Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Assessment of the Potential Impacts of Wheat Plant Traits across Environments by Combining Crop Modeling and Global Sensitivity Analysis

Identifieur interne : 000598 ( Pmc/Corpus ); précédent : 000597; suivant : 000599

Assessment of the Potential Impacts of Wheat Plant Traits across Environments by Combining Crop Modeling and Global Sensitivity Analysis

Auteurs : Pierre Casadebaig ; Bangyou Zheng ; Scott Chapman ; Neil Huth ; Robert Faivre ; Karine Chenu

Source :

RBID : PMC:4723307

Abstract

A crop can be viewed as a complex system with outputs (e.g. yield) that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background). The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90) was evaluated in a wide target population of environments (4 sites × 125 years), management practices (3 sowing dates × 3 nitrogen fertilization levels) and CO2 (2 levels). The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait × environment × management landscape (∼ 82 million individual simulations in total). The patterns of parameter × environment × management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference cultivar. Main (i.e. linear) and interaction (i.e. non-linear and interaction) sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identification of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model) improvement.


Url:
DOI: 10.1371/journal.pone.0146385
PubMed: 26799483
PubMed Central: 4723307

Links to Exploration step

PMC:4723307

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Assessment of the Potential Impacts of Wheat Plant Traits across Environments by Combining Crop Modeling and Global Sensitivity Analysis</title>
<author>
<name sortKey="Casadebaig, Pierre" sort="Casadebaig, Pierre" uniqKey="Casadebaig P" first="Pierre" last="Casadebaig">Pierre Casadebaig</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>INRA, UMR1248 AGIR, 31326 Castanet-Tolosan, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Bangyou" sort="Zheng, Bangyou" uniqKey="Zheng B" first="Bangyou" last="Zheng">Bangyou Zheng</name>
<affiliation>
<nlm:aff id="aff002">
<addr-line>CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Road, St. Lucia, QLD 4067, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chapman, Scott" sort="Chapman, Scott" uniqKey="Chapman S" first="Scott" last="Chapman">Scott Chapman</name>
<affiliation>
<nlm:aff id="aff003">
<addr-line>Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, QLD 4350, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Huth, Neil" sort="Huth, Neil" uniqKey="Huth N" first="Neil" last="Huth">Neil Huth</name>
<affiliation>
<nlm:aff id="aff004">
<addr-line>CSIRO Agriculture, 203 Tor Street, Toowoomba, QLD 4350, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Faivre, Robert" sort="Faivre, Robert" uniqKey="Faivre R" first="Robert" last="Faivre">Robert Faivre</name>
<affiliation>
<nlm:aff id="aff005">
<addr-line>INRA, UR875 MIAT, 31326 Castanet-Tolosan, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chenu, Karine" sort="Chenu, Karine" uniqKey="Chenu K" first="Karine" last="Chenu">Karine Chenu</name>
<affiliation>
<nlm:aff id="aff006">
<addr-line>Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, 203 Tor Street, Toowoomba, QLD 4350, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26799483</idno>
<idno type="pmc">4723307</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4723307</idno>
<idno type="RBID">PMC:4723307</idno>
<idno type="doi">10.1371/journal.pone.0146385</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000598</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000598</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Assessment of the Potential Impacts of Wheat Plant Traits across Environments by Combining Crop Modeling and Global Sensitivity Analysis</title>
<author>
<name sortKey="Casadebaig, Pierre" sort="Casadebaig, Pierre" uniqKey="Casadebaig P" first="Pierre" last="Casadebaig">Pierre Casadebaig</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>INRA, UMR1248 AGIR, 31326 Castanet-Tolosan, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Bangyou" sort="Zheng, Bangyou" uniqKey="Zheng B" first="Bangyou" last="Zheng">Bangyou Zheng</name>
<affiliation>
<nlm:aff id="aff002">
<addr-line>CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Road, St. Lucia, QLD 4067, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chapman, Scott" sort="Chapman, Scott" uniqKey="Chapman S" first="Scott" last="Chapman">Scott Chapman</name>
<affiliation>
<nlm:aff id="aff003">
<addr-line>Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, QLD 4350, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Huth, Neil" sort="Huth, Neil" uniqKey="Huth N" first="Neil" last="Huth">Neil Huth</name>
<affiliation>
<nlm:aff id="aff004">
<addr-line>CSIRO Agriculture, 203 Tor Street, Toowoomba, QLD 4350, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Faivre, Robert" sort="Faivre, Robert" uniqKey="Faivre R" first="Robert" last="Faivre">Robert Faivre</name>
<affiliation>
<nlm:aff id="aff005">
<addr-line>INRA, UR875 MIAT, 31326 Castanet-Tolosan, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chenu, Karine" sort="Chenu, Karine" uniqKey="Chenu K" first="Karine" last="Chenu">Karine Chenu</name>
<affiliation>
<nlm:aff id="aff006">
<addr-line>Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, 203 Tor Street, Toowoomba, QLD 4350, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS ONE</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>A crop can be viewed as a complex system with outputs (e.g. yield) that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background). The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90) was evaluated in a wide target population of environments (4 sites × 125 years), management practices (3 sowing dates × 3 nitrogen fertilization levels) and
<italic>CO</italic>
<sub>2</sub>
(2 levels). The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait × environment × management landscape (∼ 82 million individual simulations in total). The patterns of parameter × environment × management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference cultivar. Main (i.e. linear) and interaction (i.e. non-linear and interaction) sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identification of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model) improvement.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Chapman, S" uniqKey="Chapman S">S Chapman</name>
</author>
<author>
<name sortKey="Cooper, M" uniqKey="Cooper M">M Cooper</name>
</author>
<author>
<name sortKey="Hammer, G" uniqKey="Hammer G">G Hammer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hammer, G" uniqKey="Hammer G">G Hammer</name>
</author>
<author>
<name sortKey="Cooper, M" uniqKey="Cooper M">M Cooper</name>
</author>
<author>
<name sortKey="Tardieu, F" uniqKey="Tardieu F">F Tardieu</name>
</author>
<author>
<name sortKey="Welch, S" uniqKey="Welch S">S Welch</name>
</author>
<author>
<name sortKey="Walsh, B" uniqKey="Walsh B">B Walsh</name>
</author>
<author>
<name sortKey="Eeuwijk, F Van" uniqKey="Eeuwijk F">F van Eeuwijk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chapman, S" uniqKey="Chapman S">S Chapman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chapman, Sc" uniqKey="Chapman S">SC Chapman</name>
</author>
<author>
<name sortKey="Chakraborty, S" uniqKey="Chakraborty S">S Chakraborty</name>
</author>
<author>
<name sortKey="Dreccer, Mf" uniqKey="Dreccer M">MF Dreccer</name>
</author>
<author>
<name sortKey="Howden, Sm" uniqKey="Howden S">SM Howden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zheng, B" uniqKey="Zheng B">B Zheng</name>
</author>
<author>
<name sortKey="Chenu, K" uniqKey="Chenu K">K Chenu</name>
</author>
<author>
<name sortKey="Fernanda Dreccer, M" uniqKey="Fernanda Dreccer M">M Fernanda Dreccer</name>
</author>
<author>
<name sortKey="Chapman, Sc" uniqKey="Chapman S">SC Chapman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chenu, K" uniqKey="Chenu K">K Chenu</name>
</author>
<author>
<name sortKey="Cooper, M" uniqKey="Cooper M">M Cooper</name>
</author>
<author>
<name sortKey="Hammer, G" uniqKey="Hammer G">G Hammer</name>
</author>
<author>
<name sortKey="Mathews, K" uniqKey="Mathews K">K Mathews</name>
</author>
<author>
<name sortKey="Dreccer, M" uniqKey="Dreccer M">M Dreccer</name>
</author>
<author>
<name sortKey="Chapman, S" uniqKey="Chapman S">S Chapman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chenu, K" uniqKey="Chenu K">K Chenu</name>
</author>
<author>
<name sortKey="Deihimfard, R" uniqKey="Deihimfard R">R Deihimfard</name>
</author>
<author>
<name sortKey="Chapman, Sc" uniqKey="Chapman S">SC Chapman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ortiz Monasterio, R" uniqKey="Ortiz Monasterio R">R Ortiz-Monasterio</name>
</author>
<author>
<name sortKey="Sayre, K" uniqKey="Sayre K">K Sayre</name>
</author>
<author>
<name sortKey="Rajaram, S" uniqKey="Rajaram S">S Rajaram</name>
</author>
<author>
<name sortKey="Mcmahon, M" uniqKey="Mcmahon M">M McMahon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Richards, R" uniqKey="Richards R">R Richards</name>
</author>
<author>
<name sortKey="Hunt, J" uniqKey="Hunt J">J Hunt</name>
</author>
<author>
<name sortKey="Kirkegaard, J" uniqKey="Kirkegaard J">J Kirkegaard</name>
</author>
<author>
<name sortKey="Passioura, J" uniqKey="Passioura J">J Passioura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, R C" uniqKey="Yang R">R-C Yang</name>
</author>
<author>
<name sortKey="Blade, Sf" uniqKey="Blade S">SF Blade</name>
</author>
<author>
<name sortKey="Crossa, J" uniqKey="Crossa J">J Crossa</name>
</author>
<author>
<name sortKey="Stanton, D" uniqKey="Stanton D">D Stanton</name>
</author>
<author>
<name sortKey="Bandara, Ms" uniqKey="Bandara M">MS Bandara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vega, A De La" uniqKey="Vega A">A de la Vega</name>
</author>
<author>
<name sortKey="Delacy, I" uniqKey="Delacy I">I DeLacy</name>
</author>
<author>
<name sortKey="Chapman, S" uniqKey="Chapman S">S Chapman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chapman, Sc" uniqKey="Chapman S">SC Chapman</name>
</author>
<author>
<name sortKey="Cooper, M" uniqKey="Cooper M">M Cooper</name>
</author>
<author>
<name sortKey="Butler, Dg" uniqKey="Butler D">DG Butler</name>
</author>
<author>
<name sortKey="Henzell, Rg" uniqKey="Henzell R">RG Henzell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cooper, M" uniqKey="Cooper M">M Cooper</name>
</author>
<author>
<name sortKey="Woodruff, Dr" uniqKey="Woodruff D">DR Woodruff</name>
</author>
<author>
<name sortKey="Eisemann, Rl" uniqKey="Eisemann R">RL Eisemann</name>
</author>
<author>
<name sortKey="Brennan, Ps" uniqKey="Brennan P">PS Brennan</name>
</author>
<author>
<name sortKey="Delacy, Ih" uniqKey="Delacy I">IH DeLacy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mathews, Kl" uniqKey="Mathews K">KL Mathews</name>
</author>
<author>
<name sortKey="Chapman, Sc" uniqKey="Chapman S">SC Chapman</name>
</author>
<author>
<name sortKey="Trethowan, R" uniqKey="Trethowan R">R Trethowan</name>
</author>
<author>
<name sortKey="Pfeiffer, W" uniqKey="Pfeiffer W">W Pfeiffer</name>
</author>
<author>
<name sortKey="Van Ginkel, M" uniqKey="Van Ginkel M">M Van Ginkel</name>
</author>
<author>
<name sortKey="Crossa, J" uniqKey="Crossa J">J Crossa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chapman, Sc" uniqKey="Chapman S">SC Chapman</name>
</author>
<author>
<name sortKey="Crossa, J" uniqKey="Crossa J">J Crossa</name>
</author>
<author>
<name sortKey="Edmeades, Go" uniqKey="Edmeades G">GO Edmeades</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alwala, S" uniqKey="Alwala S">S Alwala</name>
</author>
<author>
<name sortKey="Kwolek, T" uniqKey="Kwolek T">T Kwolek</name>
</author>
<author>
<name sortKey="Mcpherson, M" uniqKey="Mcpherson M">M McPherson</name>
</author>
<author>
<name sortKey="Pellow, J" uniqKey="Pellow J">J Pellow</name>
</author>
<author>
<name sortKey="Meyer, D" uniqKey="Meyer D">D Meyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hammer, Gl" uniqKey="Hammer G">GL Hammer</name>
</author>
<author>
<name sortKey="Mclean, G" uniqKey="Mclean G">G McLean</name>
</author>
<author>
<name sortKey="Chapman, S" uniqKey="Chapman S">S Chapman</name>
</author>
<author>
<name sortKey="Zheng, B" uniqKey="Zheng B">B Zheng</name>
</author>
<author>
<name sortKey="Doherty, A" uniqKey="Doherty A">A Doherty</name>
</author>
<author>
<name sortKey="Harrison, Mt" uniqKey="Harrison M">MT Harrison</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nyquist, We" uniqKey="Nyquist W">WE Nyquist</name>
</author>
<author>
<name sortKey="Baker, R" uniqKey="Baker R">R Baker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cooper, M" uniqKey="Cooper M">M Cooper</name>
</author>
<author>
<name sortKey="Stucker, R" uniqKey="Stucker R">R Stucker</name>
</author>
<author>
<name sortKey="Delacy, I" uniqKey="Delacy I">I DeLacy</name>
</author>
<author>
<name sortKey="Harch, B" uniqKey="Harch B">B Harch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chapman, S" uniqKey="Chapman S">S Chapman</name>
</author>
<author>
<name sortKey="Cooper, M" uniqKey="Cooper M">M Cooper</name>
</author>
<author>
<name sortKey="Podlich, D" uniqKey="Podlich D">D Podlich</name>
</author>
<author>
<name sortKey="Hammer, G" uniqKey="Hammer G">G Hammer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zheng, B" uniqKey="Zheng B">B Zheng</name>
</author>
<author>
<name sortKey="Biddulph, B" uniqKey="Biddulph B">B Biddulph</name>
</author>
<author>
<name sortKey="Li, D" uniqKey="Li D">D Li</name>
</author>
<author>
<name sortKey="Kuchel, H" uniqKey="Kuchel H">H Kuchel</name>
</author>
<author>
<name sortKey="Chapman, S" uniqKey="Chapman S">S Chapman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chenu, K" uniqKey="Chenu K">K Chenu</name>
</author>
<author>
<name sortKey="Chapman, S" uniqKey="Chapman S">S Chapman</name>
</author>
<author>
<name sortKey="Tardieu, F" uniqKey="Tardieu F">F Tardieu</name>
</author>
<author>
<name sortKey="Mclean, G" uniqKey="Mclean G">G McLean</name>
</author>
<author>
<name sortKey="Welcker, C" uniqKey="Welcker C">C Welcker</name>
</author>
<author>
<name sortKey="Hammer, G" uniqKey="Hammer G">G Hammer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jeuffroy, M H" uniqKey="Jeuffroy M">M-H Jeuffroy</name>
</author>
<author>
<name sortKey="Casadebaig, P" uniqKey="Casadebaig P">P Casadebaig</name>
</author>
<author>
<name sortKey="Debaeke, P" uniqKey="Debaeke P">P Debaeke</name>
</author>
<author>
<name sortKey="Loyce, C" uniqKey="Loyce C">C Loyce</name>
</author>
<author>
<name sortKey="Meynard, J M" uniqKey="Meynard J">J-M Meynard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rebetzke, Gj" uniqKey="Rebetzke G">GJ Rebetzke</name>
</author>
<author>
<name sortKey="Chenu, K" uniqKey="Chenu K">K Chenu</name>
</author>
<author>
<name sortKey="Biddulph, B" uniqKey="Biddulph B">B Biddulph</name>
</author>
<author>
<name sortKey="Moeller, C" uniqKey="Moeller C">C Moeller</name>
</author>
<author>
<name sortKey="Deery, Dm" uniqKey="Deery D">DM Deery</name>
</author>
<author>
<name sortKey="Rattey, Ar" uniqKey="Rattey A">AR Rattey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Potgieter, A" uniqKey="Potgieter A">A Potgieter</name>
</author>
<author>
<name sortKey="Hammer, G" uniqKey="Hammer G">G Hammer</name>
</author>
<author>
<name sortKey="Butler, D" uniqKey="Butler D">D Butler</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Keating, Ba" uniqKey="Keating B">BA Keating</name>
</author>
<author>
<name sortKey="Carberry, Ps" uniqKey="Carberry P">PS Carberry</name>
</author>
<author>
<name sortKey="Hammer, Gl" uniqKey="Hammer G">GL Hammer</name>
</author>
<author>
<name sortKey="Probert, Me" uniqKey="Probert M">ME Probert</name>
</author>
<author>
<name sortKey="Robertson, Mj" uniqKey="Robertson M">MJ Robertson</name>
</author>
<author>
<name sortKey="Holzworth, D" uniqKey="Holzworth D">D Holzworth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Holzworth, Dp" uniqKey="Holzworth D">DP Holzworth</name>
</author>
<author>
<name sortKey="Huth, Ni" uniqKey="Huth N">NI Huth</name>
</author>
<author>
<name sortKey="Devoil, Pg" uniqKey="Devoil P">PG deVoil</name>
</author>
<author>
<name sortKey="Zurcher, Ej" uniqKey="Zurcher E">EJ Zurcher</name>
</author>
<author>
<name sortKey="Herrmann, Ni" uniqKey="Herrmann N">NI Herrmann</name>
</author>
<author>
<name sortKey="Mclean, G" uniqKey="Mclean G">G McLean</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
<author>
<name sortKey="Wang, E" uniqKey="Wang E">E Wang</name>
</author>
<author>
<name sortKey="Luo, Q" uniqKey="Luo Q">Q Luo</name>
</author>
<author>
<name sortKey="Kirby, M" uniqKey="Kirby M">M Kirby</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saltelli, A" uniqKey="Saltelli A">A Saltelli</name>
</author>
<author>
<name sortKey="Chan, K" uniqKey="Chan K">K Chan</name>
</author>
<author>
<name sortKey="Scott, Em" uniqKey="Scott E">EM Scott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Monod, H" uniqKey="Monod H">H Monod</name>
</author>
<author>
<name sortKey="Naud, C" uniqKey="Naud C">C Naud</name>
</author>
<author>
<name sortKey="Makowski, D" uniqKey="Makowski D">D Makowski</name>
</author>
<author>
<name sortKey="Wallach, D" uniqKey="Wallach D">D Wallach</name>
</author>
<author>
<name sortKey="Makowski, D" uniqKey="Makowski D">D Makowski</name>
</author>
<author>
<name sortKey="Jones, Jw" uniqKey="Jones J">JW Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Valade, A" uniqKey="Valade A">A Valade</name>
</author>
<author>
<name sortKey="Ciais, P" uniqKey="Ciais P">P Ciais</name>
</author>
<author>
<name sortKey="Vuichard, N" uniqKey="Vuichard N">N Vuichard</name>
</author>
<author>
<name sortKey="Viovy, N" uniqKey="Viovy N">N Viovy</name>
</author>
<author>
<name sortKey="Caubel, A" uniqKey="Caubel A">A Caubel</name>
</author>
<author>
<name sortKey="Huth, N" uniqKey="Huth N">N Huth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Da Silva, D" uniqKey="Da Silva D">D Da Silva</name>
</author>
<author>
<name sortKey="Han, L" uniqKey="Han L">L Han</name>
</author>
<author>
<name sortKey="Faivre, R" uniqKey="Faivre R">R Faivre</name>
</author>
<author>
<name sortKey="Costes, E" uniqKey="Costes E">E Costes</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, G" uniqKey="Zhao G">G Zhao</name>
</author>
<author>
<name sortKey="Bryan, Ba" uniqKey="Bryan B">BA Bryan</name>
</author>
<author>
<name sortKey="Song, X" uniqKey="Song X">X Song</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morris, Md" uniqKey="Morris M">MD Morris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Campolongo, F" uniqKey="Campolongo F">F Campolongo</name>
</author>
<author>
<name sortKey="Cariboni, J" uniqKey="Cariboni J">J Cariboni</name>
</author>
<author>
<name sortKey="Saltelli, A" uniqKey="Saltelli A">A Saltelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, E" uniqKey="Wang E">E Wang</name>
</author>
<author>
<name sortKey="Robertson, M" uniqKey="Robertson M">M Robertson</name>
</author>
<author>
<name sortKey="Hammer, G" uniqKey="Hammer G">G Hammer</name>
</author>
<author>
<name sortKey="Carberry, P" uniqKey="Carberry P">P Carberry</name>
</author>
<author>
<name sortKey="Holzworth, D" uniqKey="Holzworth D">D Holzworth</name>
</author>
<author>
<name sortKey="Meinke, H" uniqKey="Meinke H">H Meinke</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zomer, Rj" uniqKey="Zomer R">RJ Zomer</name>
</author>
<author>
<name sortKey="Trabucco, A" uniqKey="Trabucco A">A Trabucco</name>
</author>
<author>
<name sortKey="Bossio, Da" uniqKey="Bossio D">DA Bossio</name>
</author>
<author>
<name sortKey="Verchot, Lv" uniqKey="Verchot L">LV Verchot</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wickham, H" uniqKey="Wickham H">H Wickham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poorter, H" uniqKey="Poorter H">H Poorter</name>
</author>
<author>
<name sortKey="Evans, Jr" uniqKey="Evans J">JR Evans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poorter, H" uniqKey="Poorter H">H Poorter</name>
</author>
<author>
<name sortKey="Garnier, E" uniqKey="Garnier E">E Garnier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poorter, H" uniqKey="Poorter H">H Poorter</name>
</author>
<author>
<name sortKey="Niinemets, U" uniqKey="Niinemets U">Ü Niinemets</name>
</author>
<author>
<name sortKey="Poorter, L" uniqKey="Poorter L">L Poorter</name>
</author>
<author>
<name sortKey="Wright, Ij" uniqKey="Wright I">IJ Wright</name>
</author>
<author>
<name sortKey="Villar, R" uniqKey="Villar R">R Villar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Manschadi, Am" uniqKey="Manschadi A">AM Manschadi</name>
</author>
<author>
<name sortKey="Christopher, J" uniqKey="Christopher J">J Christopher</name>
</author>
<author>
<name sortKey="Hammer, Gl" uniqKey="Hammer G">GL Hammer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chapman, Sc" uniqKey="Chapman S">SC Chapman</name>
</author>
<author>
<name sortKey="Hammer, Gl" uniqKey="Hammer G">GL Hammer</name>
</author>
<author>
<name sortKey="Podlich, Dw" uniqKey="Podlich D">DW Podlich</name>
</author>
<author>
<name sortKey="Cooper, M" uniqKey="Cooper M">M Cooper</name>
</author>
<author>
<name sortKey="Kang" uniqKey="Kang">Kang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sadras, V" uniqKey="Sadras V">V Sadras</name>
</author>
<author>
<name sortKey="Richards, R" uniqKey="Richards R">R Richards</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rebetzke, Gj" uniqKey="Rebetzke G">GJ Rebetzke</name>
</author>
<author>
<name sortKey="Fischer, Rta" uniqKey="Fischer R">RTA Fischer</name>
</author>
<author>
<name sortKey="Bonnett, Dg" uniqKey="Bonnett D">DG Bonnett</name>
</author>
<author>
<name sortKey="Chenu, K" uniqKey="Chenu K">K Chenu</name>
</author>
<author>
<name sortKey="Rattey, Ar" uniqKey="Rattey A">AR Rattey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bertin, N" uniqKey="Bertin N">N Bertin</name>
</author>
<author>
<name sortKey="Martre, P" uniqKey="Martre P">P Martre</name>
</author>
<author>
<name sortKey="Genard, M" uniqKey="Genard M">M Genard</name>
</author>
<author>
<name sortKey="Quilot, B" uniqKey="Quilot B">B Quilot</name>
</author>
<author>
<name sortKey="Salon, C" uniqKey="Salon C">C Salon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yin, X" uniqKey="Yin X">X Yin</name>
</author>
<author>
<name sortKey="Struik, Pc" uniqKey="Struik P">PC Struik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Veyradier, M" uniqKey="Veyradier M">M Veyradier</name>
</author>
<author>
<name sortKey="Christopher, J" uniqKey="Christopher J">J Christopher</name>
</author>
<author>
<name sortKey="Chenu, K" uniqKey="Chenu K">K Chenu</name>
</author>
<author>
<name sortKey="Siev Nen, R" uniqKey="Siev Nen R">R Sievänen</name>
</author>
<author>
<name sortKey="Nikinmaa, E" uniqKey="Nikinmaa E">E Nikinmaa</name>
</author>
<author>
<name sortKey="Godin, C" uniqKey="Godin C">C Godin</name>
</author>
<author>
<name sortKey="Lintunen, A" uniqKey="Lintunen A">A Lintunen</name>
</author>
<author>
<name sortKey="Nygren, P" uniqKey="Nygren P">P Nygren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Christopher, J" uniqKey="Christopher J">J Christopher</name>
</author>
<author>
<name sortKey="Manschadi, A" uniqKey="Manschadi A">A Manschadi</name>
</author>
<author>
<name sortKey="Hammer, G" uniqKey="Hammer G">G Hammer</name>
</author>
<author>
<name sortKey="Borrell, A" uniqKey="Borrell A">A Borrell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Snape, J" uniqKey="Snape J">J Snape</name>
</author>
<author>
<name sortKey="Butterworth, K" uniqKey="Butterworth K">K Butterworth</name>
</author>
<author>
<name sortKey="Whitechurch, E" uniqKey="Whitechurch E">E Whitechurch</name>
</author>
<author>
<name sortKey="Worland, A" uniqKey="Worland A">A Worland</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reynolds, M" uniqKey="Reynolds M">M Reynolds</name>
</author>
<author>
<name sortKey="Foulkes, Mj" uniqKey="Foulkes M">MJ Foulkes</name>
</author>
<author>
<name sortKey="Slafer, Ga" uniqKey="Slafer G">GA Slafer</name>
</author>
<author>
<name sortKey="Berry, P" uniqKey="Berry P">P Berry</name>
</author>
<author>
<name sortKey="Parry, Ma" uniqKey="Parry M">MA Parry</name>
</author>
<author>
<name sortKey="Snape, Jw" uniqKey="Snape J">JW Snape</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bogard, M" uniqKey="Bogard M">M Bogard</name>
</author>
<author>
<name sortKey="Ravel, C" uniqKey="Ravel C">C Ravel</name>
</author>
<author>
<name sortKey="Paux, E" uniqKey="Paux E">E Paux</name>
</author>
<author>
<name sortKey="Bordes, J" uniqKey="Bordes J">J Bordes</name>
</author>
<author>
<name sortKey="Balfourier, F" uniqKey="Balfourier F">F Balfourier</name>
</author>
<author>
<name sortKey="Chapman, S" uniqKey="Chapman S">S Chapman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Richards, Ra" uniqKey="Richards R">RA Richards</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parry, Ma" uniqKey="Parry M">MA Parry</name>
</author>
<author>
<name sortKey="Reynolds, M" uniqKey="Reynolds M">M Reynolds</name>
</author>
<author>
<name sortKey="Salvucci, Me" uniqKey="Salvucci M">ME Salvucci</name>
</author>
<author>
<name sortKey="Raines, C" uniqKey="Raines C">C Raines</name>
</author>
<author>
<name sortKey="Andralojc, Pj" uniqKey="Andralojc P">PJ Andralojc</name>
</author>
<author>
<name sortKey="Zhu, X G" uniqKey="Zhu X">X-G Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, X G" uniqKey="Zhu X">X-G Zhu</name>
</author>
<author>
<name sortKey="Long, Sp" uniqKey="Long S">SP Long</name>
</author>
<author>
<name sortKey="Ort, Dr" uniqKey="Ort D">DR Ort</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reynolds, M" uniqKey="Reynolds M">M Reynolds</name>
</author>
<author>
<name sortKey="Foulkes, J" uniqKey="Foulkes J">J Foulkes</name>
</author>
<author>
<name sortKey="Furbank, R" uniqKey="Furbank R">R Furbank</name>
</author>
<author>
<name sortKey="Griffiths, S" uniqKey="Griffiths S">S Griffiths</name>
</author>
<author>
<name sortKey="King, J" uniqKey="King J">J King</name>
</author>
<author>
<name sortKey="Murchie, E" uniqKey="Murchie E">E Murchie</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lopes, M" uniqKey="Lopes M">M Lopes</name>
</author>
<author>
<name sortKey="Reynolds, M" uniqKey="Reynolds M">M Reynolds</name>
</author>
<author>
<name sortKey="Manes, Y" uniqKey="Manes Y">Y Manes</name>
</author>
<author>
<name sortKey="Singh, R" uniqKey="Singh R">R Singh</name>
</author>
<author>
<name sortKey="Crossa, J" uniqKey="Crossa J">J Crossa</name>
</author>
<author>
<name sortKey="Braun, H" uniqKey="Braun H">H Braun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, D" uniqKey="Yang D">D Yang</name>
</author>
<author>
<name sortKey="Luo, Y" uniqKey="Luo Y">Y Luo</name>
</author>
<author>
<name sortKey="Ni, Y" uniqKey="Ni Y">Y Ni</name>
</author>
<author>
<name sortKey="Yin, Y" uniqKey="Yin Y">Y Yin</name>
</author>
<author>
<name sortKey="Yang, W" uniqKey="Yang W">W Yang</name>
</author>
<author>
<name sortKey="Peng, D" uniqKey="Peng D">D Peng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Christopher, Jt" uniqKey="Christopher J">JT Christopher</name>
</author>
<author>
<name sortKey="Veyradier, M" uniqKey="Veyradier M">M Veyradier</name>
</author>
<author>
<name sortKey="Borrell, Ak" uniqKey="Borrell A">AK Borrell</name>
</author>
<author>
<name sortKey="Harvey, G" uniqKey="Harvey G">G Harvey</name>
</author>
<author>
<name sortKey="Fletcher, S" uniqKey="Fletcher S">S Fletcher</name>
</author>
<author>
<name sortKey="Chenu, K" uniqKey="Chenu K">K Chenu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Babar, M" uniqKey="Babar M">M Babar</name>
</author>
<author>
<name sortKey="Reynolds, M" uniqKey="Reynolds M">M Reynolds</name>
</author>
<author>
<name sortKey="Van Ginkel, M" uniqKey="Van Ginkel M">M Van Ginkel</name>
</author>
<author>
<name sortKey="Klatt, A" uniqKey="Klatt A">A Klatt</name>
</author>
<author>
<name sortKey="Raun, W" uniqKey="Raun W">W Raun</name>
</author>
<author>
<name sortKey="Stone, M" uniqKey="Stone M">M Stone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pinto, Rs" uniqKey="Pinto R">RS Pinto</name>
</author>
<author>
<name sortKey="Reynolds, Mp" uniqKey="Reynolds M">MP Reynolds</name>
</author>
<author>
<name sortKey="Mathews, Kl" uniqKey="Mathews K">KL Mathews</name>
</author>
<author>
<name sortKey="Mcintyre, Cl" uniqKey="Mcintyre C">CL McIntyre</name>
</author>
<author>
<name sortKey="Olivares Villegas, J J" uniqKey="Olivares Villegas J">J-J Olivares-Villegas</name>
</author>
<author>
<name sortKey="Chapman, Sc" uniqKey="Chapman S">SC Chapman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rebetzke, G" uniqKey="Rebetzke G">G Rebetzke</name>
</author>
<author>
<name sortKey="Condon, A" uniqKey="Condon A">A Condon</name>
</author>
<author>
<name sortKey="Farquhar, G" uniqKey="Farquhar G">G Farquhar</name>
</author>
<author>
<name sortKey="Appels, R" uniqKey="Appels R">R Appels</name>
</author>
<author>
<name sortKey="Richards, R" uniqKey="Richards R">R Richards</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dreccer, Mf" uniqKey="Dreccer M">MF Dreccer</name>
</author>
<author>
<name sortKey="Herwaarden, Af Van" uniqKey="Herwaarden A">AF van Herwaarden</name>
</author>
<author>
<name sortKey="Chapman, Sc" uniqKey="Chapman S">SC Chapman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abbad, H" uniqKey="Abbad H">H Abbad</name>
</author>
<author>
<name sortKey="El Jaafari, S" uniqKey="El Jaafari S">S El Jaafari</name>
</author>
<author>
<name sortKey="Bort, J" uniqKey="Bort J">J Bort</name>
</author>
<author>
<name sortKey="Araus, J" uniqKey="Araus J">J Araus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tambussi, Ea" uniqKey="Tambussi E">EA Tambussi</name>
</author>
<author>
<name sortKey="Bort, J" uniqKey="Bort J">J Bort</name>
</author>
<author>
<name sortKey="Guiamet, Jj" uniqKey="Guiamet J">JJ Guiamet</name>
</author>
<author>
<name sortKey="Nogues, S" uniqKey="Nogues S">S Nogués</name>
</author>
<author>
<name sortKey="Araus, Jl" uniqKey="Araus J">JL Araus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chenu, K" uniqKey="Chenu K">K Chenu</name>
</author>
<author>
<name sortKey="Sadras, V" uniqKey="Sadras V">V Sadras</name>
</author>
<author>
<name sortKey="Calderini, D" uniqKey="Calderini D">D Calderini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martre, P" uniqKey="Martre P">P Martre</name>
</author>
<author>
<name sortKey="Quilot Turion, B" uniqKey="Quilot Turion B">B Quilot-Turion</name>
</author>
<author>
<name sortKey="Luquet, D" uniqKey="Luquet D">D Luquet</name>
</author>
<author>
<name sortKey="Memmah, M Mo S" uniqKey="Memmah M">M-MO-S Memmah</name>
</author>
<author>
<name sortKey="Chenu, K" uniqKey="Chenu K">K Chenu</name>
</author>
<author>
<name sortKey="Debaeke, P" uniqKey="Debaeke P">P Debaeke</name>
</author>
<author>
<name sortKey="Sadras, Vo" uniqKey="Sadras V">VO Sadras</name>
</author>
<author>
<name sortKey="Calderini, D" uniqKey="Calderini D">D Calderini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cabrera Bosquet, L" uniqKey="Cabrera Bosquet L">L Cabrera-Bosquet</name>
</author>
<author>
<name sortKey="Molero, G" uniqKey="Molero G">G Molero</name>
</author>
<author>
<name sortKey="Bort, J" uniqKey="Bort J">J Bort</name>
</author>
<author>
<name sortKey="Nogues, S" uniqKey="Nogues S">S Nogués</name>
</author>
<author>
<name sortKey="Araus, J" uniqKey="Araus J">J Araus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sadras, V" uniqKey="Sadras V">V Sadras</name>
</author>
<author>
<name sortKey="Rodriguez, D" uniqKey="Rodriguez D">D Rodriguez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sinclair, Tr" uniqKey="Sinclair T">TR Sinclair</name>
</author>
<author>
<name sortKey="Purcell, Lc" uniqKey="Purcell L">LC Purcell</name>
</author>
<author>
<name sortKey="Sneller, Ch" uniqKey="Sneller C">CH Sneller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wallach, D" uniqKey="Wallach D">D Wallach</name>
</author>
<author>
<name sortKey="Buis, S" uniqKey="Buis S">S Buis</name>
</author>
<author>
<name sortKey="Lecharpentier, P" uniqKey="Lecharpentier P">P Lecharpentier</name>
</author>
<author>
<name sortKey="Bourges, J" uniqKey="Bourges J">J Bourges</name>
</author>
<author>
<name sortKey="Clastre, P" uniqKey="Clastre P">P Clastre</name>
</author>
<author>
<name sortKey="Launay, M" uniqKey="Launay M">M Launay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dumont, B" uniqKey="Dumont B">B Dumont</name>
</author>
<author>
<name sortKey="Leemans, V" uniqKey="Leemans V">V Leemans</name>
</author>
<author>
<name sortKey="Mansouri, M" uniqKey="Mansouri M">M Mansouri</name>
</author>
<author>
<name sortKey="Bodson, B" uniqKey="Bodson B">B Bodson</name>
</author>
<author>
<name sortKey="Destain, J P" uniqKey="Destain J">J-P Destain</name>
</author>
<author>
<name sortKey="Destain, M F" uniqKey="Destain M">M-F Destain</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Messina, Cd" uniqKey="Messina C">CD Messina</name>
</author>
<author>
<name sortKey="Podlich, D" uniqKey="Podlich D">D Podlich</name>
</author>
<author>
<name sortKey="Dong, Z" uniqKey="Dong Z">Z Dong</name>
</author>
<author>
<name sortKey="Samples, M" uniqKey="Samples M">M Samples</name>
</author>
<author>
<name sortKey="Cooper, M" uniqKey="Cooper M">M Cooper</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS One</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS ONE</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plosone</journal-id>
<journal-title-group>
<journal-title>PLoS ONE</journal-title>
</journal-title-group>
<issn pub-type="epub">1932-6203</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, CA USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26799483</article-id>
<article-id pub-id-type="pmc">4723307</article-id>
<article-id pub-id-type="publisher-id">PONE-D-15-28761</article-id>
<article-id pub-id-type="doi">10.1371/journal.pone.0146385</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Genetics</subject>
<subj-group>
<subject>Plant Genetics</subject>
<subj-group>
<subject>Crop Genetics</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Plant Science</subject>
<subj-group>
<subject>Plant Genetics</subject>
<subj-group>
<subject>Crop Genetics</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Agriculture</subject>
<subj-group>
<subject>Crop Science</subject>
<subj-group>
<subject>Crops</subject>
<subj-group>
<subject>Cereal Crops</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Physical Sciences</subject>
<subj-group>
<subject>Chemistry</subject>
<subj-group>
<subject>Chemical Compounds</subject>
<subj-group>
<subject>Carbon Dioxide</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Agriculture</subject>
<subj-group>
<subject>Crop Science</subject>
<subj-group>
<subject>Crops</subject>
<subj-group>
<subject>Cereal Crops</subject>
<subj-group>
<subject>Wheat</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Organisms</subject>
<subj-group>
<subject>Plants</subject>
<subj-group>
<subject>Grasses</subject>
<subj-group>
<subject>Wheat</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Agriculture</subject>
<subj-group>
<subject>Agrochemicals</subject>
<subj-group>
<subject>Fertilizers</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Ecology and Environmental Sciences</subject>
<subj-group>
<subject>Natural Resources</subject>
<subj-group>
<subject>Water Resources</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Agriculture</subject>
<subj-group>
<subject>Agricultural Soil Science</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Ecology and Environmental Sciences</subject>
<subj-group>
<subject>Soil Science</subject>
<subj-group>
<subject>Agricultural Soil Science</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Agriculture</subject>
<subj-group>
<subject>Crop Science</subject>
<subj-group>
<subject>Crop Management</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Assessment of the Potential Impacts of Wheat Plant Traits across Environments by Combining Crop Modeling and Global Sensitivity Analysis</article-title>
<alt-title alt-title-type="running-head">Systems Analysis to Assess Plant Traits Impact on Wheat Yield</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Casadebaig</surname>
<given-names>Pierre</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="cor001">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zheng</surname>
<given-names>Bangyou</given-names>
</name>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chapman</surname>
<given-names>Scott</given-names>
</name>
<xref ref-type="aff" rid="aff003">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Huth</surname>
<given-names>Neil</given-names>
</name>
<xref ref-type="aff" rid="aff004">
<sup>4</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Faivre</surname>
<given-names>Robert</given-names>
</name>
<xref ref-type="aff" rid="aff005">
<sup>5</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chenu</surname>
<given-names>Karine</given-names>
</name>
<xref ref-type="aff" rid="aff006">
<sup>6</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff001">
<label>1</label>
<addr-line>INRA, UMR1248 AGIR, 31326 Castanet-Tolosan, France</addr-line>
</aff>
<aff id="aff002">
<label>2</label>
<addr-line>CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Road, St. Lucia, QLD 4067, Australia</addr-line>
</aff>
<aff id="aff003">
<label>3</label>
<addr-line>Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, QLD 4350, Australia</addr-line>
</aff>
<aff id="aff004">
<label>4</label>
<addr-line>CSIRO Agriculture, 203 Tor Street, Toowoomba, QLD 4350, Australia</addr-line>
</aff>
<aff id="aff005">
<label>5</label>
<addr-line>INRA, UR875 MIAT, 31326 Castanet-Tolosan, France</addr-line>
</aff>
<aff id="aff006">
<label>6</label>
<addr-line>Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, 203 Tor Street, Toowoomba, QLD 4350, Australia</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Wu</surname>
<given-names>Rongling</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">
<addr-line>Pennsylvania State University, UNITED STATES</addr-line>
</aff>
<author-notes>
<fn fn-type="conflict" id="coi001">
<p>
<bold>Competing Interests: </bold>
The authors have declared that no competing interests exist.</p>
</fn>
<fn fn-type="con" id="contrib001">
<p>Conceived and designed the experiments: PC KC SC RF. Performed the experiments: PC BZ SC KC. Analyzed the data: PC KC BZ SC NH. Contributed reagents/materials/analysis tools: BZ RF. Wrote the paper: PC BZ SC NH RF KC.</p>
</fn>
<corresp id="cor001">* E-mail:
<email>pierre.casadebaig@toulouse.inra.fr</email>
</corresp>
</author-notes>
<pub-date pub-type="collection">
<year>2016</year>
</pub-date>
<pub-date pub-type="epub">
<day>22</day>
<month>1</month>
<year>2016</year>
</pub-date>
<volume>11</volume>
<issue>1</issue>
<elocation-id>e0146385</elocation-id>
<history>
<date date-type="received">
<day>1</day>
<month>7</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>16</day>
<month>12</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>© 2016 Casadebaig et al</copyright-statement>
<copyright-year>2016</copyright-year>
<copyright-holder>Casadebaig et al</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open access article distributed under the terms of the
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution License</ext-link>
, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:type="simple" xlink:href="pone.0146385.pdf"></self-uri>
<abstract>
<p>A crop can be viewed as a complex system with outputs (e.g. yield) that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background). The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90) was evaluated in a wide target population of environments (4 sites × 125 years), management practices (3 sowing dates × 3 nitrogen fertilization levels) and
<italic>CO</italic>
<sub>2</sub>
(2 levels). The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait × environment × management landscape (∼ 82 million individual simulations in total). The patterns of parameter × environment × management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference cultivar. Main (i.e. linear) and interaction (i.e. non-linear and interaction) sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identification of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model) improvement.</p>
</abstract>
<funding-group>
<funding-statement>This study was partly funded by INRA—Environment and Agronomy Division, the Queensland Alliance for Agriculture and Food Innovation (QAAFI), the Grains Research & Development Corporation (GRDC) and the ARC Centre of Excellence for Translational Photosynthesis. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</funding-statement>
</funding-group>
<counts>
<fig-count count="8"></fig-count>
<table-count count="2"></table-count>
<page-count count="27"></page-count>
</counts>
<custom-meta-group>
<custom-meta id="data-availability">
<meta-name>Data Availability</meta-name>
<meta-value>All relevant data are within the paper and its Supporting Information files.</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes>
<title>Data Availability</title>
<p>All relevant data are within the paper and its Supporting Information files.</p>
</notes>
</front>
<body>
<sec sec-type="intro" id="sec001">
<title>Introduction</title>
<p>Progress in plant breeding is limited by the ability to predict plant phenotype based on its genotype, especially for complex traits such as yield. Suitably constructed process-based models provide a mean to reduce this gap in particular by dissecting the complexity of the genotype-environment interactions and by simulating expected impacts in various environmental conditions [
<xref rid="pone.0146385.ref001" ref-type="bibr">1</xref>
<xref rid="pone.0146385.ref003" ref-type="bibr">3</xref>
], including consideration of future climates [
<xref rid="pone.0146385.ref004" ref-type="bibr">4</xref>
,
<xref rid="pone.0146385.ref005" ref-type="bibr">5</xref>
].</p>
<p>From a modeling point of view, crops are complex systems arising from interactions among genetic determinants, physiological processes, pedo-climatic factors and management practices. The combination of these elements, which are either chosen (cultivar and management) or given (soil and climate) in any sown crop, generates greatly variable stress patterns [
<xref rid="pone.0146385.ref006" ref-type="bibr">6</xref>
,
<xref rid="pone.0146385.ref007" ref-type="bibr">7</xref>
] and results in high genotype (G) × environment (E) × management (M) interactions. A number of such interactions has been reported in the literature [
<xref rid="pone.0146385.ref008" ref-type="bibr">8</xref>
,
<xref rid="pone.0146385.ref009" ref-type="bibr">9</xref>
], and sources of yield variation, especially in rainfed systems, commonly arise primarily from the genotype × environment (G×E) interactions, rather than the genotype (G), i.e. G×E > G as observed for field pea in Canada [
<xref rid="pone.0146385.ref010" ref-type="bibr">10</xref>
], sunflower in Argentina [
<xref rid="pone.0146385.ref011" ref-type="bibr">11</xref>
], sorghum in Australia [
<xref rid="pone.0146385.ref012" ref-type="bibr">12</xref>
], wheat in north-east Australia [
<xref rid="pone.0146385.ref013" ref-type="bibr">13</xref>
] and globally [
<xref rid="pone.0146385.ref014" ref-type="bibr">14</xref>
] and maize in Midwestern US states [
<xref rid="pone.0146385.ref015" ref-type="bibr">15</xref>
,
<xref rid="pone.0146385.ref016" ref-type="bibr">16</xref>
] Modeling approaches have been developed to better understand G×E×M interactions and attempt to take advantage of genetic and environmental resources more efficiently. For example, Hammer et al. [
<xref rid="pone.0146385.ref017" ref-type="bibr">17</xref>
] show that the multi-year risk of crop failure for farms within a given sorghum region can be reduced by the adoption of better combinations of GxM (“local G” and “local M”) compared to use of the combination of “global G” and “global M” that would be adopted if using the entire sorghum production area.</p>
<p>Process-based crop models are useful tools to integrate scientific knowledge and simulate varietal or management impacts on productivity in the target population of environments (TPE), i.e. the set of environments to which newly bred varieties need to be adapted [
<xref rid="pone.0146385.ref018" ref-type="bibr">18</xref>
,
<xref rid="pone.0146385.ref019" ref-type="bibr">19</xref>
]. Hence, the predictive capability of crop models is used to explore the complex G×E×M landscape and assists breeding programs to take advantage of genetic and environmental resources more efficiently [
<xref rid="pone.0146385.ref002" ref-type="bibr">2</xref>
,
<xref rid="pone.0146385.ref020" ref-type="bibr">20</xref>
,
<xref rid="pone.0146385.ref021" ref-type="bibr">21</xref>
]. While such models are based on mathematical equations translating biological processes in relation to crop growth and development, their parameters can be controlled to mimic effects of genotypic variability and explore the G×E×M landscape using
<italic>virtual genotypes</italic>
[
<xref rid="pone.0146385.ref022" ref-type="bibr">22</xref>
,
<xref rid="pone.0146385.ref023" ref-type="bibr">23</xref>
]. Numerical exploration of crop models for the target population of environments thus allows exploration of the entire G×E×M landscape, assuming that the crop simulation model gives a credible description of the biological system.</p>
<p>To be relevant, exploration of the G×E×M landscape has to be applied to environments and management practices related to targeted production systems. A recent study characterized the drought environment of rainfed wheat for the Australian target population of environments [
<xref rid="pone.0146385.ref007" ref-type="bibr">7</xref>
], an interesting target given that Australia is the fourth wheat exporter worldwide and that Australian wheat crops have to adapt to a high variability (spatial and inter-annual) in drought patterns, which strongly impedes crop breeding [
<xref rid="pone.0146385.ref009" ref-type="bibr">9</xref>
,
<xref rid="pone.0146385.ref013" ref-type="bibr">13</xref>
,
<xref rid="pone.0146385.ref024" ref-type="bibr">24</xref>
] The Australian wheatbelt extends ca. 13 million ha (Australian Bureau of Statistics, 2013) and has soils ranging from shallow sandy to deep clay soils and include temperate, Mediterranean and subtropical climates [
<xref rid="pone.0146385.ref025" ref-type="bibr">25</xref>
,
<xref rid="pone.0146385.ref026" ref-type="bibr">26</xref>
]. Chenu et al. [
<xref rid="pone.0146385.ref007" ref-type="bibr">7</xref>
] undertook a simulation-based study (60 sites × 5 initial soil moisture × 5 sowing dates) to capture the variability in environmental and management conditions of this TPE. To study genotypic variation in such a TPE raises computational challenges if variations in multiple plant traits with high granularity (resolution) are desired, i.e. requiring the simulation of many levels of small increment for each of the factors explored.</p>
<p>The APSIM (
<ext-link ext-link-type="uri" xlink:href="http://www.apsim.info">www.apsim.info</ext-link>
) Wheat model [
<xref rid="pone.0146385.ref027" ref-type="bibr">27</xref>
<xref rid="pone.0146385.ref029" ref-type="bibr">29</xref>
] is used to simulate crop performance as a function of plant traits, pedo-climatic variability and management practices. This model has been extensively used and tested across Australia [
<xref rid="pone.0146385.ref006" ref-type="bibr">6</xref>
,
<xref rid="pone.0146385.ref027" ref-type="bibr">27</xref>
,
<xref rid="pone.0146385.ref028" ref-type="bibr">28</xref>
,
<xref rid="pone.0146385.ref030" ref-type="bibr">30</xref>
]. Numerical experiments with crop models allow exploration of large G×E×M landscape. However, sampling the G×E×M landscape using a factorial design with as few as six levels for each parameter of the APSIM-Wheat model in the Australian TPE considered in this study would require to perform 9.72 × 10
<sup>73</sup>
simulations. Such an approach would require absurdly high computing resource and could be considered as partly wasteful given that it considers all parameters including those of minimal importance. An alternative is to apply a numerical method designed to more efficiently explore complex landscapes. For instance, global sensitivity analysis allows investigation of how the uncertainty in the output of a model can be apportioned to different sources of uncertainty in the model input [
<xref rid="pone.0146385.ref031" ref-type="bibr">31</xref>
,
<xref rid="pone.0146385.ref032" ref-type="bibr">32</xref>
].</p>
<p>Few computational studies have used sensitivity analysis to address cropping problems, e.g assessing the impact of phenology and management on sugarcane yield in various environments [
<xref rid="pone.0146385.ref033" ref-type="bibr">33</xref>
], the influence of geometrical and topological traits on light interception efficiency of apple trees [
<xref rid="pone.0146385.ref034" ref-type="bibr">34</xref>
] and the impact of physiological traits on wheat grain yield and protein concentration in Europe [
<xref rid="pone.0146385.ref035" ref-type="bibr">35</xref>
]. Recently, Zhao at al. [
<xref rid="pone.0146385.ref036" ref-type="bibr">36</xref>
] performed a sensitivity analysis on the APSIM-Wheat model with a focus on a narrow set of cultivar-specific traits (10 parameters) with the aim to improve an incoming calibration step.</p>
<p>The aims of this paper were (i) to assess the impact of a suite of physiological traits on yield for Australian rain-fed wheat crops and (ii) to evaluate how the value of such traits varies across environments and in relation to other traits. A large set of traits (103) were evaluated in APSIM-Wheat for a wide population of environments related to four representative locations [
<xref rid="pone.0146385.ref007" ref-type="bibr">7</xref>
,
<xref rid="pone.0146385.ref024" ref-type="bibr">24</xref>
] and 125 years of historical records of weather data (
<xref ref-type="fig" rid="pone.0146385.g001">Fig 1</xref>
). In addition to this representative set of 500 environment conditions, simulations were performed for three sowing dates, three levels of nitrogen fertilization and two levels of
<italic>CO</italic>
<sub>2</sub>
(i.e. 9000 conditions in total) to assess the effects of management and
<italic>CO</italic>
<sub>2</sub>
factors. We used a global sensitivity analysis to determine the effects of all traits on yield for all the conditions studied (i.e. each site × year × management combination). Traits found to have substantial and frequent impacts on yield were further studied through variance analysis to investigate the influence of environmental-factors and their impact on integrated traits such as plant leaf area, biomass production, and grain size and number.</p>
<fig id="pone.0146385.g001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0146385.g001</object-id>
<label>Fig 1</label>
<caption>
<title>Framework of crop model simulation and the sensitivity approach used to assess the potential impact of plant traits.</title>
<p>A global sensitivity analysis was applied on the APSIM-Wheat crop model to identify potential candidate traits for yield improvement in a large population of environments. This workflow presents how the “genetic diversity” was considered, sampled and screened
<italic>in silico</italic>
. In summary, 90 independent APSIM-Wheat parameters considered as “component traits”, associated with the main physiological processes that are modeled, were selected to reflect a potential genetic variability. Each of the 90 component traits was assumed to vary in a ± 20% range around the value for the reference cultivar
<italic>Hartog</italic>
and the Morris method [
<xref rid="pone.0146385.ref037" ref-type="bibr">37</xref>
,
<xref rid="pone.0146385.ref038" ref-type="bibr">38</xref>
] was used to sample the total parameter space (90 traits, 6 levels, 100 reps; i.e. 9100 “genotypes”). Simulations for those genotypes were performed with APSIM-Wheat (Version 7.5). The impact of the 90 component traits were considered for 8 output variables (“integrated traits”, which result from the complexity of the dynamic modeling of development and growth). The impact on crop yield allowed to screen component traits for influential traits (n = 42) in the target population of environments while a study on trait × environment interactions was used to explore their variability across environments.</p>
</caption>
<graphic xlink:href="pone.0146385.g001"></graphic>
</fig>
</sec>
<sec sec-type="materials|methods" id="sec002">
<title>Material and methods</title>
<sec id="sec003">
<title>Overview</title>
<p>A global sensitivity analysis was applied on the APSIM-Wheat crop model to identify potential candidate traits for yield improvement in a large population of environments.
<xref ref-type="fig" rid="pone.0146385.g001">Fig 1</xref>
describes this workflow, showing how the “genetic diversity” was considered, sampled and screened
<italic>in silico</italic>
. In summary, from 516 parameters of the APSIM-Wheat model (with a broad-sense definition of parameter which included e.g. physical constants, optional parameters used for other crops and parameters repeated for different stages), 90 independent parameters that could be considered as “component traits” were selected to reflect a potential genetic variability. Each of the 90 component traits was assumed to vary in a ± 20% range around the value for the reference cultivar
<italic>Hartog</italic>
. The number of considered traits prevented the use of a factorial design, and so the Morris method [
<xref rid="pone.0146385.ref037" ref-type="bibr">37</xref>
,
<xref rid="pone.0146385.ref038" ref-type="bibr">38</xref>
] was used to sample the total parameter space (90 traits, 6 levels, 100 reps; i.e. 9100 “genotypes”). Simulations for those genotypes were performed with APSIM-Wheat (Version 7.5) for (1) 4 locations and 125 years (from 1889 to 2013) to test the impact of component traits in the TPE (
<xref ref-type="table" rid="pone.0146385.t001">Table 1</xref>
) and (2) for 3 sowing dates (i.e. early, TPE-level and late), 3 levels of nitrogen (i.e. low, TPE-level and high fertilization) and 2 levels of
<italic>CO</italic>
<sub>2</sub>
(380 and 555 ppm to represent
<italic>CO</italic>
<sub>2</sub>
level in 2010 and 2050) to test trait impact in other environmental conditions related to farmer management practices and future climates. The impact of the 90 component traits were considered for 8 output variables (“integrated traits”,
<xref ref-type="table" rid="pone.0146385.t002">Table 2</xref>
) related to phenology (flowering and maturity dates), leaf development (Leaf Area Index at flowering), biomass production (at maturity), and grains (grain number, size, protein and yield). Overall 42 component traits were identified as “influential” (i.e. main average impact on yield greater than 20 kg ha-1) and considered as potential candidates to improve yield in the TPE. They were analyzed in more detail with a variance analysis. Several interesting traits related to phenology, resource acquisition, resource use efficiency and biomass allocation were studied in more detail as their impact could be related to specific environmental factors. A more complete description of the workflow and analysis is given below.</p>
<table-wrap id="pone.0146385.t001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0146385.t001</object-id>
<label>Table 1</label>
<caption>
<title>Characteristics of the locations, soils and management representing the target population of environments.</title>
<p>Plant available water capacity (PAWC) is indicated for each soil, as well at the level of initial soil water used in the simulations (median of plant available water at sowing which was estimated from [
<xref rid="pone.0146385.ref007" ref-type="bibr">7</xref>
]). Applied nitrogen dose are indicated by “a/b/c”: respectively, the fertilization applied at sowing (
<italic>a</italic>
), at the stage “end of tillering” (
<italic>b</italic>
) and at the stage “mid-stem elongation” (
<italic>c</italic>
). Annual and seasonal (1-May to 1-Nov) climatic data were considered for 1889-2013.</p>
</caption>
<alternatives>
<graphic id="pone.0146385.t001g" xlink:href="pone.0146385.t001"></graphic>
<table frame="box" rules="all" border="0">
<colgroup span="1">
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
</colgroup>
<thead>
<tr>
<th align="left" rowspan="1" colspan="1"></th>
<th align="left" rowspan="1" colspan="1">Emerald</th>
<th align="left" rowspan="1" colspan="1">Narrabri</th>
<th align="left" rowspan="1" colspan="1">Yanco</th>
<th align="left" rowspan="1" colspan="1">Merredin</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">latitude (degree)</td>
<td align="left" rowspan="1" colspan="1">-23.53</td>
<td align="left" rowspan="1" colspan="1">-30.32</td>
<td align="left" rowspan="1" colspan="1">-34.61</td>
<td align="left" rowspan="1" colspan="1">-31.5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">longitude (degree)</td>
<td align="left" rowspan="1" colspan="1">148.16</td>
<td align="left" rowspan="1" colspan="1">149.78</td>
<td align="left" rowspan="1" colspan="1">146.42</td>
<td align="left" rowspan="1" colspan="1">118.22</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">rainfall pattern</td>
<td align="left" rowspan="1" colspan="1">summer dominant</td>
<td align="left" rowspan="1" colspan="1">summer dominant</td>
<td align="left" rowspan="1" colspan="1">evenly distributed</td>
<td align="left" rowspan="1" colspan="1">winter dominant</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">annual rainfall (mm)</td>
<td align="left" rowspan="1" colspan="1">635</td>
<td align="left" rowspan="1" colspan="1">650</td>
<td align="left" rowspan="1" colspan="1">425</td>
<td align="left" rowspan="1" colspan="1">303</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">seasonal rainfall (mm)</td>
<td align="left" rowspan="1" colspan="1">170</td>
<td align="left" rowspan="1" colspan="1">249</td>
<td align="left" rowspan="1" colspan="1">228</td>
<td align="left" rowspan="1" colspan="1">209</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">seasonal PET (mm)</td>
<td align="left" rowspan="1" colspan="1">843</td>
<td align="left" rowspan="1" colspan="1">640.2</td>
<td align="left" rowspan="1" colspan="1">462.2</td>
<td align="left" rowspan="1" colspan="1">601.6</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">daily mean temperature (celcius)</td>
<td align="left" rowspan="1" colspan="1">18.4</td>
<td align="left" rowspan="1" colspan="1">13.9</td>
<td align="left" rowspan="1" colspan="1">11.9</td>
<td align="left" rowspan="1" colspan="1">13.1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">daily mean radiation (MJ.m
<sup>-2</sup>
)</td>
<td align="left" rowspan="1" colspan="1">18.3</td>
<td align="left" rowspan="1" colspan="1">15.7</td>
<td align="left" rowspan="1" colspan="1">13.3</td>
<td align="left" rowspan="1" colspan="1">14.5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">soil type</td>
<td align="left" rowspan="1" colspan="1">black vertosol</td>
<td align="left" rowspan="1" colspan="1">grey vertosol</td>
<td align="left" rowspan="1" colspan="1">brown sodosol</td>
<td align="left" rowspan="1" colspan="1">shallow loamy duplex</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PAWC (mm)</td>
<td align="left" rowspan="1" colspan="1">133.5</td>
<td align="left" rowspan="1" colspan="1">217.5</td>
<td align="left" rowspan="1" colspan="1">190.8</td>
<td align="left" rowspan="1" colspan="1">101.1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">sowing date</td>
<td align="left" rowspan="1" colspan="1">15/05</td>
<td align="left" rowspan="1" colspan="1">15/05</td>
<td align="left" rowspan="1" colspan="1">15/05</td>
<td align="left" rowspan="1" colspan="1">15/05</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">sowing PAWC (mm)</td>
<td align="left" rowspan="1" colspan="1">132</td>
<td align="left" rowspan="1" colspan="1">175</td>
<td align="left" rowspan="1" colspan="1">99</td>
<td align="left" rowspan="1" colspan="1">39</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">initial nitrogen (kg.ha
<sup>-1</sup>
)</td>
<td align="left" rowspan="1" colspan="1">30</td>
<td align="left" rowspan="1" colspan="1">30</td>
<td align="left" rowspan="1" colspan="1">50</td>
<td align="left" rowspan="1" colspan="1">30</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">applied nitrogen (kg.ha
<sup>-1</sup>
)</td>
<td align="left" rowspan="1" colspan="1">50/0/0</td>
<td align="left" rowspan="1" colspan="1">130/0/0</td>
<td align="left" rowspan="1" colspan="1">40/40/40</td>
<td align="left" rowspan="1" colspan="1">20/20/30</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
<table-wrap id="pone.0146385.t002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0146385.t002</object-id>
<label>Table 2</label>
<caption>
<title>Description of integrated traits (APSIM-Wheat output variables) and environmental indices included in the analysis.</title>
<p>Environment indices were computed for the sowing-harvest period, for all considered environments. Water-deficit index correspond to the simulated water supply-demand ratio and relates to the degree to which the water available to the roots matches the plant water demand [
<xref rid="pone.0146385.ref007" ref-type="bibr">7</xref>
]. Nitrogen stress index relates to the level of nitrogen stress on photosynthesis. Stress indices are expressed as scalars so that values range from 0 (low stress) to 1 (high stress).</p>
</caption>
<alternatives>
<graphic id="pone.0146385.t002g" xlink:href="pone.0146385.t002"></graphic>
<table frame="box" rules="all" border="0">
<colgroup span="1">
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
</colgroup>
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Type</th>
<th align="left" rowspan="1" colspan="1">Variable</th>
<th align="left" rowspan="1" colspan="1">Description</th>
<th align="left" rowspan="1" colspan="1">Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Crop</td>
<td align="left" rowspan="1" colspan="1">Flowering</td>
<td align="left" rowspan="1" colspan="1">Flowering date</td>
<td align="left" rowspan="1" colspan="1">day</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Crop</td>
<td align="left" rowspan="1" colspan="1">Maturity</td>
<td align="left" rowspan="1" colspan="1">Maturity date</td>
<td align="left" rowspan="1" colspan="1">day</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Crop</td>
<td align="left" rowspan="1" colspan="1">LAI</td>
<td align="left" rowspan="1" colspan="1">Leaf area index at flowering</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Crop</td>
<td align="left" rowspan="1" colspan="1">Grain Size</td>
<td align="left" rowspan="1" colspan="1">Dry biomass of an individual grain</td>
<td align="left" rowspan="1" colspan="1">g</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Crop</td>
<td align="left" rowspan="1" colspan="1">Grain Number</td>
<td align="left" rowspan="1" colspan="1">Grain number</td>
<td align="left" rowspan="1" colspan="1">grain</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Crop</td>
<td align="left" rowspan="1" colspan="1">Grain Protein</td>
<td align="left" rowspan="1" colspan="1">Grain protein content</td>
<td align="left" rowspan="1" colspan="1">%</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Crop</td>
<td align="left" rowspan="1" colspan="1">Biomass</td>
<td align="left" rowspan="1" colspan="1">Crop aerial dry biomass at harvest</td>
<td align="left" rowspan="1" colspan="1">t ha
<sup>-1</sup>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Crop</td>
<td align="left" rowspan="1" colspan="1">Yield</td>
<td align="left" rowspan="1" colspan="1">Crop grain yield at harvest</td>
<td align="left" rowspan="1" colspan="1">t ha
<sup>-1</sup>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Environment</td>
<td align="left" rowspan="1" colspan="1">Water</td>
<td align="left" rowspan="1" colspan="1">Average soil water deficit ratio</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Environment</td>
<td align="left" rowspan="1" colspan="1">Nitrogen</td>
<td align="left" rowspan="1" colspan="1">Average nitrogen stress factor</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
</sec>
<sec id="sec004">
<title>Simulations and sensitivity analysis</title>
<p>A global sensitivity analysis was performed on parameters of the crop model APSIM-Wheat version 7.5 [
<xref rid="pone.0146385.ref028" ref-type="bibr">28</xref>
,
<xref rid="pone.0146385.ref029" ref-type="bibr">29</xref>
] to assess their impact on yield in the Australian wheatbelt (Figs
<xref ref-type="fig" rid="pone.0146385.g001">1</xref>
<xref ref-type="fig" rid="pone.0146385.g002">2</xref>
). Five main steps were followed: (1) listing the input APSIM-Wheat parameters (input factors) to be included in the analysis, (2) setting the variation range for each factor, (3) sampling the parameter space with the Morris method, (4) simulating the virtual experiment with APSIM-Wheat and (5) computing the sensitivity indices to assess the impact of each factor singly (main effect) or in combination (interaction).</p>
<sec id="sec005">
<title>1. Defining input factors</title>
<p>As for most crop models, APSIM-Wheat has parameters (
<xref ref-type="supplementary-material" rid="pone.0146385.s002">S1 Table</xref>
) that specify quantitative effect of processes related directly or indirectly to crop growth and development [
<xref rid="pone.0146385.ref027" ref-type="bibr">27</xref>
<xref rid="pone.0146385.ref029" ref-type="bibr">29</xref>
,
<xref rid="pone.0146385.ref039" ref-type="bibr">39</xref>
]. Those parameters are typically either single values or arrays of paired vectors (
<xref ref-type="supplementary-material" rid="pone.0146385.s002">S1 Table</xref>
and
<xref ref-type="supplementary-material" rid="pone.0146385.s001">S1 Fig</xref>
), in which case one vector relates to the piloting a state variable (x; e.g. stage values) and the second one corresponds to the considered trait (y; e.g. values of root biomass partitioning for the different key stages considered). Each defined value, whether it is a single-value parameter or a point in an array can be considered as a parameter; in which case, APSIM-Wheat has 516 parameters (v. 7.5, as documented in Zheng et al. [
<xref rid="pone.0146385.ref029" ref-type="bibr">29</xref>
]). As all numerical coefficients in APSIM are completely external to the code, these “parameters” actually included a lot of constants and coefficients that would never be changed. Not all parameters were considered when assessing the impact of plant traits on crop performance as (1) four parameters representing soil physics and general physical constants (e.g. ammonium diffusion rate) were not considered, (2) 22 parameters deliberately set to have no impact on wheat crops (e.g. multiplicative scalars which are set to 1.0 by default in the released version of APSIM-Wheat) were not considered and (3) values in vectors (parameter arrays) were considered as dependent parameters, counting one parameter for the whole “function”.</p>
<p>This process greatly reduced the number of parameters to 103 (62 single values and 41 functions), yet there was no information loss on the system description. In addition, some parameters were grouped [
<xref rid="pone.0146385.ref038" ref-type="bibr">38</xref>
] to avoid aberrant situations and computational errors (e.g new min thresholds being greater than new max thresholds). In total, 20 parameters (annotated with * in
<xref ref-type="supplementary-material" rid="pone.0146385.s002">S1 Table</xref>
) were grouped into 7 “meta-parameters” that govern their variation (e.g. nitrogen demand, leaf expansion processes). Overall, 90 parameters (
<italic>p</italic>
= 103 − 20 + 7 = 90) were considered in the sensitivity analysis, with all the crop processes from APSIM-Wheat being tested (i.e. no process was removed from the analysis).</p>
</sec>
<sec id="sec006">
<title>2. Setting the variation range</title>
<p>The range of parameter values is biologically constrained by the genetic diversity existing in wheat. However, most crop models have typically been designed to only simulate major differences among cultivars (e.g. phenology), as their primary aim has been to address crop management problems. As a result, crop models such as APSIM-Wheat only have a few parameters that are by default considered as cultivar-dependent, while all the other parameters are assumed to be constant for the species. Given the lack of knowledge related to the range of the genetic variability existing for most of the model parameters, a fixed range of 40% variation for all parameters was tested in the sensibility analysis. Where possible, equal variation around the nominal value (± 20%) was considered, but for hard-bounded parameters (e.g scalars comprised between 0 and 1) the 40% variation was considered below (or above) the nominal value. Nominal values were considered for the reference cultivar
<italic>Hartog</italic>
and scaled using two consecutive rules: (1) direct scaling of the single value, or of all the
<italic>y</italic>
vector for function parameters (e.g. proportion of biomass partitioned to the roots at different stages) and (2) scaling only one single point in the
<italic>x</italic>
or
<italic>y</italic>
vector when this improved the biological meaning (e.g. threshold of leaf-expansion sensitivity to water deficit).
<xref ref-type="supplementary-material" rid="pone.0146385.s001">S1 Fig</xref>
illustrates the shape and variation range for function parameters studied in this sensitivity analysis.</p>
</sec>
<sec id="sec007">
<title>3. Sampling the parameter space</title>
<p>We used the Morris method [
<xref rid="pone.0146385.ref037" ref-type="bibr">37</xref>
] as implemented by Campagnolo et al. [
<xref rid="pone.0146385.ref038" ref-type="bibr">38</xref>
] to sample the parameter space and compute sensitivity indices. The method consists in a discretization of the input space for each factor (n = 6 levels), then performing a given number of one-at-a-time (OAT) design (r = 100) on the 90 parameters. The OAT designs were randomly chosen in the input space, and the variation direction was also random but their dispersion in the input space was maximized [
<xref rid="pone.0146385.ref038" ref-type="bibr">38</xref>
]. The repetition 100 times of these steps allowed the estimation of elementary effects for each input factor [
<xref rid="pone.0146385.ref037" ref-type="bibr">37</xref>
]. The implementation in the
<italic>sensitivity</italic>
R package used the space-filling optimization of the design [
<xref rid="pone.0146385.ref038" ref-type="bibr">38</xref>
]. Parameter design was normalized to account for the different magnitudes in input factors (parameters expressed in different units).</p>
<p>Considering the total number of input factors and the sampling conditions, the total size of parameter design was 90 + 1 × 100 = 9100, where each sample (i.e. set of parameter values) can be interpreted as a virtual genotype (i.e. 9100 in total). The numerical sampling of the parameter space can be viewed as an exploration of virtual genotype materials where there is no restriction in the combination of traits considered (i.e. no genetic linkage or epistasis).</p>
</sec>
<sec id="sec008">
<title>4. Design of experiments for crop simulations</title>
<p>The previous parameter design (i.e. the 9100 parameter combinations) was used with the APSIM-Wheat crop model to simulate 9100 virtual genotypes. APSIM-Wheat simulations were first done for the target population of environments (TPE, i.e. control conditions,
<xref ref-type="table" rid="pone.0146385.t001">Table 1</xref>
) defined by 4 sites (Emerald, Narrabri, Yanco and Merredin;
<xref ref-type="fig" rid="pone.0146385.g002">Fig 2</xref>
,
<xref ref-type="table" rid="pone.0146385.t001">Table 1</xref>
) and 125 years (1889-2013) of climatic data (4 × 125 = 500 environments). Crop management in these simulations (
<xref ref-type="table" rid="pone.0146385.t001">Table 1</xref>
) was chosen to mimic local farming practices [
<xref rid="pone.0146385.ref007" ref-type="bibr">7</xref>
]. Additional simulations were performed for 3 sowing dates 21/04; 15/05; 07/06), 3 nitrogen fertilization levels (low: 50% of TPE-level, TPE-level and high fertilization: TPE-level plus 50 kg.ha
<sup>-1</sup>
) and 2
<italic>CO</italic>
<sub>2</sub>
levels (TPE-level of 380 ppm and 555 ppm to represent
<italic>CO</italic>
<sub>2</sub>
level in 2010 and 2050) to explore the impact of parameters in contrasting N and
<italic>CO</italic>
<sub>2</sub>
conditions.</p>
<fig id="pone.0146385.g002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0146385.g002</object-id>
<label>Fig 2</label>
<caption>
<title>Map of the studied sites and climatic variability in aridity index.</title>
<p>The map shows potential evapotranspiration over precipitation ratio (1 / aridity index, data from Zomer et al. [
<xref rid="pone.0146385.ref041" ref-type="bibr">41</xref>
]), points correspond to locations sampled in the target population of environments.</p>
</caption>
<graphic xlink:href="pone.0146385.g002"></graphic>
</fig>
<p>Nitrogen fertilization rules followed an APSIM decision model: at sowing, nitrogen was applied as nitrate in Merredin and as urea in the rest of the wheatbelt. In Yanco, fertilisation at “end of tillering” stage only occurred if cumulative rainfall since sowing was greater than 100 mm, and fertilisation at “mid-stem elongation” stage only occurred if plant available water was greater than 60% of the PAWC. At Merredin, fertilisation at “mid-stem elongation” only occurred if plant available water was greater than 60 mm.</p>
<p>Overall, 9000 (3 × 3 × 2 × 500 = 9000) environmental conditions were tested, and 81.9 million of crops (9100 × 9000) were simulated on the CSIRO distributed computing cluster which can sustain a peak throughput of approximately 8000 simultaneous processes [
<xref rid="pone.0146385.ref040" ref-type="bibr">40</xref>
]. Parameter impacts were tested on eight output variables from APSIM (
<xref ref-type="table" rid="pone.0146385.t002">Table 2</xref>
): number of days from sowing to flowering and from sowing to maturity, leaf area index (LAI), biomass production, the number, size and protein content of grains and yield.</p>
<p>The baseline simulations were performed with the reference cultivar Hartog to estimate environmental indices (
<xref ref-type="table" rid="pone.0146385.t002">Table 2</xref>
) and crop performance in each environment. In addition, the growing environments were characterized in terms of drought environment types, as described in Chenu et al. [
<xref rid="pone.0146385.ref007" ref-type="bibr">7</xref>
].</p>
</sec>
<sec id="sec009">
<title>5. Computation of sensitivity indices</title>
<p>Sensitivity indices were computed as statistics of elementary effect, i.e effect of the factor for each repetition [
<xref rid="pone.0146385.ref037" ref-type="bibr">37</xref>
,
<xref rid="pone.0146385.ref038" ref-type="bibr">38</xref>
]. In this approach, the main effect (noted
<inline-formula id="pone.0146385.e001">
<alternatives>
<graphic xlink:href="pone.0146385.e001.jpg" id="pone.0146385.e001g" mimetype="image" position="anchor" orientation="portrait"></graphic>
<mml:math id="M1">
<mml:msubsup>
<mml:mi>μ</mml:mi>
<mml:mi>i</mml:mi>
<mml:mo>*</mml:mo>
</mml:msubsup>
</mml:math>
</alternatives>
</inline-formula>
in Iooss et al. [
<xref rid="pone.0146385.ref042" ref-type="bibr">42</xref>
]) is a measure of the influence of the
<italic>i</italic>
-th input on the output, and is calculated as the mean of the absolute value of the elementary effects. The larger
<inline-formula id="pone.0146385.e002">
<alternatives>
<graphic xlink:href="pone.0146385.e002.jpg" id="pone.0146385.e002g" mimetype="image" position="anchor" orientation="portrait"></graphic>
<mml:math id="M2">
<mml:msubsup>
<mml:mi>μ</mml:mi>
<mml:mi>i</mml:mi>
<mml:mo>*</mml:mo>
</mml:msubsup>
</mml:math>
</alternatives>
</inline-formula>
is, the more the input contributes to the dispersion of the output. The interaction effect (
<italic>σ</italic>
<sub>
<italic>i</italic>
</sub>
in Iooss et al. [
<xref rid="pone.0146385.ref042" ref-type="bibr">42</xref>
]), is a measure of non-linear and/or interaction effects of the
<italic>i</italic>
-th input.
<italic>σ</italic>
<sub>
<italic>i</italic>
</sub>
is computed as the standard deviation of the elementary effects. An input with a large
<italic>σ</italic>
<sub>
<italic>i</italic>
</sub>
can be considered as having non-linear effects or being involved in an interaction with at least another input. We also computed a standardized sensitivity index to be able to compare indices across different output variables and growing conditions. In this case, for each growing environment, the model output variables were standardized (
<inline-formula id="pone.0146385.e003">
<alternatives>
<graphic xlink:href="pone.0146385.e003.jpg" id="pone.0146385.e003g" mimetype="image" position="anchor" orientation="portrait"></graphic>
<mml:math id="M3">
<mml:mrow>
<mml:msup>
<mml:mi>x</mml:mi>
<mml:mo></mml:mo>
</mml:msup>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mi>x</mml:mi>
<mml:mo>-</mml:mo>
<mml:mi>m</mml:mi>
<mml:mi>e</mml:mi>
<mml:mi>a</mml:mi>
<mml:mi>n</mml:mi>
<mml:mo>(</mml:mo>
<mml:mi>x</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mi>s</mml:mi>
<mml:mi>d</mml:mi>
<mml:mo>(</mml:mo>
<mml:mi>x</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mfrac>
</mml:mrow>
</mml:math>
</alternatives>
</inline-formula>
) before computing elementary effects and sensitivity indices.</p>
</sec>
</sec>
<sec id="sec010">
<title>Clustering parameters according to their impact</title>
<p>All of the considered parameters were subdivided into three groups according to the mean value of their main effect in the target population of environments (i.e. mean of
<inline-formula id="pone.0146385.e004">
<alternatives>
<graphic xlink:href="pone.0146385.e004.jpg" id="pone.0146385.e004g" mimetype="image" position="anchor" orientation="portrait"></graphic>
<mml:math id="M4">
<mml:msubsup>
<mml:mi>μ</mml:mi>
<mml:mi>i</mml:mi>
<mml:mo>*</mml:mo>
</mml:msubsup>
</mml:math>
</alternatives>
</inline-formula>
across environments): (1)
<italic>null impact</italic>
group, in which parameters had no impact on crop yield in any environments (2)
<italic>low impact</italic>
group, in which the parameters had an average
<inline-formula id="pone.0146385.e005">
<alternatives>
<graphic xlink:href="pone.0146385.e005.jpg" id="pone.0146385.e005g" mimetype="image" position="anchor" orientation="portrait"></graphic>
<mml:math id="M5">
<mml:msubsup>
<mml:mi>μ</mml:mi>
<mml:mi>i</mml:mi>
<mml:mo>*</mml:mo>
</mml:msubsup>
</mml:math>
</alternatives>
</inline-formula>
lower or equal to 0.02 t ha
<sup>-1</sup>
and (3)
<italic>impactful</italic>
group, in which parameters had an average main effect on yield that was greater than 0.02 t ha
<sup>-1</sup>
. A hierarchical clustering based on Ward distance was applied to the matrix of
<italic>impactful</italic>
parameters and the eight output variables (averaged across environments) to group these parameters and identify those with similar patterns of effect on output variables.</p>
</sec>
<sec id="sec011">
<title>Analysis of trait × environment interactions and computation of environment indices</title>
<p>For plant traits corresponding to influential parameters, we conducted a variance analysis to assess the effects of environmental factors on the variability of impact. Hence, for each trait, a linear model (Eq 1.) was fitted with environment-related factors considered as categorical fixed effects and with no interaction as
<italic>Y</italic>
=
<italic>α</italic>
<sub>
<italic>site</italic>
</sub>
+
<italic>β</italic>
<sub>
<italic>sowing</italic>
</sub>
+
<italic>γ</italic>
<sub>
<italic>CO</italic>
<sub>2</sub>
</sub>
+
<italic>δ</italic>
<sub>
<italic>nitrogen</italic>
</sub>
+
<italic>ϵ</italic>
with
<italic>Y</italic>
, vector of main effects for one trait in the 9000 environments;
<italic>α</italic>
,
<italic>β</italic>
,
<italic>γ</italic>
,
<italic>δ</italic>
are the additive main effects of the levels in factor
<italic>CO</italic>
<sub>2</sub>
, site, sowing and nitrogen, respectively (Eq 1.). The effect of each environmental factor (
<italic>e</italic>
) on trait impact was estimated by the proportion of total sum of square (
<italic>η</italic>
<sup>2</sup>
) as
<italic>SS</italic>
<sub>
<italic>e</italic>
</sub>
/(
<italic>TSS</italic>
). Note that both the effect of “uncontrollable” environmental factors (i.e. climate) and the interactions among factors were pooled in the residuals.</p>
<p>Finally, we considered the response to the environment of a small subset of candidate traits and defined several environmental stress indices (
<xref ref-type="table" rid="pone.0146385.t002">Table 2</xref>
) to further illustrate the ecophysiological basis of trait × environment interactions. Using the ASPIM Wheat model, daily computed indices related to water and nitrogen stresses were averaged for the duration of the crop cycle. In the model, water-stress is computed as a function of the soil water extractable by roots (water supply) and potential crop transpiration (water demand) [
<xref rid="pone.0146385.ref007" ref-type="bibr">7</xref>
]. The nitrogen-stress determined the limiting nitrogen level affecting leaf photosynthesis [
<xref rid="pone.0146385.ref029" ref-type="bibr">29</xref>
]. In this study, both indices were set to range from 0 (no-stress) to 1 (extreme stress) to allow comparison between stress indices.</p>
</sec>
<sec id="sec012">
<title>Software</title>
<p>All data processing, statistical analysis and graphics were performed with R 3.1.0 [
<xref rid="pone.0146385.ref043" ref-type="bibr">43</xref>
] with additional R packages
<italic>dplyr</italic>
(data processing [
<xref rid="pone.0146385.ref044" ref-type="bibr">44</xref>
]),
<italic>sensitivity</italic>
(sensitivity analysis, version 1.10.1 [
<xref rid="pone.0146385.ref045" ref-type="bibr">45</xref>
]) and
<italic>ggplot2</italic>
(visualization [
<xref rid="pone.0146385.ref046" ref-type="bibr">46</xref>
]).</p>
</sec>
</sec>
<sec sec-type="results" id="sec013">
<title>Results</title>
<sec id="sec014">
<title>A target population of environments with contrasting environmental conditions</title>
<p>Four sites were chosen to capture part of the variability in soil types and rainfall patterns that are experienced across the dryland wheatbelt (
<xref ref-type="table" rid="pone.0146385.t001">Table 1</xref>
;
<xref ref-type="fig" rid="pone.0146385.g001">Fig 1</xref>
). Simulated yield for 1889-2013 reflected these differences in environments, with median yield ranging from 1.72 t ha-1 in Emerald to 4.10 t ha-1 at Narrabri (
<xref ref-type="fig" rid="pone.0146385.g003">Fig 3</xref>
). High inter-annual variability was also simulated and reflected the broad range of water deficits and temperature events that Australian wheat experience across seasons [
<xref rid="pone.0146385.ref005" ref-type="bibr">5</xref>
,
<xref rid="pone.0146385.ref007" ref-type="bibr">7</xref>
].</p>
<fig id="pone.0146385.g003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0146385.g003</object-id>
<label>Fig 3</label>
<caption>
<title>Heatmap of yield response to climate and management practices in all growing environments studied.</title>
<p>Simulated yield for cv.
<italic>Hartog</italic>
is presented for each sites (Emerald, Merredin, Narrabri, Yanco),
<italic>CO</italic>
<sub>2</sub>
levels (380 and 555 ppm), sowing dates (21 April, 15 May, 7 June), fertilization (x-axis, potential mineral nitrogen applied before decision model, in kg ha
<sup>-1</sup>
) and climatic years (y-axis) i.e 9000 growing environments in total.</p>
</caption>
<graphic xlink:href="pone.0146385.g003"></graphic>
</fig>
</sec>
<sec id="sec015">
<title>About a half of the studied traits had little or no impact on yield in the target population of environments (TPE)</title>
<p>A global sensitivity analysis was performed to get a general picture of the effect of APSIM-Wheat parameters on yield response in the TPE. While the results from the sensitivity analysis strongly depend on the ranges of variation for the input traits, such ranges are scarcely available for all the considered traits despite numerous studies and reviews giving informative indications of partial genetic ranges for some traits [
<xref rid="pone.0146385.ref047" ref-type="bibr">47</xref>
<xref rid="pone.0146385.ref050" ref-type="bibr">50</xref>
]. To perform a broad screen of parameters, the sensitivity analysis was done with variations of ± 20% from the reference value (
<italic>Hartog</italic>
cultivar) of each parameter (
<xref ref-type="supplementary-material" rid="pone.0146385.s002">S1 Table</xref>
), except for some function parameters for which variations were adapted to increase the biological likelihood of the results (see
<xref ref-type="supplementary-material" rid="pone.0146385.s001">S1 Fig</xref>
). Another analysis was conducted with variation of ± 50% to test a broader range of variation, but this led to a high proportion of crop failure, due in particular to excessive senescence (data not shown).</p>
<p>About half of the studied traits (48/90) were not or only weakly impacting yield (average effect of less than 20 kg ha
<sup>-1</sup>
) in the TPE (
<xref ref-type="fig" rid="pone.0146385.g004">Fig 4</xref>
). Among those traits, 21 had no impact on yield or any other of the studied output variables (i.e. flowering, maturity, LAI, biomass, grain number, size and protein) in any environments. Two options could explain such null impacts: (1) the parameter corresponding to the trait simply did not have any role in the model algorithm for wheat (some parameters are only used for other crops in the APSIM framework) or (2) the traits were influential only in agricultural conditions other than tested here (e.g the sum of temperature until emergence failure,
<italic>tt_emerg_limit</italic>
).</p>
<fig id="pone.0146385.g004" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0146385.g004</object-id>
<label>Fig 4</label>
<caption>
<title>Screening for influential traits in the TPE (control conditions).</title>
<p>Traits were ranked by increasing mean main sensitivity index and were grouped into three groups (panels):
<italic>null impact</italic>
,
<italic>low impact</italic>
and
<italic>impactful</italic>
group. Note that all impacts are positive, as given by the sensitivity analysis method. A description of traits is presented in
<xref ref-type="supplementary-material" rid="pone.0146385.s002">S1 Table</xref>
. Concerning sensitivity indexes, the main effect (circle) is an estimation of the linear influence of the considered trait on grain yield, while the interaction effect (cross) is an estimation of non-linear and/or interaction effect(s) of the trait. The horizontal dashed line corresponds to the 20 kg ha
<sup>-1</sup>
threshold above which traits are considered as impactful.</p>
</caption>
<graphic xlink:href="pone.0146385.g004"></graphic>
</fig>
<p>The other 27 traits showed a weak mean impact on yield (< = 20 kg ha-1) in the TPE, often because the conditions required to induce a substantial impact are rarely encountered. This group included traits that may have been considered as important a priori, such as potential leaf area (
<italic>y_leaf_size</italic>
) or maximum temperature for thermal-time accumulation (
<italic>x_temp</italic>
).</p>
<p>Traits with a mean impact on yield of > 20 kg ha-1 were considered in more detail (42 traits;
<xref ref-type="fig" rid="pone.0146385.g004">Fig 4</xref>
). Overall, 29 traits had a mean impact between 20 and 25 kg ha-1, eight traits had an impact between 25 and 50 kg ha-1, and only five traits had a mean impact greater than 50 kg ha-1. The five most influential traits in terms of both mean and interaction effects (
<inline-formula id="pone.0146385.e006">
<alternatives>
<graphic xlink:href="pone.0146385.e006.jpg" id="pone.0146385.e006g" mimetype="image" position="anchor" orientation="portrait"></graphic>
<mml:math id="M6">
<mml:msubsup>
<mml:mi>μ</mml:mi>
<mml:mi>i</mml:mi>
<mml:mo>*</mml:mo>
</mml:msubsup>
</mml:math>
</alternatives>
</inline-formula>
and
<italic>σ</italic>
<sub>
<italic>i</italic>
</sub>
) in the tested conditions were: the water extractability by roots (
<italic>ll_modifier</italic>
), the thermal time required to reach floral initiation (
<italic>tt_end_of_juvenile</italic>
), the photoperiod sensitivity (
<italic>photop_sens</italic>
), the radiation use efficiency (
<italic>y_rue</italic>
), and the radiation extinction coefficient (
<italic>y_extinct_coef</italic>
).</p>
<p>Among the 42 influential traits, only a few showed a linear impact on yield, i.e. their main effect was greater than their interaction effect, e.g. the fraction of biomass partitioned to the spike rachis (
<italic>y_frac_pod</italic>
), the water extractability by roots (
<italic>ll_modifier</italic>
), the wheat coefficient for transpiration efficiency (
<italic>transp_eff_cf</italic>
) and the temperature effect on grain demand (
<italic>x_temp_grain_fill</italic>
). Most of the influential traits had a ratio of interaction:main effect between 1 and 1.8, denoting either a large non-linear effect or an effect largely influenced by other traits. Traits such as senescence-related traits and grain potential biomass (
<italic>max_grain_size</italic>
) had higher ratio (> 1.8).</p>
</sec>
<sec id="sec016">
<title>Several traits had a strong impact on physiological processes related to phenology, biomass and grain production</title>
<p>To better understand the effects of plant traits in the TPE, the 42 influential component traits were clustered based on their main effect on eight integrated traits related to phenology, leaf area, and nitrogen and carbon accumulation and partitioning (
<xref ref-type="fig" rid="pone.0146385.g005">Fig 5</xref>
). Component traits were mainly clustered in three groups (dashed line in
<xref ref-type="fig" rid="pone.0146385.g005">Fig 5</xref>
): lesser influential traits, traits that strongly impacted all outputs, and traits that strongly impacted a subset of integrated traits.</p>
<fig id="pone.0146385.g005" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0146385.g005</object-id>
<label>Fig 5</label>
<caption>
<title>Overview of APSIM-Wheat sensitivity to trait modification.</title>
<p>The heatmap shows the impact (positive in the Morris method) of selected component traits (model inputs, x-axis) modification on integrated traits (model outputs, y-axis). Component traits (top dendrogram) and integrated traits (right dendrogram) were ordered with hierarchical clustering based on the similarities among impacts. Trait impact was standardized to be comparable across integrated traits (model output variables).</p>
</caption>
<graphic xlink:href="pone.0146385.g005"></graphic>
</fig>
<p>Overall, crop phenology (flowering and maturity time) was mostly affected by six component traits (thermal time from emergence to floral initiation, from floral initiation to flowering and to a lesser extent from flowering to the beginning of grain filling; photoperiod sensitivity and two leaf senescence traits), while the remaining traits had little to no impact. Traits affecting grain-filling (
<italic>x_temp_grain_n_filling</italic>
,
<italic>x_temp_grainfill</italic>
,
<italic>potential_grain_filling_rate</italic>
) were clustered together, and had a high impact on grain size, grain protein and yield. On the other hand, about another 10 traits were found to substantially impact leaf area, biomass and grain production. As may be expected, the water extractability (
<italic>ll_modifier</italic>
), which affects the maximum amount of soil water that can be extracted, impacted traits such as LAI at flowering, biomass at maturity, grain number and yield. The trait
<italic>grains_per_gram_stem</italic>
which relates to the potential of the crop to set grains based on its carbon status (proportional to stem weight at flowering), affected grain number but had a relatively little impact on yield given trade-offs on grain size in these largely water-limited environments.</p>
<p>Globally, the impact pathway of traits on physiological processes reflected the sub-component of the crop model where parameters were involved.</p>
</sec>
<sec id="sec017">
<title>Impacts of influential traits were strongly dependent on environmental and management conditions</title>
<p>The variability of trait impacts arose from high trait × environment interactions (
<xref ref-type="fig" rid="pone.0146385.g006">Fig 6</xref>
), i.e. the modification of a trait did not result in the same change in output trait depending on the growing conditions. Main yield impacts of individual component traits ranged from 0.02 t ha-1 (screening threshold) to 2.87 t ha-1 (potential radiation use efficiency,
<italic>y_rue</italic>
, under high nitrogen conditions).</p>
<fig id="pone.0146385.g006" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0146385.g006</object-id>
<label>Fig 6</label>
<caption>
<title>Yield sensitivity to a variation of selected influential trait.</title>
<p>Trait main impacts were calculated from a sensitivity analysis and are presented for different nitrogen treatments (A), sowing dates (B) and sites (C) and in the TPE (control conditions) unless mentioned (i.e. high/low nitrogen, early/late sowing).</p>
</caption>
<graphic xlink:href="pone.0146385.g006"></graphic>
</fig>
<p>Most traits had a larger yield impact when management practices and climatic conditions were “non-limiting”, e.g. high fertilization, high soil water holding capacity (Yanco, Narrabri) and early sowing (i.e. long cropping season). By contrast, response traits (e.g.
<italic>x_temp_grain_fill</italic>
,
<italic>transp_eff_cf</italic>
) impacted yield in more extensive conditions (e.g. low nitrogen). For instance, water extractability by roots (
<italic>ll_modifier</italic>
) had more impact for late-sown than for early-sown crops, as such crops are more prone to drought.</p>
</sec>
<sec id="sec018">
<title>Identification of influential traits with low dependence to climate uncertainty</title>
<p>The variance of trait impacts on yield across the 9000 studied environments was partitioned for each studied traits into four controllable environmental factors (
<italic>site</italic>
,
<italic>sowing date</italic>
,
<italic>nitrogen fertilization</italic>
and
<italic>CO</italic>
<sub>2</sub>
<italic>level</italic>
) and one uncertainty-related factor (
<italic>residuals</italic>
) that aggregated the factor
<italic>year</italic>
, the interaction among “controllable” factors and the residuals (
<xref ref-type="fig" rid="pone.0146385.g007">Fig 7</xref>
). Despite the coarseness of the approach and the fact that trait main impacts were only considered as absolute value (no distinction between negative and positive impact on yield), traits with both a strong mean impact and an impact variability that mainly depends on “controllable” factors would potentially be easier for consideration for breeding.</p>
<fig id="pone.0146385.g007" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0146385.g007</object-id>
<label>Fig 7</label>
<caption>
<title>Variance components of trait main impact for major environmental factors.</title>
<p>For each influential trait, the proportion of variance explained by environmental factors (site, nitrogen fertilization, sowing date and
<italic>CO</italic>
<sub>2</sub>
level) was calculated in an ANOVA on simulated yield for crops in the 9000 studied growing conditions. Traits were clustered in groups based on the proportion of explained variance by environmental factors (horizontal panels). Cluster identified corresponded to traits mainly impacted by site and sowing date (first panel), nitrogen fertilization (second panel), CO2 (third panel) and traits having a high residual component (fourth panel).</p>
</caption>
<graphic xlink:href="pone.0146385.g007"></graphic>
</fig>
<p>Traits were
<italic>a posteriori</italic>
clustered in four groups (horizontal panels in
<xref ref-type="fig" rid="pone.0146385.g007">Fig 7</xref>
), which can be described as: (1) site/sowing impact, which may be related to water or temperature driven processes, (2) nitrogen impact, (3)
<italic>CO</italic>
<sub>2</sub>
impact and (4) high residuals (uncertainty). Traits in the site/sowing, nitrogen and
<italic>CO</italic>
<sub>2</sub>
groups displayed both high and relatively stable main impact on yield. The nitrogen-impact group included all studied traits related to grain filling, indicating that modifications of such traits could reliably impact yield providing adequate nitrogen fertilization. On the other hand, the site/sowing-driven group included traits such as the potential radiation use efficiency (
<italic>y_rue</italic>
), the light extinction coefficient (
<italic>y_extinct_coef</italic>
) and the potential leaf surface area (
<italic>y_sla</italic>
), which may be linked to the available water resources or thermal regime (e.g. short/long crop cycle). Traits in the
<italic>high residuals</italic>
group were influential but not stable, meaning that a modification of such traits did not yield the same return depending on years and/or due to interaction with other traits. Phenology-related traits (
<italic>tt_end_of_juvenile</italic>
,
<italic>tt_floral_initiation</italic>
) and water extractability by roots (
<italic>ll_modifier</italic>
) displayed such behavior, indicating that impact was likely linked to the level of environmental resources available (water or temperature, in this case), which is expected in these types of environments.</p>
<p>This variance analysis also highlighted expected trait × environment interactions. For instance, a high
<italic>CO</italic>
<sub>2</sub>
concentration triggered the impact of the
<italic>CO</italic>
<sub>2</sub>
response on transpiration efficiency (
<italic>y_co2_te_modifier</italic>
). Note that the effect on radiation use efficiency (
<italic>co2_rue_modifier</italic>
) was not identified as influential in the TPE (i.e. when no change in
<italic>CO</italic>
<sub>2</sub>
;
<xref ref-type="fig" rid="pone.0146385.g004">Fig 4</xref>
) and was thus not included in the further analysis. Also, photoperiodic and vernalization sensitivities (
<italic>photop_sens</italic>
,
<italic>vern_sens</italic>
) had contrasting effect across sites and sowing dates. These results are consistent with field observations [
<xref rid="pone.0146385.ref021" ref-type="bibr">21</xref>
].</p>
</sec>
<sec id="sec019">
<title>Trait impacts were related to the availability of environmental resources</title>
<p>Strong interactions were identified between environmental factors and trait impact on yield (
<xref ref-type="fig" rid="pone.0146385.g008">Fig 8</xref>
) for several traits involved in plant development (
<italic>tt_end_of_juvenile</italic>
), resource acquisition (
<italic>ll_modifier</italic>
), biomass production (
<italic>y_rue</italic>
) and biomass allocation (
<italic>potential_grain_filling_rate</italic>
) processes. Computed seasonal stress indices for water and nitrogen (see caption of
<xref ref-type="fig" rid="pone.0146385.g008">Fig 8</xref>
) were used to highlight these dependencies between environmental stress and the impact resulting from a trait modification. Modifications in phenology (
<italic>tt_end_of_juvenile</italic>
) impacted yield the most in wet environments (stress index near zero), when yield potentials were the greatest (
<xref ref-type="fig" rid="pone.0146385.g008">Fig 8A</xref>
). Nevertheless, this trait had substantial impacts in all environments, including the most severely water limited. Change in water extractability by roots (
<italic>ll_modifier</italic>
) also responded to water deficit (
<xref ref-type="fig" rid="pone.0146385.g008">Fig 8B</xref>
) with maximum impacts in severe water deficits. Impacts were slightly less important in mid-early water deficits. They rapidly decreased in less stressed conditions, but remained substantial. Modifications in potential photosynthesis (
<italic>y_rue</italic>
) had impacts related to both water and nitrogen availability (
<xref ref-type="fig" rid="pone.0146385.g008">Fig 8C</xref>
). The relation between impact and nitrogen availability was linear within each drought environment type, and the slope of the relation decreased with the severity of the water deficit (i.e. the impact response to N was greater in non-limiting water conditions). Modifications in biomass allocation to grains (
<italic>potential_grain_filling_rate</italic>
) led to maximum yield impact in low water deficit (
<xref ref-type="fig" rid="pone.0146385.g008">Fig 8D</xref>
) and in severe nitrogen deficits. Yield impact was increasing with nitrogen deficit but showed a weaker linear correlation in conditions with severe nitrogen stress (r = 0.47).</p>
<fig id="pone.0146385.g008" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0146385.g008</object-id>
<label>Fig 8</label>
<caption>
<title>Sensitivity index of standardized yield for selected component traits involved in crop development (A), resource acquisition (B), biomass production (C) and biomass allocation (D) relative to seasonal water- or nitrogen-stress indices.</title>
<p>Yield impact was assessed for the thermal time required to reach floral initiation (
<italic>tt_end_of_juvenile</italic>
), the water extractability by roots (
<italic>ll_modifier</italic>
), the radiation use efficiency (
<italic>y_rue</italic>
), and biomass allocation to grains (
<italic>potential_grain_filling_rate</italic>
). As sensitivity indices are computed independently for each condition (combinations of sites × year × management), a standardized sensitivity index was used to allow comparison of indices across environments. In this case, simulated yield was standardized (
<inline-formula id="pone.0146385.e007">
<alternatives>
<graphic id="pone.0146385.e007g" xlink:href="pone.0146385.e007"></graphic>
<mml:math id="M7">
<mml:mrow>
<mml:msup>
<mml:mi>x</mml:mi>
<mml:mo></mml:mo>
</mml:msup>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mi>x</mml:mi>
<mml:mo>-</mml:mo>
<mml:mi>m</mml:mi>
<mml:mi>e</mml:mi>
<mml:mi>a</mml:mi>
<mml:mi>n</mml:mi>
<mml:mo>(</mml:mo>
<mml:mi>x</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mi>s</mml:mi>
<mml:mi>d</mml:mi>
<mml:mo>(</mml:mo>
<mml:mi>x</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mfrac>
</mml:mrow>
</mml:math>
</alternatives>
</inline-formula>
) within each of the 9000 environment conditions before computing elementary effects and sensitivity indices (which are always positive in Morris method). The water-stress index [
<xref rid="pone.0146385.ref007" ref-type="bibr">7</xref>
] indicates the degree to which the soil water extractable by roots (water supply) is able to match the potential crop transpiration (water demand). The nitrogen-stress index is a factor computed by APSIM that determines limiting N level affecting leaf photosynthesis [
<xref rid="pone.0146385.ref029" ref-type="bibr">29</xref>
]. Both indexes ranged from 0 (no-stress) to 1 (extreme stress). Data are presented for representative drought-pattern environment types (colors), namely “low” (ET1) with stress-free or short-term water-deficits; “mild-late” (ET2) with mild water shortage mainly occurring during grain filling; “mild-early” (ET3) with severe water stress starting during the vegetative stage and relieved during mid-grain filling; and “severe” (ET4) with water deficit from early stages throughout the grain-filling periods [
<xref rid="pone.0146385.ref007" ref-type="bibr">7</xref>
]. Lines represent linear regressions fitted by environment types.</p>
</caption>
<graphic xlink:href="pone.0146385.g008"></graphic>
</fig>
</sec>
</sec>
<sec sec-type="conclusions" id="sec020">
<title>Discussion</title>
<sec id="sec021">
<title>An
<italic>in silico</italic>
method to search for potential candidate traits for breeding</title>
<p>Environmentally-adaptive traits do not scale well from molecular-, organ- or plant-level to the crop level, particularly when targeting yield under stressful conditions [
<xref rid="pone.0146385.ref002" ref-type="bibr">2</xref>
,
<xref rid="pone.0146385.ref051" ref-type="bibr">51</xref>
<xref rid="pone.0146385.ref053" ref-type="bibr">53</xref>
]. This difficulty in demonstrating and estimating the impacts of traits across scales potentially limits inference of trait value, and is partly responsible for the non-integration of physiological progress in breeding programs.</p>
<p>Here, the problem was approached in the opposite direction (top-down), to unravel the phenotypic plasticity observed in complex traits into individual trait contribution at the crop level. Process-based crop models are designed to integrate physiological processes and their impact on the local environment (e.g. soil water uptake) based on parameters reflecting plant traits (parameterization), environmental factors and management inputs. As a result, such models simulate genotype × environment interactions and estimate integrated traits (e.g. yield) as emergent properties [
<xref rid="pone.0146385.ref001" ref-type="bibr">1</xref>
,
<xref rid="pone.0146385.ref002" ref-type="bibr">2</xref>
,
<xref rid="pone.0146385.ref022" ref-type="bibr">22</xref>
,
<xref rid="pone.0146385.ref054" ref-type="bibr">54</xref>
,
<xref rid="pone.0146385.ref055" ref-type="bibr">55</xref>
]. Here, the APSIM-Wheat model, which has been widely tested for Australian conditions was used to weigh the impact of numerous plant traits across the Australian wheatbelt, taking into account climatic variability, trait × trait interactions and trait × environment interactions.</p>
<p>While APSIM-Wheat has over 500 parameters with 103 identified as potentially varying with genotype, the approach proposed in this paper allowed the identification of 42 influential traits in the target population of environments (TPE;
<xref ref-type="fig" rid="pone.0146385.g004">Fig 4</xref>
). Of these 42 traits, 23 had an impact that was relatively stable, meaning that the variance of their impact was explained by “controllable” factors (i.e. site, sowing date, nitrogen fertilization and CO2 level) more than those dependent on climate uncertainty.</p>
<p>Overall, the screening phase (sensitivity analysis) allowed the identification of the most influential traits for yield (Figs
<xref ref-type="fig" rid="pone.0146385.g004">4</xref>
<xref ref-type="fig" rid="pone.0146385.g006">6</xref>
); and the searching phase (variance analysis, relation with specific environmental factors) gave indications as to which traits to target when considering different types of environments within this sample of Australian environments, e.g. high vs low N conditions; Figs
<xref ref-type="fig" rid="pone.0146385.g007">7</xref>
and
<xref ref-type="fig" rid="pone.0146385.g008">8</xref>
. Such an approach could thus help in estimating trait scalability, and give a form of return on investment with an estimation of expected gains from trait modifications. However, additional knowledge is required when considering the potential value for crop breeding (e.g. degree of genotypic variability that may exist for these traits, trait heritability).</p>
</sec>
<sec id="sec022">
<title>Potential candidate traits for improving yield in the Australian wheatbelt</title>
<p>Based on the APSIM-Wheat simulations and a global sensitivity analysis, traits relative to phenology (
<italic>tt_end_of_juvenile</italic>
,
<italic>photop_sens</italic>
,
<italic>tt_floral_initiation</italic>
), resource acquisition (water extraction,
<italic>ll_modifier</italic>
and light interception,
<italic>y_extinct_coef</italic>
), resource use efficiency (
<italic>y_rue</italic>
,
<italic>transp_efficiency_coef</italic>
) and biomass allocation to the grain (
<italic>potential_grain_filling_rate</italic>
,
<italic>grains_per_gram_stem</italic>
) were among the most important traits in the TPE, assuming a “genetic” variation of ± 20% around trait value of the reference cultivar
<italic>Hartog</italic>
(
<xref ref-type="fig" rid="pone.0146385.g004">Fig 4</xref>
). It is important to keep in mind that the results of a sensitivity analysis strongly depend on the chosen range of trait variation, and that the ± 20% trait variation used in this study under-estimated existing variations for some traits (e.g.
<italic>vern_sens</italic>
) while it may have over-estimated unknown variations in others. However, assuming that (1) the APSIM model behaves relatively linearly (interaction:main effect ratio of 1-1.5 for most parameters,
<xref ref-type="fig" rid="pone.0146385.g004">Fig 4</xref>
) and (2) new interactions do not arise from this extension in the parameter ranges, a moderate change of this range would not have strongly affected the estimated impacts (main effect), i.e. the most influent traits have correctly been identified in this study. Overall, the approach allowed a first screening of a wide range of traits for which the range of genetic variability is unknown. This work could be improved in the future through the incorporation of knowledge on genetic variability of selected traits. Adjustments on the TPE could also be investigated, for instance, TPE for future climate scenarios could be explored to identify potential traits of future importance, providing crop models can properly deal with these future conditions.</p>
<p>The most important trait in terms of impact on yield was the water extractability by roots (
<italic>ll_modifier</italic>
; Figs
<xref ref-type="fig" rid="pone.0146385.g004">4</xref>
and
<xref ref-type="fig" rid="pone.0146385.g005">5</xref>
), especially in Narrabri and Yanco, which had heavy deep soils and thus a high water-holding capacity (
<xref ref-type="fig" rid="pone.0146385.g006">Fig 6</xref>
). Genotypic variation in water extractability at depth was observed in root chambers by Manschadi et al. [
<xref rid="pone.0146385.ref050" ref-type="bibr">50</xref>
], who assessed that this trait could bring about an extra 50 kg ha-1 for every mm of water extracted during the grain filling period, for crops grown in the north-eastern part of the wheatbelt (i.e. ability to extract more water late in the season has a high marginal value in terminal stress environments). Compared to other root-related traits, Veyradier et al. [
<xref rid="pone.0146385.ref056" ref-type="bibr">56</xref>
] found that this trait was a strong candidate for breeding purpose in terms of potential impact. Field experiments for two cultivars with contrasting water extractability at depth also highlighted the potential of this trait to improve yield in drought-prone conditions [
<xref rid="pone.0146385.ref050" ref-type="bibr">50</xref>
,
<xref rid="pone.0146385.ref057" ref-type="bibr">57</xref>
], which agrees with the increasing yield impact simulated for increasing drought severity (
<xref ref-type="fig" rid="pone.0146385.g008">Fig 8B</xref>
).</p>
<p>Several traits involved in wheat development were identified as playing a major role in crop performance in the TPE (Figs
<xref ref-type="fig" rid="pone.0146385.g004">4</xref>
<xref ref-type="fig" rid="pone.0146385.g006">6</xref>
). Traits related to phenology are usually considered as the primary means to adapt crops to their growing environments [
<xref rid="pone.0146385.ref058" ref-type="bibr">58</xref>
,
<xref rid="pone.0146385.ref059" ref-type="bibr">59</xref>
]. Recently, an association mapping study [
<xref rid="pone.0146385.ref060" ref-type="bibr">60</xref>
] focused on three traits (earliness
<italic>per se</italic>
, photoperiod sensitivity and vernalization requirement), whose corresponding parameters in APSIM-Wheat model (
<italic>tt_end_of_juvenile</italic>
,
<italic>photop_sens</italic>
and
<italic>vern_sens</italic>
, respectively) were ranked among the most influential ones in this study (i.e. average main impacts on yield respectively of 0.72, 0.62 and 0.04 t ha-1), despite the fact that our reference cultivar (Hartog) has a low vernalization requirement (
<italic>vern_sens</italic>
of 1.5). These three traits were found to vary in the ranges of 515-980°Cd, 0-4.1 and 0-2.9 respectively for a broad range of Australian cultivars [
<xref rid="pone.0146385.ref021" ref-type="bibr">21</xref>
], which is substantially greater than the range tested here (444-666°Cd, 2.4-3.6 and 1.2-1.8), especially for the vernalization requirement. The relative importance of those traits on yield is expected to change when changing their range of variation. In particular,
<italic>vern_sens</italic>
is expected to have a greater impact in the TPE, as found by Zhao et al. [
<xref rid="pone.0146385.ref036" ref-type="bibr">36</xref>
] who tested a range of 0-5 for this trait in a similar analysis. Also, unsurprisingly, these three traits were found to be strongly dependent on the site and sowing date (
<xref ref-type="fig" rid="pone.0146385.g007">Fig 7</xref>
) but had a high level of variations (high residuals in
<xref ref-type="fig" rid="pone.0146385.g007">Fig 7</xref>
), which is likely related to interactions with stresses.</p>
<p>Other traits had a strong impact on yield. The most important of these include: (1) the potential RUE (
<italic>y_rue</italic>
) which is a major target for current research projects aiming to improve photosynthesis efficiency [
<xref rid="pone.0146385.ref061" ref-type="bibr">61</xref>
<xref rid="pone.0146385.ref064" ref-type="bibr">64</xref>
], (2) plant architecture (
<italic>y_extinct_coef</italic>
) which has been of interest to some breeders (e.g. durum-wheat CIMMYT) who have selected for erect wheat genotypes [
<xref rid="pone.0146385.ref065" ref-type="bibr">65</xref>
], and (3) the potential grain filling rate (
<italic>potential_grain_filling_rate</italic>
), which may be improved by the current efforts of breeders and pre-breeders selecting for stay-green phenotype [
<xref rid="pone.0146385.ref066" ref-type="bibr">66</xref>
<xref rid="pone.0146385.ref068" ref-type="bibr">68</xref>
], cooler canopy temperature [
<xref rid="pone.0146385.ref059" ref-type="bibr">59</xref>
,
<xref rid="pone.0146385.ref069" ref-type="bibr">69</xref>
,
<xref rid="pone.0146385.ref070" ref-type="bibr">70</xref>
], greater reserve remobilisation [
<xref rid="pone.0146385.ref071" ref-type="bibr">71</xref>
,
<xref rid="pone.0146385.ref072" ref-type="bibr">72</xref>
] and/or greater spike photosynthesis [
<xref rid="pone.0146385.ref073" ref-type="bibr">73</xref>
,
<xref rid="pone.0146385.ref074" ref-type="bibr">74</xref>
].</p>
</sec>
<sec id="sec023">
<title>The importance of properly considering the target population of environments</title>
<p>Depending on the environment/management conditions considered, the ranking of trait main impacts varied across traits (
<xref ref-type="fig" rid="pone.0146385.g006">Fig 6</xref>
), thus highlighting the need to appropriately consider trait effects across the target populations of environments [
<xref rid="pone.0146385.ref075" ref-type="bibr">75</xref>
]. For instance, the sensitivity to photoperiod (
<italic>photop_sens</italic>
) had a small impact in Emerald but an important impact in Narrabri and Yanco (
<xref ref-type="fig" rid="pone.0146385.g006">Fig 6C</xref>
). Hence, while most influential parameters by Zhao et al. [
<xref rid="pone.0146385.ref036" ref-type="bibr">36</xref>
] were also identified as the most influential subset in our study, the discrepancies in trait impact between these two studies partly rose from differences in conditions considered (e.g. sowing dates, fertilization, plant density). Our study also explored climate change impacts on the 42 influential traits and indicated that traits of most value may change in the future, as illustrated for the impact of transpiration-efficiency response to
<italic>CO</italic>
<sub>2</sub>
(
<italic>y_co2_te_modifier</italic>
) under different levels of
<italic>CO</italic>
<sub>2</sub>
(
<xref ref-type="fig" rid="pone.0146385.g007">Fig 7</xref>
). Note that other traits such as radiation-use-efficiency response to
<italic>CO</italic>
<sub>2</sub>
(
<italic>co2_rue_modifier</italic>
), which had only minor impact in current climates (
<xref ref-type="fig" rid="pone.0146385.g004">Fig 4</xref>
) and were thus not studied in detail, are likely to have a substantial impact in the future.</p>
</sec>
<sec id="sec024">
<title>The importance of considering trait combinations rather than single traits</title>
<p>Sadras and Richards [
<xref rid="pone.0146385.ref052" ref-type="bibr">52</xref>
] argued and illustrated how indirect breeding methods often fail to improve yield not because yield is complex, but rather because those methods do not account for the proper levels of organization, time scales and interactions among traits and with the environment. Similarly, trait impacts in crops subjected to multiple stresses (e.g. nitrogen and water limitation) are rarely considered in traditional physiological approaches [
<xref rid="pone.0146385.ref052" ref-type="bibr">52</xref>
]. Working with an integrative crop model, we illustrated in this paper how the potential value of traits, in combination with others and for a specific TPE, can be assessed
<italic>in silico</italic>
by testing (1) whether the trait is likely to impact crop performance (e.g. estimation of main sensitivity index), (2) if this impact is modified by controllable (management) or uncontrollable (climate, genotype × environment interactions) factors, and (3) how the trait impact is distributed among environment-type of importance for the TPE [
<xref rid="pone.0146385.ref007" ref-type="bibr">7</xref>
].</p>
<p>The systematic presence of interaction effects found with the sensitivity analysis (
<xref ref-type="fig" rid="pone.0146385.g004">Fig 4</xref>
) illustrated that trait interactions are common. Such results highlight the importance of focusing on collections of traits rather on individual traits [
<xref rid="pone.0146385.ref076" ref-type="bibr">76</xref>
].</p>
<p>Furthermore, although of high importance, links among carbon, water, and nitrogen transfers within crops are experimentally difficult to assess due to their genetic, physiologic, and agronomic complexities. For instance, efficiencies in water- and nitrogen-use can be either unrelated, positively (synergy) or negatively (trade-off) related depending on the environment, the genotype, the level of organization, and the time scale at which such efficiencies are defined [
<xref rid="pone.0146385.ref052" ref-type="bibr">52</xref>
,
<xref rid="pone.0146385.ref077" ref-type="bibr">77</xref>
,
<xref rid="pone.0146385.ref078" ref-type="bibr">78</xref>
].</p>
<p>Overall, the complexity of crop systems highlights the potential benefit of using modeling approaches. Together with genetic criteria (e.g. availability of genetic variability, pleiotropy and heritability) and technical criteria (rapid, cost-effective, and reliable phenotyping), model-based approaches (assuming the relevance of the process-based model, of the genetic range tested and of the TPE) could help breeding to improve crop performance under changing environments [
<xref rid="pone.0146385.ref002" ref-type="bibr">2</xref>
,
<xref rid="pone.0146385.ref052" ref-type="bibr">52</xref>
].</p>
</sec>
<sec id="sec025">
<title>A tool to overview and improve crop models</title>
<p>From a modeling point of view, crop models are evolving over time, while physiological knowledge underlying crop functioning gradually improves. Model improvements are thus regularly performed with algorithm modifications being tracked over time. However, the effects of such modifications on the model-prediction capacity are usually not clearly documented nor shared among all model users and developers. Hence, with different developers focusing simultaneously or successively on a model, there is a high risk of developing increasingly complex and harder to understand algorithms. Problems caused by this increased complexity may affect the quality of the model, but may be revealed and addressed by using exploration methods throughout model-development phases to visualize the in-progress modeling state. Systems analyses, as done in this paper can for instance enable developers to quickly assess changes in model response due to variation in specific processes, and notice potential problems.</p>
<p>In this study, we attempted to consider the maximum proportion of traits utilized in APSIM-Wheat. The use of function-table parameters in APSIM complicated the estimation of the total number of values used as parameters and the assessment of individual parameter impact on output variables. Overall, about half of the plant-related parameters of APSIM-Wheat had no impact, keeping in mind that those parameters may be useful for other crops, or other processes (e.g. responses to high-temperature or soil minerals). While using a global sensitivity analysis to identify such parameters may appear as an excessive method, the computational cost to include all parameters (with null, low or high impact) was lower than the time and expertise needed to analyze the source code and manually identify subsets of parameters, in the case of this complicated crop model.</p>
<p>In total, 42 parameters were identified as influential, as they had an average main impact greater than 20 kg ha-1 in the TPE. However, only 5 parameters had a mean impact greater than 50 kg ha-1. Martre et al. [
<xref rid="pone.0146385.ref076" ref-type="bibr">76</xref>
] proposed physiological reasons to explain such a surprisingly low number of influential parameters in crop models: (1) number of trade-offs occur with traits often having compensating effects when scaling up from plant to crop level (e.g. once canopies are well established, increasing the leaf surface area may not improve light interception and thus photosynthesis) and (2) the fact that complex characters such as grain yield and protein concentration are inherently determined at the population level rather than at the organ or plant level [
<xref rid="pone.0146385.ref079" ref-type="bibr">79</xref>
]. While model over-parameterization can result from model development as well as model design, indicators can help to track the model complexity and performance. In this context, the use of the exploration methods described here provides an overview of the model global response to perturbation (e.g. Figs
<xref ref-type="fig" rid="pone.0146385.g003">3</xref>
<xref ref-type="fig" rid="pone.0146385.g005">5</xref>
).</p>
<p>Finally, such sensitivity analysis can help to identify traits most important for parameter calibration for cultivars [
<xref rid="pone.0146385.ref036" ref-type="bibr">36</xref>
]. Such targeted calibration can later be implemented with either frequentist [
<xref rid="pone.0146385.ref080" ref-type="bibr">80</xref>
] or Bayesian parameter estimation algorithms [
<xref rid="pone.0146385.ref081" ref-type="bibr">81</xref>
].</p>
</sec>
</sec>
<sec sec-type="conclusions" id="sec026">
<title>Conclusion</title>
<p>Phenotyping and breeding strategies can be improved by better understanding the yield-trait performance landscapes [
<xref rid="pone.0146385.ref082" ref-type="bibr">82</xref>
]. We performed a Morris global sensitivity analysis on the APSIM-Wheat model to assess the impact of 90 physiological traits on yield for Australian rain-fed wheat crops. The genotype × environment × management (G×E×M) landscape was explored using 82 million individual simulations for the target population of environments (TPE), combining a factorial design for the environment × management effects and a Morris sampling design for APSIM trait parameters. Our analysis highlights 42 parameters substantially impacting yield in most of the TPE. Among those, a few parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop improvement.</p>
<p>As a final conclusion, the integration of G×E×M interactions through modeling approaches is an increasingly topical consideration to help prioritizing investments of research efforts for the benefit of breeding [
<xref rid="pone.0146385.ref017" ref-type="bibr">17</xref>
]. However, newly-gained computational knowledge has to be constantly confronted to physiological reality in order to determine the complexity of G×E×M interactions that impede progress in crop productivity.</p>
</sec>
<sec sec-type="supplementary-material" id="sec027">
<title>Supporting Information</title>
<supplementary-material content-type="local-data" id="pone.0146385.s001">
<label>S1 Fig</label>
<caption>
<title>Range of variation used for function parameters.</title>
<p>Each graph represents one function parameter (
<italic>x</italic>
and
<italic>y</italic>
vectors), except for grouped parameters (i.e. leaf, stem and pod nitrogen demand). The graph titles match the
<italic>Process</italic>
column in
<xref ref-type="supplementary-material" rid="pone.0146385.s002">S1 Table</xref>
. Nominal values are indicted in green, while minimum and maximum values are displayed blue and red, respectively. As some parameters were grouped to be modified together, different symbols are used for related processes (maximum, critical and minimum nitrogen content) as defined in APSIM-wheat [
<xref rid="pone.0146385.ref029" ref-type="bibr">29</xref>
].</p>
<p>(PDF)</p>
</caption>
<media xlink:href="pone.0146385.s001.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0146385.s002">
<label>S1 Table</label>
<caption>
<title>Description of the APSIM-wheat parameters included in the sensitivity analysis.</title>
<p>
<italic>Module</italic>
refers to the sub-model where the parameter is used in APSIM-wheat,
<italic>Process</italic>
refers to the physiological process targeted by the considered parameter and
<italic>Factor</italic>
is the parameter name used in the present study and in the APSIM documentation [
<xref rid="pone.0146385.ref029" ref-type="bibr">29</xref>
], where a complete description of the parameters is given. The
<italic>Default Value</italic>
field lists the nominal value of the parameter for cultivar Hartog in APSIM-wheat 7.5 (only first three values were presented when the parameter is defined as a vector). In the
<italic>Process</italic>
field, influential parameters in indicated in bold and parameters that were grouped together for physiologic reasons are identified by (*).</p>
<p>(PDF)</p>
</caption>
<media xlink:href="pone.0146385.s002.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ref-list>
<title>References</title>
<ref id="pone.0146385.ref001">
<label>1</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chapman</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Cooper</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Hammer</surname>
<given-names>G</given-names>
</name>
.
<article-title>Using crop simulation to generate genotype by environment interaction effects for sorghum in water-limited environments</article-title>
.
<source>Australian Journal of Agricultural Research</source>
.
<year>2002</year>
;
<volume>53</volume>
:
<fpage>379</fpage>
<lpage>389</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1071/AR01070">10.1071/AR01070</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref002">
<label>2</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hammer</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Cooper</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Tardieu</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Welch</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Walsh</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Eeuwijk</surname>
<given-names>F van</given-names>
</name>
,
<etal>et al</etal>
<article-title>Models for navigating biological complexity in breeding improved crop plants</article-title>
.
<source>Trends in Plant Science</source>
.
<year>2006</year>
;
<volume>11</volume>
:
<fpage>587</fpage>
<lpage>593</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.tplants.2006.10.006">10.1016/j.tplants.2006.10.006</ext-link>
</comment>
<pub-id pub-id-type="pmid">17092764</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref003">
<label>3</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chapman</surname>
<given-names>S</given-names>
</name>
.
<article-title>Use of crop models to understand genotype by environment interactions for drought in real-world and simulated plant breeding trials</article-title>
.
<source>Euphytica</source>
. Springer;
<year>2008</year>
;
<volume>161</volume>
:
<fpage>195</fpage>
<lpage>208</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1007/s10681-007-9623-z">10.1007/s10681-007-9623-z</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref004">
<label>4</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chapman</surname>
<given-names>SC</given-names>
</name>
,
<name>
<surname>Chakraborty</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Dreccer</surname>
<given-names>MF</given-names>
</name>
,
<name>
<surname>Howden</surname>
<given-names>SM</given-names>
</name>
.
<article-title>Plant adaptation to climate change—opportunities and priorities in breeding</article-title>
.
<source>Crop and Pasture Science</source>
. CSIRO;
<year>2012</year>
;
<volume>63</volume>
:
<fpage>251</fpage>
<lpage>268</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1071/CP11303">10.1071/CP11303</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref005">
<label>5</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zheng</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Chenu</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Fernanda Dreccer</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Chapman</surname>
<given-names>SC</given-names>
</name>
.
<article-title>Breeding for the future: What are the potential impacts of future frost and heat events on sowing and flowering time requirements for australian bread wheat (Triticum aestivium) varieties?</article-title>
<source>Global Change Biology</source>
. Wiley Online Library;
<year>2012</year>
;
<volume>18</volume>
:
<fpage>2899</fpage>
<lpage>2914</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1111/j.1365-2486.2012.02724.x">10.1111/j.1365-2486.2012.02724.x</ext-link>
</comment>
<pub-id pub-id-type="pmid">24501066</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref006">
<label>6</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chenu</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Cooper</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Hammer</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Mathews</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Dreccer</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Chapman</surname>
<given-names>S</given-names>
</name>
.
<article-title>Environment characterization as an aid to wheat improvement: Interpreting genotype–environment interactions by modelling water-deficit patterns in North-Eastern Australia</article-title>
.
<source>Journal of Experimental Botany</source>
. Soc Experiment Biol;
<year>2011</year>
;
<volume>62</volume>
:
<fpage>1743</fpage>
<lpage>1755</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/jxb/erq459">10.1093/jxb/erq459</ext-link>
</comment>
<pub-id pub-id-type="pmid">21421705</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref007">
<label>7</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chenu</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Deihimfard</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Chapman</surname>
<given-names>SC</given-names>
</name>
.
<article-title>Large-scale characterization of drought pattern: A continent-wide modelling approach applied to the Australian wheatbelt–spatial and temporal trends</article-title>
.
<source>New Phytologist</source>
. Wiley Online Library;
<year>2013</year>
;
<volume>198</volume>
:
<fpage>801</fpage>
<lpage>820</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1111/nph.12192">10.1111/nph.12192</ext-link>
</comment>
<pub-id pub-id-type="pmid">23425331</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref008">
<label>8</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ortiz-Monasterio</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Sayre</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Rajaram</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>McMahon</surname>
<given-names>M</given-names>
</name>
, others.
<article-title>Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates</article-title>
.
<source>Crop Science</source>
. Crop Science Society of America;
<year>1997</year>
;
<volume>37</volume>
:
<fpage>898</fpage>
<lpage>904</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.2135/cropsci1997.0011183X003700030033x">10.2135/cropsci1997.0011183X003700030033x</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref009">
<label>9</label>
<mixed-citation publication-type="journal">
<name>
<surname>Richards</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Hunt</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Kirkegaard</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Passioura</surname>
<given-names>J</given-names>
</name>
.
<article-title>Yield improvement and adaptation of wheat to water-limited environments in Australia- a case study</article-title>
.
<source>Crop and Pasture Science</source>
. CSIRO;
<year>2014</year>
;
<volume>65</volume>
:
<fpage>676</fpage>
<lpage>689</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0146385.ref010">
<label>10</label>
<mixed-citation publication-type="journal">
<name>
<surname>Yang</surname>
<given-names>R-C</given-names>
</name>
,
<name>
<surname>Blade</surname>
<given-names>SF</given-names>
</name>
,
<name>
<surname>Crossa</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Stanton</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Bandara</surname>
<given-names>MS</given-names>
</name>
.
<article-title>Identifying isoyield environments for field pea production</article-title>
.
<source>Crop Science</source>
. Crop Science Society of America;
<year>2005</year>
;
<volume>45</volume>
:
<fpage>106</fpage>
<lpage>113</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0146385.ref011">
<label>11</label>
<mixed-citation publication-type="journal">
<name>
<surname>Vega</surname>
<given-names>A de la</given-names>
</name>
,
<name>
<surname>DeLacy</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Chapman</surname>
<given-names>S</given-names>
</name>
.
<article-title>Changes in agronomic traits of sunflower hybrids over 20 years of breeding in central Argentina</article-title>
.
<source>Field Crops Research</source>
. Elsevier Science Bv;
<year>2007</year>
;
<volume>100</volume>
:
<fpage>73</fpage>
<lpage>81</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.fcr.2006.05.007">10.1016/j.fcr.2006.05.007</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref012">
<label>12</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chapman</surname>
<given-names>SC</given-names>
</name>
,
<name>
<surname>Cooper</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Butler</surname>
<given-names>DG</given-names>
</name>
,
<name>
<surname>Henzell</surname>
<given-names>RG</given-names>
</name>
.
<article-title>Genotype by environment interactions affecting grain sorghum. I. Characteristics that confound interpretation of hybrid yield</article-title>
.
<source>Aust J Agric Res</source>
.
<year>2000</year>
;
<volume>51</volume>
:
<fpage>197</fpage>
<lpage>208</lpage>
.
<comment>Available:
<ext-link ext-link-type="uri" xlink:href="http://www.publish.csiro.au/paper/AR99020">http://www.publish.csiro.au/paper/AR99020</ext-link>
</comment>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1071/AR99108">10.1071/AR99108</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref013">
<label>13</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cooper</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Woodruff</surname>
<given-names>DR</given-names>
</name>
,
<name>
<surname>Eisemann</surname>
<given-names>RL</given-names>
</name>
,
<name>
<surname>Brennan</surname>
<given-names>PS</given-names>
</name>
,
<name>
<surname>DeLacy</surname>
<given-names>IH</given-names>
</name>
.
<article-title>A selection strategy to accommodate genotype-by-environment interaction for grain yield of wheat: Managed-environments for selection among genotypes</article-title>
.
<source>TAG Theoretical and Applied Genetics</source>
.
<year>1995</year>
;
<volume>90</volume>
:
<fpage>492</fpage>
<lpage>502</lpage>
.
<comment>Available:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1007/BF00221995">http://dx.doi.org/10.1007/BF00221995</ext-link>
</comment>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1007/BF00221995">10.1007/BF00221995</ext-link>
</comment>
<pub-id pub-id-type="pmid">24173943</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref014">
<label>14</label>
<mixed-citation publication-type="journal">
<name>
<surname>Mathews</surname>
<given-names>KL</given-names>
</name>
,
<name>
<surname>Chapman</surname>
<given-names>SC</given-names>
</name>
,
<name>
<surname>Trethowan</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Pfeiffer</surname>
<given-names>W</given-names>
</name>
,
<name>
<surname>Van Ginkel</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Crossa</surname>
<given-names>J</given-names>
</name>
,
<etal>et al</etal>
<article-title>Global adaptation patterns of Australian and CIMMYT spring bread wheat</article-title>
.
<source>Theoretical and Applied Genetics</source>
. Springer;
<year>2007</year>
;
<volume>115</volume>
:
<fpage>819</fpage>
<lpage>835</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1007/s00122-007-0611-4">10.1007/s00122-007-0611-4</ext-link>
</comment>
<pub-id pub-id-type="pmid">17768603</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref015">
<label>15</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chapman</surname>
<given-names>SC</given-names>
</name>
,
<name>
<surname>Crossa</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Edmeades</surname>
<given-names>GO</given-names>
</name>
.
<article-title>Genotype by environment effects and selection for drought tolerance in tropical maize. I. Two mode pattern analysis of yield</article-title>
.
<source>Euphytica</source>
. Springer;
<year>1997</year>
;
<volume>95</volume>
:
<fpage>1</fpage>
<lpage>9</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1023/A:1002918008679">10.1023/A:1002918008679</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref016">
<label>16</label>
<mixed-citation publication-type="journal">
<name>
<surname>Alwala</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Kwolek</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>McPherson</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Pellow</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Meyer</surname>
<given-names>D</given-names>
</name>
.
<article-title>A comprehensive comparison between Eberhart and Russell joint regression and GGE biplot analyses to identify stable and high yielding maize hybrids</article-title>
.
<source>Field Crops Research</source>
. Elsevier;
<year>2010</year>
;
<volume>119</volume>
:
<fpage>225</fpage>
<lpage>230</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.fcr.2010.07.010">10.1016/j.fcr.2010.07.010</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref017">
<label>17</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hammer</surname>
<given-names>GL</given-names>
</name>
,
<name>
<surname>McLean</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Chapman</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Zheng</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Doherty</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Harrison</surname>
<given-names>MT</given-names>
</name>
,
<etal>et al</etal>
<article-title>Crop design for specific adaptation in variable dryland production environments</article-title>
.
<source>Crop and Pasture Science</source>
. CSIRO;
<year>2014</year>
;
<volume>65</volume>
:
<fpage>614</fpage>
<lpage>626</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0146385.ref018">
<label>18</label>
<mixed-citation publication-type="journal">
<name>
<surname>Nyquist</surname>
<given-names>WE</given-names>
</name>
,
<name>
<surname>Baker</surname>
<given-names>R</given-names>
</name>
.
<article-title>Estimation of heritability and prediction of selection response in plant populations</article-title>
.
<source>Critical reviews in plant sciences</source>
. Taylor & Francis;
<year>1991</year>
;
<volume>10</volume>
:
<fpage>235</fpage>
<lpage>322</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1080/07352689109382313">10.1080/07352689109382313</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref019">
<label>19</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cooper</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Stucker</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>DeLacy</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Harch</surname>
<given-names>B</given-names>
</name>
.
<article-title>Wheat breeding nurseries, target environments, and indirect selection for grain yield</article-title>
.
<source>Crop Science</source>
. Crop Science Society of America;
<year>1997</year>
;
<volume>37</volume>
:
<fpage>1168</fpage>
<lpage>1176</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.2135/cropsci1997.0011183X003700040024x">10.2135/cropsci1997.0011183X003700040024x</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref020">
<label>20</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chapman</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Cooper</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Podlich</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Hammer</surname>
<given-names>G</given-names>
</name>
.
<article-title>Evaluating Plant Breeding Strategies by Simulating Gene Action and Dryland Environment Effects</article-title>
.
<source>Agronomy Journal</source>
.
<year>2003</year>
;
<volume>95</volume>
:
<fpage>99</fpage>
<lpage>113</lpage>
.
<comment>Available:
<ext-link ext-link-type="uri" xlink:href="http://agron.scijournals.org/cgi/content/abstract/agrojnl;95/1/99">http://agron.scijournals.org/cgi/content/abstract/agrojnl;95/1/99</ext-link>
</comment>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.2134/agronj2003.0099">10.2134/agronj2003.0099</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref021">
<label>21</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zheng</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Biddulph</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Kuchel</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Chapman</surname>
<given-names>S</given-names>
</name>
.
<article-title>Quantification of the effects of VRN1 and Ppd-D1 to predict spring wheat (Triticum aestivum) heading time across diverse environments</article-title>
.
<source>Journal of Experimental Botany</source>
. Soc Experiment Biol;
<year>2013</year>
;
<volume>64</volume>
:
<fpage>3747</fpage>
<lpage>3761</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/jxb/ert209">10.1093/jxb/ert209</ext-link>
</comment>
<pub-id pub-id-type="pmid">23873997</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref022">
<label>22</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chenu</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Chapman</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Tardieu</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>McLean</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Welcker</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Hammer</surname>
<given-names>G</given-names>
</name>
.
<article-title>Simulating the yield impacts of organ-level quantitative trait loci associated with drought response in maize: A“gene-to-phenotype” modeling approach</article-title>
.
<source>Genetics</source>
. Genetics Soc America;
<year>2009</year>
;
<volume>183</volume>
:
<fpage>1507</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1534/genetics.109.105429">10.1534/genetics.109.105429</ext-link>
</comment>
<pub-id pub-id-type="pmid">19786622</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref023">
<label>23</label>
<mixed-citation publication-type="journal">
<name>
<surname>Jeuffroy</surname>
<given-names>M-H</given-names>
</name>
,
<name>
<surname>Casadebaig</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Debaeke</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Loyce</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Meynard</surname>
<given-names>J-M</given-names>
</name>
.
<article-title>Agronomic model uses to predict cultivar performance in various environments and cropping systems. a review</article-title>
.
<source>Agronomy for Sustainable Development</source>
. Springer Paris;
<year>2014</year>
;
<volume>34</volume>
:
<fpage>121</fpage>
<lpage>137</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1007/s13593-013-0170-9">10.1007/s13593-013-0170-9</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref024">
<label>24</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rebetzke</surname>
<given-names>GJ</given-names>
</name>
,
<name>
<surname>Chenu</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Biddulph</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Moeller</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Deery</surname>
<given-names>DM</given-names>
</name>
,
<name>
<surname>Rattey</surname>
<given-names>AR</given-names>
</name>
,
<etal>et al</etal>
<article-title>A multisite managed environment facility for targeted trait and germplasm phenotyping</article-title>
.
<source>Functional Plant Biology</source>
. CSIRO;
<year>2013</year>
;
<volume>40</volume>
:
<fpage>1</fpage>
<lpage>13</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1071/FP12180">10.1071/FP12180</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref025">
<label>25</label>
<mixed-citation publication-type="journal">
<name>
<surname>Potgieter</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Hammer</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Butler</surname>
<given-names>D</given-names>
</name>
.
<article-title>Spatial and temporal patterns in Australian wheat yield and their relationship with ENSO</article-title>
.
<source>Crop and Pasture Science</source>
. CSIRO;
<year>2002</year>
;
<volume>53</volume>
:
<fpage>77</fpage>
<lpage>89</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1071/AR01002">10.1071/AR01002</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref026">
<label>26</label>
<mixed-citation publication-type="other">Williams J, Hamblin AP, Hook RA. Agro-ecological regions of Australia. Methodologies for their derivation and key issues in resource management. CSIRO Land; Water; 2002.</mixed-citation>
</ref>
<ref id="pone.0146385.ref027">
<label>27</label>
<mixed-citation publication-type="journal">
<name>
<surname>Keating</surname>
<given-names>BA</given-names>
</name>
,
<name>
<surname>Carberry</surname>
<given-names>PS</given-names>
</name>
,
<name>
<surname>Hammer</surname>
<given-names>GL</given-names>
</name>
,
<name>
<surname>Probert</surname>
<given-names>ME</given-names>
</name>
,
<name>
<surname>Robertson</surname>
<given-names>MJ</given-names>
</name>
,
<name>
<surname>Holzworth</surname>
<given-names>D</given-names>
</name>
,
<etal>et al</etal>
<article-title>An overview of APSIM, a model designed for farming systems simulation</article-title>
.
<source>European Journal of Agronomy</source>
.
<year>2003</year>
;
<volume>18</volume>
:
<fpage>267</fpage>
<lpage>288</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/S1161-0301(02)00108-9">10.1016/S1161-0301(02)00108-9</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref028">
<label>28</label>
<mixed-citation publication-type="journal">
<name>
<surname>Holzworth</surname>
<given-names>DP</given-names>
</name>
,
<name>
<surname>Huth</surname>
<given-names>NI</given-names>
</name>
,
<name>
<surname>deVoil</surname>
<given-names>PG</given-names>
</name>
,
<name>
<surname>Zurcher</surname>
<given-names>EJ</given-names>
</name>
,
<name>
<surname>Herrmann</surname>
<given-names>NI</given-names>
</name>
,
<name>
<surname>McLean</surname>
<given-names>G</given-names>
</name>
,
<etal>et al</etal>
<article-title>APSIM—Evolution towards a new generation of agricultural systems simulation</article-title>
.
<source>Environmental Modelling & Software</source>
.
<year>2014</year>
;
<volume>62</volume>
:
<fpage>327</fpage>
<lpage>350</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.envsoft.2014.07.009">10.1016/j.envsoft.2014.07.009</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref029">
<label>29</label>
<mixed-citation publication-type="other">Zheng B, Chenu K, Doherty A. The APSIM-Wheat Module (7.5 R3008) [Internet]. CSIRO; 2014.
<comment>Available:
<ext-link ext-link-type="uri" xlink:href="http://www.apsim.info">www.apsim.info</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref030">
<label>30</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Luo</surname>
<given-names>Q</given-names>
</name>
,
<name>
<surname>Kirby</surname>
<given-names>M</given-names>
</name>
.
<article-title>Modelling the sensitivity of wheat growth and water balance to climate change in Southeast Australia</article-title>
.
<source>Climatic Change</source>
. Springer;
<year>2009</year>
;
<volume>96</volume>
:
<fpage>79</fpage>
<lpage>96</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1007/s10584-009-9599-x">10.1007/s10584-009-9599-x</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref031">
<label>31</label>
<mixed-citation publication-type="book">
<name>
<surname>Saltelli</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Chan</surname>
<given-names>K</given-names>
</name>
.
<source>Sensitivity Analysis</source>
.
<name>
<surname>Scott</surname>
<given-names>EM</given-names>
</name>
, editor.
<publisher-name>Wiley</publisher-name>
;
<year>2000</year>
.</mixed-citation>
</ref>
<ref id="pone.0146385.ref032">
<label>32</label>
<mixed-citation publication-type="book">
<name>
<surname>Monod</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Naud</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Makowski</surname>
<given-names>D</given-names>
</name>
.
<source>Working with dynamic crop models, evaluation, analysis, parameterization and applications</source>
. In:
<name>
<surname>Wallach</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Makowski</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Jones</surname>
<given-names>JW</given-names>
</name>
, editors.
<publisher-name>Elsevier</publisher-name>
;
<year>2006</year>
pp.
<fpage>55</fpage>
<lpage>100</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0146385.ref033">
<label>33</label>
<mixed-citation publication-type="journal">
<name>
<surname>Valade</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Ciais</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Vuichard</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Viovy</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Caubel</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Huth</surname>
<given-names>N</given-names>
</name>
,
<etal>et al</etal>
<article-title>Modeling sugarcane yield with a process-based model from site to continental scale: Uncertainties arising from model structure and parameter values</article-title>
.
<source>Geoscientific Model Development</source>
.
<year>2014</year>
;
<volume>7</volume>
:
<fpage>1225</fpage>
<lpage>1245</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.5194/gmd-7-1225-2014">10.5194/gmd-7-1225-2014</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref034">
<label>34</label>
<mixed-citation publication-type="journal">
<name>
<surname>Da Silva</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Han</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Faivre</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Costes</surname>
<given-names>E</given-names>
</name>
.
<article-title>Influence of the variation of geometrical and topological traits on light interception efficiency of apple trees: Sensitivity analysis and metamodelling for ideotype definition</article-title>
.
<source>Annals of botany</source>
. Annals Botany Co;
<year>2014</year>
;
<volume>114</volume>
:
<fpage>739</fpage>
<lpage>752</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/aob/mcu034">10.1093/aob/mcu034</ext-link>
</comment>
<pub-id pub-id-type="pmid">24723446</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref035">
<label>35</label>
<mixed-citation publication-type="other">Martre P, He J, Le Gouis J, Semenov MA. In silico system analysis of physiological traits determining grain yield and protein concentration for wheat as influenced by climate and crop management. Journal of Experimental Botany. Soc Experiment Biol; 2015; erv049.</mixed-citation>
</ref>
<ref id="pone.0146385.ref036">
<label>36</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zhao</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Bryan</surname>
<given-names>BA</given-names>
</name>
,
<name>
<surname>Song</surname>
<given-names>X</given-names>
</name>
.
<article-title>Sensitivity and uncertainty analysis of the APSIM-wheat model: Interactions between cultivar, environmental, and management parameters</article-title>
.
<source>Ecological Modelling</source>
. Elsevier;
<year>2014</year>
;
<volume>279</volume>
:
<fpage>1</fpage>
<lpage>11</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.ecolmodel.2014.02.003">10.1016/j.ecolmodel.2014.02.003</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref037">
<label>37</label>
<mixed-citation publication-type="journal">
<name>
<surname>Morris</surname>
<given-names>MD</given-names>
</name>
.
<article-title>Factorial sampling plans for preliminary computational experiments</article-title>
.
<source>Technometrics</source>
. Taylor & Francis;
<year>1991</year>
;
<volume>33</volume>
:
<fpage>161</fpage>
<lpage>174</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1080/00401706.1991.10484804">10.1080/00401706.1991.10484804</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref038">
<label>38</label>
<mixed-citation publication-type="journal">
<name>
<surname>Campolongo</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Cariboni</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Saltelli</surname>
<given-names>A</given-names>
</name>
.
<article-title>An effective screening design for sensitivity analysis of large models</article-title>
.
<source>Environmental Modelling & Software</source>
. Elsevier;
<year>2007</year>
;
<volume>22</volume>
:
<fpage>1509</fpage>
<lpage>1518</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.envsoft.2006.10.004">10.1016/j.envsoft.2006.10.004</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref039">
<label>39</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Robertson</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Hammer</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Carberry</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Holzworth</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Meinke</surname>
<given-names>H</given-names>
</name>
,
<etal>et al</etal>
<article-title>Development of a generic crop model template in the cropping system model APSIM</article-title>
.
<source>European Journal of Agronomy</source>
. Elsevier;
<year>2002</year>
;
<volume>18</volume>
:
<fpage>121</fpage>
<lpage>140</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/S1161-0301(02)00100-4">10.1016/S1161-0301(02)00100-4</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref040">
<label>40</label>
<mixed-citation publication-type="other">Zheng B, Holland E, Chapman S. Wheat modelling: A case study in innovating across CSIRO Grid computing systems. eResearch Australasia Brisbane, Australia. 2013;</mixed-citation>
</ref>
<ref id="pone.0146385.ref041">
<label>41</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zomer</surname>
<given-names>RJ</given-names>
</name>
,
<name>
<surname>Trabucco</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Bossio</surname>
<given-names>DA</given-names>
</name>
,
<name>
<surname>Verchot</surname>
<given-names>LV</given-names>
</name>
.
<article-title>Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation</article-title>
.
<source>Agriculture, Ecosystems & Environment</source>
. Elsevier;
<year>2008</year>
;
<volume>126</volume>
:
<fpage>67</fpage>
<lpage>80</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.agee.2008.01.014">10.1016/j.agee.2008.01.014</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref042">
<label>42</label>
<mixed-citation publication-type="other">Iooss B, Lemaître P. A review on global sensitivity analysis methods. arXiv preprint arXiv:14042405. 2014;</mixed-citation>
</ref>
<ref id="pone.0146385.ref043">
<label>43</label>
<mixed-citation publication-type="other">R Core Team. R: A language and environment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2014.
<comment>Available:
<ext-link ext-link-type="uri" xlink:href="http://www.R-project.org/">http://www.R-project.org/</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref044">
<label>44</label>
<mixed-citation publication-type="other">Wickham H, Francois R. dplyr: A grammar of data manipulation [Internet]. 2015.
<comment>Available:
<ext-link ext-link-type="uri" xlink:href="http://CRAN.R-project.org/package=dplyr">http://CRAN.R-project.org/package = dplyr</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref045">
<label>45</label>
<mixed-citation publication-type="other">Pujol G, Iooss B, Paul Lemaitre AJ with contributions from, Gilquin L, Gratiet LL, Touati T, et al. Sensitivity: Sensitivity analysis [Internet]. 2014.
<comment>Available:
<ext-link ext-link-type="uri" xlink:href="http://CRAN.R-project.org/package=sensitivity">http://CRAN.R-project.org/package = sensitivity</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref046">
<label>46</label>
<mixed-citation publication-type="book">
<name>
<surname>Wickham</surname>
<given-names>H</given-names>
</name>
.
<source>ggplot2: Elegant graphics for data analysis [Internet]</source>
.
<publisher-name>Springer</publisher-name>
<publisher-loc>New York</publisher-loc>
;
<year>2009</year>
<comment>Available:
<ext-link ext-link-type="uri" xlink:href="http://had.co.nz/ggplot2/book">http://had.co.nz/ggplot2/book</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref047">
<label>47</label>
<mixed-citation publication-type="journal">
<name>
<surname>Poorter</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Evans</surname>
<given-names>JR</given-names>
</name>
.
<article-title>Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area</article-title>
.
<source>Oecologia</source>
. Springer;
<year>1998</year>
;
<volume>116</volume>
:
<fpage>26</fpage>
<lpage>37</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1007/s004420050560">10.1007/s004420050560</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref048">
<label>48</label>
<mixed-citation publication-type="journal">
<name>
<surname>Poorter</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Garnier</surname>
<given-names>E</given-names>
</name>
.
<article-title>Ecological significance of inherent variation in relative growth rate and its components</article-title>
.
<source>Handbook of functional plant ecology</source>
. Marcel Dekker New York;
<year>1999</year>
;
<volume>20</volume>
:
<fpage>81</fpage>
<lpage>120</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0146385.ref049">
<label>49</label>
<mixed-citation publication-type="journal">
<name>
<surname>Poorter</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Niinemets</surname>
<given-names>Ü</given-names>
</name>
,
<name>
<surname>Poorter</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Wright</surname>
<given-names>IJ</given-names>
</name>
,
<name>
<surname>Villar</surname>
<given-names>R</given-names>
</name>
.
<article-title>Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis</article-title>
.
<source>New Phytologist</source>
. Wiley Online Library;
<year>2009</year>
;
<volume>182</volume>
:
<fpage>565</fpage>
<lpage>588</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1111/j.1469-8137.2009.02830.x">10.1111/j.1469-8137.2009.02830.x</ext-link>
</comment>
<pub-id pub-id-type="pmid">19434804</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref050">
<label>50</label>
<mixed-citation publication-type="journal">
<name>
<surname>Manschadi</surname>
<given-names>AM</given-names>
</name>
,
<name>
<surname>Christopher</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Hammer</surname>
<given-names>GL</given-names>
</name>
, others.
<article-title>The role of root architectural traits in adaptation of wheat to water-limited environments</article-title>
.
<source>Functional Plant Biology</source>
. CSIRO;
<year>2006</year>
;
<volume>33</volume>
:
<fpage>823</fpage>
<lpage>837</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1071/FP06055">10.1071/FP06055</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref051">
<label>51</label>
<mixed-citation publication-type="book">
<name>
<surname>Chapman</surname>
<given-names>SC</given-names>
</name>
,
<name>
<surname>Hammer</surname>
<given-names>GL</given-names>
</name>
,
<name>
<surname>Podlich</surname>
<given-names>DW</given-names>
</name>
,
<name>
<surname>Cooper</surname>
<given-names>M</given-names>
</name>
.
<source>Quantitative genetics, genomics and plant breeding</source>
. In:
<name>
<surname>Kang</surname>
</name>
, editor.
<publisher-name>CAB International</publisher-name>
,
<publisher-loc>Wallingford UK</publisher-loc>
;
<year>2002</year>
pp.
<fpage>167</fpage>
<lpage>187</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0146385.ref052">
<label>52</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sadras</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Richards</surname>
<given-names>R</given-names>
</name>
.
<article-title>Improvement of crop yield in dry environments: Benchmarks, levels of organisation and the role of nitrogen</article-title>
.
<source>Journal of Experimental Botany</source>
. Soc Experiment Biol;
<year>2014</year>
;
<volume>65</volume>
:
<fpage>1981</fpage>
<lpage>1995</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/jxb/eru061">10.1093/jxb/eru061</ext-link>
</comment>
<pub-id pub-id-type="pmid">24638898</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref053">
<label>53</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rebetzke</surname>
<given-names>GJ</given-names>
</name>
,
<name>
<surname>Fischer</surname>
<given-names>RTA</given-names>
</name>
, Herwaarden AF van,
<name>
<surname>Bonnett</surname>
<given-names>DG</given-names>
</name>
,
<name>
<surname>Chenu</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Rattey</surname>
<given-names>AR</given-names>
</name>
,
<etal>et al</etal>
<article-title>Plot size matters: Interference from intergenotypic competition in plant phenotyping studies</article-title>
.
<source>Functional Plant Biology</source>
. CSIRO;
<year>2014</year>
;
<volume>41</volume>
:
<fpage>107</fpage>
<lpage>118</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1071/FP13177">10.1071/FP13177</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref054">
<label>54</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bertin</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Martre</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Genard</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Quilot</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Salon</surname>
<given-names>C</given-names>
</name>
.
<article-title>Under what circumstances can process-based simulation models link genotype to phenotype for complex traits? Case-study of fruit and grain quality traits</article-title>
.
<source>Journal of Experimental Botany</source>
. Soc Experiment Biol;
<year>2010</year>
;
<volume>61</volume>
:
<fpage>955</fpage>
<lpage>967</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/jxb/erp377">10.1093/jxb/erp377</ext-link>
</comment>
<pub-id pub-id-type="pmid">20038518</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref055">
<label>55</label>
<mixed-citation publication-type="journal">
<name>
<surname>Yin</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Struik</surname>
<given-names>PC</given-names>
</name>
.
<article-title>Modelling the crop: From system dynamics to systems biology</article-title>
.
<source>Journal of Experimental Botany</source>
. Soc Experiment Biol;
<year>2010</year>
;
<volume>61</volume>
:
<fpage>2171</fpage>
<lpage>2183</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/jxb/erp375">10.1093/jxb/erp375</ext-link>
</comment>
<pub-id pub-id-type="pmid">20051352</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref056">
<label>56</label>
<mixed-citation publication-type="book">
<name>
<surname>Veyradier</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Christopher</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Chenu</surname>
<given-names>K</given-names>
</name>
.
<chapter-title>Quantifying the potential yield benefit of root traits</chapter-title>
In:
<name>
<surname>Sievänen</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Nikinmaa</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Godin</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Lintunen</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Nygren</surname>
<given-names>P</given-names>
</name>
, editors.
<source>Proceedings of the 7th international conference on Functional-Structural Plant Models</source>
,
<publisher-name>Saariselkä</publisher-name>
,
<publisher-loc>Finland</publisher-loc>
,
<day>9-14</day>
<month>6</month>
<year>2013</year>
pp.
<fpage>317</fpage>
<lpage>319</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0146385.ref057">
<label>57</label>
<mixed-citation publication-type="journal">
<name>
<surname>Christopher</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Manschadi</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Hammer</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Borrell</surname>
<given-names>A</given-names>
</name>
.
<article-title>Developmental and physiological traits associated with high yield and stay-green phenotype in wheat</article-title>
.
<source>Crop and Pasture Science</source>
. CSIRO;
<year>2008</year>
;
<volume>59</volume>
:
<fpage>354</fpage>
<lpage>364</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1071/AR07193">10.1071/AR07193</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref058">
<label>58</label>
<mixed-citation publication-type="journal">
<name>
<surname>Snape</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Butterworth</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Whitechurch</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Worland</surname>
<given-names>A</given-names>
</name>
.
<article-title>Waiting for fine times: Genetics of flowering time in wheat</article-title>
.
<source>Euphytica</source>
. Springer;
<year>2001</year>
;
<volume>119</volume>
:
<fpage>185</fpage>
<lpage>190</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1023/A:1017594422176">10.1023/A:1017594422176</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref059">
<label>59</label>
<mixed-citation publication-type="journal">
<name>
<surname>Reynolds</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Foulkes</surname>
<given-names>MJ</given-names>
</name>
,
<name>
<surname>Slafer</surname>
<given-names>GA</given-names>
</name>
,
<name>
<surname>Berry</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Parry</surname>
<given-names>MA</given-names>
</name>
,
<name>
<surname>Snape</surname>
<given-names>JW</given-names>
</name>
,
<etal>et al</etal>
<article-title>Raising yield potential in wheat</article-title>
.
<source>Journal of Experimental Botany</source>
. Soc Experiment Biol;
<year>2009</year>
;
<volume>60</volume>
:
<fpage>1899</fpage>
<lpage>1918</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/jxb/erp016">10.1093/jxb/erp016</ext-link>
</comment>
<pub-id pub-id-type="pmid">19363203</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref060">
<label>60</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bogard</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Ravel</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Paux</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Bordes</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Balfourier</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Chapman</surname>
<given-names>S</given-names>
</name>
,
<etal>et al</etal>
<article-title>Predictions of heading date in bread wheat (Triticum aestivum L.) using QTL-based parameters of an ecophysiological model</article-title>
.
<source>Journal of Experimental Botany</source>
. Soc Experiment Biol;
<year>2014</year>
;
<volume>65</volume>
:
<fpage>5849</fpage>
<lpage>5865</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/jxb/eru328">10.1093/jxb/eru328</ext-link>
</comment>
<pub-id pub-id-type="pmid">25148833</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref061">
<label>61</label>
<mixed-citation publication-type="journal">
<name>
<surname>Richards</surname>
<given-names>RA</given-names>
</name>
.
<article-title>Selectable traits to increase crop photosynthesis and yield of grain crops</article-title>
.
<source>Journal of Experimental Botany</source>
.
<year>2000</year>
;
<volume>51</volume>
:
<fpage>447</fpage>
<lpage>458</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/jexbot/51.suppl_1.447">10.1093/jexbot/51.suppl_1.447</ext-link>
</comment>
<pub-id pub-id-type="pmid">10938853</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref062">
<label>62</label>
<mixed-citation publication-type="journal">
<name>
<surname>Parry</surname>
<given-names>MA</given-names>
</name>
,
<name>
<surname>Reynolds</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Salvucci</surname>
<given-names>ME</given-names>
</name>
,
<name>
<surname>Raines</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Andralojc</surname>
<given-names>PJ</given-names>
</name>
,
<name>
<surname>Zhu</surname>
<given-names>X-G</given-names>
</name>
,
<etal>et al</etal>
<article-title>Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency</article-title>
.
<source>Journal of Experimental Botany</source>
. Soc Experiment Biol;
<year>2010</year>
;
<fpage>erq304</fpage>
.</mixed-citation>
</ref>
<ref id="pone.0146385.ref063">
<label>63</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zhu</surname>
<given-names>X-G</given-names>
</name>
,
<name>
<surname>Long</surname>
<given-names>SP</given-names>
</name>
,
<name>
<surname>Ort</surname>
<given-names>DR</given-names>
</name>
.
<article-title>Improving photosynthetic efficiency for greater yield</article-title>
.
<source>Annual review of plant biology</source>
. Annual Reviews;
<year>2010</year>
;
<volume>61</volume>
:
<fpage>235</fpage>
<lpage>261</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1146/annurev-arplant-042809-112206">10.1146/annurev-arplant-042809-112206</ext-link>
</comment>
<pub-id pub-id-type="pmid">20192734</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref064">
<label>64</label>
<mixed-citation publication-type="journal">
<name>
<surname>Reynolds</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Foulkes</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Furbank</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Griffiths</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>King</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Murchie</surname>
<given-names>E</given-names>
</name>
,
<etal>et al</etal>
<article-title>Achieving yield gains in wheat</article-title>
.
<source>Plant, Cell & Environment</source>
. Wiley Online Library;
<year>2012</year>
;
<volume>35</volume>
:
<fpage>1799</fpage>
<lpage>1823</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1111/j.1365-3040.2012.02588.x">10.1111/j.1365-3040.2012.02588.x</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref065">
<label>65</label>
<mixed-citation publication-type="other">Fischer R. Increasing yield potential in wheat: Breaking the barriers. In: Reynolds M, Rajaram S, McNab A, editors. Workshop Proc. Cd. Obregon, Mexico, CIMMYT. 1996. pp. 150–166.</mixed-citation>
</ref>
<ref id="pone.0146385.ref066">
<label>66</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lopes</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Reynolds</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Manes</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Singh</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Crossa</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Braun</surname>
<given-names>H</given-names>
</name>
.
<article-title>Genetic yield gains and changes in associated traits of CIMMYT spring bread wheat in a “historic” set representing 30 years of breeding</article-title>
.
<source>Crop Science</source>
. The Crop Science Society of America, Inc.
<year>2012</year>
;
<volume>52</volume>
:
<fpage>1123</fpage>
<lpage>1131</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.2135/cropsci2011.09.0467">10.2135/cropsci2011.09.0467</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref067">
<label>67</label>
<mixed-citation publication-type="journal">
<name>
<surname>Yang</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Luo</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Ni</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Yin</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Yang</surname>
<given-names>W</given-names>
</name>
,
<name>
<surname>Peng</surname>
<given-names>D</given-names>
</name>
,
<etal>et al</etal>
<article-title>Effects of exogenous ABA application on post-anthesis dry matter redistribution and grain starch accumulation of winter wheat with different staygreen characteristics</article-title>
.
<source>The Crop Journal</source>
. Elsevier;
<year>2014</year>
;
<volume>2</volume>
:
<fpage>144</fpage>
<lpage>153</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.cj.2014.02.004">10.1016/j.cj.2014.02.004</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref068">
<label>68</label>
<mixed-citation publication-type="journal">
<name>
<surname>Christopher</surname>
<given-names>JT</given-names>
</name>
,
<name>
<surname>Veyradier</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Borrell</surname>
<given-names>AK</given-names>
</name>
,
<name>
<surname>Harvey</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Fletcher</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Chenu</surname>
<given-names>K</given-names>
</name>
.
<article-title>Phenotyping novel stay-green traits to capture genetic variation in senescence dynamics</article-title>
.
<source>Functional Plant Biology</source>
. CSIRO;
<year>2014</year>
;
<volume>41</volume>
:
<fpage>1035</fpage>
<lpage>1048</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1071/FP14052">10.1071/FP14052</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref069">
<label>69</label>
<mixed-citation publication-type="journal">
<name>
<surname>Babar</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Reynolds</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Van Ginkel</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Klatt</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Raun</surname>
<given-names>W</given-names>
</name>
,
<name>
<surname>Stone</surname>
<given-names>M</given-names>
</name>
.
<article-title>Spectral reflectance to estimate genetic variation for in-season biomass, leaf chlorophyll, and canopy temperature in wheat</article-title>
.
<source>Crop Science</source>
. Crop Science Society of America;
<year>2006</year>
;
<volume>46</volume>
:
<fpage>1046</fpage>
<lpage>1057</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.2135/cropsci2005.0211">10.2135/cropsci2005.0211</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref070">
<label>70</label>
<mixed-citation publication-type="journal">
<name>
<surname>Pinto</surname>
<given-names>RS</given-names>
</name>
,
<name>
<surname>Reynolds</surname>
<given-names>MP</given-names>
</name>
,
<name>
<surname>Mathews</surname>
<given-names>KL</given-names>
</name>
,
<name>
<surname>McIntyre</surname>
<given-names>CL</given-names>
</name>
,
<name>
<surname>Olivares-Villegas</surname>
<given-names>J-J</given-names>
</name>
,
<name>
<surname>Chapman</surname>
<given-names>SC</given-names>
</name>
.
<article-title>Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects</article-title>
.
<source>Theoretical and Applied Genetics</source>
. Springer;
<year>2010</year>
;
<volume>121</volume>
:
<fpage>1001</fpage>
<lpage>1021</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1007/s00122-010-1351-4">10.1007/s00122-010-1351-4</ext-link>
</comment>
<pub-id pub-id-type="pmid">20523964</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref071">
<label>71</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rebetzke</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Condon</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Farquhar</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Appels</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Richards</surname>
<given-names>R</given-names>
</name>
.
<article-title>Quantitative trait loci for carbon isotope discrimination are repeatable across environments and wheat mapping populations</article-title>
.
<source>Theoretical and Applied Genetics</source>
. Springer;
<year>2008</year>
;
<volume>118</volume>
:
<fpage>123</fpage>
<lpage>137</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1007/s00122-008-0882-4">10.1007/s00122-008-0882-4</ext-link>
</comment>
<pub-id pub-id-type="pmid">18818897</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref072">
<label>72</label>
<mixed-citation publication-type="journal">
<name>
<surname>Dreccer</surname>
<given-names>MF</given-names>
</name>
,
<name>
<surname>Herwaarden</surname>
<given-names>AF van</given-names>
</name>
,
<name>
<surname>Chapman</surname>
<given-names>SC</given-names>
</name>
.
<article-title>Grain number and grain weight in wheat lines contrasting for stem water soluble carbohydrate concentration</article-title>
.
<source>Field Crops Research</source>
. Elsevier;
<year>2009</year>
;
<volume>112</volume>
:
<fpage>43</fpage>
<lpage>54</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.fcr.2009.02.006">10.1016/j.fcr.2009.02.006</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref073">
<label>73</label>
<mixed-citation publication-type="journal">
<name>
<surname>Abbad</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>El Jaafari</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Bort</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Araus</surname>
<given-names>J</given-names>
</name>
.
<article-title>Comparative relationship of the flag leaf and the ear photosynthesis with the biomass and grain yield of durum wheat under a range of water conditions and different genotypes</article-title>
.
<source>Agronomie</source>
.
<year>2004</year>
;
<volume>24</volume>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1051/agro:2003056">10.1051/agro:2003056</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref074">
<label>74</label>
<mixed-citation publication-type="journal">
<name>
<surname>Tambussi</surname>
<given-names>EA</given-names>
</name>
,
<name>
<surname>Bort</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Guiamet</surname>
<given-names>JJ</given-names>
</name>
,
<name>
<surname>Nogués</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Araus</surname>
<given-names>JL</given-names>
</name>
.
<article-title>The photosynthetic role of ears in C3 cereals: Metabolism, water use efficiency and contribution to grain yield</article-title>
.
<source>Critical Reviews in Plant Sciences</source>
. Taylor & Francis;
<year>2007</year>
;
<volume>26</volume>
:
<fpage>1</fpage>
<lpage>16</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1080/07352680601147901">10.1080/07352680601147901</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref075">
<label>75</label>
<mixed-citation publication-type="book">
<name>
<surname>Chenu</surname>
<given-names>K</given-names>
</name>
.
<source>Characterising the crop environment–nature, significance and applications</source>
. In:
<name>
<surname>Sadras</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Calderini</surname>
<given-names>D</given-names>
</name>
, editors.
<publisher-name>Academic Press</publisher-name>
;
<year>2015</year>
pp.
<fpage>321</fpage>
<lpage>348</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0146385.ref076">
<label>76</label>
<mixed-citation publication-type="book">
<name>
<surname>Martre</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Quilot-Turion</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Luquet</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Memmah</surname>
<given-names>M-MO-S</given-names>
</name>
,
<name>
<surname>Chenu</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Debaeke</surname>
<given-names>P</given-names>
</name>
.
<source>Crop physiology: Applications for genetic improvement and agronomy</source>
. In:
<name>
<surname>Sadras</surname>
<given-names>VO</given-names>
</name>
,
<name>
<surname>Calderini</surname>
<given-names>D</given-names>
</name>
, editors.
<publisher-name>Academic Press</publisher-name>
;
<year>2015</year>
.</mixed-citation>
</ref>
<ref id="pone.0146385.ref077">
<label>77</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cabrera-Bosquet</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Molero</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Bort</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Nogués</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Araus</surname>
<given-names>J</given-names>
</name>
.
<article-title>The combined effect of constant water deficit and nitrogen supply on WUE, NUE and
<italic>Δ</italic>
13C in durum wheat potted plants</article-title>
.
<source>Annals of Applied Biology</source>
. Wiley Online Library;
<year>2007</year>
;
<volume>151</volume>
:
<fpage>277</fpage>
<lpage>289</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1111/j.1744-7348.2007.00195.x">10.1111/j.1744-7348.2007.00195.x</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref078">
<label>78</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sadras</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Rodriguez</surname>
<given-names>D</given-names>
</name>
.
<article-title>Modelling the nitrogen-driven trade-off between nitrogen utilisation efficiency and water use efficiency of wheat in eastern Australia</article-title>
.
<source>Field Crops Research</source>
. Elsevier;
<year>2010</year>
;
<volume>118</volume>
:
<fpage>297</fpage>
<lpage>305</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.fcr.2010.06.010">10.1016/j.fcr.2010.06.010</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref079">
<label>79</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sinclair</surname>
<given-names>TR</given-names>
</name>
,
<name>
<surname>Purcell</surname>
<given-names>LC</given-names>
</name>
,
<name>
<surname>Sneller</surname>
<given-names>CH</given-names>
</name>
.
<article-title>Crop transformation and the challenge to increase yield potential</article-title>
.
<source>Trends in Plant Science</source>
.
<year>2004</year>
;
<volume>9</volume>
:
<fpage>70</fpage>
<lpage>75</lpage>
.
<comment>Available:
<ext-link ext-link-type="uri" xlink:href="http://www.sciencedirect.com/science/article/B6TD1-4BDY672-1/2/ce7457061a36a8af382e9dbce6764d47">http://www.sciencedirect.com/science/article/B6TD1-4BDY672-1/2/ce7457061a36a8af382e9dbce6764d47</ext-link>
</comment>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.tplants.2003.12.008">10.1016/j.tplants.2003.12.008</ext-link>
</comment>
<pub-id pub-id-type="pmid">15102372</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref080">
<label>80</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wallach</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Buis</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Lecharpentier</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Bourges</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Clastre</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Launay</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
<article-title>A package of parameter estimation methods and implementation for the STICS crop-soil model</article-title>
.
<source>Environmental Modelling & Software</source>
. Elsevier;
<year>2011</year>
;
<volume>26</volume>
:
<fpage>386</fpage>
<lpage>394</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.envsoft.2010.09.004">10.1016/j.envsoft.2010.09.004</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref081">
<label>81</label>
<mixed-citation publication-type="journal">
<name>
<surname>Dumont</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Leemans</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Mansouri</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Bodson</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Destain</surname>
<given-names>J-P</given-names>
</name>
,
<name>
<surname>Destain</surname>
<given-names>M-F</given-names>
</name>
.
<article-title>Parameter identification of the STICS crop model, using an accelerated formal MCMC approach</article-title>
.
<source>Environmental Modelling & Software</source>
. Elsevier;
<year>2014</year>
;
<volume>52</volume>
:
<fpage>121</fpage>
<lpage>135</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.envsoft.2013.10.022">10.1016/j.envsoft.2013.10.022</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0146385.ref082">
<label>82</label>
<mixed-citation publication-type="journal">
<name>
<surname>Messina</surname>
<given-names>CD</given-names>
</name>
,
<name>
<surname>Podlich</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Dong</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Samples</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Cooper</surname>
<given-names>M</given-names>
</name>
.
<article-title>Yield–trait performance landscapes: From theory to application in breeding maize for drought tolerance</article-title>
.
<source>Journal of Experimental Botany</source>
. Soc Experiment Biol;
<year>2011</year>
;
<volume>62</volume>
:
<fpage>855</fpage>
<lpage>868</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/jxb/erq329">10.1093/jxb/erq329</ext-link>
</comment>
<pub-id pub-id-type="pmid">21041371</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000598 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000598 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4723307
   |texte=   Assessment of the Potential Impacts of Wheat Plant Traits across Environments by Combining Crop Modeling and Global Sensitivity Analysis
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:26799483" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024