Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0005669 ( Pmc/Corpus ); précédent : 0005668; suivant : 0005670 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">RBM3 regulates temperature sensitive miR-142–5p and miR-143 (thermomiRs), which target immune genes and control fever</title>
<author>
<name sortKey="Wong, Justin J L" sort="Wong, Justin J L" uniqKey="Wong J" first="Justin J.-L." last="Wong">Justin J.-L. Wong</name>
<affiliation>
<nlm:aff id="AFF1">Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF2">Sydney Medical School, University of Sydney, NSW 2006, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Au, Amy Y M" sort="Au, Amy Y M" uniqKey="Au A" first="Amy Y. M." last="Au">Amy Y. M. Au</name>
<affiliation>
<nlm:aff id="AFF1">Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF2">Sydney Medical School, University of Sydney, NSW 2006, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gao, Dadi" sort="Gao, Dadi" uniqKey="Gao D" first="Dadi" last="Gao">Dadi Gao</name>
<affiliation>
<nlm:aff id="AFF1">Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF2">Sydney Medical School, University of Sydney, NSW 2006, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF3">Bioinformatics Laboratory, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pinello, Natalia" sort="Pinello, Natalia" uniqKey="Pinello N" first="Natalia" last="Pinello">Natalia Pinello</name>
<affiliation>
<nlm:aff id="AFF1">Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF2">Sydney Medical School, University of Sydney, NSW 2006, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kwok, Chau To" sort="Kwok, Chau To" uniqKey="Kwok C" first="Chau-To" last="Kwok">Chau-To Kwok</name>
<affiliation>
<nlm:aff id="AFF1">Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF2">Sydney Medical School, University of Sydney, NSW 2006, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Thoeng, Annora" sort="Thoeng, Annora" uniqKey="Thoeng A" first="Annora" last="Thoeng">Annora Thoeng</name>
<affiliation>
<nlm:aff id="AFF1">Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF2">Sydney Medical School, University of Sydney, NSW 2006, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lau, Katherine A" sort="Lau, Katherine A" uniqKey="Lau K" first="Katherine A." last="Lau">Katherine A. Lau</name>
<affiliation>
<nlm:aff id="AFF1">Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF2">Sydney Medical School, University of Sydney, NSW 2006, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gordon, Jane E A" sort="Gordon, Jane E A" uniqKey="Gordon J" first="Jane E. A." last="Gordon">Jane E. A. Gordon</name>
<affiliation>
<nlm:aff id="AFF1">Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF2">Sydney Medical School, University of Sydney, NSW 2006, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schmitz, Ulf" sort="Schmitz, Ulf" uniqKey="Schmitz U" first="Ulf" last="Schmitz">Ulf Schmitz</name>
<affiliation>
<nlm:aff id="AFF1">Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF2">Sydney Medical School, University of Sydney, NSW 2006, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Feng, Yue" sort="Feng, Yue" uniqKey="Feng Y" first="Yue" last="Feng">Yue Feng</name>
<affiliation>
<nlm:aff id="AFF1">Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF2">Sydney Medical School, University of Sydney, NSW 2006, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nguyen, Trung V" sort="Nguyen, Trung V" uniqKey="Nguyen T" first="Trung V." last="Nguyen">Trung V. Nguyen</name>
<affiliation>
<nlm:aff id="AFF1">Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF2">Sydney Medical School, University of Sydney, NSW 2006, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Middleton, Robert" sort="Middleton, Robert" uniqKey="Middleton R" first="Robert" last="Middleton">Robert Middleton</name>
<affiliation>
<nlm:aff id="AFF1">Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF2">Sydney Medical School, University of Sydney, NSW 2006, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF3">Bioinformatics Laboratory, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bailey, Charles G" sort="Bailey, Charles G" uniqKey="Bailey C" first="Charles G." last="Bailey">Charles G. Bailey</name>
<affiliation>
<nlm:aff id="AFF1">Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF2">Sydney Medical School, University of Sydney, NSW 2006, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Holst, Jeff" sort="Holst, Jeff" uniqKey="Holst J" first="Jeff" last="Holst">Jeff Holst</name>
<affiliation>
<nlm:aff id="AFF2">Sydney Medical School, University of Sydney, NSW 2006, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF4">Origins of Cancer Program, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rasko, John E J" sort="Rasko, John E J" uniqKey="Rasko J" first="John E. J." last="Rasko">John E. J. Rasko</name>
<affiliation>
<nlm:aff id="AFF1">Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF2">Sydney Medical School, University of Sydney, NSW 2006, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF5">Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown 2050, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ritchie, William" sort="Ritchie, William" uniqKey="Ritchie W" first="William" last="Ritchie">William Ritchie</name>
<affiliation>
<nlm:aff id="AFF1">Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF2">Sydney Medical School, University of Sydney, NSW 2006, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF3">Bioinformatics Laboratory, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF6">CNRS, UMR 5203, Montpellier 34094, France</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26825461</idno>
<idno type="pmc">4824108</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824108</idno>
<idno type="RBID">PMC:4824108</idno>
<idno type="doi">10.1093/nar/gkw041</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000566</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000566</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">RBM3 regulates temperature sensitive miR-142–5p and miR-143 (thermomiRs), which target immune genes and control fever</title>
<author>
<name sortKey="Wong, Justin J L" sort="Wong, Justin J L" uniqKey="Wong J" first="Justin J.-L." last="Wong">Justin J.-L. Wong</name>
<affiliation>
<nlm:aff id="AFF1">Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF2">Sydney Medical School, University of Sydney, NSW 2006, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Au, Amy Y M" sort="Au, Amy Y M" uniqKey="Au A" first="Amy Y. M." last="Au">Amy Y. M. Au</name>
<affiliation>
<nlm:aff id="AFF1">Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF2">Sydney Medical School, University of Sydney, NSW 2006, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gao, Dadi" sort="Gao, Dadi" uniqKey="Gao D" first="Dadi" last="Gao">Dadi Gao</name>
<affiliation>
<nlm:aff id="AFF1">Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF2">Sydney Medical School, University of Sydney, NSW 2006, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF3">Bioinformatics Laboratory, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pinello, Natalia" sort="Pinello, Natalia" uniqKey="Pinello N" first="Natalia" last="Pinello">Natalia Pinello</name>
<affiliation>
<nlm:aff id="AFF1">Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF2">Sydney Medical School, University of Sydney, NSW 2006, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kwok, Chau To" sort="Kwok, Chau To" uniqKey="Kwok C" first="Chau-To" last="Kwok">Chau-To Kwok</name>
<affiliation>
<nlm:aff id="AFF1">Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF2">Sydney Medical School, University of Sydney, NSW 2006, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Thoeng, Annora" sort="Thoeng, Annora" uniqKey="Thoeng A" first="Annora" last="Thoeng">Annora Thoeng</name>
<affiliation>
<nlm:aff id="AFF1">Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF2">Sydney Medical School, University of Sydney, NSW 2006, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lau, Katherine A" sort="Lau, Katherine A" uniqKey="Lau K" first="Katherine A." last="Lau">Katherine A. Lau</name>
<affiliation>
<nlm:aff id="AFF1">Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF2">Sydney Medical School, University of Sydney, NSW 2006, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gordon, Jane E A" sort="Gordon, Jane E A" uniqKey="Gordon J" first="Jane E. A." last="Gordon">Jane E. A. Gordon</name>
<affiliation>
<nlm:aff id="AFF1">Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF2">Sydney Medical School, University of Sydney, NSW 2006, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schmitz, Ulf" sort="Schmitz, Ulf" uniqKey="Schmitz U" first="Ulf" last="Schmitz">Ulf Schmitz</name>
<affiliation>
<nlm:aff id="AFF1">Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF2">Sydney Medical School, University of Sydney, NSW 2006, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Feng, Yue" sort="Feng, Yue" uniqKey="Feng Y" first="Yue" last="Feng">Yue Feng</name>
<affiliation>
<nlm:aff id="AFF1">Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF2">Sydney Medical School, University of Sydney, NSW 2006, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nguyen, Trung V" sort="Nguyen, Trung V" uniqKey="Nguyen T" first="Trung V." last="Nguyen">Trung V. Nguyen</name>
<affiliation>
<nlm:aff id="AFF1">Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF2">Sydney Medical School, University of Sydney, NSW 2006, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Middleton, Robert" sort="Middleton, Robert" uniqKey="Middleton R" first="Robert" last="Middleton">Robert Middleton</name>
<affiliation>
<nlm:aff id="AFF1">Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF2">Sydney Medical School, University of Sydney, NSW 2006, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF3">Bioinformatics Laboratory, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bailey, Charles G" sort="Bailey, Charles G" uniqKey="Bailey C" first="Charles G." last="Bailey">Charles G. Bailey</name>
<affiliation>
<nlm:aff id="AFF1">Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF2">Sydney Medical School, University of Sydney, NSW 2006, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Holst, Jeff" sort="Holst, Jeff" uniqKey="Holst J" first="Jeff" last="Holst">Jeff Holst</name>
<affiliation>
<nlm:aff id="AFF2">Sydney Medical School, University of Sydney, NSW 2006, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF4">Origins of Cancer Program, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rasko, John E J" sort="Rasko, John E J" uniqKey="Rasko J" first="John E. J." last="Rasko">John E. J. Rasko</name>
<affiliation>
<nlm:aff id="AFF1">Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF2">Sydney Medical School, University of Sydney, NSW 2006, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF5">Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown 2050, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ritchie, William" sort="Ritchie, William" uniqKey="Ritchie W" first="William" last="Ritchie">William Ritchie</name>
<affiliation>
<nlm:aff id="AFF1">Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF2">Sydney Medical School, University of Sydney, NSW 2006, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF3">Bioinformatics Laboratory, Centenary Institute, Camperdown 2050, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="AFF6">CNRS, UMR 5203, Montpellier 34094, France</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nucleic Acids Research</title>
<idno type="ISSN">0305-1048</idno>
<idno type="eISSN">1362-4962</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Fever is commonly used to diagnose disease and is consistently associated with increased mortality in critically ill patients. However, the molecular controls of elevated body temperature are poorly understood. We discovered that the expression of RNA-binding motif protein 3 (RBM3), known to respond to cold stress and to modulate microRNA (miRNA) expression, was reduced in 30 patients with fever, and in THP-1-derived macrophages maintained at a fever-like temperature (40°C). Notably, RBM3 expression is reduced during fever whether or not infection is demonstrable. Reduced RBM3 expression resulted in increased expression of RBM3-targeted temperature-sensitive miRNAs, we termed thermomiRs. ThermomiRs such as miR-142–5p and miR-143 in turn target endogenous pyrogens including
<italic>IL-6, IL6ST, TLR2, PGE2</italic>
and
<italic>TNF</italic>
to complete a negative feedback mechanism, which may be crucial to prevent pathological hyperthermia. Using normal PBMCs that were exogenously exposed to fever-like temperature (40°C), we further demonstrate the trend by which decreased levels of
<italic>RBM3</italic>
were associated with increased levels of miR-142–5p and miR-143 and
<italic>vice versa</italic>
over a 24 h time course. Collectively, our results indicate the existence of a negative feedback loop that regulates fever via reduced RBM3 levels and increased expression of miR-142–5p and miR-143.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Leon, L R" uniqKey="Leon L">L.R. Leon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ogoina, D" uniqKey="Ogoina D">D. Ogoina</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Greer, D M" uniqKey="Greer D">D.M. Greer</name>
</author>
<author>
<name sortKey="Funk, S E" uniqKey="Funk S">S.E. Funk</name>
</author>
<author>
<name sortKey="Reaven, N L" uniqKey="Reaven N">N.L. Reaven</name>
</author>
<author>
<name sortKey="Ouzounelli, M" uniqKey="Ouzounelli M">M. Ouzounelli</name>
</author>
<author>
<name sortKey="Uman, G C" uniqKey="Uman G">G.C. Uman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Young, P" uniqKey="Young P">P. Young</name>
</author>
<author>
<name sortKey="Saxena, M" uniqKey="Saxena M">M. Saxena</name>
</author>
<author>
<name sortKey="Beasley, R" uniqKey="Beasley R">R. Beasley</name>
</author>
<author>
<name sortKey="Bellomo, R" uniqKey="Bellomo R">R. Bellomo</name>
</author>
<author>
<name sortKey="Bailey, M" uniqKey="Bailey M">M. Bailey</name>
</author>
<author>
<name sortKey="Pilcher, D" uniqKey="Pilcher D">D. Pilcher</name>
</author>
<author>
<name sortKey="Finfer, S" uniqKey="Finfer S">S. Finfer</name>
</author>
<author>
<name sortKey="Harrison, D" uniqKey="Harrison D">D. Harrison</name>
</author>
<author>
<name sortKey="Myburgh, J" uniqKey="Myburgh J">J. Myburgh</name>
</author>
<author>
<name sortKey="Rowan, K" uniqKey="Rowan K">K. Rowan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wilczynska, A" uniqKey="Wilczynska A">A. Wilczynska</name>
</author>
<author>
<name sortKey="Bushell, M" uniqKey="Bushell M">M. Bushell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lai, E C" uniqKey="Lai E">E.C. Lai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vidigal, J A" uniqKey="Vidigal J">J.A. Vidigal</name>
</author>
<author>
<name sortKey="Ventura, A" uniqKey="Ventura A">A. Ventura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Kowdley, K V" uniqKey="Kowdley K">K.V. Kowdley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ma, Y" uniqKey="Ma Y">Y. Ma</name>
</author>
<author>
<name sortKey="Vilanova, D" uniqKey="Vilanova D">D. Vilanova</name>
</author>
<author>
<name sortKey="Atalar, K" uniqKey="Atalar K">K. Atalar</name>
</author>
<author>
<name sortKey="Delfour, O" uniqKey="Delfour O">O. Delfour</name>
</author>
<author>
<name sortKey="Edgeworth, J" uniqKey="Edgeworth J">J. Edgeworth</name>
</author>
<author>
<name sortKey="Ostermann, M" uniqKey="Ostermann M">M. Ostermann</name>
</author>
<author>
<name sortKey="Hernandez Fuentes, M" uniqKey="Hernandez Fuentes M">M. Hernandez-Fuentes</name>
</author>
<author>
<name sortKey="Razafimahatratra, S" uniqKey="Razafimahatratra S">S. Razafimahatratra</name>
</author>
<author>
<name sortKey="Michot, B" uniqKey="Michot B">B. Michot</name>
</author>
<author>
<name sortKey="Persing, D H" uniqKey="Persing D">D.H. Persing</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maslove, D M" uniqKey="Maslove D">D.M. Maslove</name>
</author>
<author>
<name sortKey="Wong, H R" uniqKey="Wong H">H.R. Wong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schnoor, M" uniqKey="Schnoor M">M. Schnoor</name>
</author>
<author>
<name sortKey="Buers, I" uniqKey="Buers I">I. Buers</name>
</author>
<author>
<name sortKey="Sietmann, A" uniqKey="Sietmann A">A. Sietmann</name>
</author>
<author>
<name sortKey="Brodde, M F" uniqKey="Brodde M">M.F. Brodde</name>
</author>
<author>
<name sortKey="Hofnagel, O" uniqKey="Hofnagel O">O. Hofnagel</name>
</author>
<author>
<name sortKey="Robenek, H" uniqKey="Robenek H">H. Robenek</name>
</author>
<author>
<name sortKey="Lorkowski, S" uniqKey="Lorkowski S">S. Lorkowski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Langmead, B" uniqKey="Langmead B">B. Langmead</name>
</author>
<author>
<name sortKey="Salzberg, S L" uniqKey="Salzberg S">S.L. Salzberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ritchie, W" uniqKey="Ritchie W">W. Ritchie</name>
</author>
<author>
<name sortKey="Gao, D" uniqKey="Gao D">D. Gao</name>
</author>
<author>
<name sortKey="Rasko, J E" uniqKey="Rasko J">J.E. Rasko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vermeulen, A" uniqKey="Vermeulen A">A. Vermeulen</name>
</author>
<author>
<name sortKey="Robertson, B" uniqKey="Robertson B">B. Robertson</name>
</author>
<author>
<name sortKey="Dalby, A B" uniqKey="Dalby A">A.B. Dalby</name>
</author>
<author>
<name sortKey="Marshall, W S" uniqKey="Marshall W">W.S. Marshall</name>
</author>
<author>
<name sortKey="Karpilow, J" uniqKey="Karpilow J">J. Karpilow</name>
</author>
<author>
<name sortKey="Leake, D" uniqKey="Leake D">D. Leake</name>
</author>
<author>
<name sortKey="Khvorova, A" uniqKey="Khvorova A">A. Khvorova</name>
</author>
<author>
<name sortKey="Baskerville, S" uniqKey="Baskerville S">S. Baskerville</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dudoit, S" uniqKey="Dudoit S">S. Dudoit</name>
</author>
<author>
<name sortKey="Yang, Y H" uniqKey="Yang Y">Y.H. Yang</name>
</author>
<author>
<name sortKey="Callow, M J" uniqKey="Callow M">M.J. Callow</name>
</author>
<author>
<name sortKey="Speed, T P" uniqKey="Speed T">T.P. Speed</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wong, J" uniqKey="Wong J">J. Wong</name>
</author>
<author>
<name sortKey="Ritchie, W" uniqKey="Ritchie W">W. Ritchie</name>
</author>
<author>
<name sortKey="Gao, D" uniqKey="Gao D">D. Gao</name>
</author>
<author>
<name sortKey="Lau, K" uniqKey="Lau K">K. Lau</name>
</author>
<author>
<name sortKey="Gonzalez, M" uniqKey="Gonzalez M">M. Gonzalez</name>
</author>
<author>
<name sortKey="Choudhary, A" uniqKey="Choudhary A">A. Choudhary</name>
</author>
<author>
<name sortKey="Taft, R" uniqKey="Taft R">R. Taft</name>
</author>
<author>
<name sortKey="Rasko, J" uniqKey="Rasko J">J. Rasko</name>
</author>
<author>
<name sortKey="Holst, J" uniqKey="Holst J">J. Holst</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, D W" uniqKey="Huang D">D.W. Huang</name>
</author>
<author>
<name sortKey="Sherman, B T" uniqKey="Sherman B">B.T. Sherman</name>
</author>
<author>
<name sortKey="Lempicki, R A" uniqKey="Lempicki R">R.A. Lempicki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hu, X" uniqKey="Hu X">X. Hu</name>
</author>
<author>
<name sortKey="Yu, J" uniqKey="Yu J">J. Yu</name>
</author>
<author>
<name sortKey="Crosby, S D" uniqKey="Crosby S">S.D. Crosby</name>
</author>
<author>
<name sortKey="Storch, G A" uniqKey="Storch G">G.A. Storch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mancardi, D A" uniqKey="Mancardi D">D.A. Mancardi</name>
</author>
<author>
<name sortKey="Albanesi, M" uniqKey="Albanesi M">M. Albanesi</name>
</author>
<author>
<name sortKey="Jonsson, F" uniqKey="Jonsson F">F. Jönsson</name>
</author>
<author>
<name sortKey="Iannascoli, B" uniqKey="Iannascoli B">B. Iannascoli</name>
</author>
<author>
<name sortKey="Van Rooijen, N" uniqKey="Van Rooijen N">N. Van Rooijen</name>
</author>
<author>
<name sortKey="Kang, X" uniqKey="Kang X">X. Kang</name>
</author>
<author>
<name sortKey="England, P" uniqKey="England P">P. England</name>
</author>
<author>
<name sortKey="Daeron, M" uniqKey="Daeron M">M. Daëron</name>
</author>
<author>
<name sortKey="Bruhns, P" uniqKey="Bruhns P">P. Bruhns</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Neote, K" uniqKey="Neote K">K. Neote</name>
</author>
<author>
<name sortKey="Digregorio, D" uniqKey="Digregorio D">D. DiGregorio</name>
</author>
<author>
<name sortKey="Mak, J Y" uniqKey="Mak J">J.Y. Mak</name>
</author>
<author>
<name sortKey="Horuk, R" uniqKey="Horuk R">R. Horuk</name>
</author>
<author>
<name sortKey="Schall, T J" uniqKey="Schall T">T.J. Schall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hayashi, F" uniqKey="Hayashi F">F. Hayashi</name>
</author>
<author>
<name sortKey="Smith, K D" uniqKey="Smith K">K.D. Smith</name>
</author>
<author>
<name sortKey="Ozinsky, A" uniqKey="Ozinsky A">A. Ozinsky</name>
</author>
<author>
<name sortKey="Hawn, T R" uniqKey="Hawn T">T.R. Hawn</name>
</author>
<author>
<name sortKey="Yi, E C" uniqKey="Yi E">E.C. Yi</name>
</author>
<author>
<name sortKey="Goodlett, D R" uniqKey="Goodlett D">D.R. Goodlett</name>
</author>
<author>
<name sortKey="Eng, J K" uniqKey="Eng J">J.K. Eng</name>
</author>
<author>
<name sortKey="Akira, S" uniqKey="Akira S">S. Akira</name>
</author>
<author>
<name sortKey="Underhill, D M" uniqKey="Underhill D">D.M. Underhill</name>
</author>
<author>
<name sortKey="Aderem, A" uniqKey="Aderem A">A. Aderem</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takeuchi, O" uniqKey="Takeuchi O">O. Takeuchi</name>
</author>
<author>
<name sortKey="Kawai, T" uniqKey="Kawai T">T. Kawai</name>
</author>
<author>
<name sortKey="Sanjo, H" uniqKey="Sanjo H">H. Sanjo</name>
</author>
<author>
<name sortKey="Copeland, N G" uniqKey="Copeland N">N.G. Copeland</name>
</author>
<author>
<name sortKey="Gilbert, D J" uniqKey="Gilbert D">D.J. Gilbert</name>
</author>
<author>
<name sortKey="Jenkins, N A" uniqKey="Jenkins N">N.A. Jenkins</name>
</author>
<author>
<name sortKey="Takeda, K" uniqKey="Takeda K">K. Takeda</name>
</author>
<author>
<name sortKey="Akira, S" uniqKey="Akira S">S. Akira</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moore, P A" uniqKey="Moore P">P.A. Moore</name>
</author>
<author>
<name sortKey="Belvedere, O" uniqKey="Belvedere O">O. Belvedere</name>
</author>
<author>
<name sortKey="Orr, A" uniqKey="Orr A">A. Orr</name>
</author>
<author>
<name sortKey="Pieri, K" uniqKey="Pieri K">K. Pieri</name>
</author>
<author>
<name sortKey="Lafleur, D W" uniqKey="Lafleur D">D.W. LaFleur</name>
</author>
<author>
<name sortKey="Feng, P" uniqKey="Feng P">P. Feng</name>
</author>
<author>
<name sortKey="Soppet, D" uniqKey="Soppet D">D. Soppet</name>
</author>
<author>
<name sortKey="Charters, M" uniqKey="Charters M">M. Charters</name>
</author>
<author>
<name sortKey="Gentz, R" uniqKey="Gentz R">R. Gentz</name>
</author>
<author>
<name sortKey="Parmelee, D" uniqKey="Parmelee D">D. Parmelee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dinarello, C A" uniqKey="Dinarello C">C.A. Dinarello</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yost, H J" uniqKey="Yost H">H.J. Yost</name>
</author>
<author>
<name sortKey="Lindquist, S" uniqKey="Lindquist S">S. Lindquist</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bell, J" uniqKey="Bell J">J. Bell</name>
</author>
<author>
<name sortKey="Neilson, L" uniqKey="Neilson L">L. Neilson</name>
</author>
<author>
<name sortKey="Pellegrini, M" uniqKey="Pellegrini M">M. Pellegrini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shalgi, R" uniqKey="Shalgi R">R. Shalgi</name>
</author>
<author>
<name sortKey="Hurt, J A" uniqKey="Hurt J">J.A. Hurt</name>
</author>
<author>
<name sortKey="Lindquist, S" uniqKey="Lindquist S">S. Lindquist</name>
</author>
<author>
<name sortKey="Burge, C B" uniqKey="Burge C">C.B. Burge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dresios, J" uniqKey="Dresios J">J. Dresios</name>
</author>
<author>
<name sortKey="Aschrafi, A" uniqKey="Aschrafi A">A. Aschrafi</name>
</author>
<author>
<name sortKey="Owens, G C" uniqKey="Owens G">G.C. Owens</name>
</author>
<author>
<name sortKey="Vanderklish, P W" uniqKey="Vanderklish P">P.W. Vanderklish</name>
</author>
<author>
<name sortKey="Edelman, G M" uniqKey="Edelman G">G.M. Edelman</name>
</author>
<author>
<name sortKey="Mauro, V P" uniqKey="Mauro V">V.P. Mauro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pilotte, J" uniqKey="Pilotte J">J. Pilotte</name>
</author>
<author>
<name sortKey="Dupont Versteegden, E E" uniqKey="Dupont Versteegden E">E.E. Dupont-Versteegden</name>
</author>
<author>
<name sortKey="Vanderklish, P W" uniqKey="Vanderklish P">P.W. Vanderklish</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chanput, W" uniqKey="Chanput W">W. Chanput</name>
</author>
<author>
<name sortKey="Mes, J J" uniqKey="Mes J">J.J. Mes</name>
</author>
<author>
<name sortKey="Wichers, H J" uniqKey="Wichers H">H.J. Wichers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roger, T" uniqKey="Roger T">T. Roger</name>
</author>
<author>
<name sortKey="Lugrin, J" uniqKey="Lugrin J">J. Lugrin</name>
</author>
<author>
<name sortKey="Le Roy, D" uniqKey="Le Roy D">D. Le Roy</name>
</author>
<author>
<name sortKey="Goy, G" uniqKey="Goy G">G. Goy</name>
</author>
<author>
<name sortKey="Mombelli, M" uniqKey="Mombelli M">M. Mombelli</name>
</author>
<author>
<name sortKey="Koessler, T" uniqKey="Koessler T">T. Koessler</name>
</author>
<author>
<name sortKey="Ding, X C" uniqKey="Ding X">X.C. Ding</name>
</author>
<author>
<name sortKey="Chanson, A L" uniqKey="Chanson A">A.L. Chanson</name>
</author>
<author>
<name sortKey="Reymond, M K" uniqKey="Reymond M">M.K. Reymond</name>
</author>
<author>
<name sortKey="Miconnet, I" uniqKey="Miconnet I">I. Miconnet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kelada, S" uniqKey="Kelada S">S. Kelada</name>
</author>
<author>
<name sortKey="Sethupathy, P" uniqKey="Sethupathy P">P. Sethupathy</name>
</author>
<author>
<name sortKey="Okoye, I S" uniqKey="Okoye I">I.S. Okoye</name>
</author>
<author>
<name sortKey="Kistasis, E" uniqKey="Kistasis E">E. Kistasis</name>
</author>
<author>
<name sortKey="Czieso, S" uniqKey="Czieso S">S. Czieso</name>
</author>
<author>
<name sortKey="White, S D" uniqKey="White S">S.D. White</name>
</author>
<author>
<name sortKey="Chou, D" uniqKey="Chou D">D. Chou</name>
</author>
<author>
<name sortKey="Martens, C" uniqKey="Martens C">C. Martens</name>
</author>
<author>
<name sortKey="Ricklefs, S M" uniqKey="Ricklefs S">S.M. Ricklefs</name>
</author>
<author>
<name sortKey="Virtaneva, K" uniqKey="Virtaneva K">K. Virtaneva</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, T" uniqKey="Chen T">T. Chen</name>
</author>
<author>
<name sortKey="Huang, Z" uniqKey="Huang Z">Z. Huang</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L. Wang</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Wu, F" uniqKey="Wu F">F. Wu</name>
</author>
<author>
<name sortKey="Meng, S" uniqKey="Meng S">S. Meng</name>
</author>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ceribelli, A" uniqKey="Ceribelli A">A. Ceribelli</name>
</author>
<author>
<name sortKey="Yao, B" uniqKey="Yao B">B. Yao</name>
</author>
<author>
<name sortKey="Dominguez Gutierrez, P R" uniqKey="Dominguez Gutierrez P">P.R. Dominguez-Gutierrez</name>
</author>
<author>
<name sortKey="Nahid, M A" uniqKey="Nahid M">M.A. Nahid</name>
</author>
<author>
<name sortKey="Satoh, M" uniqKey="Satoh M">M. Satoh</name>
</author>
<author>
<name sortKey="Chan, E K" uniqKey="Chan E">E.K. Chan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ding, S" uniqKey="Ding S">S. Ding</name>
</author>
<author>
<name sortKey="Liang, Y" uniqKey="Liang Y">Y. Liang</name>
</author>
<author>
<name sortKey="Zhao, M" uniqKey="Zhao M">M. Zhao</name>
</author>
<author>
<name sortKey="Liang, G" uniqKey="Liang G">G. Liang</name>
</author>
<author>
<name sortKey="Long, H" uniqKey="Long H">H. Long</name>
</author>
<author>
<name sortKey="Zhao, S" uniqKey="Zhao S">S. Zhao</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Yin, H" uniqKey="Yin H">H. Yin</name>
</author>
<author>
<name sortKey="Zhang, P" uniqKey="Zhang P">P. Zhang</name>
</author>
<author>
<name sortKey="Zhang, Q" uniqKey="Zhang Q">Q. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guo, H" uniqKey="Guo H">H. Guo</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y. Chen</name>
</author>
<author>
<name sortKey="Hu, X" uniqKey="Hu X">X. Hu</name>
</author>
<author>
<name sortKey="Qian, G" uniqKey="Qian G">G. Qian</name>
</author>
<author>
<name sortKey="Ge, S" uniqKey="Ge S">S. Ge</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ehlen, A" uniqKey="Ehlen A">A. Ehlen</name>
</author>
<author>
<name sortKey="Brennan, D" uniqKey="Brennan D">D. Brennan</name>
</author>
<author>
<name sortKey="Nodin, B" uniqKey="Nodin B">B. Nodin</name>
</author>
<author>
<name sortKey="O Connor, D" uniqKey="O Connor D">D. O'Connor</name>
</author>
<author>
<name sortKey="Eberhard, J" uniqKey="Eberhard J">J. Eberhard</name>
</author>
<author>
<name sortKey="Alvarado Kristensson, M" uniqKey="Alvarado Kristensson M">M. Alvarado-Kristensson</name>
</author>
<author>
<name sortKey="Jeffrey, I" uniqKey="Jeffrey I">I. Jeffrey</name>
</author>
<author>
<name sortKey="Manjer, J" uniqKey="Manjer J">J. Manjer</name>
</author>
<author>
<name sortKey="Brandstedt, J" uniqKey="Brandstedt J">J. Brandstedt</name>
</author>
<author>
<name sortKey="Uhlen, M" uniqKey="Uhlen M">M. Uhlen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pham, H" uniqKey="Pham H">H. Pham</name>
</author>
<author>
<name sortKey="Rodriguez, C E" uniqKey="Rodriguez C">C.E. Rodriguez</name>
</author>
<author>
<name sortKey="Donald, G W" uniqKey="Donald G">G.W. Donald</name>
</author>
<author>
<name sortKey="Hertzer, K M" uniqKey="Hertzer K">K.M. Hertzer</name>
</author>
<author>
<name sortKey="Jung, X S" uniqKey="Jung X">X.S. Jung</name>
</author>
<author>
<name sortKey="Chang, H H" uniqKey="Chang H">H.H. Chang</name>
</author>
<author>
<name sortKey="Moro, A" uniqKey="Moro A">A. Moro</name>
</author>
<author>
<name sortKey="Reber, H A" uniqKey="Reber H">H.A. Reber</name>
</author>
<author>
<name sortKey="Hines, O J" uniqKey="Hines O">O.J. Hines</name>
</author>
<author>
<name sortKey="Eibl, G" uniqKey="Eibl G">G. Eibl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, Y" uniqKey="Sun Y">Y. Sun</name>
</author>
<author>
<name sortKey="Varambally, S" uniqKey="Varambally S">S. Varambally</name>
</author>
<author>
<name sortKey="Maher, C A" uniqKey="Maher C">C.A. Maher</name>
</author>
<author>
<name sortKey="Cao, Q" uniqKey="Cao Q">Q. Cao</name>
</author>
<author>
<name sortKey="Chockley, P" uniqKey="Chockley P">P. Chockley</name>
</author>
<author>
<name sortKey="Toubai, T" uniqKey="Toubai T">T. Toubai</name>
</author>
<author>
<name sortKey="Malter, C" uniqKey="Malter C">C. Malter</name>
</author>
<author>
<name sortKey="Nieves, E" uniqKey="Nieves E">E. Nieves</name>
</author>
<author>
<name sortKey="Tawara, I" uniqKey="Tawara I">I. Tawara</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sharma, S" uniqKey="Sharma S">S. Sharma</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J. Liu</name>
</author>
<author>
<name sortKey="Wei, J" uniqKey="Wei J">J. Wei</name>
</author>
<author>
<name sortKey="Yuan, H" uniqKey="Yuan H">H. Yuan</name>
</author>
<author>
<name sortKey="Zhang, T" uniqKey="Zhang T">T. Zhang</name>
</author>
<author>
<name sortKey="Bishopric, N H" uniqKey="Bishopric N">N.H. Bishopric</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dinarello, C A" uniqKey="Dinarello C">C.A. Dinarello</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bernheim, H A" uniqKey="Bernheim H">H.A. Bernheim</name>
</author>
<author>
<name sortKey="Kluger, M J" uniqKey="Kluger M">M.J. Kluger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rottiers, V" uniqKey="Rottiers V">V. Rottiers</name>
</author>
<author>
<name sortKey="Naar, A M" uniqKey="Naar A">A.M. Naar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roderburg, C" uniqKey="Roderburg C">C. Roderburg</name>
</author>
<author>
<name sortKey="Luedde, M" uniqKey="Luedde M">M. Luedde</name>
</author>
<author>
<name sortKey="Vargas Cardenas, D" uniqKey="Vargas Cardenas D">D. Vargas Cardenas</name>
</author>
<author>
<name sortKey="Vucur, M" uniqKey="Vucur M">M. Vucur</name>
</author>
<author>
<name sortKey="Scholten, D" uniqKey="Scholten D">D. Scholten</name>
</author>
<author>
<name sortKey="Frey, N" uniqKey="Frey N">N. Frey</name>
</author>
<author>
<name sortKey="Koch, A" uniqKey="Koch A">A. Koch</name>
</author>
<author>
<name sortKey="Trautwein, C" uniqKey="Trautwein C">C. Trautwein</name>
</author>
<author>
<name sortKey="Tacke, F" uniqKey="Tacke F">F. Tacke</name>
</author>
<author>
<name sortKey="Luedde, T" uniqKey="Luedde T">T. Luedde</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Hu, W" uniqKey="Hu W">W. Hu</name>
</author>
<author>
<name sortKey="Murakawa, Y" uniqKey="Murakawa Y">Y. Murakawa</name>
</author>
<author>
<name sortKey="Yin, J" uniqKey="Yin J">J. Yin</name>
</author>
<author>
<name sortKey="Wang, G" uniqKey="Wang G">G. Wang</name>
</author>
<author>
<name sortKey="Landthaler, M" uniqKey="Landthaler M">M. Landthaler</name>
</author>
<author>
<name sortKey="Yan, J" uniqKey="Yan J">J. Yan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Na, Y J" uniqKey="Na Y">Y.-J. Na</name>
</author>
<author>
<name sortKey="Sung, J H" uniqKey="Sung J">J.H. Sung</name>
</author>
<author>
<name sortKey="Lee, S C" uniqKey="Lee S">S.C. Lee</name>
</author>
<author>
<name sortKey="Lee, Y J" uniqKey="Lee Y">Y.-J. Lee</name>
</author>
<author>
<name sortKey="Choi, Y J" uniqKey="Choi Y">Y.J. Choi</name>
</author>
<author>
<name sortKey="Park, W Y" uniqKey="Park W">W.-Y. Park</name>
</author>
<author>
<name sortKey="Shin, H S" uniqKey="Shin H">H.S. Shin</name>
</author>
<author>
<name sortKey="Kim, J H" uniqKey="Kim J">J.H. Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Corry, J J" uniqKey="Corry J">J.J. Corry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gouel Cheron, A" uniqKey="Gouel Cheron A">A. Gouel-Cheron</name>
</author>
<author>
<name sortKey="Allaouchiche, B" uniqKey="Allaouchiche B">B. Allaouchiche</name>
</author>
<author>
<name sortKey="Guignant, C" uniqKey="Guignant C">C. Guignant</name>
</author>
<author>
<name sortKey="Davin, F" uniqKey="Davin F">F. Davin</name>
</author>
<author>
<name sortKey="Floccard, B" uniqKey="Floccard B">B. Floccard</name>
</author>
<author>
<name sortKey="Monneret, G" uniqKey="Monneret G">G. Monneret</name>
</author>
<author>
<name sortKey="Azurea, G" uniqKey="Azurea G">G. AzuRea</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rybka, J" uniqKey="Rybka J">J. Rybka</name>
</author>
<author>
<name sortKey="Butrym, A" uniqKey="Butrym A">A. Butrym</name>
</author>
<author>
<name sortKey="Wrobel, T" uniqKey="Wrobel T">T. Wrobel</name>
</author>
<author>
<name sortKey="Jazwiec, B" uniqKey="Jazwiec B">B. Jazwiec</name>
</author>
<author>
<name sortKey="Stefanko, E" uniqKey="Stefanko E">E. Stefanko</name>
</author>
<author>
<name sortKey="Dobrzynska, O" uniqKey="Dobrzynska O">O. Dobrzynska</name>
</author>
<author>
<name sortKey="Poreba, R" uniqKey="Poreba R">R. Poreba</name>
</author>
<author>
<name sortKey="Kuliczkowski, K" uniqKey="Kuliczkowski K">K. Kuliczkowski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brogliato, A R" uniqKey="Brogliato A">A.R. Brogliato</name>
</author>
<author>
<name sortKey="Antunes, C A" uniqKey="Antunes C">C.A. Antunes</name>
</author>
<author>
<name sortKey="Carvalho, R S" uniqKey="Carvalho R">R.S. Carvalho</name>
</author>
<author>
<name sortKey="Monteiro, A P" uniqKey="Monteiro A">A.P. Monteiro</name>
</author>
<author>
<name sortKey="Tinoco, R F" uniqKey="Tinoco R">R.F. Tinoco</name>
</author>
<author>
<name sortKey="Bozza, M T" uniqKey="Bozza M">M.T. Bozza</name>
</author>
<author>
<name sortKey="Canetti, C" uniqKey="Canetti C">C. Canetti</name>
</author>
<author>
<name sortKey="Peters Golden, M" uniqKey="Peters Golden M">M. Peters-Golden</name>
</author>
<author>
<name sortKey="Kunkel, S L" uniqKey="Kunkel S">S.L. Kunkel</name>
</author>
<author>
<name sortKey="Vianna Jorge, R" uniqKey="Vianna Jorge R">R. Vianna-Jorge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lv, S" uniqKey="Lv S">S. Lv</name>
</author>
<author>
<name sortKey="Han, M" uniqKey="Han M">M. Han</name>
</author>
<author>
<name sortKey="Yi, R" uniqKey="Yi R">R. Yi</name>
</author>
<author>
<name sortKey="Kwon, S" uniqKey="Kwon S">S. Kwon</name>
</author>
<author>
<name sortKey="Dai, C" uniqKey="Dai C">C. Dai</name>
</author>
<author>
<name sortKey="Wang, R" uniqKey="Wang R">R. Wang</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Nucleic Acids Res</journal-id>
<journal-id journal-id-type="iso-abbrev">Nucleic Acids Res</journal-id>
<journal-id journal-id-type="hwp">nar</journal-id>
<journal-id journal-id-type="publisher-id">nar</journal-id>
<journal-title-group>
<journal-title>Nucleic Acids Research</journal-title>
</journal-title-group>
<issn pub-type="ppub">0305-1048</issn>
<issn pub-type="epub">1362-4962</issn>
<publisher>
<publisher-name>Oxford University Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26825461</article-id>
<article-id pub-id-type="pmc">4824108</article-id>
<article-id pub-id-type="doi">10.1093/nar/gkw041</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>RNA</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>RBM3 regulates temperature sensitive miR-142–5p and miR-143 (thermomiRs), which target immune genes and control fever</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Wong</surname>
<given-names>Justin J.-L.</given-names>
</name>
<xref ref-type="aff" rid="AFF1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="AFF2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Au</surname>
<given-names>Amy Y.M.</given-names>
</name>
<xref ref-type="aff" rid="AFF1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="AFF2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Gao</surname>
<given-names>Dadi</given-names>
</name>
<xref ref-type="aff" rid="AFF1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="AFF2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="AFF3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Pinello</surname>
<given-names>Natalia</given-names>
</name>
<xref ref-type="aff" rid="AFF1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="AFF2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kwok</surname>
<given-names>Chau-To</given-names>
</name>
<xref ref-type="aff" rid="AFF1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="AFF2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Thoeng</surname>
<given-names>Annora</given-names>
</name>
<xref ref-type="aff" rid="AFF1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="AFF2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lau</surname>
<given-names>Katherine A.</given-names>
</name>
<xref ref-type="aff" rid="AFF1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="AFF2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Gordon</surname>
<given-names>Jane E.A.</given-names>
</name>
<xref ref-type="aff" rid="AFF1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="AFF2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Schmitz</surname>
<given-names>Ulf</given-names>
</name>
<xref ref-type="aff" rid="AFF1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="AFF2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Feng</surname>
<given-names>Yue</given-names>
</name>
<xref ref-type="aff" rid="AFF1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="AFF2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Nguyen</surname>
<given-names>Trung V.</given-names>
</name>
<xref ref-type="aff" rid="AFF1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="AFF2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Middleton</surname>
<given-names>Robert</given-names>
</name>
<xref ref-type="aff" rid="AFF1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="AFF2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="AFF3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bailey</surname>
<given-names>Charles G.</given-names>
</name>
<xref ref-type="aff" rid="AFF1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="AFF2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Holst</surname>
<given-names>Jeff</given-names>
</name>
<xref ref-type="aff" rid="AFF2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="AFF4">
<sup>4</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Rasko</surname>
<given-names>John E.J.</given-names>
</name>
<xref ref-type="aff" rid="AFF1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="AFF2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="AFF5">
<sup>5</sup>
</xref>
<xref ref-type="corresp" rid="COR2">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ritchie</surname>
<given-names>William</given-names>
</name>
<xref ref-type="aff" rid="AFF1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="AFF2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="AFF3">
<sup>3</sup>
</xref>
<xref ref-type="aff" rid="AFF6">
<sup>6</sup>
</xref>
<xref ref-type="corresp" rid="COR1">*</xref>
</contrib>
<aff id="AFF1">
<label>1</label>
Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia</aff>
<aff id="AFF2">
<label>2</label>
Sydney Medical School, University of Sydney, NSW 2006, Australia</aff>
<aff id="AFF3">
<label>3</label>
Bioinformatics Laboratory, Centenary Institute, Camperdown 2050, Australia</aff>
<aff id="AFF4">
<label>4</label>
Origins of Cancer Program, Centenary Institute, Camperdown 2050, Australia</aff>
<aff id="AFF5">
<label>5</label>
Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown 2050, Australia</aff>
<aff id="AFF6">
<label>6</label>
CNRS, UMR 5203, Montpellier 34094, France</aff>
</contrib-group>
<author-notes>
<corresp id="COR1">
<label>*</label>
To whom correspondence should be addressed. Tel: +33 4 34359240; Fax: +33 4 67542432; Email:
<email>william.ritchie@igf.cnrs.fr</email>
</corresp>
<corresp id="COR2">Correspondence may also be addressed to John E.J. Rasko. Tel: +61 2 9565 6156; Fax: +61 2 9565 6101; Email:
<email>j.rasko@centenary.usyd.edu.au</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<day>07</day>
<month>4</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="epub">
<day>28</day>
<month>1</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>28</day>
<month>1</month>
<year>2016</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on the . </pmc-comment>
<volume>44</volume>
<issue>6</issue>
<fpage>2888</fpage>
<lpage>2897</lpage>
<history>
<date date-type="accepted">
<day>13</day>
<month>1</month>
<year>2016</year>
</date>
<date date-type="rev-recd">
<day>12</day>
<month>1</month>
<year>2016</year>
</date>
<date date-type="received">
<day>24</day>
<month>8</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.</copyright-statement>
<copyright-year>2016</copyright-year>
<license license-type="creative-commons" xlink:href="http://creativecommons.org/licenses/by-nc/4.0/">
<license-p>This is an Open Access article distributed under the terms of the Creative Commons Attribution License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by-nc/4.0/">http://creativecommons.org/licenses/by-nc/4.0/</ext-link>
), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact
<email>journals.permissions@oup.com</email>
</license-p>
</license>
</permissions>
<self-uri xlink:title="pdf" xlink:href="gkw041.pdf"></self-uri>
<abstract>
<p>Fever is commonly used to diagnose disease and is consistently associated with increased mortality in critically ill patients. However, the molecular controls of elevated body temperature are poorly understood. We discovered that the expression of RNA-binding motif protein 3 (RBM3), known to respond to cold stress and to modulate microRNA (miRNA) expression, was reduced in 30 patients with fever, and in THP-1-derived macrophages maintained at a fever-like temperature (40°C). Notably, RBM3 expression is reduced during fever whether or not infection is demonstrable. Reduced RBM3 expression resulted in increased expression of RBM3-targeted temperature-sensitive miRNAs, we termed thermomiRs. ThermomiRs such as miR-142–5p and miR-143 in turn target endogenous pyrogens including
<italic>IL-6, IL6ST, TLR2, PGE2</italic>
and
<italic>TNF</italic>
to complete a negative feedback mechanism, which may be crucial to prevent pathological hyperthermia. Using normal PBMCs that were exogenously exposed to fever-like temperature (40°C), we further demonstrate the trend by which decreased levels of
<italic>RBM3</italic>
were associated with increased levels of miR-142–5p and miR-143 and
<italic>vice versa</italic>
over a 24 h time course. Collectively, our results indicate the existence of a negative feedback loop that regulates fever via reduced RBM3 levels and increased expression of miR-142–5p and miR-143.</p>
</abstract>
<counts>
<page-count count="10"></page-count>
</counts>
<custom-meta-group>
<custom-meta>
<meta-name>cover-date</meta-name>
<meta-value>07 April 2016</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="SEC1">
<title>INTRODUCTION</title>
<p>Since antiquity, fever has been used as an indicator for diseases. Fever is defined as a regulated increase in body temperature above normal fluctuations, and is associated with various immune stressors from infectious and non-infectious sources. The increase in body temperature is initiated and regulated by numerous cytokines that act either as pyrogens or antipyretics (
<xref rid="B1" ref-type="bibr">1</xref>
). These constitute a complex circuitry that resets the temperature balance point of the body through a humoral or neural response (
<xref rid="B2" ref-type="bibr">2</xref>
).</p>
<p>There are long-standing arguments for and against treating elevated body temperature depending mainly on the presence of specific acute neurological injuries. Fever is associated with a worse outcome for patients with stroke and neurologic injury (
<xref rid="B3" ref-type="bibr">3</xref>
) and antipyretic treatment is thus recommended in these cases. However letting a fever run its course can be beneficial in sepsis where an elevated temperature in the first 24 h is associated with decreased mortality in severe infections (
<xref rid="B4" ref-type="bibr">4</xref>
).</p>
<p>MicroRNAs (miRNAs) are short RNAs (≈22 nucleotides) that reduce gene expression, usually by binding to the 3′ untranslated region (UTR) of target mRNAs. miRNAs guide an RNA-induced silencing complex (RISC) to specific mRNA target sites called miRNA responsive elements (mREs) to trigger translation inhibition and/or mRNA degradation (
<xref rid="B5" ref-type="bibr">5</xref>
). The first eight nucleotides of a miRNA, now called the seed region, may be complementary to motifs that determine their ability to regulate gene expression (
<xref rid="B6" ref-type="bibr">6</xref>
). Over 1000 miRNAs have been identified in humans, hundreds of which are associated with major biological processes including cell proliferation and differentiation, development and diseases (
<xref rid="B7" ref-type="bibr">7</xref>
,
<xref rid="B8" ref-type="bibr">8</xref>
). Consequently, miRNAs are arguably one of the most important classes of functional RNAs.</p>
<p>Specific genes and miRNAs associated with the febrile response may impact patient outcomes after infection (
<xref rid="B9" ref-type="bibr">9</xref>
,
<xref rid="B10" ref-type="bibr">10</xref>
). The effects of isolated temperature elevation however have not been examined at a molecular level. Our
<italic>in silico</italic>
analysis showed decreased levels of mRNA encoding a cold-shock protein, RBM3 in febrile patients that is dependent on the presence of fever but not infection. We also identified differentially expressed mRNAs and miRNAs in THP-1-derived macrophages at normal (37°C) and fever-like temperatures (40°C). As expected, mRNAs encoding RBM3 were the most significantly downregulated at 40°C. Small RNA sequencing and confirmation by quantitative polymerase chain reaction (PCR) assays revealed upregulation of temperature-sensitive miRNAs, we termed thermomiRs, including miR-10a, miR-10b, miR-151–5p, miR-151–3p, miR-125a, miR-98, miR-142–5p and miR-143 in THP-1-derived macrophages at 40°C compared to 37°C. Two thermomiRs, miR-142–5p and miR-143 were significantly increased following RBM3 knockdown in THP-1-derived macrophages; confirming the role of RBM3 in the regulation of these miRNAs at fever-like temperatures. Quantitation of target mRNA levels following knockdown and overexpression of miR-142–5p and miR-143 confirmed their roles in the regulation of pyrogen expression. In peripheral blood mononuclear cells (PBMCs) exposed to 40°C over a time course of 24 h (
<italic>n</italic>
= 5), we observed a trend whereby RBM3 levels increased when miR-142–5p and miR-143 decreased and
<italic>vice versa</italic>
. Our data indicate the existence of temperature-sensitive miRNAs, miR-142–5p and miR-143, which are regulated by RBM3 in a negative feedback mechanism established in response to fever.</p>
</sec>
<sec sec-type="materials|methods" id="SEC2">
<title>MATERIALS AND METHODS</title>
<sec id="SEC2-1">
<title>Cell Lines and primary samples</title>
<p>Human THP-1 cells were maintained in RPMI media supplemented with 10% (v/v) FCS, 0.05 mM 2-mercaptoethanol, 0.1 mg/ml penicillin/streptomycin and 2 mM L-glutamine. Differentiation of THP-1 into macrophages was performed as previously described (
<xref rid="B11" ref-type="bibr">11</xref>
). Briefly, cells were plated at a density of 1.5 × 10
<sup>7</sup>
cells per 75 cm
<sup>2</sup>
culture flask containing supplemented RPMI with 100 ng/ml phorbol-12-myristate 13-acetate (PMA) and 50 μM 2-mercaptoethanol for 48 h. Undifferentiated cells that did not exhibit plastic-adherence were removed. Differentiated THP-1 cells, which adhered to tissue culture flasks, were then maintained at normal (37°C) or fever-like (40°C) temperatures for up to 24 h. Cells maintained at 40°C were harvested at 2, 8 and 24 h for subsequent small RNA and transcriptomic analyses. Human K562 cells were maintained in RPMI 1640 supplemented with 10% (v/v) FCS and antibiotics.</p>
<p>With ethics approval from the Human Research Ethics Committee of the Royal Prince Alfred Hospital (HREC/08/RPAH/222) and informed consent, whole blood samples were obtained from five healthy individuals (N1, N2, N3, N4 and N5). PBMCs were isolated using PolymorphPrep (Axis-Shield) according to the manufacturer's instructions, and maintained in supplemented RPMI media (used for THP-1) at fever-like (40°C) temperatures for 0, 2, 8, 16 and 24 h followed by RNA extraction and RT-qPCR analyses.</p>
</sec>
<sec id="SEC2-2">
<title>Flow cytometry analysis</title>
<p>Flow cytometry analysis to confirm the differentiation of THP-1 into macrophages was performed with anti-CD11b and -CD44 staining. Cell viability following exposure to 40°C was determined by measuring the percentages of necrotic and apoptotic cells stained with propidium iodide (PI) and Annexin V. All analysis was performed in triplicate on an LSR Fortessa (BD Biosciences).</p>
</sec>
<sec id="SEC2-3">
<title>Trypan blue staining and caspase activity assay</title>
<p>Differentiated THP-1 cells were stained with 0.4% (w/v) trypan blue and counted under the microscope to assess viability (250 - 300 cells for each culture condition). Caspase activity assay was performed using the Caspase-Glo
<sup>®</sup>
3/7 Kit (Promega) according to the manufacturer's instructions. Positive control THP-1 cells were irradiated in a UV Stratalinker 2400 (Stratagene) with a 400 000 μJ UVC dosage and incubated in fresh media for 16 h.</p>
</sec>
<sec id="SEC2-4">
<title>RNA extraction, RT-qPCR and miRNA detection assays</title>
<p>RNA extraction was performed using Trizol (Invitrogen) according to the manufacturer's instructions. RT-qPCR was performed on cDNA generated from 1 μg DNaseI-treated total RNA using SuperScript® III First-Strand Synthesis System (Invitrogen), according to the manufacturers’ instructions. RT-qPCR reactions were prepared in 20 μl volumes containing 1× IQ SyberGreen supermix and 0.3 μM of the respective forward and reverse primers. Samples were amplified and analysed using the CFX96
<sup>(TM)</sup>
Real Time PCR Machine (Bio-Rad).</p>
<p>The expression of known miRNAs was measured using TaqMan
<italic>®</italic>
MiRNA assays (Applied Biosystems) according to the manufacturer's instructions. Normalisation for cDNA input was performed using a stably expressed reference snoRNA, RNU24.</p>
</sec>
<sec id="SEC2-5">
<title>Sequencing and Bioinformatics analysis</title>
<p>Small RNA libraries were prepared from 5 μg of RNA using the Small RNA Sample Preparation Alternative v1.5 Protocol (Illumina) according to the manufacturers’ instructions and sequenced at Geneworks (Adelaide) using an Illumina GAIIx platform. Reads were aligned with Bowtie2 (
<xref rid="B12" ref-type="bibr">12</xref>
) on hg19 and miRNA expression was quantified using SeqMonk (
<ext-link ext-link-type="uri" xlink:href="http://www.bioinformatics.babraham.ac.uk/projects/seqmonk/">http://www.bioinformatics.babraham.ac.uk/projects/seqmonk/</ext-link>
) with a loess normalisation. Novel miRNAs were investigated using a sliding window of 20 bp across the aligned reads on the genome. Contigs of length between 17 and 25 bp with a coverage of at least 10 reads were then evaluated by a support vector machine for characteristics of a miRNA hairpin (
<xref rid="B13" ref-type="bibr">13</xref>
).</p>
</sec>
<sec id="SEC2-6">
<title>Western blot</title>
<p>Total protein lysates were loaded onto precast SDS-PAGE gels (Invitrogen) and subjected to electrophoresis before being transferred onto PVDF membranes. Membranes were blocked with 5% (w/v) BSA in TBS for 2 h at room temperature and incubated overnight with a mouse monoclonal anti-RBM3 antibody (1:5000; Atlas Antibodies) or a rabbit polyclonal anti-actin antibody (1:5000; Sigma). Following washes, membranes were incubated with HRP-conjugated secondary anti-mouse or anti-rabbit antibody (1:5000; Chemicon), and exposed using enhanced chemiluminescence reagents (Pierce) on a Kodak Imager (Kodak). Bands were quantified using ImageJ.</p>
</sec>
<sec id="SEC2-7">
<title>Knockdown of RBM3</title>
<p>Knockdown of RBM3 in differentiated THP-1 cells was performed by transfecting small interfering RNAs (siRNAs) into cells using nucleofection (
<xref rid="B11" ref-type="bibr">11</xref>
). A total of three siRNAs against
<italic>RBM3</italic>
(s118 #58, #59 and #60; Applied Biosystems) and a negative control siRNA (Applied Biosystems) were used.</p>
</sec>
<sec id="SEC2-8">
<title>nCounter miRNA quantification</title>
<p>Total RNA (100 ng each) was analysed using the nCounter Human miRNA Expression Assay Kit Version 2.0 (NanoString Technologies) according to the manufacturers’ instructions. Data were analysed using the nSolver software, with normalisation performed using the top 100 highly expressed miRNAs.</p>
</sec>
<sec id="SEC2-9">
<title>Nucleofection of cells with anti-miRNA and mimic</title>
<p>THP-1 cells were differentiated into macrophages at 40°C, harvested and nucleofected with the custom designed 2′-O-methylated miRIDIAN miRNA Hairpin Inhibitor (Dharmacon) directed against hsa-miR-142–5p, hsa-miR-143–3p or non-human miRNA control. These inhibitors do not necessarily direct degradation of miRNAs but would induce loss-of-function as previously published (
<xref rid="B14" ref-type="bibr">14</xref>
). Cells were co-transfected with pmaxGFP vector and GFP-expressing cells were purified 24 h post nucleofection using fluorescence-activated cell sorting on the Influx
<sup>TM</sup>
Cell Sorter (BD Biosciences). Nucleofection of miR-142 and miR-143 mimics (Dharmacon) and the miRIDIAN microRNA Mimic Negative Control #1 (Dharmacon) was performed using the same protocol. 300nM of miRNA inhibitor or mimic was used in each nucleofection reaction.</p>
</sec>
<sec id="SEC2-10">
<title>Analysis of gene expression in febrile patients and controls</title>
<p>Data from GSE40396 were normalised using the cyclic lowess algorithm (
<xref rid="B15" ref-type="bibr">15</xref>
) from the Affymetrix package in R (3 cycles). Pseudogenes and predicted genes were removed based on Gencode annotation (
<ext-link ext-link-type="uri" xlink:href="http://www.gencodegenes.org">http://www.gencodegenes.org</ext-link>
) before analysis of differential gene expression using GENE-E (Broad Institute). Individual patients were labelled for infection (presence/type or absence) and fever (presence or absence). A heat map for the top 100 genes (50 increased and 50 decreased; signal to noise) was determined using Marker Selection for patient samples with fever versus no fever.</p>
</sec>
<sec id="SEC2-11">
<title>Gene expression array</title>
<p>Differential expression of mRNAs was assessed using the GeneChip
<sup>®</sup>
Prime View
<sup></sup>
Human Gene Expression Array (Affymetrix) at the Ramaciotti Centre for Genomics (Sydney) according to the manufacturer's instructions. The arrays were normalised using the justRMA suite of algorithms from Bioconductor (
<ext-link ext-link-type="uri" xlink:href="http://www.bioconductor.org">http://www.bioconductor.org</ext-link>
) and analysed as previously described (
<xref rid="B16" ref-type="bibr">16</xref>
). Raw data were deposited in the Gene Expression Omnibus database (accession number GSE69343). Gene function enrichment was performed using the DAVID functional enrichment webtool (
<xref rid="B17" ref-type="bibr">17</xref>
). PrimeView gene set was used as background.</p>
</sec>
<sec id="SEC2-12">
<title>Statistics</title>
<p>The significance of fold-change in mRNA and miRNA expression between treatment and control cases were determined using two-tailed Student's
<italic>t</italic>
-test. Values are shown as mean ± SEM. Analyses were performed using GraphPad Prism v.6 (La Jolla, CA, USA). Results were considered significant when
<italic>P</italic>
-value < 0.05.</p>
</sec>
</sec>
<sec sec-type="results" id="SEC3">
<title>RESULTS</title>
<sec id="SEC3-1">
<title>Reduced
<italic>RBM3</italic>
expression is dependent on the presence of fever but not infection</title>
<p>To determine fever-related gene expression changes, we re-analysed whole genome microarray data performed on whole blood from 30 febrile and 35 non-febrile children, classified on the basis of infection by diverse viruses and bacteria (
<xref rid="B18" ref-type="bibr">18</xref>
). As expected, transcripts encoding immune and inflammatory response genes including
<italic>FCGR1</italic>
family members (
<xref rid="B19" ref-type="bibr">19</xref>
),
<italic>CCR1</italic>
(
<xref rid="B20" ref-type="bibr">20</xref>
),
<italic>TLR5</italic>
(
<xref rid="B21" ref-type="bibr">21</xref>
),
<italic>TLR6</italic>
(
<xref rid="B22" ref-type="bibr">22</xref>
),
<italic>TNFSF13B</italic>
(
<xref rid="B23" ref-type="bibr">23</xref>
) and
<italic>IL1B</italic>
(
<xref rid="B24" ref-type="bibr">24</xref>
) were highly enriched amongst the top 50 upregulated transcripts (Figure
<xref ref-type="fig" rid="F1">1A</xref>
). Many mRNA processing and ribosomal protein synthesis related genes were downregulated, including
<italic>FBL, RPL3, RPL4, RPL10A</italic>
and
<italic>RPL14</italic>
(Figure
<xref ref-type="fig" rid="F1">1A</xref>
), consistent with the widespread inhibition of RNA processing and ribosomal protein synthesis following heat-shock (
<xref rid="B25" ref-type="bibr">25</xref>
<xref rid="B27" ref-type="bibr">27</xref>
). Amongst the most downregulated genes was
<italic>RBM3</italic>
(signal-to-noise; 2.2-fold, Figure
<xref ref-type="fig" rid="F1">1A</xref>
), which encodes a cold-shock protein known to be induced under conditions of mild hypothermia and also to alter miRNA levels by binding to the precursor transcript (
<xref rid="B28" ref-type="bibr">28</xref>
,
<xref rid="B29" ref-type="bibr">29</xref>
). We determined whether
<italic>RBM3</italic>
expression was more relevant to fever or infections in patients (Figure
<xref ref-type="fig" rid="F1">1B</xref>
).
<italic>RBM3</italic>
levels were significantly lower in the presence of fever regardless of the type of infection (
<italic>P</italic>
= 2.1E-16). We found no significant difference in
<italic>RBM3</italic>
levels between patients with infection but no fever and patients with no infection (
<italic>P</italic>
= 0.54,
<italic>t</italic>
-test). Thus, the presence of fever, not infection, determined lower
<italic>RBM3</italic>
levels.</p>
<fig id="F1" orientation="portrait" position="float">
<label>Figure 1.</label>
<caption>
<p>Differential gene expression in febrile and non-febrile patients. (
<bold>A</bold>
) Heatmap showing top 50 most upregulated (red) and downregulated (blue) genes in 30 febrile patients compared to 35 non-febrile controls. (
<bold>B</bold>
) Re-analysis of
<italic>RBM3</italic>
expression from Hu
<italic>et al</italic>
., 2013 (
<xref rid="B18" ref-type="bibr">18</xref>
) in 30 febrile and 35 non-febrile patients.</p>
</caption>
<graphic xlink:href="gkw041fig1"></graphic>
</fig>
</sec>
<sec id="SEC3-2">
<title>Fever-like temperature alters the expression of diverse genes including
<italic>RBM3</italic>
</title>
<p>In order to further understand the role of RBM3 during fever, we performed
<italic>in vitro</italic>
studies using THP-1-derived macrophages; a model used extensively for studying the immune response (
<xref rid="B30" ref-type="bibr">30</xref>
). Following 48 h exposure to PMA, THP-1 cells exhibited plastic-adherence and expressed higher levels of CD11b and CD44 compared to untreated cells, confirming macrophage differentiation (Figure
<xref ref-type="fig" rid="F2">2A</xref>
). THP-1-derived macrophages were exposed to fever-like temperature (40°C)
<italic>in vitro</italic>
. In order to confirm that these cells were viable at the elevated temperature, and therefore appropriate for transcriptome and miRNAome analyses, Annexin V/propidium iodide (PI) staining (Figure
<xref ref-type="fig" rid="F2">2B</xref>
), trypan blue staining (Supplementary Figure S1A) and caspase activity assays (Supplementary Figure S1B) were performed. All three approaches demonstrated that exposure of THP-1-derived macrophages to 40°C for up to 24 h did not result in significant cell death compared to cells maintained at 37°C (Figure
<xref ref-type="fig" rid="F2">2B</xref>
, Supplementary Figure S1A,B). Viability of >90% was maintained at 40°C (Figure
<xref ref-type="fig" rid="F2">2B</xref>
and Supplementary Figure S1A).</p>
<fig id="F2" orientation="portrait" position="float">
<label>Figure 2.</label>
<caption>
<p>Expression of the cold-shock protein RBM3 is altered between 37°C and 40°C in THP-1-derived macrophages. (
<bold>A</bold>
) Confirmation of THP-1 differentiation into macrophages as shown by increased expression of CD11b and CD44 using flow cytometry. (
<bold>B</bold>
) Viability of THP-1 cells incubated at 40
<bold>°</bold>
C compared to controls (37
<bold>°</bold>
C) as measured by flow cytometry following Annexin V and propidium iodide (PI) staining. Ultraviolet-exposed cells (UV+) were used as positive control. (
<bold>C</bold>
) Gene function enrichment of genes overexpressed at 40°C. (
<bold>D</bold>
) Top ten most downregulated genes at 40°C. (
<bold>E</bold>
) Western blot for RBM3 expression following incubation at 37°C and 40°C with actin used as the loading control. PMA, phorbol-12-myristate 13-acetate.</p>
</caption>
<graphic xlink:href="gkw041fig2"></graphic>
</fig>
<p>Using whole genome expression array, we found 309 protein-coding genes that changed significantly (
<italic>P</italic>
< 0.01; fold-change > 2) between 37°C and 40°C in THP-1-derived macrophages (Supplementary Table S1). Of these, 132 genes had increased expression at 40°C and 177 had reduced expression. Upregulated genes were enriched in histone, nucleosome and acetylation functions (Figure
<xref ref-type="fig" rid="F2">2C</xref>
). This enrichment was anticipated by recent reports that an increase in expression of acetylation genes such as HDAC and histones are vital to the immune response (
<xref rid="B31" ref-type="bibr">31</xref>
). Downregulated genes were not significantly enriched in any category (
<italic>P</italic>
< 1.0E-3).
<italic>RBM3</italic>
showed the highest reduction at 40°C (≈15-fold decrease), consistent with our observation in febrile patients (Figure
<xref ref-type="fig" rid="F2">2D</xref>
). While RBM3 levels have never been investigated in hyperthermia, our model of fever demonstrated that
<italic>RBM3</italic>
mRNA levels were the most destabilised with a concomitant ≈6-fold decrease in RBM3 protein levels (Figure
<xref ref-type="fig" rid="F2">2E</xref>
). Because our focus is the temperature component of fever and RBM3 is a temperature-sensitive protein known to regulate miRNA levels (
<xref rid="B28" ref-type="bibr">28</xref>
,
<xref rid="B29" ref-type="bibr">29</xref>
), we further investigated the link between RBM3 and miRNA regulation in our model.</p>
</sec>
<sec id="SEC3-3">
<title>Fever-like temperatures alter the expression of miRNAs in THP-1-derived macrophages</title>
<p>We performed small RNA sequencing on THP-1-derived macrophages at 37°C and on cells incubated at 40°C for 2, 8 and 24 h. No miRNA showed significantly lower expression after incubation at 40°C. Eight miRNAs exhibited a significantly higher expression after 24 h of incubation at 40°C (
<italic>P</italic>
< 0.05; fold-change > 2; Figure
<xref ref-type="fig" rid="F3">3A</xref>
), which we called thermomiRs. Importantly thermomiRs showed a consistent increase in expression starting at 2 h. This increase in expression after 24 h was validated using RT-qPCR on all eight miRNAs and three control miRNAs that did not show any change in the sequencing data (Figure
<xref ref-type="fig" rid="F3">3B</xref>
). Many of these miRNAs are known to have roles in the immune response. For example, miR-10a is a key mediator of regulatory T cell differentiation (
<xref rid="B32" ref-type="bibr">32</xref>
), miR-125a controls the inflammatory response in macrophages (
<xref rid="B33" ref-type="bibr">33</xref>
) and in autoimmune disease (
<xref rid="B34" ref-type="bibr">34</xref>
), miR-98 regulates Fas-ligand apoptosis that plays a crucial role in multiple immune functions, miR-142–5p mediates T cell activation (
<xref rid="B35" ref-type="bibr">35</xref>
) and miR-143 regulates Toll-like receptors (
<xref rid="B36" ref-type="bibr">36</xref>
).</p>
<fig id="F3" orientation="portrait" position="float">
<label>Figure 3.</label>
<caption>
<p>ThermomiR expression increases at 40°C in THP-1-derived macrophages. (
<bold>A</bold>
) Expression of temperature-sensitive miRNAs (thermomiRs) measured by small RNA sequencing at 37°C and after 2, 8 and 24 h of incubation at 40°C. (
<bold>B</bold>
) Expression of thermomiRs and controls measured by RT-qPCR after incubation for 24 h. Data are from three independent experiments each in triplicate and show mean ± SEM. Two-tailed Student's
<italic>t</italic>
-test was used to determine significance, denoted by * (
<italic>P</italic>
< 0.05) and ** (
<italic>P</italic>
< 0.001). ns, not significant.</p>
</caption>
<graphic xlink:href="gkw041fig3"></graphic>
</fig>
</sec>
<sec id="SEC3-4">
<title>RBM3 regulates expression of miR-142–5p and 143</title>
<p>As RBM3 controls miRNA expression through an RNA-binding motif, we examined the effects of reducing RBM3 levels on miRNAs in THP-1-derived macrophages using three different siRNAs (
<xref rid="B37" ref-type="bibr">37</xref>
). RT-qPCR and Western blot analyses confirmed reduced RBM3 expression in cells transfected with each of these three siRNAs by ≈3–20-fold (Figure
<xref ref-type="fig" rid="F4">4A</xref>
,
<xref ref-type="fig" rid="F4">B</xref>
). Using the NanoString nCounter analysis, we found 40 miRNAs for which the expression increased consistently for all three RBM3 knockdowns (Supplementary Table S2). Only one miRNA, miR-221 showed a decrease after RBM3 knockdown. Of the 40 miRNAs affected by RBM3 knockdown, miR-142–5p and miR-143 were outliers in terms of change in expression (Figure
<xref ref-type="fig" rid="F4">4C</xref>
). miR-143 was only detectable after RBM3 knockdown. miR-142–5p was most highly expressed amongst miRNAs with increased expression after RBM3 knockdown. Notably, these miRNAs were also amongst those that increased in expression following elevated temperature treatments (Figure
<xref ref-type="fig" rid="F3">3A</xref>
,
<xref ref-type="fig" rid="F3">B</xref>
). These miRNAs may be two key modulators of pyrogens during a feedback loop that involves elevated temperature and reduced RBM3 levels.</p>
<fig id="F4" orientation="portrait" position="float">
<label>Figure 4.</label>
<caption>
<p>RBM3 siRNA knockdown increases the expression of thermomiRs. (
<bold>A</bold>
) Expression of
<italic>RBM3</italic>
mRNA by RT-qPCR, and (
<bold>B</bold>
) RBM3 protein levels by Western blot in THP-1-derived macrophages nucleofected with negative control siRNA and each of the three siRNAs against
<italic>RBM3</italic>
: #58, #59 and #60. (
<bold>C</bold>
) Average counts of individual miRNAs from the three
<italic>RBM3</italic>
knockdown experiments as measured using NanoString nCounter. Two miRNAs miR-142 and miR-143 showed the greatest change in expression. (
<bold>D</bold>
) Expression of pyrogens in THP-1-derived macrophages:
<italic>IL6ST, TNF</italic>
and
<italic>TLR-2</italic>
following inhibition of miR-142–5p and miR-143 (relative to control inhibitor). (
<bold>E</bold>
) Expression of miR-142 and miR-143 in THP-1-derived macrophage at 24 h after nucleofection with respective miRNA mimics (relative to control). (
<bold>F</bold>
) Expression of
<italic>IL6ST, TNF</italic>
and
<italic>TLR-</italic>
in THP-1-derived macrophage at 24 h following nucleofection of miR-142 and miR-143 mimic (relative to control). Data are from three independent experiments each in triplicate and show mean ± SEM. Two-tailed Student's
<italic>t</italic>
-test was used to determine significance, denoted by * (
<italic>P</italic>
< 0.05) and ** (
<italic>P</italic>
< 0.001). inh, inhibitor; ns, not significant.</p>
</caption>
<graphic xlink:href="gkw041fig4"></graphic>
</fig>
</sec>
<sec id="SEC3-5">
<title>ThermomiRs miR-142–5p and miR-143 target important immune genes and genes in the fever-response pathway</title>
<p>miR-143 is involved in the regulation of multiple pyrogens including TLR2 (
<xref rid="B36" ref-type="bibr">36</xref>
), PGE2 (
<xref rid="B38" ref-type="bibr">38</xref>
) and IL-6 (
<xref rid="B39" ref-type="bibr">39</xref>
), as is miR-142 (
<xref rid="B40" ref-type="bibr">40</xref>
). We inhibited miR-142–5p and miR-143 in THP-1 cells using antagomir oligonucleotides and measured the expression of six pyrogens:
<italic>IL6ST, IFNA1, TNF, TLR2, IL6</italic>
and
<italic>PGE2</italic>
by RT-qPCR (Figure
<xref ref-type="fig" rid="F4">4D</xref>
). Of these, three targets
<italic>IL6, IFNA1</italic>
and
<italic>PGE2</italic>
, were expressed at levels below the detection limit of RT-qPCR pre- and post-knockdown of either miRNA. We confirmed that miR-142–5p and miR-143 regulated the expression of
<italic>IL6ST</italic>
(
<italic>P</italic>
= 0.0279) and
<italic>TLR2</italic>
(
<italic>P</italic>
= 0.0476) respectively (Figure
<xref ref-type="fig" rid="F4">4D</xref>
). Although inhibition of miR-142–5p resulted in the increased expression of
<italic>TNF</italic>
by 1.4-fold, this did not reach statistical significance (
<italic>P</italic>
= 0.1304). Increased expression of miR-142 and miR-143 via nucleofection with miRNA mimics (Figure
<xref ref-type="fig" rid="F4">4E</xref>
) resulted in significantly reduced expression of
<italic>IL6ST, TNF</italic>
and
<italic>TLR2</italic>
(Figure
<xref ref-type="fig" rid="F4">4F</xref>
), confirming that these pyrogens are regulated by miR-142 or miR-143. Our data in addition to the previously described validated targets of miR-142 and miR-143 show that these miRNAs regulate major pyrogens (
<xref rid="B41" ref-type="bibr">41</xref>
).</p>
</sec>
<sec id="SEC3-6">
<title>
<italic>RBM3</italic>
levels decreased with increased miR-142–5p and miR-143 levels and
<italic>vice versa</italic>
in primary human PBMCs</title>
<p>In order to confirm the association between
<italic>RBM3</italic>
, miR-142–5p and miR-143 in primary cells, we measured their expression in PBMCs from healthy individuals (
<italic>n</italic>
= 5) subjected to 40°C over a 24 h time course. Exogenous exposure of PBMCs to 40°C resulted in decreasing
<italic>RBM3</italic>
expression starting from 2 up to 8 h before the levels increased at 16–24 h (Figure
<xref ref-type="fig" rid="F5">5A</xref>
). In contrast, the levels of miR-142–5p and miR-143 increased and predominantly peaked at 8 h before dropping again at 16–24 h (Figure
<xref ref-type="fig" rid="F5">5B</xref>
and 
<xref ref-type="fig" rid="F5">C</xref>
). This trend of increasing RBM3 expression in conjunction with decreasing miR-142–5p and 143 levels, and
<italic>vice versa</italic>
, supports a feedback mechanism involving RBM3 and these miRNAs in response to increased temperature.</p>
<fig id="F5" orientation="portrait" position="float">
<label>Figure 5.</label>
<caption>
<p>Temporal changes of
<italic>RBM3</italic>
, miR-142–5p and miR-143 expression in PBMCs exposed to 40°C over a 24 h time course. (
<bold>A</bold>
) Expression of RBM3 mRNA in PBMCs by RT-qPCR (
<italic>n</italic>
= 5). (
<bold>B</bold>
) Expression of miR-142–5p and (
<bold>C</bold>
) miR-143 in PBMCs by Taqman miRNA assays (
<italic>n</italic>
= 5). Fold change was measured relative to 0 h. N1–N5 denote five healthy individuals recruited for this experiment.</p>
</caption>
<graphic xlink:href="gkw041fig5"></graphic>
</fig>
</sec>
</sec>
<sec sec-type="discussion" id="SEC4">
<title>DISCUSSION</title>
<p>During infection, lizards will move to a warmer environment. Preventing them from doing so can result in a mortality rate of up to 70% (
<xref rid="B42" ref-type="bibr">42</xref>
). This simple experiment demonstrates that fever is a crucial part of the response to infection. Indeed, fever is an adaptive mechanism that evolved over 200 million years ago. All vertebrates elevate their body temperature in response to infection and fever confers a survival advantage to all vertebrates studied. Curing paralysis caused by syphilis by inducing fever from malaria infection was the subject of the 1927 Nobel prize in medicine. Despite a growing body of evidence pointing towards a beneficial effect of fever on patient outcome, antipyretic drugs are still commonly used to treat fever at home and in the intensive care unit (ICU) and no study has investigated the molecular consequences of fever at a cellular level.</p>
<p>Our findings define a novel role for RBM3 as a gauge and potential mediator of pyrexia with crucial downstream functions effected via miRNAs. miRNAs have previously been implicated in diverse homeostatic and metabolic pathways (
<xref rid="B43" ref-type="bibr">43</xref>
) and more recently have been used to predict outcome in critically ill patients and sepsis (
<xref rid="B44" ref-type="bibr">44</xref>
). In our model, temperature–sensitive miR-142–5p and miR-143 were shown to be key regulators of pyrexia. When RBM3 levels decrease, the expression of these ‘thermomiRs’ increases dramatically. In turn these ‘thermomiRs’ target the pyrogens that cause the increase in body temperature. We present here a negative feedback loop to regulate body temperature that involves reduced expression of RBM3 and increased expression of ‘thermomiRs’ to fine-tune levels of pyrogens (Figure
<xref ref-type="fig" rid="F6">6</xref>
). Our microarray data demonstrate lack of changes in pyrogen expression in THP-1-differentiated macrophages following 40
<bold>°</bold>
C exposure (Supplementary Table S1). In contrast, knockdown of miR-142–5p or 143 in the absence of elevated temperature exposure resulted in a significant increase in the expression of two pyrogens (Figure
<xref ref-type="fig" rid="F4">4D</xref>
). These results support our model that miR142 and miR-143 counteract the natural increase of pyrogens following increased temperature.</p>
<fig id="F6" orientation="portrait" position="float">
<label>Figure 6.</label>
<caption>
<p>Proposed negative feedback mechanism regulating body temperature when fever occurs. Triggering an immune response (e.g. via infection), increases the expression of endogenous pyrogens, leading to fever. Fever will result in decreased expression of RBM3, which in turn leads to increased expression of thermomiRs normally targeted by RBM3, thereby fine-tuning expression of endogenous pyrogens. The thermomiRs themselves play integral roles in coordinating the response to fever and infection. This negative feedback loop attenuates excessive increases in body temperature.</p>
</caption>
<graphic xlink:href="gkw041fig6"></graphic>
</fig>
<p>Consistent with this model, we demonstrate in primary PBMCs exposed to fever-like temperature that RBM3 levels anti-correlate with miR-142–5p and miR-143 levels, potentially in order to maintain homeostasis during unfavourable temperature conditions. This mechanism may be crucial to prevent an excessive increase in body temperature and related molecular response leading to pathological hyperthermia.</p>
<p>Our data suggest that most temperature-sensitive miRNAs are not regulated by
<italic>RBM3</italic>
(Figure
<xref ref-type="fig" rid="F4">4C</xref>
). These miRNAs may respond directly to temperature changes or may be regulated by other heat responsive protein(s). These proteins may include the cold inducible RNA binding protein, CIRBP, that was also downregulated following exposure of THP-1-differentiated macrophages to 40°C (Supplementary Table S1). Future work is required to determine whether downregulation of this protein regulates the expression of one or more thermomiRs. Notably, CIRBP and RBM3 are regulated by body temperature changes associated with the circadian rhythm (
<xref rid="B45" ref-type="bibr">45</xref>
). It would be interesting to determine if miRNA expression that changes during this process (
<xref rid="B46" ref-type="bibr">46</xref>
) is also regulated by CIRBP and RBM3.</p>
<p>Given the importance of the targets of thermomiRs that respond to changes in temperature, this study provides novel insight into the mechanisms that mediate fever. From the use of over the counter antipyretics to targeted temperature management used in the ICU for cardiac arrest or elevated intracerebral pressure (
<xref rid="B47" ref-type="bibr">47</xref>
), medical control of body temperature is common and can be critical to a patient's outcome. Here we demonstrate that a small change in temperature between 37°C and 40°C has a major effect on miRNAs and on their target gene expression. Given that these miRNAs and their targets are crucial to the control of pyrexia and to the immune response in general, it is essential to understand how these molecular changes mediate different types of insult. Our results are directly relevant to the clinical context given recent evidence that increased levels of
<italic>IL-6, IL6ST</italic>
(
<xref rid="B48" ref-type="bibr">48</xref>
),
<italic>TLR2</italic>
(
<xref rid="B49" ref-type="bibr">49</xref>
),
<italic>PGE2</italic>
(
<xref rid="B50" ref-type="bibr">50</xref>
) and
<italic>TNF</italic>
(
<xref rid="B51" ref-type="bibr">51</xref>
), each of which is regulated by miR-142–5p or miR-143, are associated with a poor outcome in patients with severe sepsis.</p>
</sec>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<supplementary-material id="PMC_1" content-type="local-data">
<caption>
<title>SUPPLEMENTARY DATA</title>
</caption>
<media mimetype="text" mime-subtype="html" xlink:href="supp_44_6_2888__index.html"></media>
<media xlink:role="associated-file" mimetype="application" mime-subtype="pdf" xlink:href="supp_gkw041_nar-03686-y-2015-File008.pdf"></media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>The authors thank Steven Allen, Suat Dervish and Frank Kao for fluorescence-activated cell sorting and Fiona Guan, Kinsha Baidya, Rajini Nagarajah, Patrick O'Young and Amy Marshall for technical advice and assistance.</p>
</ack>
<sec id="SEC5">
<title>SUPPLEMENTARY DATA</title>
<p>
<ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkw041/-/DC1">Supplementary Data</ext-link>
are available at NAR Online.</p>
</sec>
<sec id="SEC6">
<title>FUNDING</title>
<p>National Health and Medical Research Council [1061906 to J.E.J.R., W.R. and 1080530 to J.E.J.R., W.R., J.J-L.W.]; Tour de Cure [J.E.J.R., C.G.B.]; Cure the Future [J.E.J.R.]; an anonymous foundation [J.E.J.R.]. J.J-L.W. and W.R. hold fellowships from the Cancer Institute of NSW. J.H. is a National Breast Cancer Foundation Fellow. Funding for open access charge: Bioinformatics fund, Centenary Institute.</p>
<p>
<italic>Conflict of interest statement</italic>
. None declared.</p>
</sec>
<ref-list>
<title>REFERENCES</title>
<ref id="B1">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leon</surname>
<given-names>L.R.</given-names>
</name>
</person-group>
<article-title>Invited review: cytokine regulation of fever: studies using gene knockout mice</article-title>
<source>J. Appl. Physiol.</source>
<year>2002</year>
<volume>92</volume>
<fpage>2648</fpage>
<lpage>2655</lpage>
<pub-id pub-id-type="pmid">12015385</pub-id>
</element-citation>
</ref>
<ref id="B2">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ogoina</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Fever, fever patterns and diseases called ‘fever’–a review</article-title>
<source>J. Infect. Public Health</source>
<year>2011</year>
<volume>4</volume>
<fpage>108</fpage>
<lpage>124</lpage>
<pub-id pub-id-type="pmid">21843857</pub-id>
</element-citation>
</ref>
<ref id="B3">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Greer</surname>
<given-names>D.M.</given-names>
</name>
<name>
<surname>Funk</surname>
<given-names>S.E.</given-names>
</name>
<name>
<surname>Reaven</surname>
<given-names>N.L.</given-names>
</name>
<name>
<surname>Ouzounelli</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Uman</surname>
<given-names>G.C.</given-names>
</name>
</person-group>
<article-title>Impact of fever on outcome in patients with stroke and neurologic injury: a comprehensive meta-analysis</article-title>
<source>Stroke</source>
<year>2008</year>
<volume>39</volume>
<fpage>3029</fpage>
<lpage>3035</lpage>
<pub-id pub-id-type="pmid">18723420</pub-id>
</element-citation>
</ref>
<ref id="B4">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Young</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Saxena</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Beasley</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Bellomo</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Bailey</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pilcher</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Finfer</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Harrison</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Myburgh</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Rowan</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Early peak temperature and mortality in critically ill patients with or without infection</article-title>
<source>Intensive Care Med.</source>
<year>2012</year>
<volume>38</volume>
<fpage>437</fpage>
<lpage>444</lpage>
</element-citation>
</ref>
<ref id="B5">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wilczynska</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Bushell</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>The complexity of miRNA-mediated repression</article-title>
<source>Cell Death Differ.</source>
<year>2015</year>
<volume>22</volume>
<fpage>22</fpage>
<lpage>33</lpage>
<pub-id pub-id-type="pmid">25190144</pub-id>
</element-citation>
</ref>
<ref id="B6">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lai</surname>
<given-names>E.C.</given-names>
</name>
</person-group>
<article-title>Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation</article-title>
<source>Nat. Genet.</source>
<year>2002</year>
<volume>30</volume>
<fpage>363</fpage>
<lpage>364</lpage>
<pub-id pub-id-type="pmid">11896390</pub-id>
</element-citation>
</ref>
<ref id="B7">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vidigal</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Ventura</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>The biological functions of miRNAs: lessons from in vivo studies</article-title>
<source>Trends Cell Biol.</source>
<year>2015</year>
<volume>25</volume>
<fpage>137</fpage>
<lpage>147</lpage>
<pub-id pub-id-type="pmid">25484347</pub-id>
</element-citation>
</ref>
<ref id="B8">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Kowdley</surname>
<given-names>K.V.</given-names>
</name>
</person-group>
<article-title>MicroRNAs in common human diseases</article-title>
<source>Genomics Proteomics Bioinformatics</source>
<year>2012</year>
<volume>10</volume>
<fpage>246</fpage>
<lpage>253</lpage>
<pub-id pub-id-type="pmid">23200134</pub-id>
</element-citation>
</ref>
<ref id="B9">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ma</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Vilanova</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Atalar</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Delfour</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Edgeworth</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ostermann</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hernandez-Fuentes</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Razafimahatratra</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Michot</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Persing</surname>
<given-names>D.H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genome-wide sequencing of cellular microRNAs identifies a combinatorial expression signature diagnostic of sepsis</article-title>
<source>PLoS One</source>
<year>2013</year>
<volume>8</volume>
<fpage>e75918</fpage>
<pub-id pub-id-type="pmid">24146790</pub-id>
</element-citation>
</ref>
<ref id="B10">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maslove</surname>
<given-names>D.M.</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>H.R.</given-names>
</name>
</person-group>
<article-title>Gene expression profiling in sepsis: timing, tissue, and translational considerations</article-title>
<source>Trends Mol. Med.</source>
<year>2014</year>
<volume>20</volume>
<fpage>204</fpage>
<lpage>213</lpage>
<pub-id pub-id-type="pmid">24548661</pub-id>
</element-citation>
</ref>
<ref id="B11">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schnoor</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Buers</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Sietmann</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Brodde</surname>
<given-names>M.F.</given-names>
</name>
<name>
<surname>Hofnagel</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Robenek</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Lorkowski</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Efficient non-viral transfection of THP-1 cells</article-title>
<source>J. Immunol. Methods</source>
<year>2009</year>
<volume>344</volume>
<fpage>109</fpage>
<lpage>115</lpage>
<pub-id pub-id-type="pmid">19345690</pub-id>
</element-citation>
</ref>
<ref id="B12">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Langmead</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Salzberg</surname>
<given-names>S.L.</given-names>
</name>
</person-group>
<article-title>Fast gapped-read alignment with Bowtie 2</article-title>
<source>Nat. Methods</source>
<year>2012</year>
<volume>9</volume>
<fpage>357</fpage>
<lpage>359</lpage>
<pub-id pub-id-type="pmid">22388286</pub-id>
</element-citation>
</ref>
<ref id="B13">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ritchie</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Rasko</surname>
<given-names>J.E.</given-names>
</name>
</person-group>
<article-title>Defining and providing robust controls for microRNA prediction</article-title>
<source>Bioinformatics</source>
<year>2012</year>
<volume>28</volume>
<fpage>1058</fpage>
<lpage>1061</lpage>
<pub-id pub-id-type="pmid">22408193</pub-id>
</element-citation>
</ref>
<ref id="B14">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vermeulen</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Robertson</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Dalby</surname>
<given-names>A.B.</given-names>
</name>
<name>
<surname>Marshall</surname>
<given-names>W.S.</given-names>
</name>
<name>
<surname>Karpilow</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Leake</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Khvorova</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Baskerville</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Double-stranded regions are essential design components of potent inhibitors of RISC function</article-title>
<source>RNA</source>
<year>2007</year>
<volume>13</volume>
<fpage>723</fpage>
<lpage>730</lpage>
<pub-id pub-id-type="pmid">17400817</pub-id>
</element-citation>
</ref>
<ref id="B15">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dudoit</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y.H.</given-names>
</name>
<name>
<surname>Callow</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Speed</surname>
<given-names>T.P.</given-names>
</name>
</person-group>
<article-title>Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments</article-title>
<source>Stat. Sinica</source>
<year>2002</year>
<volume>12</volume>
<fpage>111</fpage>
<lpage>139</lpage>
</element-citation>
</ref>
<ref id="B16">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wong</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ritchie</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Lau</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Gonzalez</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Choudhary</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Taft</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Rasko</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Holst</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Identification of nuclear-enriched miRNAs during mouse granulopoiesis</article-title>
<source>J. Hematol. Oncol.</source>
<year>2014</year>
<volume>7</volume>
<fpage>42</fpage>
<pub-id pub-id-type="pmid">24886830</pub-id>
</element-citation>
</ref>
<ref id="B17">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>D.W.</given-names>
</name>
<name>
<surname>Sherman</surname>
<given-names>B.T.</given-names>
</name>
<name>
<surname>Lempicki</surname>
<given-names>R.A.</given-names>
</name>
</person-group>
<article-title>Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources</article-title>
<source>Nat. Protoc.</source>
<year>2008</year>
<volume>4</volume>
<fpage>44</fpage>
<lpage>57</lpage>
</element-citation>
</ref>
<ref id="B18">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Crosby</surname>
<given-names>S.D.</given-names>
</name>
<name>
<surname>Storch</surname>
<given-names>G.A.</given-names>
</name>
</person-group>
<article-title>Gene expression profiles in febrile children with defined viral and bacterial infection</article-title>
<source>Proc. Natl. Acad. Sci. U. S. A.</source>
<year>2013</year>
<volume>110</volume>
<fpage>12792</fpage>
<lpage>12797</lpage>
<pub-id pub-id-type="pmid">23858444</pub-id>
</element-citation>
</ref>
<ref id="B19">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mancardi</surname>
<given-names>D.A.</given-names>
</name>
<name>
<surname>Albanesi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Jönsson</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Iannascoli</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Van Rooijen</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>England</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Daëron</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Bruhns</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>The high-affinity human IgG receptor FcγRI (CD64) promotes IgG-mediated inflammation, anaphylaxis, and antitumor immunotherapy</article-title>
<source>Blood</source>
<year>2013</year>
<volume>121</volume>
<fpage>1563</fpage>
<lpage>1573</lpage>
<pub-id pub-id-type="pmid">23293080</pub-id>
</element-citation>
</ref>
<ref id="B20">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Neote</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>DiGregorio</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Mak</surname>
<given-names>J.Y.</given-names>
</name>
<name>
<surname>Horuk</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Schall</surname>
<given-names>T.J.</given-names>
</name>
</person-group>
<article-title>Molecular cloning, functional expression, and signaling characteristics of a C-C chemokine receptor</article-title>
<source>Cell</source>
<year>1993</year>
<volume>72</volume>
<fpage>415</fpage>
<lpage>425</lpage>
<pub-id pub-id-type="pmid">7679328</pub-id>
</element-citation>
</ref>
<ref id="B21">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hayashi</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>K.D.</given-names>
</name>
<name>
<surname>Ozinsky</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hawn</surname>
<given-names>T.R.</given-names>
</name>
<name>
<surname>Yi</surname>
<given-names>E.C.</given-names>
</name>
<name>
<surname>Goodlett</surname>
<given-names>D.R.</given-names>
</name>
<name>
<surname>Eng</surname>
<given-names>J.K.</given-names>
</name>
<name>
<surname>Akira</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Underhill</surname>
<given-names>D.M.</given-names>
</name>
<name>
<surname>Aderem</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5</article-title>
<source>Nature</source>
<year>2001</year>
<volume>410</volume>
<fpage>1099</fpage>
<lpage>1103</lpage>
<pub-id pub-id-type="pmid">11323673</pub-id>
</element-citation>
</ref>
<ref id="B22">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Takeuchi</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Kawai</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Sanjo</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Copeland</surname>
<given-names>N.G.</given-names>
</name>
<name>
<surname>Gilbert</surname>
<given-names>D.J.</given-names>
</name>
<name>
<surname>Jenkins</surname>
<given-names>N.A.</given-names>
</name>
<name>
<surname>Takeda</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Akira</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>TLR6: A novel member of an expanding Toll-like receptor family</article-title>
<source>Gene</source>
<year>1999</year>
<volume>231</volume>
<fpage>59</fpage>
<lpage>65</lpage>
<pub-id pub-id-type="pmid">10231569</pub-id>
</element-citation>
</ref>
<ref id="B23">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moore</surname>
<given-names>P.A.</given-names>
</name>
<name>
<surname>Belvedere</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Orr</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pieri</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>LaFleur</surname>
<given-names>D.W.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Soppet</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Charters</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gentz</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Parmelee</surname>
<given-names>D.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>BLyS: Member of the tumor necrosis factor family and B lymphocyte stimulator</article-title>
<source>Science</source>
<year>1999</year>
<volume>285</volume>
<fpage>260</fpage>
<lpage>263</lpage>
<pub-id pub-id-type="pmid">10398604</pub-id>
</element-citation>
</ref>
<ref id="B24">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dinarello</surname>
<given-names>C.A.</given-names>
</name>
</person-group>
<article-title>Interleukin-1 in the pathogenesis and treatment of inflammatory diseases</article-title>
<source>Blood</source>
<year>2011</year>
<volume>117</volume>
<fpage>3720</fpage>
<lpage>3732</lpage>
<pub-id pub-id-type="pmid">21304099</pub-id>
</element-citation>
</ref>
<ref id="B25">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yost</surname>
<given-names>H.J.</given-names>
</name>
<name>
<surname>Lindquist</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>RNA splicing is interrupted by heat shock and is rescued by heat shock protein synthesis</article-title>
<source>Cell</source>
<year>1986</year>
<volume>45</volume>
<fpage>185</fpage>
<lpage>193</lpage>
<pub-id pub-id-type="pmid">2421918</pub-id>
</element-citation>
</ref>
<ref id="B26">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bell</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Neilson</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Pellegrini</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Effect of heat shock on ribosome synthesis in Drosophila melanogaster</article-title>
<source>Mol. Cell Biol.</source>
<year>1988</year>
<volume>8</volume>
<fpage>91</fpage>
<lpage>95</lpage>
<pub-id pub-id-type="pmid">3122028</pub-id>
</element-citation>
</ref>
<ref id="B27">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shalgi</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Hurt</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Lindquist</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Burge</surname>
<given-names>C.B.</given-names>
</name>
</person-group>
<article-title>Widespread inhibition of posttranscriptional splicing shapes the cellular transcriptome following heat shock</article-title>
<source>Cell Rep.</source>
<year>2014</year>
<volume>7</volume>
<fpage>1362</fpage>
<lpage>1370</lpage>
<pub-id pub-id-type="pmid">24857664</pub-id>
</element-citation>
</ref>
<ref id="B28">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dresios</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Aschrafi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Owens</surname>
<given-names>G.C.</given-names>
</name>
<name>
<surname>Vanderklish</surname>
<given-names>P.W.</given-names>
</name>
<name>
<surname>Edelman</surname>
<given-names>G.M.</given-names>
</name>
<name>
<surname>Mauro</surname>
<given-names>V.P.</given-names>
</name>
</person-group>
<article-title>Cold stress-induced protein Rbm3 binds 60S ribosomal subunits, alters microRNA levels, and enhances global protein synthesis</article-title>
<source>Proc. Natl. Acad. Sci. U. S. A.</source>
<year>2005</year>
<volume>102</volume>
<fpage>1865</fpage>
<lpage>1870</lpage>
<pub-id pub-id-type="pmid">15684048</pub-id>
</element-citation>
</ref>
<ref id="B29">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pilotte</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Dupont-Versteegden</surname>
<given-names>E.E.</given-names>
</name>
<name>
<surname>Vanderklish</surname>
<given-names>P.W.</given-names>
</name>
</person-group>
<article-title>Widespread regulation of miRNA biogenesis at the Dicer step by the cold-inducible RNA-binding protein, RBM3</article-title>
<source>PLoS One</source>
<year>2011</year>
<volume>6</volume>
<fpage>e28446</fpage>
<pub-id pub-id-type="pmid">22145045</pub-id>
</element-citation>
</ref>
<ref id="B30">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chanput</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Mes</surname>
<given-names>J.J.</given-names>
</name>
<name>
<surname>Wichers</surname>
<given-names>H.J.</given-names>
</name>
</person-group>
<article-title>THP-1 cell line: An in vitro cell model for immune modulation approach</article-title>
<source>Int. Immunopharmacol.</source>
<year>2014</year>
<volume>23</volume>
<fpage>37</fpage>
<lpage>45</lpage>
<pub-id pub-id-type="pmid">25130606</pub-id>
</element-citation>
</ref>
<ref id="B31">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roger</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Lugrin</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Le Roy</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Goy</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Mombelli</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Koessler</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>X.C.</given-names>
</name>
<name>
<surname>Chanson</surname>
<given-names>A.L.</given-names>
</name>
<name>
<surname>Reymond</surname>
<given-names>M.K.</given-names>
</name>
<name>
<surname>Miconnet</surname>
<given-names>I.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Histone deacetylase inhibitors impair innate immune responses to Toll-like receptor agonists and to infection</article-title>
<source>Blood</source>
<year>2011</year>
<volume>117</volume>
<fpage>1205</fpage>
<lpage>1217</lpage>
<pub-id pub-id-type="pmid">20956800</pub-id>
</element-citation>
</ref>
<ref id="B32">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kelada</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sethupathy</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Okoye</surname>
<given-names>I.S.</given-names>
</name>
<name>
<surname>Kistasis</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Czieso</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>White</surname>
<given-names>S.D.</given-names>
</name>
<name>
<surname>Chou</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Martens</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Ricklefs</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Virtaneva</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>miR-182 and miR-10a are key regulators of Treg specialisation and stability during Schistosome and Leishmania-associated inflammation</article-title>
<source>PLoS Pathog.</source>
<year>2013</year>
<volume>9</volume>
<fpage>e1003451</fpage>
<pub-id pub-id-type="pmid">23825948</pub-id>
</element-citation>
</ref>
<ref id="B33">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Meng</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages</article-title>
<source>Cardiovasc. Res.</source>
<year>2009</year>
<volume>83</volume>
<fpage>131</fpage>
<lpage>139</lpage>
<pub-id pub-id-type="pmid">19377067</pub-id>
</element-citation>
</ref>
<ref id="B34">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ceribelli</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Dominguez-Gutierrez</surname>
<given-names>P.R.</given-names>
</name>
<name>
<surname>Nahid</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Satoh</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>E.K.</given-names>
</name>
</person-group>
<article-title>MicroRNAs in systemic rheumatic diseases</article-title>
<source>Arthritis Res. Ther.</source>
<year>2011</year>
<volume>13</volume>
<fpage>229</fpage>
<pub-id pub-id-type="pmid">21787439</pub-id>
</element-citation>
</ref>
<ref id="B35">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ding</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Long</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yin</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Q.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Decreased microRNA-142–3p/5p expression causes CD4+ T cell activation and B cell hyperstimulation in systemic lupus erythematosus</article-title>
<source>Arthritis Rheum.</source>
<year>2012</year>
<volume>64</volume>
<fpage>2953</fpage>
<lpage>2963</lpage>
<pub-id pub-id-type="pmid">22549634</pub-id>
</element-citation>
</ref>
<ref id="B36">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Qian</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Ge</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>The regulation of Toll-like receptor 2 by miR-143 suppresses the invasion and migration of a subset of human colorectal carcinoma cells</article-title>
<source>Mol. Cancer</source>
<year>2013</year>
<volume>12</volume>
<fpage>77</fpage>
<pub-id pub-id-type="pmid">23866094</pub-id>
</element-citation>
</ref>
<ref id="B37">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ehlen</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Brennan</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Nodin</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>O'Connor</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Eberhard</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Alvarado-Kristensson</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Jeffrey</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Manjer</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Brandstedt</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Uhlen</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Expression of the RNA-binding protein RBM3 is associated with a favourable prognosis and cisplatin sensitivity in epithelial ovarian cancer</article-title>
<source>J. Transl. Med.</source>
<year>2010</year>
<volume>8</volume>
<fpage>78</fpage>
<pub-id pub-id-type="pmid">20727170</pub-id>
</element-citation>
</ref>
<ref id="B38">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pham</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Rodriguez</surname>
<given-names>C.E.</given-names>
</name>
<name>
<surname>Donald</surname>
<given-names>G.W.</given-names>
</name>
<name>
<surname>Hertzer</surname>
<given-names>K.M.</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>X.S.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>H.H.</given-names>
</name>
<name>
<surname>Moro</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Reber</surname>
<given-names>H.A.</given-names>
</name>
<name>
<surname>Hines</surname>
<given-names>O.J.</given-names>
</name>
<name>
<surname>Eibl</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>miR-143 decreases COX-2 mRNA stability and expression in pancreatic cancer cells</article-title>
<source>Biochem. Biophys. Res. Commun.</source>
<year>2013</year>
<volume>439</volume>
<fpage>6</fpage>
<lpage>11</lpage>
<pub-id pub-id-type="pmid">23973710</pub-id>
</element-citation>
</ref>
<ref id="B39">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Varambally</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Maher</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Chockley</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Toubai</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Malter</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Nieves</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Tawara</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Targeting of microRNA-142–3p in dendritic cells regulates endotoxin-induced mortality</article-title>
<source>Blood</source>
<year>2011</year>
<volume>117</volume>
<fpage>6172</fpage>
<lpage>6183</lpage>
<pub-id pub-id-type="pmid">21474672</pub-id>
</element-citation>
</ref>
<ref id="B40">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sharma</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Bishopric</surname>
<given-names>N.H.</given-names>
</name>
</person-group>
<article-title>Repression of miR-142 by p300 and MAPK is required for survival signalling via gp130 during adaptive hypertrophy</article-title>
<source>EMBO Mol. Med.</source>
<year>2012</year>
<volume>4</volume>
<fpage>617</fpage>
<lpage>632</lpage>
<pub-id pub-id-type="pmid">22367739</pub-id>
</element-citation>
</ref>
<ref id="B41">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dinarello</surname>
<given-names>C.A.</given-names>
</name>
</person-group>
<article-title>Infection, fever, and exogenous and endogenous pyrogens: some concepts have changed</article-title>
<source>J. Endotoxin Res.</source>
<year>2004</year>
<volume>10</volume>
<fpage>201</fpage>
<lpage>222</lpage>
<pub-id pub-id-type="pmid">15373964</pub-id>
</element-citation>
</ref>
<ref id="B42">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bernheim</surname>
<given-names>H.A.</given-names>
</name>
<name>
<surname>Kluger</surname>
<given-names>M.J.</given-names>
</name>
</person-group>
<article-title>Fever and antipyresis in the lizard Dipsosaurus dorsalis</article-title>
<source>Am. J. Physiol.</source>
<year>1976</year>
<volume>231</volume>
<fpage>198</fpage>
<lpage>203</lpage>
<pub-id pub-id-type="pmid">961860</pub-id>
</element-citation>
</ref>
<ref id="B43">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rottiers</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Naar</surname>
<given-names>A.M.</given-names>
</name>
</person-group>
<article-title>MicroRNAs in metabolism and metabolic disorders</article-title>
<source>Nat. Rev. Mol. Cell Biol.</source>
<year>2012</year>
<volume>13</volume>
<fpage>239</fpage>
<lpage>250</lpage>
<pub-id pub-id-type="pmid">22436747</pub-id>
</element-citation>
</ref>
<ref id="B44">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roderburg</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Luedde</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Vargas Cardenas</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Vucur</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Scholten</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Frey</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Koch</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Trautwein</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Tacke</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Luedde</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Circulating microRNA-150 serum levels predict survival in patients with critical illness and sepsis</article-title>
<source>PLoS One</source>
<year>2013</year>
<volume>8</volume>
<fpage>e54612</fpage>
<pub-id pub-id-type="pmid">23372743</pub-id>
</element-citation>
</ref>
<ref id="B45">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Murakawa</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yin</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Landthaler</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Cold-induced RNA-binding proteins regulate circadian gene expression by controlling alternative polyadenylation</article-title>
<source>Sci. Rep.</source>
<year>2013</year>
<volume>3</volume>
<fpage>2054</fpage>
<pub-id pub-id-type="pmid">23792593</pub-id>
</element-citation>
</ref>
<ref id="B46">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Na</surname>
<given-names>Y.-J.</given-names>
</name>
<name>
<surname>Sung</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S.C.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>Y.-J.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>Y.J.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>W.-Y.</given-names>
</name>
<name>
<surname>Shin</surname>
<given-names>H.S.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>J.H.</given-names>
</name>
</person-group>
<article-title>Comprehensive analysis of microRNA-mRNA co-expression in circadian rhythm</article-title>
<source>Exp. Mol. Med.</source>
<year>2009</year>
<volume>41</volume>
<fpage>638</fpage>
<lpage>647</lpage>
<pub-id pub-id-type="pmid">19478556</pub-id>
</element-citation>
</ref>
<ref id="B47">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Corry</surname>
<given-names>J.J.</given-names>
</name>
</person-group>
<article-title>Use of hypothermia in the intensive care unit</article-title>
<source>World J. Crit. Care Med.</source>
<year>2012</year>
<volume>1</volume>
<fpage>106</fpage>
<lpage>122</lpage>
<pub-id pub-id-type="pmid">24701408</pub-id>
</element-citation>
</ref>
<ref id="B48">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gouel-Cheron</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Allaouchiche</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Guignant</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Davin</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Floccard</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Monneret</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>AzuRea</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Early interleukin-6 and slope of monocyte human leukocyte antigen-DR: a powerful association to predict the development of sepsis after major trauma</article-title>
<source>PLoS One</source>
<year>2012</year>
<volume>7</volume>
<fpage>e33095</fpage>
<pub-id pub-id-type="pmid">22431998</pub-id>
</element-citation>
</ref>
<ref id="B49">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rybka</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Butrym</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Wrobel</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Jazwiec</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Stefanko</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Dobrzynska</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Poreba</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Kuliczkowski</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>The expression of Toll-like receptors and development of severe sepsis in patients with acute myeloid leukemias after induction chemotherapy</article-title>
<source>Med. Oncol.</source>
<year>2014</year>
<volume>31</volume>
<fpage>319</fpage>
<pub-id pub-id-type="pmid">25412934</pub-id>
</element-citation>
</ref>
<ref id="B50">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brogliato</surname>
<given-names>A.R.</given-names>
</name>
<name>
<surname>Antunes</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>Carvalho</surname>
<given-names>R.S.</given-names>
</name>
<name>
<surname>Monteiro</surname>
<given-names>A.P.</given-names>
</name>
<name>
<surname>Tinoco</surname>
<given-names>R.F.</given-names>
</name>
<name>
<surname>Bozza</surname>
<given-names>M.T.</given-names>
</name>
<name>
<surname>Canetti</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Peters-Golden</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kunkel</surname>
<given-names>S.L.</given-names>
</name>
<name>
<surname>Vianna-Jorge</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ketoprofen impairs immunosuppression induced by severe sepsis and reveals an important role for prostaglandin E2</article-title>
<source>Shock</source>
<year>2012</year>
<volume>38</volume>
<fpage>620</fpage>
<lpage>629</lpage>
<pub-id pub-id-type="pmid">23143054</pub-id>
</element-citation>
</ref>
<ref id="B51">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lv</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Yi</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Kwon</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Dai</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Anti-TNF-alpha therapy for patients with sepsis: a systematic meta-analysis</article-title>
<source>Int. J. Clin. Pract.</source>
<year>2014</year>
<volume>68</volume>
<fpage>520</fpage>
<lpage>528</lpage>
<pub-id pub-id-type="pmid">24548627</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0005669 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0005669 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024