully acknowledged. G.L. acknowledges FWO for postdoctoral fellowships.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="ref1">
<mixed-citation publication-type="journal" id="cit1">
<name>
<surname>Crabtree</surname>
<given-names>G. W.</given-names>
</name>
;
<name>
<surname>Lewis</surname>
<given-names>N. S.</given-names>
</name>
<source>Phys. Today</source>
<year>2007</year>
,
<volume>60</volume>
,
<fpage>37</fpage>
<lpage>42</lpage>
<pub-id pub-id-type="doi">10.1063/1.2718755</pub-id>
.</mixed-citation>
</ref>
<ref id="ref2">
<mixed-citation publication-type="journal" id="cit2">
<name>
<surname>Malato</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Blanco</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Vidal</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Richter</surname>
<given-names>C.</given-names>
</name>
<source>Appl. Catal., B</source>
<year>2002</year>
,
<volume>37</volume>
,
<fpage>1</fpage>
<lpage>15</lpage>
<pub-id pub-id-type="doi">10.1016/S0926-3373(01)00315-0</pub-id>
.</mixed-citation>
</ref>
<ref id="ref3">
<mixed-citation publication-type="journal" id="cit3">
<name>
<surname>Bahnemann</surname>
<given-names>D.</given-names>
</name>
<source>Sol. Energy</source>
<year>2004</year>
,
<volume>77</volume>
,
<fpage>445</fpage>
<lpage>459</lpage>
<pub-id pub-id-type="doi">10.1016/j.solener.2004.03.031</pub-id>
.</mixed-citation>
</ref>
<ref id="ref4">
<mixed-citation publication-type="journal" id="cit4">
<name>
<surname>Chong</surname>
<given-names>M. N.</given-names>
</name>
;
<name>
<surname>Jin</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>Chow</surname>
<given-names>C. W. K.</given-names>
</name>
;
<name>
<surname>Saint</surname>
<given-names>C.</given-names>
</name>
<source>Water Res.</source>
<year>2010</year>
,
<volume>44</volume>
,
<fpage>2997</fpage>
<lpage>3027</lpage>
<pub-id pub-id-type="doi">10.1016/j.watres.2010.02.039</pub-id>
.
<pub-id pub-id-type="pmid">20378145</pub-id>
</mixed-citation>
</ref>
<ref id="ref5">
<mixed-citation publication-type="book" id="cit5">
<person-group person-group-type="allauthors">
<name>
<surname>Fujishima</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Tryk</surname>
<given-names>D. A.</given-names>
</name>
</person-group>
<source>Encyclopedia of Electrochemistry</source>
;
<publisher-name>Wiley</publisher-name>
,
<year>2007</year>
.</mixed-citation>
</ref>
<ref id="ref6">
<mixed-citation publication-type="journal" id="cit6">
<name>
<surname>Heller</surname>
<given-names>A.</given-names>
</name>
<source>Acc. Chem. Res.</source>
<year>1995</year>
,
<volume>28</volume>
,
<fpage>503</fpage>
<lpage>508</lpage>
<pub-id pub-id-type="doi">10.1021/ar00060a006</pub-id>
.</mixed-citation>
</ref>
<ref id="ref7">
<mixed-citation publication-type="journal" id="cit7">
<name>
<surname>Paz</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Luo</surname>
<given-names>Z.</given-names>
</name>
;
<name>
<surname>Rabenberg</surname>
<given-names>L.</given-names>
</name>
;
<name>
<surname>Heller</surname>
<given-names>A.</given-names>
</name>
<source>J. Mater. Res.</source>
<year>1995</year>
,
<volume>10</volume>
,
<fpage>2842</fpage>
<lpage>2848</lpage>
<pub-id pub-id-type="doi">10.1557/JMR.1995.2842</pub-id>
.</mixed-citation>
</ref>
<ref id="ref8">
<mixed-citation publication-type="journal" id="cit8">
<name>
<surname>Brabec</surname>
<given-names>C. J.</given-names>
</name>
<source>Sol. Energy Mater. Sol. Cells</source>
<year>2004</year>
,
<volume>83</volume>
,
<fpage>273</fpage>
<lpage>292</lpage>
<pub-id pub-id-type="doi">10.1016/j.solmat.2004.02.030</pub-id>
.</mixed-citation>
</ref>
<ref id="ref9">
<mixed-citation publication-type="journal" id="cit9">
<name>
<surname>De Arco</surname>
<given-names>L. G.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Schlenker</surname>
<given-names>C. W.</given-names>
</name>
;
<name>
<surname>Ryu</surname>
<given-names>K.</given-names>
</name>
;
<name>
<surname>Thompson</surname>
<given-names>M. E.</given-names>
</name>
;
<name>
<surname>Zhou</surname>
<given-names>C. W.</given-names>
</name>
<source>ACS Nano</source>
<year>2010</year>
,
<volume>4</volume>
,
<fpage>2865</fpage>
<lpage>2873</lpage>
<pub-id pub-id-type="doi">10.1021/nn901587x</pub-id>
.
<pub-id pub-id-type="pmid">20394355</pub-id>
</mixed-citation>
</ref>
<ref id="ref10">
<mixed-citation publication-type="journal" id="cit10">
<name>
<surname>Lin</surname>
<given-names>Y. Z.</given-names>
</name>
;
<name>
<surname>Li</surname>
<given-names>Y. F.</given-names>
</name>
;
<name>
<surname>Zhan</surname>
<given-names>X. W.</given-names>
</name>
<source>Chem. Soc. Rev.</source>
<year>2012</year>
,
<volume>41</volume>
,
<fpage>4245</fpage>
<lpage>4272</lpage>
<pub-id pub-id-type="doi">10.1039/c2cs15313k</pub-id>
.
<pub-id pub-id-type="pmid">22453295</pub-id>
</mixed-citation>
</ref>
<ref id="ref11">
<mixed-citation publication-type="journal" id="cit11">
<name>
<surname>McDonald</surname>
<given-names>S. A.</given-names>
</name>
;
<name>
<surname>Konstantatos</surname>
<given-names>G.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>S. G.</given-names>
</name>
;
<name>
<surname>Cyr</surname>
<given-names>P. W.</given-names>
</name>
;
<name>
<surname>Klem</surname>
<given-names>E. J. D.</given-names>
</name>
;
<name>
<surname>Levina</surname>
<given-names>L.</given-names>
</name>
;
<name>
<surname>Sargent</surname>
<given-names>E. H.</given-names>
</name>
<source>Nat. Mater.</source>
<year>2005</year>
,
<volume>4</volume>
,
<fpage>138</fpage>
<lpage>142</lpage>
<pub-id pub-id-type="doi">10.1038/nmat1299</pub-id>
.
<pub-id pub-id-type="pmid">15640806</pub-id>
</mixed-citation>
</ref>
<ref id="ref12">
<mixed-citation publication-type="journal" id="cit12">
<name>
<surname>Fujishima</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Honda</surname>
<given-names>K.</given-names>
</name>
<source>Nature</source>
<year>1972</year>
,
<volume>238</volume>
,
<fpage>37</fpage>
<pub-id pub-id-type="doi">10.1038/238037a0</pub-id>
.
<pub-id pub-id-type="pmid">12635268</pub-id>
</mixed-citation>
</ref>
<ref id="ref13">
<mixed-citation publication-type="journal" id="cit13">
<name>
<surname>Gray</surname>
<given-names>H. B.</given-names>
</name>
<source>Nat. Chem.</source>
<year>2009</year>
,
<volume>1</volume>
,
<fpage>112</fpage>
<pub-id pub-id-type="doi">10.1038/nchem.206</pub-id>
.</mixed-citation>
</ref>
<ref id="ref14">
<mixed-citation publication-type="journal" id="cit14">
<name>
<surname>Kudo</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Miseki</surname>
<given-names>Y.</given-names>
</name>
<source>Chem. Soc. Rev.</source>
<year>2009</year>
,
<volume>38</volume>
,
<fpage>253</fpage>
<lpage>278</lpage>
<pub-id pub-id-type="doi">10.1039/B800489G</pub-id>
.
<pub-id pub-id-type="pmid">19088977</pub-id>
</mixed-citation>
</ref>
<ref id="ref15">
<mixed-citation publication-type="journal" id="cit15">
<name>
<surname>Linic</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Christopher</surname>
<given-names>P.</given-names>
</name>
;
<name>
<surname>Ingram</surname>
<given-names>D. B.</given-names>
</name>
<source>Nat. Mater.</source>
<year>2011</year>
,
<volume>10</volume>
,
<fpage>911</fpage>
<lpage>921</lpage>
<pub-id pub-id-type="doi">10.1038/nmat3151</pub-id>
.
<pub-id pub-id-type="pmid">22109608</pub-id>
</mixed-citation>
</ref>
<ref id="ref16">
<mixed-citation publication-type="journal" id="cit16">
<name>
<surname>Roy</surname>
<given-names>S. C.</given-names>
</name>
;
<name>
<surname>Varghese</surname>
<given-names>O. K.</given-names>
</name>
;
<name>
<surname>Paulose</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Grimes</surname>
<given-names>C. A.</given-names>
</name>
<source>ACS Nano</source>
<year>2010</year>
,
<volume>4</volume>
,
<fpage>1259</fpage>
<lpage>1278</lpage>
<pub-id pub-id-type="doi">10.1021/nn9015423</pub-id>
.
<pub-id pub-id-type="pmid">20141175</pub-id>
</mixed-citation>
</ref>
<ref id="ref17">
<mixed-citation publication-type="journal" id="cit17">
<name>
<surname>Lewis</surname>
<given-names>N. S.</given-names>
</name>
<source>Science</source>
<year>2007</year>
,
<volume>315</volume>
,
<fpage>798</fpage>
<lpage>801</lpage>
<pub-id pub-id-type="doi">10.1126/science.1137014</pub-id>
.
<pub-id pub-id-type="pmid">17289986</pub-id>
</mixed-citation>
</ref>
<ref id="ref18">
<mixed-citation publication-type="journal" id="cit18">
<name>
<surname>Carp</surname>
<given-names>O.</given-names>
</name>
;
<name>
<surname>Huisman</surname>
<given-names>C. L.</given-names>
</name>
;
<name>
<surname>Reller</surname>
<given-names>A.</given-names>
</name>
<source>Prog. Solid State Chem.</source>
<year>2004</year>
,
<volume>32</volume>
,
<fpage>33</fpage>
<lpage>177</lpage>
<pub-id pub-id-type="doi">10.1016/j.progsolidstchem.2004.08.001</pub-id>
.</mixed-citation>
</ref>
<ref id="ref19">
<mixed-citation publication-type="journal" id="cit19">
<name>
<surname>Diebold</surname>
<given-names>U.</given-names>
</name>
<source>Surf. Sci. Rep.</source>
<year>2003</year>
,
<volume>48</volume>
,
<fpage>53</fpage>
<lpage>229</lpage>
<pub-id pub-id-type="doi">10.1016/S0167-5729(02)00100-0</pub-id>
.</mixed-citation>
</ref>
<ref id="ref20">
<mixed-citation publication-type="journal" id="cit20">
<name>
<surname>Fujishima</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>X. T.</given-names>
</name>
;
<name>
<surname>Tryk</surname>
<given-names>D. A.</given-names>
</name>
<source>Surf. Sci. Rep.</source>
<year>2008</year>
,
<volume>63</volume>
,
<fpage>515</fpage>
<lpage>582</lpage>
<pub-id pub-id-type="doi">10.1016/j.surfrep.2008.10.001</pub-id>
.</mixed-citation>
</ref>
<ref id="ref21">
<mixed-citation publication-type="journal" id="cit21">
<name>
<surname>Chen</surname>
<given-names>X.</given-names>
</name>
;
<name>
<surname>Mao</surname>
<given-names>S. S.</given-names>
</name>
<source>Chem. Rev.</source>
<year>2007</year>
,
<volume>107</volume>
,
<fpage>2891</fpage>
<lpage>2959</lpage>
<pub-id pub-id-type="doi">10.1021/cr0500535</pub-id>
.
<pub-id pub-id-type="pmid">17590053</pub-id>
</mixed-citation>
</ref>
<ref id="ref22">
<mixed-citation publication-type="journal" id="cit22">
<name>
<surname>Asahi</surname>
<given-names>R.</given-names>
</name>
;
<name>
<surname>Morikawa</surname>
<given-names>T.</given-names>
</name>
;
<name>
<surname>Ohwaki</surname>
<given-names>T.</given-names>
</name>
;
<name>
<surname>Aoki</surname>
<given-names>K.</given-names>
</name>
;
<name>
<surname>Taga</surname>
<given-names>Y.</given-names>
</name>
<source>Science</source>
<year>2001</year>
,
<volume>293</volume>
,
<fpage>269</fpage>
<lpage>271</lpage>
<pub-id pub-id-type="doi">10.1126/science.1061051</pub-id>
.
<pub-id pub-id-type="pmid">11452117</pub-id>
</mixed-citation>
</ref>
<ref id="ref23">
<mixed-citation publication-type="journal" id="cit23">
<name>
<surname>Ihara</surname>
<given-names>T.</given-names>
</name>
;
<name>
<surname>Miyoshi</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Iriyama</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Matsumoto</surname>
<given-names>O.</given-names>
</name>
;
<name>
<surname>Sugihara</surname>
<given-names>S.</given-names>
</name>
<source>Appl. Catal., B</source>
<year>2003</year>
,
<volume>42</volume>
,
<fpage>403</fpage>
<lpage>409</lpage>
<pub-id pub-id-type="doi">10.1016/S0926-3373(02)00269-2</pub-id>
.</mixed-citation>
</ref>
<ref id="ref24">
<mixed-citation publication-type="journal" id="cit24">
<name>
<surname>Jang</surname>
<given-names>D. M.</given-names>
</name>
;
<name>
<surname>Kwak</surname>
<given-names>I. H.</given-names>
</name>
;
<name>
<surname>Kwon</surname>
<given-names>E. L.</given-names>
</name>
;
<name>
<surname>Jung</surname>
<given-names>C. S.</given-names>
</name>
;
<name>
<surname>Im</surname>
<given-names>H. S.</given-names>
</name>
;
<name>
<surname>Park</surname>
<given-names>K.</given-names>
</name>
;
<name>
<surname>Park</surname>
<given-names>J.</given-names>
</name>
<source>J. Phys. Chem. C</source>
<year>2015</year>
,
<volume>119</volume>
,
<fpage>1921</fpage>
<lpage>1927</lpage>
<pub-id pub-id-type="doi">10.1021/jp511561k</pub-id>
.</mixed-citation>
</ref>
<ref id="ref25">
<mixed-citation publication-type="journal" id="cit25">
<name>
<surname>Ohno</surname>
<given-names>T.</given-names>
</name>
;
<name>
<surname>Akiyoshi</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Umebayashi</surname>
<given-names>T.</given-names>
</name>
;
<name>
<surname>Asai</surname>
<given-names>K.</given-names>
</name>
;
<name>
<surname>Mitsui</surname>
<given-names>T.</given-names>
</name>
;
<name>
<surname>Matsumura</surname>
<given-names>M.</given-names>
</name>
<source>Appl. Catal., A</source>
<year>2004</year>
,
<volume>265</volume>
,
<fpage>115</fpage>
<lpage>121</lpage>
<pub-id pub-id-type="doi">10.1016/j.apcata.2004.01.007</pub-id>
.</mixed-citation>
</ref>
<ref id="ref26">
<mixed-citation publication-type="journal" id="cit26">
<name>
<surname>Chung</surname>
<given-names>I.</given-names>
</name>
;
<name>
<surname>Lee</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>He</surname>
<given-names>J. Q.</given-names>
</name>
;
<name>
<surname>Chang</surname>
<given-names>R. P. H.</given-names>
</name>
;
<name>
<surname>Kanatzidis</surname>
<given-names>M. G.</given-names>
</name>
<source>Nature</source>
<year>2012</year>
,
<volume>485</volume>
,
<fpage>486</fpage>
<lpage>U494</lpage>
<pub-id pub-id-type="doi">10.1038/nature11067</pub-id>
.
<pub-id pub-id-type="pmid">22622574</pub-id>
</mixed-citation>
</ref>
<ref id="ref27">
<mixed-citation publication-type="journal" id="cit27">
<name>
<surname>Narayan</surname>
<given-names>M. R.</given-names>
</name>
<source>Renewable Sustainable Energy Rev.</source>
<year>2012</year>
,
<volume>16</volume>
,
<fpage>208</fpage>
<lpage>215</lpage>
<pub-id pub-id-type="doi">10.1016/j.rser.2011.07.148</pub-id>
.</mixed-citation>
</ref>
<ref id="ref28">
<mixed-citation publication-type="journal" id="cit28">
<name>
<surname>Yan</surname>
<given-names>Z. P.</given-names>
</name>
;
<name>
<surname>Yu</surname>
<given-names>X. X.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>Y. Y.</given-names>
</name>
;
<name>
<surname>Jia</surname>
<given-names>H. X.</given-names>
</name>
;
<name>
<surname>Sun</surname>
<given-names>Z. J.</given-names>
</name>
;
<name>
<surname>Du</surname>
<given-names>P. W.</given-names>
</name>
<source>Appl. Catal., B</source>
<year>2014</year>
,
<volume>160–161</volume>
,
<fpage>173</fpage>
<lpage>178</lpage>
<pub-id pub-id-type="doi">10.1016/j.apcatb.2014.05.017</pub-id>
.</mixed-citation>
</ref>
<ref id="ref29">
<mixed-citation publication-type="journal" id="cit29">
<name>
<surname>Shi</surname>
<given-names>X.</given-names>
</name>
;
<name>
<surname>Ueno</surname>
<given-names>K.</given-names>
</name>
;
<name>
<surname>Takabayashi</surname>
<given-names>N.</given-names>
</name>
;
<name>
<surname>Misawa</surname>
<given-names>H.</given-names>
</name>
<source>J. Phys. Chem. C</source>
<year>2013</year>
,
<volume>117</volume>
,
<fpage>2494</fpage>
<lpage>2499</lpage>
<pub-id pub-id-type="doi">10.1021/jp3064036</pub-id>
.</mixed-citation>
</ref>
<ref id="ref30">
<mixed-citation publication-type="journal" id="cit30">
<name>
<surname>Jha</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Yasarapudi</surname>
<given-names>V. B.</given-names>
</name>
;
<name>
<surname>Jasbeer</surname>
<given-names>H.</given-names>
</name>
;
<name>
<surname>Kanimozhi</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Patil</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Dasgupta</surname>
<given-names>J.</given-names>
</name>
<source>J. Phys. Chem. C</source>
<year>2014</year>
,
<volume>118</volume>
,
<fpage>29650</fpage>
<lpage>29662</lpage>
<pub-id pub-id-type="doi">10.1021/jp510733k</pub-id>
.</mixed-citation>
</ref>
<ref id="ref31">
<mixed-citation publication-type="journal" id="cit31">
<name>
<surname>Lin</surname>
<given-names>Z. H.</given-names>
</name>
;
<name>
<surname>Xie</surname>
<given-names>Y. N.</given-names>
</name>
;
<name>
<surname>Yang</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>S. H.</given-names>
</name>
;
<name>
<surname>Zhu</surname>
<given-names>G.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>Z. L.</given-names>
</name>
<source>ACS Nano</source>
<year>2013</year>
,
<volume>7</volume>
,
<fpage>4554</fpage>
<lpage>4560</lpage>
<pub-id pub-id-type="doi">10.1021/nn401256w</pub-id>
.
<pub-id pub-id-type="pmid">23597018</pub-id>
</mixed-citation>
</ref>
<ref id="ref32">
<mixed-citation publication-type="journal" id="cit32">
<name>
<surname>Rajh</surname>
<given-names>T.</given-names>
</name>
;
<name>
<surname>Chen</surname>
<given-names>L. X.</given-names>
</name>
;
<name>
<surname>Lukas</surname>
<given-names>K.</given-names>
</name>
;
<name>
<surname>Liu</surname>
<given-names>T.</given-names>
</name>
;
<name>
<surname>Thurnauer</surname>
<given-names>M. C.</given-names>
</name>
;
<name>
<surname>Tiede</surname>
<given-names>D. M.</given-names>
</name>
<source>J. Phys. Chem. B</source>
<year>2002</year>
,
<volume>106</volume>
,
<fpage>10543</fpage>
<lpage>10552</lpage>
<pub-id pub-id-type="doi">10.1021/jp021235v</pub-id>
.</mixed-citation>
</ref>
<ref id="ref33">
<mixed-citation publication-type="journal" id="cit33">
<name>
<surname>Sevinc</surname>
<given-names>P. C.</given-names>
</name>
;
<name>
<surname>Dhital</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>Rao</surname>
<given-names>V. G.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>Y. M.</given-names>
</name>
;
<name>
<surname>Lu</surname>
<given-names>H. P.</given-names>
</name>
<source>J. Am. Chem. Soc.</source>
<year>2016</year>
,
<volume>138</volume>
,
<fpage>1536</fpage>
<lpage>1542</lpage>
<pub-id pub-id-type="doi">10.1021/jacs.5b10253</pub-id>
.
<pub-id pub-id-type="pmid">26735967</pub-id>
</mixed-citation>
</ref>
<ref id="ref34">
<mixed-citation publication-type="journal" id="cit34">
<name>
<surname>Huang</surname>
<given-names>H.</given-names>
</name>
;
<name>
<surname>Han</surname>
<given-names>X.</given-names>
</name>
;
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Chu</surname>
<given-names>P. K.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<source>ACS Appl. Mater. Interfaces</source>
<year>2015</year>
,
<volume>7</volume>
,
<fpage>482</fpage>
<lpage>492</lpage>
<pub-id pub-id-type="doi">10.1021/am5065409</pub-id>
.
<pub-id pub-id-type="pmid">25525911</pub-id>
</mixed-citation>
</ref>
<ref id="ref35">
<mixed-citation publication-type="journal" id="cit35">
<name>
<surname>Huang</surname>
<given-names>H.</given-names>
</name>
;
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Dong</surname>
<given-names>F.</given-names>
</name>
;
<name>
<surname>Chu</surname>
<given-names>P. K.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>T.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<source>ACS Catal.</source>
<year>2015</year>
,
<volume>5</volume>
,
<fpage>4094</fpage>
<lpage>4103</lpage>
<pub-id pub-id-type="doi">10.1021/acscatal.5b00444</pub-id>
.</mixed-citation>
</ref>
<ref id="ref36">
<mixed-citation publication-type="journal" id="cit36">
<name>
<surname>Ganduglia-Pirovano</surname>
<given-names>M. V.</given-names>
</name>
;
<name>
<surname>Hofmann</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Sauer</surname>
<given-names>J.</given-names>
</name>
<source>Surf. Sci. Rep.</source>
<year>2007</year>
,
<volume>62</volume>
,
<fpage>219</fpage>
<lpage>270</lpage>
<pub-id pub-id-type="doi">10.1016/j.surfrep.2007.03.002</pub-id>
.</mixed-citation>
</ref>
<ref id="ref37">
<mixed-citation publication-type="journal" id="cit37">
<name>
<surname>Shkrob</surname>
<given-names>I. A.</given-names>
</name>
;
<name>
<surname>Sauer</surname>
<given-names>M. C.</given-names>
</name>
<source>J. Phys. Chem. B</source>
<year>2004</year>
,
<volume>108</volume>
,
<fpage>12497</fpage>
<lpage>12511</lpage>
<pub-id pub-id-type="doi">10.1021/jp047736t</pub-id>
.</mixed-citation>
</ref>
<ref id="ref38">
<mixed-citation publication-type="journal" id="cit38">
<name>
<surname>Shkrob</surname>
<given-names>I. A.</given-names>
</name>
;
<name>
<surname>Sauer</surname>
<given-names>M. C.</given-names>
</name>
;
<name>
<surname>Gosztola</surname>
<given-names>D.</given-names>
</name>
<source>J. Phys. Chem. B</source>
<year>2004</year>
,
<volume>108</volume>
,
<fpage>12512</fpage>
<lpage>12517</lpage>
<pub-id pub-id-type="doi">10.1021/jp0477351</pub-id>
.</mixed-citation>
</ref>
<ref id="ref39">
<mixed-citation publication-type="journal" id="cit39">
<name>
<surname>Chen</surname>
<given-names>W. T.</given-names>
</name>
;
<name>
<surname>Chan</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Al-Azri</surname>
<given-names>Z. H. N.</given-names>
</name>
;
<name>
<surname>Dosado</surname>
<given-names>A. G.</given-names>
</name>
;
<name>
<surname>Nadeem</surname>
<given-names>M. A.</given-names>
</name>
;
<name>
<surname>Sun-Waterhouse</surname>
<given-names>D.</given-names>
</name>
;
<name>
<surname>Idriss</surname>
<given-names>H.</given-names>
</name>
;
<name>
<surname>Waterhouse</surname>
<given-names>G. I. N.</given-names>
</name>
<source>J. Catal.</source>
<year>2015</year>
,
<volume>329</volume>
,
<fpage>499</fpage>
<lpage>513</lpage>
<pub-id pub-id-type="doi">10.1016/j.jcat.2015.06.014</pub-id>
.</mixed-citation>
</ref>
<ref id="ref40">
<mixed-citation publication-type="journal" id="cit40">
<name>
<surname>Kenens</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>Chamtouri</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Aubert</surname>
<given-names>R.</given-names>
</name>
;
<name>
<surname>Miyakawa</surname>
<given-names>K.</given-names>
</name>
;
<name>
<surname>Hayasaka</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Naiki</surname>
<given-names>H.</given-names>
</name>
;
<name>
<surname>Watanabe</surname>
<given-names>H.</given-names>
</name>
;
<name>
<surname>Inose</surname>
<given-names>T.</given-names>
</name>
;
<name>
<surname>Fujita</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Lu</surname>
<given-names>G.</given-names>
</name>
;
<name>
<surname>Masuhara</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Uji-i</surname>
<given-names>H.</given-names>
</name>
<source>RSC Adv.</source>
<year>2016</year>
,
<volume>6</volume>
,
<fpage>97464</fpage>
<lpage>97468</lpage>
<pub-id pub-id-type="doi">10.1039/C6RA19372B</pub-id>
.</mixed-citation>
</ref>
<ref id="ref41">
<mixed-citation publication-type="journal" id="cit41">
<name>
<surname>Perdew</surname>
<given-names>J. P.</given-names>
</name>
;
<name>
<surname>Burke</surname>
<given-names>K.</given-names>
</name>
;
<name>
<surname>Ernzerhof</surname>
<given-names>M.</given-names>
</name>
<source>Phys. Rev. Lett.</source>
<year>1996</year>
,
<volume>77</volume>
,
<fpage>3865</fpage>
<lpage>3868</lpage>
<pub-id pub-id-type="doi">10.1103/PhysRevLett.77.3865</pub-id>
.
<pub-id pub-id-type="pmid">10062328</pub-id>
</mixed-citation>
</ref>
<ref id="ref42">
<mixed-citation publication-type="journal" id="cit42">
<name>
<surname>Soler</surname>
<given-names>J. M.</given-names>
</name>
;
<name>
<surname>Artacho</surname>
<given-names>E.</given-names>
</name>
;
<name>
<surname>Gale</surname>
<given-names>J. D.</given-names>
</name>
;
<name>
<surname>Garcia</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Junquera</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Ordejon</surname>
<given-names>P.</given-names>
</name>
;
<name>
<surname>Sanchez-Portal</surname>
<given-names>D.</given-names>
</name>
<source>J. Phys.: Condens. Matter</source>
<year>2002</year>
,
<volume>14</volume>
,
<fpage>2745</fpage>
<lpage>2779</lpage>
<pub-id pub-id-type="doi">10.1088/0953-8984/14/11/302</pub-id>
.</mixed-citation>
</ref>
<ref id="ref43">
<mixed-citation publication-type="journal" id="cit43">
<name>
<surname>Troullier</surname>
<given-names>N.</given-names>
</name>
;
<name>
<surname>Martins</surname>
<given-names>J. L.</given-names>
</name>
<source>Phys. Rev. B</source>
<year>1991</year>
,
<volume>43</volume>
,
<fpage>1993</fpage>
<lpage>2006</lpage>
<pub-id pub-id-type="doi">10.1103/PhysRevB.43.1993</pub-id>
.</mixed-citation>
</ref>
<ref id="ref44">
<mixed-citation publication-type="journal" id="cit44">
<name>
<surname>Yang</surname>
<given-names>H. G.</given-names>
</name>
;
<name>
<surname>Sun</surname>
<given-names>C. H.</given-names>
</name>
;
<name>
<surname>Qiao</surname>
<given-names>S. Z.</given-names>
</name>
;
<name>
<surname>Zou</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Liu</surname>
<given-names>G.</given-names>
</name>
;
<name>
<surname>Smith</surname>
<given-names>S. C.</given-names>
</name>
;
<name>
<surname>Cheng</surname>
<given-names>H. M.</given-names>
</name>
;
<name>
<surname>Lu</surname>
<given-names>G. Q.</given-names>
</name>
<source>Nature</source>
<year>2008</year>
,
<volume>453</volume>
,
<fpage>638</fpage>
<lpage>U634</lpage>
<pub-id pub-id-type="doi">10.1038/nature06964</pub-id>
.
<pub-id pub-id-type="pmid">18509440</pub-id>
</mixed-citation>
</ref>
<ref id="ref45">
<mixed-citation publication-type="journal" id="cit45">
<name>
<surname>Yamakata</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Ishibashi</surname>
<given-names>T.</given-names>
</name>
;
<name>
<surname>Onishi</surname>
<given-names>H.</given-names>
</name>
<source>J. Phys. Chem. B</source>
<year>2002</year>
,
<volume>106</volume>
,
<fpage>9122</fpage>
<lpage>9125</lpage>
<pub-id pub-id-type="doi">10.1021/jp025993x</pub-id>
.</mixed-citation>
</ref>
<ref id="ref46">
<mixed-citation publication-type="journal" id="cit46">
<name>
<surname>Su</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Hong</surname>
<given-names>B. Y.</given-names>
</name>
;
<name>
<surname>Tseng</surname>
<given-names>C. M.</given-names>
</name>
<source>Catal. Today</source>
<year>2004</year>
,
<volume>96</volume>
,
<fpage>119</fpage>
<lpage>126</lpage>
<pub-id pub-id-type="doi">10.1016/j.cattod.2004.06.132</pub-id>
.</mixed-citation>
</ref>
<ref id="ref47">
<mixed-citation publication-type="journal" id="cit47">
<name>
<surname>Boys</surname>
<given-names>S. F.</given-names>
</name>
;
<name>
<surname>Bernardi</surname>
<given-names>F.</given-names>
</name>
<source>Mol. Phys.</source>
<year>2002</year>
,
<volume>100</volume>
,
<fpage>65</fpage>
<lpage>73</lpage>
<pub-id pub-id-type="doi">10.1080/00268970110088901</pub-id>
.</mixed-citation>
</ref>
<ref id="ref48">
<mixed-citation publication-type="journal" id="cit48">
<name>
<surname>Monkhorst</surname>
<given-names>H. J.</given-names>
</name>
;
<name>
<surname>Pack</surname>
<given-names>J. D.</given-names>
</name>
<source>Phys. Rev. B</source>
<year>1976</year>
,
<volume>13</volume>
,
<fpage>5188</fpage>
<lpage>5192</lpage>
<pub-id pub-id-type="doi">10.1103/PhysRevB.13.5188</pub-id>
.</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000688  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000688  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024