Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000552 ( Pmc/Corpus ); précédent : 0005519; suivant : 0005530 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification, evolution, and expression partitioning of miRNAs in allopolyploid
<italic>Brassica napus</italic>
</title>
<author>
<name sortKey="Shen, Enhui" sort="Shen, Enhui" uniqKey="Shen E" first="Enhui" last="Shen">Enhui Shen</name>
<affiliation>
<nlm:aff id="AF0001">
<institution>Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University</institution>
,
<addr-line>Hangzhou 310058</addr-line>
,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zou, Jun" sort="Zou, Jun" uniqKey="Zou J" first="Jun" last="Zou">Jun Zou</name>
<affiliation>
<nlm:aff id="AF0002">
<institution>National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University</institution>
,
<addr-line>Wuhan 430070</addr-line>
,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hubertus Behrens, Falk" sort="Hubertus Behrens, Falk" uniqKey="Hubertus Behrens F" first="Falk" last="Hubertus Behrens">Falk Hubertus Behrens</name>
<affiliation>
<nlm:aff id="AF0003">
<institution>Department of Molecular Phytopathology and Biotechnology, Christian-Albrechts University of Kiel</institution>
,
<addr-line>Hermann Rodewald Str. 9, D-24118 Kiel</addr-line>
,
<country>Germany</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Li" sort="Chen, Li" uniqKey="Chen L" first="Li" last="Chen">Li Chen</name>
<affiliation>
<nlm:aff id="AF0001">
<institution>Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University</institution>
,
<addr-line>Hangzhou 310058</addr-line>
,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ye, Chuyu" sort="Ye, Chuyu" uniqKey="Ye C" first="Chuyu" last="Ye">Chuyu Ye</name>
<affiliation>
<nlm:aff id="AF0001">
<institution>Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University</institution>
,
<addr-line>Hangzhou 310058</addr-line>
,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dai, Shutao" sort="Dai, Shutao" uniqKey="Dai S" first="Shutao" last="Dai">Shutao Dai</name>
<affiliation>
<nlm:aff id="AF0002">
<institution>National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University</institution>
,
<addr-line>Wuhan 430070</addr-line>
,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Ruiyan" sort="Li, Ruiyan" uniqKey="Li R" first="Ruiyan" last="Li">Ruiyan Li</name>
<affiliation>
<nlm:aff id="AF0002">
<institution>National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University</institution>
,
<addr-line>Wuhan 430070</addr-line>
,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ni, Meng" sort="Ni, Meng" uniqKey="Ni M" first="Meng" last="Ni">Meng Ni</name>
<affiliation>
<nlm:aff id="AF0002">
<institution>National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University</institution>
,
<addr-line>Wuhan 430070</addr-line>
,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Xiaoxue" sort="Jiang, Xiaoxue" uniqKey="Jiang X" first="Xiaoxue" last="Jiang">Xiaoxue Jiang</name>
<affiliation>
<nlm:aff id="AF0002">
<institution>National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University</institution>
,
<addr-line>Wuhan 430070</addr-line>
,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Qiu, Jie" sort="Qiu, Jie" uniqKey="Qiu J" first="Jie" last="Qiu">Jie Qiu</name>
<affiliation>
<nlm:aff id="AF0001">
<institution>Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University</institution>
,
<addr-line>Hangzhou 310058</addr-line>
,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Yang" sort="Liu, Yang" uniqKey="Liu Y" first="Yang" last="Liu">Yang Liu</name>
<affiliation>
<nlm:aff id="AF0001">
<institution>Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University</institution>
,
<addr-line>Hangzhou 310058</addr-line>
,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Weidi" sort="Wang, Weidi" uniqKey="Wang W" first="Weidi" last="Wang">Weidi Wang</name>
<affiliation>
<nlm:aff id="AF0001">
<institution>Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University</institution>
,
<addr-line>Hangzhou 310058</addr-line>
,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Qian Hao" sort="Zhu, Qian Hao" uniqKey="Zhu Q" first="Qian-Hao" last="Zhu">Qian-Hao Zhu</name>
<affiliation>
<nlm:aff id="AF0004">
<institution>CSIRO Agriculture Flagship</institution>
,
<addr-line>Canberra, ACT2601</addr-line>
,
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chalhoub, Boulos" sort="Chalhoub, Boulos" uniqKey="Chalhoub B" first="Boulos" last="Chalhoub">Boulos Chalhoub</name>
<affiliation>
<nlm:aff id="AF0005">
<institution>Organization and Evolution of Plant Genomes, Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche 1165 (Institut National de Recherche Agronomique, Centre National de la Recherche Scientifique, Université Evry Val d’Essonne)</institution>
,
<addr-line>Evry 91057</addr-line>
,
<country>France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bancroft, Ian" sort="Bancroft, Ian" uniqKey="Bancroft I" first="Ian" last="Bancroft">Ian Bancroft</name>
<affiliation>
<nlm:aff id="AF0006">
<institution>Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York</institution>
,
<addr-line>Wentworth Way, Heslington, York YO10 5DD</addr-line>
,
<country>UK</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Meng, Jinling" sort="Meng, Jinling" uniqKey="Meng J" first="Jinling" last="Meng">Jinling Meng</name>
<affiliation>
<nlm:aff id="AF0002">
<institution>National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University</institution>
,
<addr-line>Wuhan 430070</addr-line>
,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cai, Daguang" sort="Cai, Daguang" uniqKey="Cai D" first="Daguang" last="Cai">Daguang Cai</name>
<affiliation>
<nlm:aff id="AF0003">
<institution>Department of Molecular Phytopathology and Biotechnology, Christian-Albrechts University of Kiel</institution>
,
<addr-line>Hermann Rodewald Str. 9, D-24118 Kiel</addr-line>
,
<country>Germany</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fan, Longjiang" sort="Fan, Longjiang" uniqKey="Fan L" first="Longjiang" last="Fan">Longjiang Fan</name>
<affiliation>
<nlm:aff id="AF0001">
<institution>Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University</institution>
,
<addr-line>Hangzhou 310058</addr-line>
,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26357884</idno>
<idno type="pmc">4765792</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765792</idno>
<idno type="RBID">PMC:4765792</idno>
<idno type="doi">10.1093/jxb/erv420</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000552</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000552</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Identification, evolution, and expression partitioning of miRNAs in allopolyploid
<italic>Brassica napus</italic>
</title>
<author>
<name sortKey="Shen, Enhui" sort="Shen, Enhui" uniqKey="Shen E" first="Enhui" last="Shen">Enhui Shen</name>
<affiliation>
<nlm:aff id="AF0001">
<institution>Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University</institution>
,
<addr-line>Hangzhou 310058</addr-line>
,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zou, Jun" sort="Zou, Jun" uniqKey="Zou J" first="Jun" last="Zou">Jun Zou</name>
<affiliation>
<nlm:aff id="AF0002">
<institution>National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University</institution>
,
<addr-line>Wuhan 430070</addr-line>
,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hubertus Behrens, Falk" sort="Hubertus Behrens, Falk" uniqKey="Hubertus Behrens F" first="Falk" last="Hubertus Behrens">Falk Hubertus Behrens</name>
<affiliation>
<nlm:aff id="AF0003">
<institution>Department of Molecular Phytopathology and Biotechnology, Christian-Albrechts University of Kiel</institution>
,
<addr-line>Hermann Rodewald Str. 9, D-24118 Kiel</addr-line>
,
<country>Germany</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Li" sort="Chen, Li" uniqKey="Chen L" first="Li" last="Chen">Li Chen</name>
<affiliation>
<nlm:aff id="AF0001">
<institution>Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University</institution>
,
<addr-line>Hangzhou 310058</addr-line>
,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ye, Chuyu" sort="Ye, Chuyu" uniqKey="Ye C" first="Chuyu" last="Ye">Chuyu Ye</name>
<affiliation>
<nlm:aff id="AF0001">
<institution>Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University</institution>
,
<addr-line>Hangzhou 310058</addr-line>
,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dai, Shutao" sort="Dai, Shutao" uniqKey="Dai S" first="Shutao" last="Dai">Shutao Dai</name>
<affiliation>
<nlm:aff id="AF0002">
<institution>National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University</institution>
,
<addr-line>Wuhan 430070</addr-line>
,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Ruiyan" sort="Li, Ruiyan" uniqKey="Li R" first="Ruiyan" last="Li">Ruiyan Li</name>
<affiliation>
<nlm:aff id="AF0002">
<institution>National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University</institution>
,
<addr-line>Wuhan 430070</addr-line>
,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ni, Meng" sort="Ni, Meng" uniqKey="Ni M" first="Meng" last="Ni">Meng Ni</name>
<affiliation>
<nlm:aff id="AF0002">
<institution>National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University</institution>
,
<addr-line>Wuhan 430070</addr-line>
,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Xiaoxue" sort="Jiang, Xiaoxue" uniqKey="Jiang X" first="Xiaoxue" last="Jiang">Xiaoxue Jiang</name>
<affiliation>
<nlm:aff id="AF0002">
<institution>National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University</institution>
,
<addr-line>Wuhan 430070</addr-line>
,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Qiu, Jie" sort="Qiu, Jie" uniqKey="Qiu J" first="Jie" last="Qiu">Jie Qiu</name>
<affiliation>
<nlm:aff id="AF0001">
<institution>Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University</institution>
,
<addr-line>Hangzhou 310058</addr-line>
,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Yang" sort="Liu, Yang" uniqKey="Liu Y" first="Yang" last="Liu">Yang Liu</name>
<affiliation>
<nlm:aff id="AF0001">
<institution>Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University</institution>
,
<addr-line>Hangzhou 310058</addr-line>
,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Weidi" sort="Wang, Weidi" uniqKey="Wang W" first="Weidi" last="Wang">Weidi Wang</name>
<affiliation>
<nlm:aff id="AF0001">
<institution>Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University</institution>
,
<addr-line>Hangzhou 310058</addr-line>
,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Qian Hao" sort="Zhu, Qian Hao" uniqKey="Zhu Q" first="Qian-Hao" last="Zhu">Qian-Hao Zhu</name>
<affiliation>
<nlm:aff id="AF0004">
<institution>CSIRO Agriculture Flagship</institution>
,
<addr-line>Canberra, ACT2601</addr-line>
,
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chalhoub, Boulos" sort="Chalhoub, Boulos" uniqKey="Chalhoub B" first="Boulos" last="Chalhoub">Boulos Chalhoub</name>
<affiliation>
<nlm:aff id="AF0005">
<institution>Organization and Evolution of Plant Genomes, Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche 1165 (Institut National de Recherche Agronomique, Centre National de la Recherche Scientifique, Université Evry Val d’Essonne)</institution>
,
<addr-line>Evry 91057</addr-line>
,
<country>France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bancroft, Ian" sort="Bancroft, Ian" uniqKey="Bancroft I" first="Ian" last="Bancroft">Ian Bancroft</name>
<affiliation>
<nlm:aff id="AF0006">
<institution>Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York</institution>
,
<addr-line>Wentworth Way, Heslington, York YO10 5DD</addr-line>
,
<country>UK</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Meng, Jinling" sort="Meng, Jinling" uniqKey="Meng J" first="Jinling" last="Meng">Jinling Meng</name>
<affiliation>
<nlm:aff id="AF0002">
<institution>National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University</institution>
,
<addr-line>Wuhan 430070</addr-line>
,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cai, Daguang" sort="Cai, Daguang" uniqKey="Cai D" first="Daguang" last="Cai">Daguang Cai</name>
<affiliation>
<nlm:aff id="AF0003">
<institution>Department of Molecular Phytopathology and Biotechnology, Christian-Albrechts University of Kiel</institution>
,
<addr-line>Hermann Rodewald Str. 9, D-24118 Kiel</addr-line>
,
<country>Germany</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fan, Longjiang" sort="Fan, Longjiang" uniqKey="Fan L" first="Longjiang" last="Fan">Longjiang Fan</name>
<affiliation>
<nlm:aff id="AF0001">
<institution>Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University</institution>
,
<addr-line>Hangzhou 310058</addr-line>
,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Experimental Botany</title>
<idno type="ISSN">0022-0957</idno>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The recently published genome of
<italic>Brassica napus</italic>
offers for the first time the opportunity to gain insights into the genomic organization and the evolution of miRNAs in oilseed rape. In this study, 12 small RNA libraries from two
<italic>B. napus</italic>
cultivars (Tapidor and Ningyou7) and their four double-haploid lines were sequenced, employing the newly sequenced
<italic>B. napus</italic>
genome, together with genomes of its progenitors
<italic>Brassica rapa</italic>
and
<italic>Brassica oleracea</italic>
. A total of 645 miRNAs including 280 conserved and 365 novel miRNAs were identified. Comparative analysis revealed a high level of genomic conservation of
<italic>MIRNA</italic>
s (75.9%) between the subgenomes of
<italic>B. napus</italic>
and its two progenitors’ genomes, and
<italic>MIRNA</italic>
lost/gain events (133) occurred in
<italic>B. napus</italic>
after its speciation. Furthermore, significant partitioning of miRNA expressions between the two subgenomes in
<italic>B. napus</italic>
was detected. The data of degradome sequencing, miRNA-mediated cleavage, and expression analyses support specific interactions between miRNAs and their targets in the modulation of diverse physiological processes in roots and leaves, as well as in biosynthesis of, for example, glucosinolates and lipids in oilseed rape. These data provide a first genome-wide view on the origin, evolution, and genomic organization of
<italic>B. napus MIRNA</italic>
s.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Achard, P" uniqKey="Achard P">P Achard</name>
</author>
<author>
<name sortKey="Herr, A" uniqKey="Herr A">A Herr</name>
</author>
<author>
<name sortKey="Baulcombe, Dc" uniqKey="Baulcombe D">DC Baulcombe</name>
</author>
<author>
<name sortKey="Harberd, Np" uniqKey="Harberd N">NP Harberd</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Allen, E" uniqKey="Allen E">E Allen</name>
</author>
<author>
<name sortKey="Xie, Z" uniqKey="Xie Z">Z Xie</name>
</author>
<author>
<name sortKey="Gustafson, Am" uniqKey="Gustafson A">AM Gustafson</name>
</author>
<author>
<name sortKey="Carrington, Jc" uniqKey="Carrington J">JC Carrington</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bancroft, I" uniqKey="Bancroft I">I Bancroft</name>
</author>
<author>
<name sortKey="Morgan, C" uniqKey="Morgan C">C Morgan</name>
</author>
<author>
<name sortKey="Fraser, F" uniqKey="Fraser F">F Fraser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Berger, D" uniqKey="Berger D">D Berger</name>
</author>
<author>
<name sortKey="Altmann, T" uniqKey="Altmann T">T Altmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chalhoub, B" uniqKey="Chalhoub B">B Chalhoub</name>
</author>
<author>
<name sortKey="Denoeud, F" uniqKey="Denoeud F">F Denoeud</name>
</author>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chi, Wt" uniqKey="Chi W">WT Chi</name>
</author>
<author>
<name sortKey="Fung, Rw" uniqKey="Fung R">RW Fung</name>
</author>
<author>
<name sortKey="Liu, Hc" uniqKey="Liu H">HC Liu</name>
</author>
<author>
<name sortKey="Hsu, Cc" uniqKey="Hsu C">CC Hsu</name>
</author>
<author>
<name sortKey="Charng, Yy" uniqKey="Charng Y">YY Charng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dai, X" uniqKey="Dai X">X Dai</name>
</author>
<author>
<name sortKey="Zhao, Px" uniqKey="Zhao P">PX Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Emery, Jf" uniqKey="Emery J">JF Emery</name>
</author>
<author>
<name sortKey="Floyd, Sk" uniqKey="Floyd S">SK Floyd</name>
</author>
<author>
<name sortKey="Alvarez, J" uniqKey="Alvarez J">J Alvarez</name>
</author>
<author>
<name sortKey="Eshed, Y" uniqKey="Eshed Y">Y Eshed</name>
</author>
<author>
<name sortKey="Hawker, Np" uniqKey="Hawker N">NP Hawker</name>
</author>
<author>
<name sortKey="Izhaki, A" uniqKey="Izhaki A">A Izhaki</name>
</author>
<author>
<name sortKey="Baum, Sf" uniqKey="Baum S">SF Baum</name>
</author>
<author>
<name sortKey="Bowman, Jl" uniqKey="Bowman J">JL Bowman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gong, L" uniqKey="Gong L">L Gong</name>
</author>
<author>
<name sortKey="Kakrana, A" uniqKey="Kakrana A">A Kakrana</name>
</author>
<author>
<name sortKey="Arikit, S" uniqKey="Arikit S">S Arikit</name>
</author>
<author>
<name sortKey="Meyers, Bc" uniqKey="Meyers B">BC Meyers</name>
</author>
<author>
<name sortKey="Wendel, Jf" uniqKey="Wendel J">JF Wendel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grubb, Cd" uniqKey="Grubb C">CD Grubb</name>
</author>
<author>
<name sortKey="Abel, S" uniqKey="Abel S">S Abel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guo, Hs" uniqKey="Guo H">HS Guo</name>
</author>
<author>
<name sortKey="Xie, Q" uniqKey="Xie Q">Q Xie</name>
</author>
<author>
<name sortKey="Fei, Jf" uniqKey="Fei J">JF Fei</name>
</author>
<author>
<name sortKey="Chua, Nh" uniqKey="Chua N">NH Chua</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="He, Xf" uniqKey="He X">XF He</name>
</author>
<author>
<name sortKey="Fang, Yy" uniqKey="Fang Y">YY Fang</name>
</author>
<author>
<name sortKey="Feng, L" uniqKey="Feng L">L Feng</name>
</author>
<author>
<name sortKey="Guo, Hs" uniqKey="Guo H">HS Guo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, D" uniqKey="Huang D">D Huang</name>
</author>
<author>
<name sortKey="Koh, C" uniqKey="Koh C">C Koh</name>
</author>
<author>
<name sortKey="Feurtado, Ja" uniqKey="Feurtado J">JA Feurtado</name>
</author>
<author>
<name sortKey="Tsang, Ew" uniqKey="Tsang E">EW Tsang</name>
</author>
<author>
<name sortKey="Cutler, Aj" uniqKey="Cutler A">AJ Cutler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jones Rhoades, Mw" uniqKey="Jones Rhoades M">MW Jones-Rhoades</name>
</author>
<author>
<name sortKey="Bartel, Dp" uniqKey="Bartel D">DP Bartel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kavanagh, Kl" uniqKey="Kavanagh K">KL Kavanagh</name>
</author>
<author>
<name sortKey="Jornvall, H" uniqKey="Jornvall H">H Jornvall</name>
</author>
<author>
<name sortKey="Persson, B" uniqKey="Persson B">B Persson</name>
</author>
<author>
<name sortKey="Oppermann, U" uniqKey="Oppermann U">U Oppermann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kenan Eichler, M" uniqKey="Kenan Eichler M">M Kenan-Eichler</name>
</author>
<author>
<name sortKey="Leshkowitz, D" uniqKey="Leshkowitz D">D Leshkowitz</name>
</author>
<author>
<name sortKey="Tal, L" uniqKey="Tal L">L Tal</name>
</author>
<author>
<name sortKey="Noor, E" uniqKey="Noor E">E Noor</name>
</author>
<author>
<name sortKey="Melamed Bessudo, C" uniqKey="Melamed Bessudo C">C Melamed-Bessudo</name>
</author>
<author>
<name sortKey="Feldman, M" uniqKey="Feldman M">M Feldman</name>
</author>
<author>
<name sortKey="Levy, Aa" uniqKey="Levy A">AA Levy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khraiwesh, B" uniqKey="Khraiwesh B">B Khraiwesh</name>
</author>
<author>
<name sortKey="Zhu, Jk" uniqKey="Zhu J">JK Zhu</name>
</author>
<author>
<name sortKey="Zhu, J" uniqKey="Zhu J">J Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Korbes, Ap" uniqKey="Korbes A">AP Korbes</name>
</author>
<author>
<name sortKey="Machado, Rd" uniqKey="Machado R">RD Machado</name>
</author>
<author>
<name sortKey="Guzman, F" uniqKey="Guzman F">F Guzman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krzywinski, M" uniqKey="Krzywinski M">M Krzywinski</name>
</author>
<author>
<name sortKey="Schein, J" uniqKey="Schein J">J Schein</name>
</author>
<author>
<name sortKey="Birol, I" uniqKey="Birol I">I Birol</name>
</author>
<author>
<name sortKey="Connors, J" uniqKey="Connors J">J Connors</name>
</author>
<author>
<name sortKey="Gascoyne, R" uniqKey="Gascoyne R">R Gascoyne</name>
</author>
<author>
<name sortKey="Horsman, D" uniqKey="Horsman D">D Horsman</name>
</author>
<author>
<name sortKey="Jones, Sj" uniqKey="Jones S">SJ Jones</name>
</author>
<author>
<name sortKey="Marra, Ma" uniqKey="Marra M">MA Marra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Laufs, P" uniqKey="Laufs P">P Laufs</name>
</author>
<author>
<name sortKey="Peaucelle, A" uniqKey="Peaucelle A">A Peaucelle</name>
</author>
<author>
<name sortKey="Morin, H" uniqKey="Morin H">H Morin</name>
</author>
<author>
<name sortKey="Traas, J" uniqKey="Traas J">J Traas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Fg" uniqKey="Li F">FG Li</name>
</author>
<author>
<name sortKey="Fan, Gy" uniqKey="Fan G">GY Fan</name>
</author>
<author>
<name sortKey="Lu, Cr" uniqKey="Lu C">CR Lu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li Beisson, Y" uniqKey="Li Beisson Y">Y Li-Beisson</name>
</author>
<author>
<name sortKey="Shorrosh, B" uniqKey="Shorrosh B">B Shorrosh</name>
</author>
<author>
<name sortKey="Beisson, F" uniqKey="Beisson F">F Beisson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Hh" uniqKey="Liu H">HH Liu</name>
</author>
<author>
<name sortKey="Tian, X" uniqKey="Tian X">X Tian</name>
</author>
<author>
<name sortKey="Li, Yj" uniqKey="Li Y">YJ Li</name>
</author>
<author>
<name sortKey="Wu, Ca" uniqKey="Wu C">CA Wu</name>
</author>
<author>
<name sortKey="Zheng, Cc" uniqKey="Zheng C">CC Zheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Pp" uniqKey="Liu P">PP Liu</name>
</author>
<author>
<name sortKey="Montgomery, Ta" uniqKey="Montgomery T">TA Montgomery</name>
</author>
<author>
<name sortKey="Fahlgren, N" uniqKey="Fahlgren N">N Fahlgren</name>
</author>
<author>
<name sortKey="Kasschau, Kd" uniqKey="Kasschau K">KD Kasschau</name>
</author>
<author>
<name sortKey="Nonogaki, H" uniqKey="Nonogaki H">H Nonogaki</name>
</author>
<author>
<name sortKey="Carrington, Jc" uniqKey="Carrington J">JC Carrington</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S Liu</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="Yang, X" uniqKey="Yang X">X Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, C" uniqKey="Lu C">C Lu</name>
</author>
<author>
<name sortKey="Meyers, Bc" uniqKey="Meyers B">BC Meyers</name>
</author>
<author>
<name sortKey="Green, Pj" uniqKey="Green P">PJ Green</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lukasik, A" uniqKey="Lukasik A">A Lukasik</name>
</author>
<author>
<name sortKey="Pietrykowska, H" uniqKey="Pietrykowska H">H Pietrykowska</name>
</author>
<author>
<name sortKey="Paczek, L" uniqKey="Paczek L">L Paczek</name>
</author>
<author>
<name sortKey="Szweykowska Kulinska, Z" uniqKey="Szweykowska Kulinska Z">Z Szweykowska-Kulinska</name>
</author>
<author>
<name sortKey="Zielenkiewicz, P" uniqKey="Zielenkiewicz P">P Zielenkiewicz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ma, Zr" uniqKey="Ma Z">ZR Ma</name>
</author>
<author>
<name sortKey="Coruh, C" uniqKey="Coruh C">C Coruh</name>
</author>
<author>
<name sortKey="Axtell, Mj" uniqKey="Axtell M">MJ Axtell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mallory, Ac" uniqKey="Mallory A">AC Mallory</name>
</author>
<author>
<name sortKey="Bartel, Dp" uniqKey="Bartel D">DP Bartel</name>
</author>
<author>
<name sortKey="Bartel, B" uniqKey="Bartel B">B Bartel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meyers, Bc" uniqKey="Meyers B">BC Meyers</name>
</author>
<author>
<name sortKey="Axtell, Mj" uniqKey="Axtell M">MJ Axtell</name>
</author>
<author>
<name sortKey="Bartel, B" uniqKey="Bartel B">B Bartel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mugford, Sg" uniqKey="Mugford S">SG Mugford</name>
</author>
<author>
<name sortKey="Yoshimoto, N" uniqKey="Yoshimoto N">N Yoshimoto</name>
</author>
<author>
<name sortKey="Reichelt, M" uniqKey="Reichelt M">M Reichelt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Navarro, L" uniqKey="Navarro L">L Navarro</name>
</author>
<author>
<name sortKey="Dunoyer, P" uniqKey="Dunoyer P">P Dunoyer</name>
</author>
<author>
<name sortKey="Jay, F" uniqKey="Jay F">F Jay</name>
</author>
<author>
<name sortKey="Arnold, B" uniqKey="Arnold B">B Arnold</name>
</author>
<author>
<name sortKey="Dharmasiri, N" uniqKey="Dharmasiri N">N Dharmasiri</name>
</author>
<author>
<name sortKey="Estelle, M" uniqKey="Estelle M">M Estelle</name>
</author>
<author>
<name sortKey="Voinnet, O" uniqKey="Voinnet O">O Voinnet</name>
</author>
<author>
<name sortKey="Jones, Jd" uniqKey="Jones J">JD Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ng, Dw" uniqKey="Ng D">DW Ng</name>
</author>
<author>
<name sortKey="Lu, J" uniqKey="Lu J">J Lu</name>
</author>
<author>
<name sortKey="Chen, Zj" uniqKey="Chen Z">ZJ Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Niu, Y" uniqKey="Niu Y">Y Niu</name>
</author>
<author>
<name sortKey="Wu, Gz" uniqKey="Wu G">GZ Wu</name>
</author>
<author>
<name sortKey="Ye, R" uniqKey="Ye R">R Ye</name>
</author>
<author>
<name sortKey="Lin, Wh" uniqKey="Lin W">WH Lin</name>
</author>
<author>
<name sortKey="Shi, Qm" uniqKey="Shi Q">QM Shi</name>
</author>
<author>
<name sortKey="Xue, Lj" uniqKey="Xue L">LJ Xue</name>
</author>
<author>
<name sortKey="Xu, Xd" uniqKey="Xu X">XD Xu</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Du, Yg" uniqKey="Du Y">YG Du</name>
</author>
<author>
<name sortKey="Xue, Hw" uniqKey="Xue H">HW Xue</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Palatnik, Jf" uniqKey="Palatnik J">JF Palatnik</name>
</author>
<author>
<name sortKey="Allen, E" uniqKey="Allen E">E Allen</name>
</author>
<author>
<name sortKey="Wu, X" uniqKey="Wu X">X Wu</name>
</author>
<author>
<name sortKey="Schommer, C" uniqKey="Schommer C">C Schommer</name>
</author>
<author>
<name sortKey="Schwab, R" uniqKey="Schwab R">R Schwab</name>
</author>
<author>
<name sortKey="Carrington, Jc" uniqKey="Carrington J">JC Carrington</name>
</author>
<author>
<name sortKey="Weigel, D" uniqKey="Weigel D">D Weigel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Passardi, F" uniqKey="Passardi F">F Passardi</name>
</author>
<author>
<name sortKey="Longet, D" uniqKey="Longet D">D Longet</name>
</author>
<author>
<name sortKey="Penel, C" uniqKey="Penel C">C Penel</name>
</author>
<author>
<name sortKey="Dunand, C" uniqKey="Dunand C">C Dunand</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pollard, M" uniqKey="Pollard M">M Pollard</name>
</author>
<author>
<name sortKey="Beisson, F" uniqKey="Beisson F">F Beisson</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Ohlrogge, Jb" uniqKey="Ohlrogge J">JB Ohlrogge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qiu, D" uniqKey="Qiu D">D Qiu</name>
</author>
<author>
<name sortKey="Morgan, C" uniqKey="Morgan C">C Morgan</name>
</author>
<author>
<name sortKey="Shi, J" uniqKey="Shi J">J Shi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reintanz, B" uniqKey="Reintanz B">B Reintanz</name>
</author>
<author>
<name sortKey="Lehnen, M" uniqKey="Lehnen M">M Lehnen</name>
</author>
<author>
<name sortKey="Reichelt, M" uniqKey="Reichelt M">M Reichelt</name>
</author>
<author>
<name sortKey="Gershenzon, J" uniqKey="Gershenzon J">J Gershenzon</name>
</author>
<author>
<name sortKey="Kowalczyk, M" uniqKey="Kowalczyk M">M Kowalczyk</name>
</author>
<author>
<name sortKey="Sandberg, G" uniqKey="Sandberg G">G Sandberg</name>
</author>
<author>
<name sortKey="Godde, M" uniqKey="Godde M">M Godde</name>
</author>
<author>
<name sortKey="Uhl, R" uniqKey="Uhl R">R Uhl</name>
</author>
<author>
<name sortKey="Palme, K" uniqKey="Palme K">K Palme</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rogers, K" uniqKey="Rogers K">K Rogers</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schwab, R" uniqKey="Schwab R">R Schwab</name>
</author>
<author>
<name sortKey="Palatnik, Jf" uniqKey="Palatnik J">JF Palatnik</name>
</author>
<author>
<name sortKey="Riester, M" uniqKey="Riester M">M Riester</name>
</author>
<author>
<name sortKey="Schommer, C" uniqKey="Schommer C">C Schommer</name>
</author>
<author>
<name sortKey="Schmid, M" uniqKey="Schmid M">M Schmid</name>
</author>
<author>
<name sortKey="Weigel, D" uniqKey="Weigel D">D Weigel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shen, D" uniqKey="Shen D">D Shen</name>
</author>
<author>
<name sortKey="Suhrkamp, I" uniqKey="Suhrkamp I">I Suhrkamp</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S Liu</name>
</author>
<author>
<name sortKey="Menkhaus, J" uniqKey="Menkhaus J">J Menkhaus</name>
</author>
<author>
<name sortKey="Verreet, Ja" uniqKey="Verreet J">JA Verreet</name>
</author>
<author>
<name sortKey="Fan, L" uniqKey="Fan L">L Fan</name>
</author>
<author>
<name sortKey="Cai, D" uniqKey="Cai D">D Cai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Song, C" uniqKey="Song C">C Song</name>
</author>
<author>
<name sortKey="Fang, J" uniqKey="Fang J">J Fang</name>
</author>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C Wang</name>
</author>
<author>
<name sortKey="Guo, L" uniqKey="Guo L">L Guo</name>
</author>
<author>
<name sortKey="Nicholas, Kk" uniqKey="Nicholas K">KK Nicholas</name>
</author>
<author>
<name sortKey="Ma, Z" uniqKey="Ma Z">Z Ma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Song, C" uniqKey="Song C">C Song</name>
</author>
<author>
<name sortKey="Jia, Q" uniqKey="Jia Q">Q Jia</name>
</author>
<author>
<name sortKey="Fang, J" uniqKey="Fang J">J Fang</name>
</author>
<author>
<name sortKey="Li, F" uniqKey="Li F">F Li</name>
</author>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C Wang</name>
</author>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stief, A" uniqKey="Stief A">A Stief</name>
</author>
<author>
<name sortKey="Altmann, S" uniqKey="Altmann S">S Altmann</name>
</author>
<author>
<name sortKey="Hoffmann, K" uniqKey="Hoffmann K">K Hoffmann</name>
</author>
<author>
<name sortKey="Pant, Bd" uniqKey="Pant B">BD Pant</name>
</author>
<author>
<name sortKey="Scheible, Wr" uniqKey="Scheible W">WR Scheible</name>
</author>
<author>
<name sortKey="Baurle, I" uniqKey="Baurle I">I Baurle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stocks, Mb" uniqKey="Stocks M">MB Stocks</name>
</author>
<author>
<name sortKey="Moxon, S" uniqKey="Moxon S">S Moxon</name>
</author>
<author>
<name sortKey="Mapleson, D" uniqKey="Mapleson D">D Mapleson</name>
</author>
<author>
<name sortKey="Woolfenden, Hc" uniqKey="Woolfenden H">HC Woolfenden</name>
</author>
<author>
<name sortKey="Mohorianu, I" uniqKey="Mohorianu I">I Mohorianu</name>
</author>
<author>
<name sortKey="Folkes, L" uniqKey="Folkes L">L Folkes</name>
</author>
<author>
<name sortKey="Schwach, F" uniqKey="Schwach F">F Schwach</name>
</author>
<author>
<name sortKey="Dalmay, T" uniqKey="Dalmay T">T Dalmay</name>
</author>
<author>
<name sortKey="Moulton, V" uniqKey="Moulton V">V Moulton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stupar, Rm" uniqKey="Stupar R">RM Stupar</name>
</author>
<author>
<name sortKey="Hermanson, Pj" uniqKey="Hermanson P">PJ Hermanson</name>
</author>
<author>
<name sortKey="Springer, Nm" uniqKey="Springer N">NM Springer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sunkar, R" uniqKey="Sunkar R">R Sunkar</name>
</author>
<author>
<name sortKey="Li, Yf" uniqKey="Li Y">YF Li</name>
</author>
<author>
<name sortKey="Jagadeeswaran, G" uniqKey="Jagadeeswaran G">G Jagadeeswaran</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tang, S" uniqKey="Tang S">S Tang</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Li, Z" uniqKey="Li Z">Z Li</name>
</author>
<author>
<name sortKey="Gui, Y" uniqKey="Gui Y">Y Gui</name>
</author>
<author>
<name sortKey="Xiao, B" uniqKey="Xiao B">B Xiao</name>
</author>
<author>
<name sortKey="Xie, J" uniqKey="Xie J">J Xie</name>
</author>
<author>
<name sortKey="Zhu, Qh" uniqKey="Zhu Q">QH Zhu</name>
</author>
<author>
<name sortKey="Fan, L" uniqKey="Fan L">L Fan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tempel, S" uniqKey="Tempel S">S Tempel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nagaharu, N" uniqKey="Nagaharu N">N Nagaharu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vaucheret, H" uniqKey="Vaucheret H">H Vaucheret</name>
</author>
<author>
<name sortKey="Vazquez, F" uniqKey="Vazquez F">F Vazquez</name>
</author>
<author>
<name sortKey="Crete, P" uniqKey="Crete P">P Crete</name>
</author>
<author>
<name sortKey="Bartel, Dp" uniqKey="Bartel D">DP Bartel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vazquez, F" uniqKey="Vazquez F">F Vazquez</name>
</author>
<author>
<name sortKey="Legrand, S" uniqKey="Legrand S">S Legrand</name>
</author>
<author>
<name sortKey="Windels, D" uniqKey="Windels D">D Windels</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Voinnet, O" uniqKey="Voinnet O">O Voinnet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, F" uniqKey="Wang F">F Wang</name>
</author>
<author>
<name sortKey="Li, H" uniqKey="Li H">H Li</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J Li</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L Li</name>
</author>
<author>
<name sortKey="Liu, L" uniqKey="Liu L">L Liu</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L Wang</name>
</author>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C Wang</name>
</author>
<author>
<name sortKey="Gao, J" uniqKey="Gao J">J Gao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L Wang</name>
</author>
<author>
<name sortKey="Yu, S" uniqKey="Yu S">S Yu</name>
</author>
<author>
<name sortKey="Tong, C" uniqKey="Tong C">C Tong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H Wang</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Tang, H" uniqKey="Tang H">H Tang</name>
</author>
<author>
<name sortKey="Debarry, Jd" uniqKey="Debarry J">JD Debarry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Williams, L" uniqKey="Williams L">L Williams</name>
</author>
<author>
<name sortKey="Grigg, Sp" uniqKey="Grigg S">SP Grigg</name>
</author>
<author>
<name sortKey="Xie, M" uniqKey="Xie M">M Xie</name>
</author>
<author>
<name sortKey="Christensen, S" uniqKey="Christensen S">S Christensen</name>
</author>
<author>
<name sortKey="Fletcher, Jc" uniqKey="Fletcher J">JC Fletcher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wittstock, U" uniqKey="Wittstock U">U Wittstock</name>
</author>
<author>
<name sortKey="Burow, M" uniqKey="Burow M">M Burow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, Mf" uniqKey="Wu M">MF Wu</name>
</author>
<author>
<name sortKey="Tian, Q" uniqKey="Tian Q">Q Tian</name>
</author>
<author>
<name sortKey="Reed, Jw" uniqKey="Reed J">JW Reed</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xie, F" uniqKey="Xie F">F Xie</name>
</author>
<author>
<name sortKey="Zhang, B" uniqKey="Zhang B">B Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, My" uniqKey="Xu M">MY Xu</name>
</author>
<author>
<name sortKey="Dong, Y" uniqKey="Dong Y">Y Dong</name>
</author>
<author>
<name sortKey="Zhang, Qx" uniqKey="Zhang Q">QX Zhang</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L Zhang</name>
</author>
<author>
<name sortKey="Luo, Yz" uniqKey="Luo Y">YZ Luo</name>
</author>
<author>
<name sortKey="Sun, J" uniqKey="Sun J">J Sun</name>
</author>
<author>
<name sortKey="Fan, Yl" uniqKey="Fan Y">YL Fan</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, Z" uniqKey="Xu Z">Z Xu</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yao, Y" uniqKey="Yao Y">Y Yao</name>
</author>
<author>
<name sortKey="Guo, G" uniqKey="Guo G">G Guo</name>
</author>
<author>
<name sortKey="Ni, Z" uniqKey="Ni Z">Z Ni</name>
</author>
<author>
<name sortKey="Sunkar, R" uniqKey="Sunkar R">R Sunkar</name>
</author>
<author>
<name sortKey="Du, J" uniqKey="Du J">J Du</name>
</author>
<author>
<name sortKey="Zhu, Jk" uniqKey="Zhu J">JK Zhu</name>
</author>
<author>
<name sortKey="Sun, Q" uniqKey="Sun Q">Q Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, X" uniqKey="Yu X">X Yu</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H Wang</name>
</author>
<author>
<name sortKey="Lu, Y" uniqKey="Lu Y">Y Lu</name>
</author>
<author>
<name sortKey="De Ruiter, M" uniqKey="De Ruiter M">M de Ruiter</name>
</author>
<author>
<name sortKey="Cariaso, M" uniqKey="Cariaso M">M Cariaso</name>
</author>
<author>
<name sortKey="Prins, M" uniqKey="Prins M">M Prins</name>
</author>
<author>
<name sortKey="Van Tunen, A" uniqKey="Van Tunen A">A van Tunen</name>
</author>
<author>
<name sortKey="He, Y" uniqKey="He Y">Y He</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, B" uniqKey="Zhang B">B Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Tz" uniqKey="Zhang T">TZ Zhang</name>
</author>
<author>
<name sortKey="Hu, Y" uniqKey="Hu Y">Y Hu</name>
</author>
<author>
<name sortKey="Jiang, Wk" uniqKey="Jiang W">WK Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, Yt" uniqKey="Zhao Y">YT Zhao</name>
</author>
<author>
<name sortKey="Wang, M" uniqKey="Wang M">M Wang</name>
</author>
<author>
<name sortKey="Fu, Sx" uniqKey="Fu S">SX Fu</name>
</author>
<author>
<name sortKey="Yang, Wc" uniqKey="Yang W">WC Yang</name>
</author>
<author>
<name sortKey="Qi, Ck" uniqKey="Qi C">CK Qi</name>
</author>
<author>
<name sortKey="Wang, Xj" uniqKey="Wang X">XJ Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, X" uniqKey="Zhou X">X Zhou</name>
</author>
<author>
<name sortKey="Wang, G" uniqKey="Wang G">G Wang</name>
</author>
<author>
<name sortKey="Zhang, W" uniqKey="Zhang W">W Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, Zs" uniqKey="Zhou Z">ZS Zhou</name>
</author>
<author>
<name sortKey="Song, Jb" uniqKey="Song J">JB Song</name>
</author>
<author>
<name sortKey="Yang, Zm" uniqKey="Yang Z">ZM Yang</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Exp Bot</journal-id>
<journal-id journal-id-type="iso-abbrev">J. Exp. Bot</journal-id>
<journal-id journal-id-type="hwp">jexbot</journal-id>
<journal-id journal-id-type="publisher-id">exbotj</journal-id>
<journal-title-group>
<journal-title>Journal of Experimental Botany</journal-title>
</journal-title-group>
<issn pub-type="ppub">0022-0957</issn>
<issn pub-type="epub">1460-2431</issn>
<publisher>
<publisher-name>Oxford University Press</publisher-name>
<publisher-loc>UK</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26357884</article-id>
<article-id pub-id-type="pmc">4765792</article-id>
<article-id pub-id-type="doi">10.1093/jxb/erv420</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Paper</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Identification, evolution, and expression partitioning of miRNAs in allopolyploid
<italic>Brassica napus</italic>
</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Shen</surname>
<given-names>Enhui</given-names>
</name>
<xref ref-type="aff" rid="AF0001">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="c2">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zou</surname>
<given-names>Jun</given-names>
</name>
<xref ref-type="aff" rid="AF0002">
<sup>2</sup>
</xref>
<xref ref-type="corresp" rid="c2">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hubertus Behrens</surname>
<given-names>Falk</given-names>
</name>
<xref ref-type="aff" rid="AF0003">
<sup>3</sup>
</xref>
<xref ref-type="corresp" rid="c2">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chen</surname>
<given-names>Li</given-names>
</name>
<xref ref-type="aff" rid="AF0001">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ye</surname>
<given-names>Chuyu</given-names>
</name>
<xref ref-type="aff" rid="AF0001">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dai</surname>
<given-names>Shutao</given-names>
</name>
<xref ref-type="aff" rid="AF0002">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Li</surname>
<given-names>Ruiyan</given-names>
</name>
<xref ref-type="aff" rid="AF0002">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ni</surname>
<given-names>Meng</given-names>
</name>
<xref ref-type="aff" rid="AF0002">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jiang</surname>
<given-names>Xiaoxue</given-names>
</name>
<xref ref-type="aff" rid="AF0002">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Qiu</surname>
<given-names>Jie</given-names>
</name>
<xref ref-type="aff" rid="AF0001">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Liu</surname>
<given-names>Yang</given-names>
</name>
<xref ref-type="aff" rid="AF0001">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wang</surname>
<given-names>Weidi</given-names>
</name>
<xref ref-type="aff" rid="AF0001">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhu</surname>
<given-names>Qian-Hao</given-names>
</name>
<xref ref-type="aff" rid="AF0004">
<sup>4</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chalhoub</surname>
<given-names>Boulos</given-names>
</name>
<xref ref-type="aff" rid="AF0005">
<sup>5</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bancroft</surname>
<given-names>Ian</given-names>
</name>
<xref ref-type="aff" rid="AF0006">
<sup>6</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Meng</surname>
<given-names>Jinling</given-names>
</name>
<xref ref-type="aff" rid="AF0002">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Cai</surname>
<given-names>Daguang</given-names>
</name>
<xref ref-type="aff" rid="AF0003">
<sup>3</sup>
</xref>
<xref ref-type="corresp" rid="c1">
<sup></sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Fan</surname>
<given-names>Longjiang</given-names>
</name>
<xref ref-type="aff" rid="AF0001">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="c1">
<sup></sup>
</xref>
</contrib>
<aff id="AF0001">
<sup>1</sup>
<institution>Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University</institution>
,
<addr-line>Hangzhou 310058</addr-line>
,
<country>PR China</country>
</aff>
<aff id="AF0002">
<sup>2</sup>
<institution>National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University</institution>
,
<addr-line>Wuhan 430070</addr-line>
,
<country>PR China</country>
</aff>
<aff id="AF0003">
<sup>3</sup>
<institution>Department of Molecular Phytopathology and Biotechnology, Christian-Albrechts University of Kiel</institution>
,
<addr-line>Hermann Rodewald Str. 9, D-24118 Kiel</addr-line>
,
<country>Germany</country>
</aff>
<aff id="AF0004">
<sup>4</sup>
<institution>CSIRO Agriculture Flagship</institution>
,
<addr-line>Canberra, ACT2601</addr-line>
,
<country>Australia</country>
</aff>
<aff id="AF0005">
<sup>5</sup>
<institution>Organization and Evolution of Plant Genomes, Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche 1165 (Institut National de Recherche Agronomique, Centre National de la Recherche Scientifique, Université Evry Val d’Essonne)</institution>
,
<addr-line>Evry 91057</addr-line>
,
<country>France</country>
</aff>
<aff id="AF0006">
<sup>6</sup>
<institution>Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York</institution>
,
<addr-line>Wentworth Way, Heslington, York YO10 5DD</addr-line>
,
<country>UK</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="c2">* These authors contributed equally to this work.</corresp>
<corresp id="c1">
<sup></sup>
To whom correspondence should be addressed. E-mail:
<email>fanlj@zju.edu.cn</email>
or
<email>dcai@phytomed.uni-kiel.de</email>
</corresp>
<fn id="fn01">
<p>Editor: Ramanjulu Sunkar</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<month>12</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="epub">
<day>10</day>
<month>9</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>10</day>
<month>9</month>
<year>2015</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on the . </pmc-comment>
<volume>66</volume>
<issue>22</issue>
<fpage>7241</fpage>
<lpage>7253</lpage>
<permissions>
<copyright-statement>© The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.</copyright-statement>
<copyright-year>2015</copyright-year>
<license license-type="creative-commons" xlink:href="http://creativecommons.org/licenses/by/3.0">
<license-p>This is an Open Access article distributed under the terms of the Creative Commons Attribution License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/3.0/">http://creativecommons.org/licenses/by/3.0/</ext-link>
), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>The recently published genome of
<italic>Brassica napus</italic>
offers for the first time the opportunity to gain insights into the genomic organization and the evolution of miRNAs in oilseed rape. In this study, 12 small RNA libraries from two
<italic>B. napus</italic>
cultivars (Tapidor and Ningyou7) and their four double-haploid lines were sequenced, employing the newly sequenced
<italic>B. napus</italic>
genome, together with genomes of its progenitors
<italic>Brassica rapa</italic>
and
<italic>Brassica oleracea</italic>
. A total of 645 miRNAs including 280 conserved and 365 novel miRNAs were identified. Comparative analysis revealed a high level of genomic conservation of
<italic>MIRNA</italic>
s (75.9%) between the subgenomes of
<italic>B. napus</italic>
and its two progenitors’ genomes, and
<italic>MIRNA</italic>
lost/gain events (133) occurred in
<italic>B. napus</italic>
after its speciation. Furthermore, significant partitioning of miRNA expressions between the two subgenomes in
<italic>B. napus</italic>
was detected. The data of degradome sequencing, miRNA-mediated cleavage, and expression analyses support specific interactions between miRNAs and their targets in the modulation of diverse physiological processes in roots and leaves, as well as in biosynthesis of, for example, glucosinolates and lipids in oilseed rape. These data provide a first genome-wide view on the origin, evolution, and genomic organization of
<italic>B. napus MIRNA</italic>
s.</p>
</abstract>
<kwd-group>
<title>Key words:</title>
<kwd>allopolyploid evolution</kwd>
<kwd>
<italic>Brassica napus</italic>
</kwd>
<kwd>expression partitioning</kwd>
<kwd>microRNA.</kwd>
</kwd-group>
<counts>
<page-count count="13"></page-count>
</counts>
</article-meta>
</front>
<body>
<sec id="s1">
<title>Introduction</title>
<p>Small RNAs include two main types of small non-coding RNAs, microRNAs (miRNAs) and small interfering RNAs (siRNAs). miRNAs are endogenous 20–24 nt RNAs that can regulate gene expression via complementary binding to specific mRNAs and achieve their functions via post-transcriptional gene silencing in animals and plants (
<xref rid="CIT0055" ref-type="bibr">Voinnet, 2009</xref>
;
<xref rid="CIT0041" ref-type="bibr">Rogers and Chen, 2013</xref>
). The
<italic>MIRNA</italic>
gene is first transcribed into primary miRNA (pri-miRNA) by RNA polymerase II (Pol II) and then catalysed by endoribonuclease Dicer-like 1 (DCL1) in association with HYPONASTICLEAVES 1 (HYL1) and SERRATE (SE) proteins leading to the formation of a hairpin structure, or precursor miRNA (pre-miRNA). The pre-miRNA hairpin structure is further processed into a miRNA/miRNA* duplex, of which the mature miRNA is loaded onto the Argonaute (AGO) protein complex to execute its function (
<xref rid="CIT0054" ref-type="bibr">Vazquez
<italic>et al.</italic>
, 2010</xref>
). miRNAs are involved in regulating many plant physiological processes including plant development and biotic and abiotic stress responses (
<xref rid="CIT0006" ref-type="bibr">Chen, 2009</xref>
;
<xref rid="CIT0018" ref-type="bibr">Khraiwesh
<italic>et al.</italic>
, 2012</xref>
;
<xref rid="CIT0049" ref-type="bibr">Sunkar
<italic>et al.</italic>
, 2012</xref>
;
<xref rid="CIT0043" ref-type="bibr">Shen
<italic>et al.</italic>
, 2014</xref>
;
<xref rid="CIT0068" ref-type="bibr">Zhang 2015</xref>
).</p>
<p content-type="indent">
<italic>Brassica napus</italic>
, known as oilseed rape, is second only to soybean as an oil crop with a world production of over 60 million t (
<xref rid="CIT0003" ref-type="bibr">Bancroft
<italic>et al.</italic>
, 2011</xref>
).
<italic>B. napus</italic>
is an allopolyploid (A
<sub>n</sub>
A
<sub>n</sub>
C
<sub>n</sub>
C
<sub>n</sub>
) species that evolved from the spontaneous hybridization of
<italic>Brassica rapa</italic>
(A
<sub>r</sub>
A
<sub>r</sub>
) and
<italic>Brassica oleracea</italic>
(C
<sub>o</sub>
C
<sub>o</sub>
) about 7500–12 500 years ago (
<xref rid="CIT0052" ref-type="bibr">Nagaharu, 1935</xref>
;
<xref rid="CIT0005" ref-type="bibr">Chalhoub
<italic>et al.</italic>
, 2014</xref>
). The lack of the genomic sequence has severely impeded research on
<italic>B. napus</italic>
miRNAs over the last years. Nevertheless, several studies, mainly based on EST/GSS sequences of
<italic>B. napus</italic>
or genomes of
<italic>B. rapa</italic>
and
<italic>B. oleracea</italic>
, have reported several hundred miRNAs and demonstrated their possible functions in regulating diverse physiological processes (
<xref rid="CIT0013" ref-type="bibr">He
<italic>et al.</italic>
, 2008</xref>
;
<xref rid="CIT0019" ref-type="bibr">Korbes
<italic>et al.</italic>
, 2012</xref>
;
<xref rid="CIT0064" ref-type="bibr">Xu
<italic>et al.</italic>
, 2012</xref>
;
<xref rid="CIT0067" ref-type="bibr">Yu
<italic>et al.</italic>
, 2012</xref>
;
<xref rid="CIT0070" ref-type="bibr">Zhao
<italic>et al.</italic>
, 2012</xref>
;
<xref rid="CIT0072" ref-type="bibr">Zhou
<italic>et al.</italic>
, 2012</xref>
;
<xref rid="CIT0014" ref-type="bibr">Huang
<italic>et al.</italic>
, 2013</xref>
;
<xref rid="CIT0028" ref-type="bibr">Lukasik
<italic>et al.</italic>
, 2013</xref>
;
<xref rid="CIT0056" ref-type="bibr">Wang
<italic>et al.</italic>
, 2013</xref>
;
<xref rid="CIT0043" ref-type="bibr">Shen
<italic>et al.</italic>
, 2014</xref>
). Recently, the genomes of
<italic>B. napus</italic>
and its two progenitors (A
<sub>r</sub>
A
<sub>r</sub>
and C
<sub>o</sub>
C
<sub>o</sub>
) have been sequenced (
<xref rid="CIT0058" ref-type="bibr">Wang
<italic>et al.</italic>
, 2011</xref>
;
<xref rid="CIT0005" ref-type="bibr">Chalhoub
<italic>et al.</italic>
, 2014</xref>
;
<xref rid="CIT0005" ref-type="bibr">Liu
<italic>et al.</italic>
, 2014</xref>
), providing for the first time an opportunity to identify and characterize
<italic>B. napus</italic>
miRNAs at the whole-genome level.</p>
<p content-type="indent">This work presents the results of identification and characterization of
<italic>B. napus</italic>
miRNAs by analysis of small RNA populations from two
<italic>B. napus</italic>
cultivars (one European winter cultivar,, Tapidor and one Chinese semi-winter cultivar, Ningyou7) and four double-haploid (DH) lines derived from a cross between Tapidor and Ningyou7. These data provide a first genome-wide view on the origin, evolution, and genomic organization of
<italic>B. napus MIRNA</italic>
s. Potential roles of miRNAs and their targets in the modulation of diverse physiological processes, e.g. for biosynthesis of glucosinolates and lipids, in oilseed rape are discussed.</p>
</sec>
<sec sec-type="materials|methods" id="s2">
<title>Materials and methods</title>
<sec id="s3">
<title>Plant materials</title>
<p>Two
<italic>B. napus</italic>
cultivars (Tapidor and Ningyou7) and their four DH lines (TN151, TN156, TN177, and TN186) (
<xref rid="CIT0039" ref-type="bibr">Qiu
<italic>et al.</italic>
, 2006</xref>
) were used for small RNA population investigation. Tapidor and Ningyou7 have significant differences in seed erucic/glucosinolate content and flowering time. Tapidor was used to generate degradome data. The cultivar Express 617 (
<xref rid="CIT0043" ref-type="bibr">Shen
<italic>et al.</italic>
, 2014</xref>
) was included in miRNA expression analyses. The plants were grown in a growth chamber at 24 °C and a 14h daytime photoperiod. Leaves and roots were harvested at the six-leaf stage for RNA collection. Total RNA was isolated using Trizol reagent (Invitrogen, USA). Each RNA sample was generated from leaves or roots of three different plants. The tissue samples used in RNA extraction and small RNA sequencing were collected from two replicated experiments.</p>
</sec>
<sec id="s4">
<title>Small RNA and degradome sequencing</title>
<p>Small RNA libraries were constructed using the standard Illumina protocol and sequenced by Illumina HiSeq 2000 (BIOMARKER, China). Twelve libraries (two cultivars and four DH lines from two replicated experiments) were sequenced (
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S1</ext-link>
, available at
<italic>JXB</italic>
online). Before miRNA prediction, the adaptors and low-quality reads were removed. The clean reads were further compared with the annotated non-coding RNA sequences, including plant snoRNA (version 1.2;
<uri xlink:href="http://bioinf.scri.sari.ac.uk/cgi-bin/plant_snorna/home">http://bioinf.scri.sari.ac.uk/cgi-bin/plant_snorna/home</uri>
), tRNA (
<uri xlink:href="http://gtrnadb.ucsc.edu/">http://gtrnadb.ucsc.edu/</uri>
), rRNA (V11.0;
<uri xlink:href="http://rfam.xfam.org/">http://rfam.xfam.org/</uri>
) and rasiRNA (release 09-02-2014;
<uri xlink:href="http://www.girinst.org/server/RepBase/">http://www.girinst.org/server/RepBase/</uri>
). Two degradome libraries from the leaf and root of the six-leaf stage of Tapidor were sequenced by Illumina HiSeq 2000 (BIOMARKER) resulting in a total of 47 million raw tags. All sequences have been submitted to the GenBank/EMBL data libraries (accession no. PRJNA272953)‍.</p>
</sec>
<sec id="s5">
<title>Prediction of miRNA and targets</title>
<p>The clean reads were aligned with the genome of
<italic>B. napus</italic>
(
<xref rid="CIT0005" ref-type="bibr">Chalhoub
<italic>et al.</italic>
, 2014</xref>
; version 5.0) for identification of miRNAs. Mireap (
<uri xlink:href="http://sourceforge.net/projects/mireap/">http://sourceforge.net/projects/mireap/</uri>
) was applied to predict secondary hairpin structures of
<italic>MIRNA</italic>
s with following parameters: the hairpin structure with free energy lower than –18 kcal mol
<sup>–1</sup>
; the space between miRNA and miRNA* is less than 300 nt; and with more than 16 matched nucleotides and fewer than four nucleotide bulges between miRNA and miRNA*. Only small RNAs with at least two reads in a library were used for miRNA prediction. By comparison with the miRBase (
<uri xlink:href="http://www.mirbase.org">http://www.mirbase.org</uri>
, release 21), a miRNA was considered as conserved if its mature sequence had two nucleotide or fewer than two nucleotide mismatches to the known miRNA or as a novel miRNA when there are more than two nucleotide mismatches (
<xref rid="CIT0031" ref-type="bibr">Meyers
<italic>et al.</italic>
, 2008</xref>
). For the conserved miRNAs, the same miRNA/family names as in miRBase were assigned, but with new serial numbers (such as b, c, d) in some cases. For the novel miRNAs, the names bna_novel_miRX1 to bna_novel_miRX214 were given (
<xref rid="CIT0031" ref-type="bibr">Meyers
<italic>et al.</italic>
, 2008</xref>
).</p>
<p content-type="indent">The targets of miRNAs in
<italic>B. napus</italic>
were predicted via the online sever psRNATarget (
<xref rid="CIT0008" ref-type="bibr">Dai and Zhao, 2011</xref>
). Using the function ‘User-submitted small RNAs/ user-submitted transcripts’, the query of transcripts was generated from the
<italic>B. napus</italic>
genome. Default parameters were used to filter candidates. The software PatMan was used to map the degradomic reads to the targets, and custom perl scripts were employed to identify candidate degradative targets. According to previous results (
<xref rid="CIT0015" ref-type="bibr">Jones-Rhoades and Bartel, 2004</xref>
;
<xref rid="CIT0043" ref-type="bibr">Shen
<italic>et al.</italic>
, 2014</xref>
;
<xref rid="CIT0044" ref-type="bibr">Song et al., 2010
<italic>a</italic>
,
<italic>b</italic>
</xref>
;
<xref rid="CIT0070" ref-type="bibr">Zhao
<italic>et al.</italic>
, 2012</xref>
), the ends of degradomic reads were considered when they were within the 5 nt region of the cleavage site.</p>
</sec>
<sec id="s6">
<title>Lipid biosynthesis-related genes</title>
<p>As reference, the
<italic>Arabidopsis</italic>
lipid-related gene database was downloaded at
<uri xlink:href="http://aralip.plantbiology.msu.edu/">http://aralip.plantbiology.msu.edu/</uri>
(
<xref rid="CIT0023" ref-type="bibr">Li-Beisson
<italic>et al.</italic>
, 2013</xref>
). The annotation of lipid-related genes in
<italic>B. napus</italic>
was carried out using the method of
<xref rid="CIT0043" ref-type="bibr">Wang
<italic>et al.</italic>
(2014)</xref>
with minor modifications, i.e. BLASTp under the E-value <1e–5 and sequence identify >50% for the search of orthologous genes.</p>
</sec>
<sec id="s7">
<title>Genomic synteny of
<italic>MIRNA</italic>
s</title>
<p>The synteny or co-linearity of
<italic>MIRNA</italic>
s among the three
<italic>Brassica</italic>
species (
<italic>B. napus</italic>
,
<italic>B. rapa</italic>
, and
<italic>B. oleracea</italic>
) was detected by MCScanX (Wa
<xref rid="CIT0034" ref-type="bibr">ng
<italic>et al.</italic>
, 2012</xref>
). The genomes of
<italic>B. oleracea</italic>
(
<uri xlink:href="http://ocri-genomics.org/bolbase/">http://ocri-genomics.org/bolbase/</uri>
, version 1.0),
<italic>B. rapa</italic>
(Phytozome 10.2) and
<italic>B. napus</italic>
(
<uri xlink:href="http://www.genoscope.cns.fr/brassicanapus/data/">http://www.genoscope.cns.fr/brassicanapus/data/</uri>
, version 5.0), and their annotated gene sets were used for the genomic synteny analysis. BLASTp was employed to determine the synteny by pairwise comparison with the parameters of E-vlaue <1e–5 and max_target_seqs < 6.
<italic>MIRNA</italic>
orthologues in
<italic>B. napus</italic>
,
<italic>B. rapa</italic>
, and
<italic>B. oleracea</italic>
were analysed using a microsynteny-based method (
<xref rid="CIT0029" ref-type="bibr">Ma
<italic>et al.</italic>
, 2010</xref>
;
<xref rid="CIT0043" ref-type="bibr">Shen
<italic>et al.</italic>
, 2014</xref>
). For each
<italic>MIRNA</italic>
, its 10 flanking protein-coding loci were retrieved from the
<italic>B. rapa</italic>
and
<italic>B. oleracea</italic>
genomes, respectively. Homology tests of
<italic>MIRNA</italic>
and flanking genes were performed by BLASTn and the top five hits of each
<italic>MIRNA</italic>
were chosen for flanking loci tests. A syntenic
<italic>MIRNA</italic>
pair among
<italic>B. napus</italic>
,
<italic>B. rapa</italic>
, and
<italic>B. oleracea</italic>
was defined with at least one identical upstream or downstream flanking protein-coding gene. Syntenic
<italic>MIRNA</italic>
s were divided into four sets as described by
<xref rid="CIT0043" ref-type="bibr">Shen
<italic>et al.</italic>
(2014)</xref>
. The first three sets were taken as syntenic
<italic>MIRNA</italic>
s for construction of the Circos map (
<xref rid="CIT0020" ref-type="bibr">Krzywinski
<italic>et al.</italic>
, 2009</xref>
).</p>
</sec>
<sec id="s8">
<title>Transcript analysis of miRNAs and target genes</title>
<p>Low-molecular-weight RNA was enriched by 5% polyethylene glycol (
<italic>M</italic>
<sub>r</sub>
8000) and 0.5M NaCl precipitation (
<xref rid="CIT0027" ref-type="bibr">Lu
<italic>et al.</italic>
, 2007</xref>
). Mature miRNA expression analysis was performed by stem–loop reverse transcription quantitative PCR (RT-qPCR) (
<xref rid="CIT0043" ref-type="bibr">Shen
<italic>et al.</italic>
, 2014</xref>
). For cDNA synthesis, 200ng of low-molecular-weight RNA from each sample was reverse transcribed using a RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific) with U6 snRNA as the internal control. For cDNA synthesis of predicted targets, 2 µg of total RNA from each sample was used. qPCR reactions were performed in a CFX96™ Real-Time System/C1000 Touch™ Thermal Cycler (BioRad) with MAXIMA
<sup>®</sup>
SYBR Green Master Mix (Fermentas) and actin as the reference gene. Invariant expression of the actin gene in seedling roots and leaves was assured beforehand. The relative expression fold change of miRNAs and related genes were calculated using the comparative
<italic>C</italic>
<sub>T</sub>
method. All reactions were performed in triplicate with three independent experiments. The primer pairs were listed in
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S2</ext-link>
, available at
<italic>JXB</italic>
online.</p>
</sec>
<sec id="s9">
<title>Expression levels of miRNAs in parental and DH lines</title>
<p>The expression levels of miRNAs were measured by the small RNA abundance. The amount of small RNA reads was transformed into reads per million (RPM) with the formula RPM=reads count/clean reads×10
<sup>6</sup>
). PatMan was employed to map the small RNA reads to mature miRNA sequences. Small RNA reads were counted when their position was within the length of the mature miRNA sequence. The miRNA read that was mapped to both of the A and C subgenomes was counted twice. At least a twofold change was taken to define the differentially expressed miRNAs between offspring and the mean values of parental lines in regard to the read number with corresponding mature pre-miRNAs.</p>
</sec>
<sec id="s10">
<title>Sequences alignment and visualization</title>
<p>MAFFT (
<uri xlink:href="http://mafft.cbrc.jp/alignment/server/">http://mafft.cbrc.jp/alignment/server/</uri>
, version 7) was employed for multiple sequences alignment. The WebLogo (
<uri xlink:href="http://weblogo.threeplusone.com/create.cgi">http://weblogo.threeplusone.com/create.cgi</uri>
) was used to create the logo for the alignment results and CLC Sequence Viewer 6 (CLC Bio, Aarhus, Denmark) was used for the display of the conservation among whole sequences. The distribution of miRNAs and their partners was plotted in a 1Mb window size by Circos (
<xref rid="CIT0020" ref-type="bibr">Krzywinski
<italic>et al.</italic>
, 2009</xref>
). The UEA sRNA workbench (
<xref rid="CIT0047" ref-type="bibr">Stocks
<italic>et al.</italic>
, 2012</xref>
) was employed to visualize the hairpin structure of miRNAs with the corresponding mature sequence and parameters generated by Mireap.</p>
</sec>
<sec id="s11">
<title>Annotation of transposable elements</title>
<p>As no annotation data for transposable elements in the newly released
<italic>B. napus</italic>
genome were available, transposable elements were identified in the genome using a combination of
<italic>de novo</italic>
and homology-based approaches as follows. First, the RepeatModeler pipeline was used to search for repeats in the genome and RepeatMask was then used to identify repeats in Repbase (
<xref rid="CIT0051" ref-type="bibr">Tempel, 2012</xref>
). Long terminal repeat (LTR) retrotransposons were found using LTR_FINDER with default parameters (
<xref rid="CIT0065" ref-type="bibr">Xu and Wang, 2007</xref>
).</p>
</sec>
<sec id="s12">
<title>Search for miRNAs previously identified in the
<italic>B. napus</italic>
genome</title>
<p>BlastN was employed to map the miRNA precursor sequence onto the
<italic>B. napus</italic>
genome with an E-value of <1e–5 and a matched length longer than 90% of the query sequence.</p>
</sec>
<sec id="s13">
<title>RNA ligase-mediated (RLM)-5′RACE analysis</title>
<p>To validate the predicted targets of miRNAs, 5′RACE was carried out with 2 µg of total RNA using a GeneRacer
<sup>TM</sup>
Kit (Invitrogen) as described by
<xref rid="CIT0043" ref-type="bibr">Shen
<italic>et al.</italic>
(2014)</xref>
. The reverse transcription of mRNAs was performed using the random primers. For amplification of cDNA ends, a pair of gene-specific primers was designed (
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S2</ext-link>
). A touchdown PCR was performed. One microlitre of this initial touchdown PCR was used as template for the following nested PCR. The reaction products were separated on a 1.7% agarose gel. The bands with the expected size were excised, purified, and cloned into the pGEM-T vector (Promega) for sequencing.</p>
</sec>
</sec>
<sec id="s14">
<title>Results</title>
<sec id="s15">
<title>Identification of miRNAs</title>
<p>For a genome-wide analysis of
<italic>B. napus</italic>
miRNAs, 136 263 599 raw reads of 18–44 nt were generated from 12 small RNA libraries (two replicates) of young leaves of two parental lines (Tapidor and Ningyou7) and their four DH lines (
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S1</ext-link>
). From these, 105 219 098 clean reads were obtained. The majority of the clean reads were 21–24 nt small RNAs, consistent with a previous report (
<xref rid="CIT0043" ref-type="bibr">Shen
<italic>et al.</italic>
, 2014</xref>
;
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Fig. S1</ext-link>
, available at
<italic>JXB</italic>
online). Of the clean reads, 64.9% could be mapped to the
<italic>B. napus</italic>
genome. After removing the non-coding RNAs, the remaining reads, referred to as endogenous small RNAs, were used for miRNA prediction.</p>
<p content-type="indent">We identified 645 miRNAs, including 280 conserved miRNAs from 34 families and 365 novel miRNAs from 225 families (
<xref ref-type="table" rid="T1">Table 1</xref>
and
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S3</ext-link>
, available at
<italic>JXB</italic>
online). Out of 645 miRNAs, 275 and 364 originated from the A
<sub>n</sub>
and C
<sub>n</sub>
subgenomes, respectively (six miRNAs remained unassigned). Besides the known
<italic>B. napus</italic>
miRNAs deposited in the current international miRNA database miRBase (release 21) and reported in recent studies (
<xref rid="CIT0014" ref-type="bibr">Huang
<italic>et al.</italic>
, 2013</xref>
;
<xref rid="CIT0028" ref-type="bibr">Lukasik
<italic>et al.</italic>
, 2013</xref>
;
<xref rid="CIT0056" ref-type="bibr">Wang
<italic>et al.</italic>
, 2013</xref>
;
<xref rid="CIT0043" ref-type="bibr">Shen
<italic>et al.</italic>
, 2014</xref>
), 351 miRNAs including 47 conserved from 19 families and 304 novel miRNAs from 187 families were newly identified by this study. To confirm the expression of the predicted miRNAs, eight conserved and 14 novel miRNAs were chosen for stem–loop reverse transcription PCR analysis. The results confirmed the expected expression of all eight conserved and 13 of the 14 novel miRNAs, except for a non-specific amplification of miRX132 in
<italic>B. napus</italic>
seedlings (
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Fig. S2</ext-link>
, available at
<italic>JXB</italic>
online).</p>
<table-wrap id="T1" orientation="portrait" position="float">
<label>Table 1.</label>
<caption>
<p>miRNAs and their targets in B. napus identified in this study</p>
</caption>
<table frame="vsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Type</th>
<th align="left" colspan="2" rowspan="1">miRNAs</th>
<th align="left" colspan="2" rowspan="1">miRNAs target to:</th>
</tr>
<tr>
<th align="left" rowspan="1" colspan="1"></th>
<th align="left" rowspan="1" colspan="1">Total</th>
<th align="left" rowspan="1" colspan="1">A
<sub>n</sub>
/C
<sub>n</sub>
</th>
<th align="left" rowspan="1" colspan="1">Glucosinolates
<sup>
<italic>a</italic>
</sup>
</th>
<th align="left" rowspan="1" colspan="1">Lipid
<sup>
<italic>a</italic>
</sup>
</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1" colspan="1">Conserved</td>
<td rowspan="1" colspan="1">280</td>
<td rowspan="1" colspan="1">143/136</td>
<td rowspan="1" colspan="1">1 (1)</td>
<td rowspan="1" colspan="1">55 (27)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Novel</td>
<td rowspan="1" colspan="1">365</td>
<td rowspan="1" colspan="1">132/228</td>
<td rowspan="1" colspan="1">10 (6)</td>
<td rowspan="1" colspan="1">103 (95)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Total</td>
<td rowspan="1" colspan="1">645</td>
<td align="center" rowspan="1" colspan="1">639
<sup>
<italic>b</italic>
</sup>
</td>
<td rowspan="1" colspan="1">11 (7)</td>
<td rowspan="1" colspan="1">158 (122)</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="fn-01" fn-type="other">
<p>
<sup>a</sup>
Numbers in parentheses indicate the number of glucosinolates and lipid biosynthesis-related genes that were predicted to be targeted by miRNAs.</p>
</fn>
<fn id="fn-02" fn-type="other">
<p>
<sup>b</sup>
Six miRNAs located in unplaced scaffolds.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</sec>
<sec id="s16">
<title>Prediction and validation of miRNA targets</title>
<p>The targets of the newly identified miRNAs were predicted (
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S4</ext-link>
, available at
<italic>JXB</italic>
online). Consistent with the results reported previously, the majority of potential targets of the conserved miRNAs were transcription factors and shared high homology with
<italic>Arabidopsis</italic>
orthologues. For example, both miR160 and miR167 target auxin response factor (ARF) transcription factors (
<xref rid="CIT0030" ref-type="bibr">Mallory
<italic>et al.</italic>
, 2005</xref>
;
<xref rid="CIT0062" ref-type="bibr">Wu
<italic>et al.</italic>
, 2006</xref>
), miR156/miR157 and miR162 target squamosa promoter-binding-like protein (SPL) and Dicer-liker (DCL) protein in
<italic>Arabidopsis</italic>
and
<italic>B. napus</italic>
. Of the 365 novel miRNAs, 363 (99.4%) had putative targets in the annotated gene sets of
<italic>B. napus</italic>
. To validate the miRNA–target interaction, degradome sequencing was performed with RNA samples from Tapidor roots and young leaves, confirming 849 targets predicted for 263 conserved and 291 novel miRNAs (31 and 168 families), respectively (
<xref ref-type="fig" rid="F1">Fig. 1</xref>
,
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S4</ext-link>
). Among the targets of 291 novel miRNAs, a number of genes were stress or environmental adaptation related. The
<italic>Arabidopsis</italic>
orthologue of the miRX50 target
<italic>TIL</italic>
is a heat stress-related gene (
<xref rid="CIT0007" ref-type="bibr">Chi
<italic>et al.</italic>
, 2009</xref>
). The orthologue of the miRX137 target
<italic>SBT</italic>
is associated with the density and distribution of stomates (
<xref rid="CIT0004" ref-type="bibr">Berger and Altmann, 2000</xref>
). miRX159 and miRX163 target the genes
<italic>PRX</italic>
and
<italic>SDR</italic>
encoding dehydrogenase/reductase and peroxidase, respectively (
<xref rid="CIT0037" ref-type="bibr">Passardi
<italic>et al.</italic>
, 2004</xref>
;
<xref rid="CIT0016" ref-type="bibr">Kavanagh
<italic>et al.</italic>
, 2008</xref>
).</p>
<fig fig-type="figure" id="F1" orientation="portrait" position="float">
<label>Fig. 1.</label>
<caption>
<p>Identification of candidate targets of miRNAs by degradome experiments. Six targets of one conserved and five novel miRNAs are shown in the panels as an example. The
<italic>x</italic>
-axis indicates the position of target genes while the
<italic>y</italic>
-axis represents the abundance of sequenced reads. Each circle is a degradome fragment that can be mapped to the corresponding target gene and the arrows indicate the expected miRNA positions. The putative miRNA-binding sites are depicted within the corresponding target transcripts within the sequence alignments. The cleavage sites deduced from the degradome data are indicated by the arrows. The stars indicate the cleavages validated by the 5’RLM-RACE assays. (This figure is available in colour at
<italic>JXB</italic>
online.)</p>
</caption>
<graphic xlink:href="exbotj_erv420_f0001"></graphic>
</fig>
<p content-type="indent">Ten miRNAs (nine novel miRNAs) were predicted to target genes involved in biosynthesis or breakdown of glucosinolates (GSLs) (
<xref rid="CIT0005" ref-type="bibr">Chalhoub
<italic>et al.</italic>
, 2014</xref>
) (
<xref ref-type="table" rid="T1">Table 1</xref>
and
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S5</ext-link>
, available at
<italic>JXB</italic>
online). The miRNA-mediated regulation was confirmed for six of the 10 miRNAs either by degradomic data or by RLM-5’RACE (
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S4</ext-link>
,
<xref ref-type="fig" rid="F3">Fig. 3</xref>
,
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Fig. S4</ext-link>
, available at
<italic>JXB</italic>
online). Three of these miRNAs play a role in GSL metabolism (
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S5</ext-link>
). 1) miRX95 was predicted to target BnaC05g12520D, an orthologue of the GSL biosynthesis-related gene
<italic>CYP79F1</italic>
(AT1G16410) in
<italic>Arabidopsis</italic>
(
<xref rid="CIT0005" ref-type="bibr">Chalhoub
<italic>et al.</italic>
, 2014</xref>
;
<xref rid="CIT0005" ref-type="bibr">Liu
<italic>et al.</italic>
, 2014</xref>
). The biosynthesis of GSL is mediated by
<italic>CYP79F1</italic>
(
<xref rid="CIT0040" ref-type="bibr">Reintanz
<italic>et al.</italic>
, 2001</xref>
). There were two single-nucleotide polymorphisms between Tapidor and Ningyou7 in the predicted miRX95 target region, which resulted in additional (G:U) mismatches in the miRX95 binding site (binding prediction score >3.0) in Tapidor, which has a potential impact on the miRX95-mediated regulation of BnaC05g12520D and consequently the GSL biosynthesis in Tapidor. miR6032a was predicted to target BnaA03g38670D. Its
<italic>Arabidopsis</italic>
orthologue
<italic>APK1</italic>
(AT2G14750) is involved in the biosynthesis of a major class of sulfated secondary GSL (
<xref rid="CIT0032" ref-type="bibr">Mugford
<italic>et al.</italic>
, 2009</xref>
). Lastly, miRX113 was predicted to target BnaA07g19610D, an orthologue of
<italic>Arabidopsis PEN3</italic>
(AT1G59870). PEN3 is required for breakdown of GSLs (
<xref rid="CIT0061" ref-type="bibr">Wittstock and Burow, 2010</xref>
).</p>
<fig fig-type="figure" id="F2" orientation="portrait" position="float">
<label>Fig. 2.</label>
<caption>
<p>Differential expression of miRNAs and their targets in roots and leaves of three oilseed rape cultivars. The sequences depict the miRNA-binding site within the target transcript in the middle of each panel. The arrows represent the miRNA cleavage sites on targets with degradome/RACE evidence. (This figure is available in colour at
<italic>JXB</italic>
online.)</p>
</caption>
<graphic xlink:href="exbotj_erv420_f0002"></graphic>
</fig>
<p content-type="indent">Based on a homologue search using the 738 annotated lipid biosynthesis-related genes in
<italic>Arabidopsis</italic>
(
<uri xlink:href="http://aralip.plantbiology.msu.edu">http://aralip.plantbiology.msu.edu</uri>
), 2606 putative lipid biosynthesis-related genes were identified in
<italic>B. napus</italic>
. Of these, 122 genes were predicted targets of 158 miRNAs, comprising 55 conserved and 103 novel miRNAs (
<xref ref-type="table" rid="T1">Table 1</xref>
and
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S6</ext-link>
, available at
<italic>JXB</italic>
online), from which 27 targets of 45 miRNAs were identified by the degradomic data (
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S4</ext-link>
). For example, one novel miRNA (miRX63) was predicted to target BnaA03g02950D, an orthologue of
<italic>Arabidopsis PAS2</italic>
or AT5G10480 that has acyl-CoA dehydratase activity and has been shown to be involved in the biosynthesis of very long chain fatty acids (see
<uri xlink:href="http://www.tair.org">http://www.tair.org</uri>
). An opposite change in the expression of miRX63 and BnaA03g02950D in leaves and roots of two of the three cultivars was obvious (
<xref ref-type="fig" rid="F2">Fig. 2</xref>
), suggesting that miRX63-mediated regulation of the lipid biosynthesis-related gene BnaA03g02950D might play a role in the development of leaf and root. As GSL and lipid biosynthesis is regulated by complex mechanisms and by developmental stages (
<xref rid="CIT0011" ref-type="bibr">Grubb and Abel, 2006</xref>
;
<xref rid="CIT0038" ref-type="bibr">Pollard
<italic>et al.</italic>
, 2008</xref>
;
<xref rid="CIT0035" ref-type="bibr">Niu
<italic>et al.</italic>
, 2009</xref>
), more detailed investigations are needed to clarify the role of these miRNA–target interactions in the biosynthesis of GSL and lipids in the future.</p>
<p content-type="indent">To identify miRNAs involved in regulating different physiological processes in roots and leaves, respectively, the small RNA populations from leaves were compared with those from roots of
<italic>B. napus</italic>
(
<xref rid="CIT0043" ref-type="bibr">Shen
<italic>et al.</italic>
, 2014</xref>
) and 59 miRNAs were identified including 35 novel ones, which gave a significant difference in the read numbers (>2-fold) between the roots and leaves (
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S7</ext-link>
, available at
<italic>JXB</italic>
online). Differential expression was confirmed for 10 selected miRNAs (four conserved and six novel miRNAs) by stem–loop qPCR (
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Fig. S3</ext-link>
, available at
<italic>JXB</italic>
online). Among these, several miRNAs (such as miR159 and miR319) have a pronounced role in regulating plant leaf/root development (
<xref rid="CIT0018" ref-type="bibr">Khraiwesh
<italic>et al.</italic>
, 2012</xref>
).</p>
<p content-type="indent">The expression profiles of four of these miRNAs and their targets in roots and leaves were further investigated using RT-qPCR. As shown in
<xref ref-type="fig" rid="F2">Fig. 2</xref>
, in all four cases (miR319, miR6032, miRX63, and miR148), a reciprocal change in the expression levels between the miRNA and its target was evident. Thus, these data suggested a direct miRNA–target expression modulation in regulation of developmental and/or physiological processes in the root and leaf.</p>
</sec>
<sec id="s17">
<title>Evolution of miRNAs after the allopolyploidization event</title>
<p>The availability of the genomes of
<italic>B. napus</italic>
and their two progenitors provides an opportunity to look at the expansion and loss of miRNAs in
<italic>B. napus</italic>
. The synteny of
<italic>MIRNA</italic>
s between
<italic>B. napus</italic>
(A
<sub>n</sub>
A
<sub>n</sub>
C
<sub>n</sub>
C
<sub>n</sub>
) and its two progenitor genomes (A
<sub>r</sub>
A
<sub>r</sub>
and C
<sub>o</sub>
C
<sub>o</sub>
) was first investigated by mapping the 851
<italic>MIRNA</italic>
s identified from the two progenitor genomes in a previous study (
<xref rid="CIT0043" ref-type="bibr">Shen
<italic>et al.</italic>
, 2014</xref>
) to the
<italic>B. napus</italic>
genome. To ascertain genomic synteny of the predicted
<italic>MIRNA</italic>
s between the genomes of
<italic>B. napus</italic>
and its two progenitors, a microsynteny analysis was performed using the
<italic>MIRNA</italic>
s and their flanking protein-coding sequences. As expected, the majority (646/851, 75.9%) of the two progenitor
<italic>MIRNA</italic>
orthologues existed in the corresponding subgenomes of
<italic>B. napus</italic>
(
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S8</ext-link>
, available at
<italic>JXB</italic>
online), although a small number (72) of these
<italic>MIRNA</italic>
s showed a match to the opposite subgenome of
<italic>B. napus</italic>
(
<xref ref-type="fig" rid="F3">Fig. 3</xref>
). These results support the observation of a high conservation between the subgenomes of
<italic>B. napus</italic>
and its two progenitor genomes (
<xref rid="CIT0005" ref-type="bibr">Chalhoub
<italic>et al.</italic>
, 2014</xref>
). In addition, 115
<italic>MIRNA</italic>
s, including 104 novel
<italic>MIRNA</italic>
s, failed to show any homologous sequence hit in the
<italic>B. napus</italic>
genome (
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S9</ext-link>
, available at
<italic>JXB</italic>
online). Of these, five conserved
<italic>MIRNA</italic>
s (e.g. members of the miR169 and miR172 families) were obviously lost due to sequence deletions or mutations as revealed by comparative genome analysis between
<italic>B. napus</italic>
and it two progenitors (
<xref ref-type="table" rid="T2">Table 2</xref>
; an example of miR169 member is shown in
<xref ref-type="fig" rid="F4">Fig. 4a</xref>
).</p>
<table-wrap id="T2" orientation="portrait" position="float">
<label>Table 2.</label>
<caption>
<p>Changes of copy numbers of miRNA families between B. napus and its two progenitors (B. rapa and B. oleracea)</p>
<p>Only part of the miRNA families are shown here and a full list is provided in
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S10</ext-link>
, available at
<italic>JXB</italic>
online.</p>
</caption>
<table frame="vsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="2" colspan="1">Family</th>
<th align="left" colspan="2" rowspan="1">
<italic>B. napus</italic>
</th>
<th align="left" rowspan="1" colspan="1">
<italic>B. rapa</italic>
<sup>
<italic>a</italic>
</sup>
</th>
<th align="left" rowspan="1" colspan="1">B. oleracea
<sup>
<italic>a</italic>
</sup>
</th>
<th align="left" colspan="2" rowspan="1">(A
<sub>n</sub>
A
<sub>n</sub>
C
<sub>n</sub>
C
<sub>n</sub>
)-(A
<sub>r</sub>
A
<sub>r</sub>
+C
<sub>o</sub>
C
<sub>o</sub>
)</th>
</tr>
<tr>
<th align="left" rowspan="1" colspan="1">A
<sub>n</sub>
A
<sub>n</sub>
</th>
<th align="left" rowspan="1" colspan="1">C
<sub>n</sub>
C
<sub>n</sub>
</th>
<th align="left" rowspan="1" colspan="1">A
<sub>r</sub>
A
<sub>r</sub>
</th>
<th align="left" rowspan="1" colspan="1">C
<sub>o</sub>
C
<sub>o</sub>
</th>
<th align="left" rowspan="1" colspan="1">Based on small RNAs</th>
<th align="left" rowspan="1" colspan="1">Based on genomic synteny</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1" colspan="1">miR156</td>
<td rowspan="1" colspan="1">17</td>
<td rowspan="1" colspan="1">19</td>
<td rowspan="1" colspan="1">17</td>
<td rowspan="1" colspan="1">15</td>
<td rowspan="1" colspan="1">4</td>
<td rowspan="1" colspan="1">5</td>
</tr>
<tr>
<td rowspan="1" colspan="1">miR171</td>
<td rowspan="1" colspan="1">11</td>
<td rowspan="1" colspan="1">7</td>
<td rowspan="1" colspan="1">7</td>
<td rowspan="1" colspan="1">3</td>
<td rowspan="1" colspan="1">8</td>
<td rowspan="1" colspan="1">3</td>
</tr>
<tr>
<td rowspan="1" colspan="1">miR166</td>
<td rowspan="1" colspan="1">13</td>
<td rowspan="1" colspan="1">11</td>
<td rowspan="1" colspan="1">6</td>
<td rowspan="1" colspan="1">4</td>
<td rowspan="1" colspan="1">14</td>
<td rowspan="1" colspan="1">2</td>
</tr>
<tr>
<td rowspan="1" colspan="1">miR168</td>
<td rowspan="1" colspan="1">9</td>
<td rowspan="1" colspan="1">9</td>
<td rowspan="1" colspan="1">5</td>
<td rowspan="1" colspan="1">7</td>
<td rowspan="1" colspan="1">6</td>
<td rowspan="1" colspan="1">1</td>
</tr>
<tr>
<td rowspan="1" colspan="1">miR169</td>
<td rowspan="1" colspan="1">16</td>
<td rowspan="1" colspan="1">15</td>
<td rowspan="1" colspan="1">26</td>
<td rowspan="1" colspan="1">19</td>
<td rowspan="1" colspan="1">–14</td>
<td rowspan="1" colspan="1">–2</td>
</tr>
<tr>
<td rowspan="1" colspan="1">miR172</td>
<td rowspan="1" colspan="1">8</td>
<td rowspan="1" colspan="1">6</td>
<td rowspan="1" colspan="1">11</td>
<td rowspan="1" colspan="1">9</td>
<td rowspan="1" colspan="1">–6</td>
<td rowspan="1" colspan="1">–2</td>
</tr>
<tr>
<td rowspan="1" colspan="1">miR390</td>
<td rowspan="1" colspan="1">6</td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">6</td>
<td rowspan="1" colspan="1">6</td>
<td rowspan="1" colspan="1">–4</td>
<td rowspan="1" colspan="1">–1</td>
</tr>
<tr>
<td rowspan="1" colspan="1">miR395</td>
<td rowspan="1" colspan="1">5</td>
<td rowspan="1" colspan="1">5</td>
<td rowspan="1" colspan="1">9</td>
<td rowspan="1" colspan="1">6</td>
<td rowspan="1" colspan="1">–5</td>
<td rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td rowspan="1" colspan="1">miR159</td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">4</td>
<td rowspan="1" colspan="1">4</td>
<td rowspan="1" colspan="1">–5</td>
<td rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td rowspan="1" colspan="1">miR398</td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">4</td>
<td rowspan="1" colspan="1">3</td>
<td rowspan="1" colspan="1">–5</td>
<td rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td rowspan="1" colspan="1">miR160</td>
<td rowspan="1" colspan="1">9</td>
<td rowspan="1" colspan="1">9</td>
<td rowspan="1" colspan="1">7</td>
<td rowspan="1" colspan="1">7</td>
<td rowspan="1" colspan="1">4</td>
<td rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td rowspan="1" colspan="1">miR165</td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">0</td>
<td rowspan="1" colspan="1">3</td>
<td rowspan="1" colspan="1">3</td>
<td rowspan="1" colspan="1">–4</td>
<td rowspan="1" colspan="1">0</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="fn-03" fn-type="other">
<p>
<sup>a</sup>
Based on Shen
<italic>et al.</italic>
(2014).</p>
</fn>
</table-wrap-foot>
</table-wrap>
<fig fig-type="figure" id="F3" orientation="portrait" position="float">
<label>Fig. 3.</label>
<caption>
<p>Synteny of miRNAs between
<italic>B. napus</italic>
(A
<sub>n</sub>
A
<sub>n</sub>
C
<sub>n</sub>
C
<sub>n</sub>
) and its two progenitor genomes (A
<sub>r</sub>
A
<sub>r</sub>
and C
<sub>o</sub>
C
<sub>o</sub>
). The 851
<italic>MIRNA</italic>
s from the
<italic>B. rapa</italic>
and
<italic>B. oleracea</italic>
genomes were mapped to the
<italic>B. napus</italic>
genome. The lines refer to the best matches of the miRNAs from the two progenitors in the
<italic>B. napus</italic>
genome. A
<sub>n</sub>
and C
<sub>n</sub>
represents the A and C subgenome of
<italic>B. napus</italic>
, A
<sub>r</sub>
indicates the genome of
<italic>B. rapa</italic>
, and C
<sub>o</sub>
stands for the genome of
<italic>B. oleracea.</italic>
The black lines indicate the miRNA best match in A
<sub>n</sub>
-A
<sub>r</sub>
and C
<sub>n</sub>
-C
<sub>o</sub>
, and the red lines represent the miRNA best match in A
<sub>n</sub>
-C
<sub>o</sub>
and C
<sub>n</sub>
-A
<sub>r</sub>
.</p>
</caption>
<graphic xlink:href="exbotj_erv420_f0003"></graphic>
</fig>
<fig fig-type="figure" id="F4" orientation="portrait" position="float">
<label>Fig. 4.</label>
<caption>
<p>Gain and loss of miRNAs in
<italic>B. napus</italic>
. (a) An example of miR169 loss in
<italic>B. napus</italic>
. The upper part was the synteny region among the three species. The deletion of seveval bases on chromosome A08 of
<italic>B. napus</italic>
, which caused the loss of one member of miR169 family in
<italic>B. napus</italic>
. (b) The novel-miRX46.1 as example for the gain of miRNAs in
<italic>B. napus</italic>
. The upper part indicates the synteny region found by MCScan, in which an insertion sequence was detected on the chromosome C02 of
<italic>B. napus</italic>
. The sequence can form a perfect hairpin structure as indicated in the lower part.</p>
</caption>
<graphic xlink:href="exbotj_erv420_f0004"></graphic>
</fig>
<p content-type="indent">In the next step, the 645 miRNAs of
<italic>B. napus</italic>
were compared with
<italic>Arabidopsis</italic>
miRNAs (miRBase, release 21). A significant expansion of several miRNA families, including miR156, miR160, and miR169 in
<italic>B. napus</italic>
, was observed (
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S10</ext-link>
). Since such expanded miRNA families could also be found in the two progenitor genomes, it was concluded that these expansion events must have occurred before the AA-CC speciation hybridization (
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S10</ext-link>
).</p>
<p content-type="indent">However, 18
<italic>B. napus MIRNA</italic>
s (six novel and 12 conserved
<italic>MIRNA</italic>
s) were not present in the syntenic regions of the two progenitor genomes, suggesting that they might be newly generated after the allopolyploidization event in
<italic>B. napus</italic>
(
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S11</ext-link>
, available at
<italic>JXB</italic>
online). The 12 newly generated conserved
<italic>MIRNA</italic>
s, including six, two, and three from the miR156, miR171, and miR166 families, respectively (
<xref ref-type="table" rid="T2">Table 2</xref>
and
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S11</ext-link>
), obviously originated from the existing
<italic>MIRNA</italic>
s via the gene or genomic segmental duplication events. The expression of three of the six novel miRNAs (bna-miRX46 as an example shown in
<xref ref-type="fig" rid="F4">Fig. 4b</xref>
) could be confirmed in
<italic>B. napus</italic>
seedlings by the stem–loop reverse transcription PCR analysis (
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Fig. S2</ext-link>
). The predicted targets of the six novel miRNAs could be confirmed by the degradome sequencing (
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S4</ext-link>
). These newly evolved
<italic>B. napus</italic>
miRNAs might be associated with adaptation to changed environmental conditions under natural and artificial selection pressure. In support of this, the targets of miRX132.1 (BnaA05g30540D for the putative defensin-like protein 73 and BnaA03g50380D for the putative F-box/LRR-repeat protein 19) were related to plant defence responses. Also, the target of miR46.1 (BnaC03g35590D for phosphatidylinositol 4-phosphate 5-kinase 6) interacts with the lipid pathway (
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S8</ext-link>
).</p>
</sec>
<sec id="s18">
<title>Partitioning and heritability of miRNA expression</title>
<p>To investigate the partitioned expression of miRNAs between the A
<sub>n</sub>
and C
<sub>n</sub>
subgenomes, the expression levels and patterns of miRNAs in the A
<sub>n</sub>
or C
<sub>n</sub>
subgenome were compared based on small RNA reads. Although 275 and 364
<italic>MIRNA</italic>
s were identified from the A
<sub>n</sub>
and C
<sub>n</sub>
subgenomes, respectively, a slightly higher genomic density of
<italic>MIRNA</italic>
s was observed in the A
<sub>n</sub>
subgenome (1.03 and 0.73
<italic>MIRNA</italic>
s per Mb for the A
<sub>n</sub>
and C
<sub>n</sub>
subgenomes), which was similar to those observed in the two progenitor genomes (
<xref rid="CIT0043" ref-type="bibr">Shen
<italic>et al.</italic>
, 2014</xref>
). To measure miRNA expression (see Materials and methods), the number of small RNA reads of corresponding mature miRNAs were compared, and a significantly higher abundance of reads (per unique mature miRNA sequence per million reads) was observed in the A
<sub>n</sub>
subgenome than in the C
<sub>n</sub>
subgenome (
<italic>P</italic>
<0.01) (
<xref ref-type="table" rid="T3">Table 3</xref>
,
<xref ref-type="fig" rid="F5">Fig. 5</xref>
). To confirm this, small RNA populations were generated from Tapidor and Ningyou7 seedlings grown under independent environmental conditions and sequenced. A similar bias of miRNA expression was obvious between the two subgenomes (
<xref ref-type="table" rid="T3">Table 3</xref>
). The comparison of miRNA expression patterns of four Tapidor/Ningyou7-derived DH lines with those of their parental lines also gave similar biased expression patterns of miRNAs (
<italic>P</italic>
<0.01 and
<italic>P</italic>
<0.02 in two environments, respectively;
<xref ref-type="table" rid="T3">Table 3</xref>
). When the individual miRNA families (for 32 with members > 3) were compared, only 13 of the 32 families were found, which were the main contributors to the different miRNA read abundance or miRNA expression levels between the A
<sub>n</sub>
and C
<sub>n</sub>
subgenomes, while the remaining 19 miRNA families showed a similar expression pattern between the A
<sub>n</sub>
and C
<sub>n</sub>
subgenomes. These data strongly suggested a partitioned expression of miRNA between the two subgenomes after the hybridization of speciation in
<italic>B. napus</italic>
.</p>
<table-wrap id="T3" orientation="portrait" position="float">
<label>Table 3.</label>
<caption>
<p>Comparison of miRNA expression in the two subgenomes in B. napus</p>
<p>The expression levels were measured by Illumina sequencing reads per unique mature sequence of miRNA or per Mb per million reads in two DH parental lines (Tapidor and Ningyou7 or T/N) and their four DH lines.</p>
</caption>
<table frame="vsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Expression level (read density)
<sup>
<italic>a</italic>
</sup>
</th>
<th align="left" rowspan="1" colspan="1">A
<sub>n</sub>
</th>
<th align="left" rowspan="1" colspan="1">C
<sub>n</sub>
</th>
<th align="left" rowspan="1" colspan="1">C
<sub>n</sub>
/A
<sub>n</sub>
</th>
<th align="left" rowspan="1" colspan="1">
<italic>P</italic>
value</th>
<th align="left" rowspan="1" colspan="1">Based on:</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1" colspan="1">Reads (E1) per mature miRNA</td>
<td rowspan="1" colspan="1">4293.26</td>
<td rowspan="1" colspan="1">2360.90</td>
<td rowspan="1" colspan="1">0.55</td>
<td rowspan="1" colspan="1"><0.01</td>
<td rowspan="1" colspan="1">T/N</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Reads (E2) per mature miRNA</td>
<td rowspan="1" colspan="1">3119.39</td>
<td rowspan="1" colspan="1">2261.51</td>
<td rowspan="1" colspan="1">0.72</td>
<td rowspan="1" colspan="1"><0.01</td>
<td rowspan="1" colspan="1">T/N</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Reads (E1) per Mb</td>
<td rowspan="1" colspan="1">3928</td>
<td rowspan="1" colspan="1">1493</td>
<td rowspan="1" colspan="1">0.52</td>
<td rowspan="1" colspan="1"><0.01</td>
<td rowspan="1" colspan="1">T/N</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Reads (E2) per Mb</td>
<td rowspan="1" colspan="1">2854</td>
<td rowspan="1" colspan="1">4231.09</td>
<td rowspan="1" colspan="1">0.68</td>
<td rowspan="1" colspan="1"><0.01</td>
<td rowspan="1" colspan="1">T/N</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Reads (E1) per mature miRNA</td>
<td rowspan="1" colspan="1">6226.15</td>
<td align="center" rowspan="1" colspan="1">4231.09</td>
<td rowspan="1" colspan="1">0.68</td>
<td rowspan="1" colspan="1"><0.01</td>
<td rowspan="1" colspan="1">4 DH lines</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Reads (E2) per mature miRNA</td>
<td rowspan="1" colspan="1">2006.64</td>
<td rowspan="1" colspan="1">1449.13</td>
<td rowspan="1" colspan="1">0.72</td>
<td rowspan="1" colspan="1">0.02</td>
<td rowspan="1" colspan="1">4 DH lines</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Reads (E1) per Mb</td>
<td rowspan="1" colspan="1">5696.26</td>
<td rowspan="1" colspan="1">2792.52</td>
<td rowspan="1" colspan="1">0.49</td>
<td rowspan="1" colspan="1"><0.01</td>
<td rowspan="1" colspan="1">4 DH lines</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Reads (E2) per Mb</td>
<td rowspan="1" colspan="1">1835.86</td>
<td rowspan="1" colspan="1">956.43</td>
<td rowspan="1" colspan="1">0.52</td>
<td rowspan="1" colspan="1"><0.01</td>
<td rowspan="1" colspan="1">4 DH lines</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="fn-04" fn-type="other">
<p>
<sup>a</sup>
Small RNA populations in two parental lines (T/N) were collected and sequenced in two different environments (E1 and E2), respectively.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<fig fig-type="figure" id="F5" orientation="portrait" position="float">
<label>Fig. 5.</label>
<caption>
<p>Genomic distribution of miRNAs in
<italic>B. napus</italic>
. From outer to inter circles: (1) chromosomes of
<italic>B. napus</italic>
; (2) LTR retrotransposon; (3) small RNA reads; (4) 24 nt small RNA reads; (5) miRNAs identified by this study; (6) small RNA reads that can be mapped to the mature sequences of miRNAs. The peak value represents the density of each element with a window of 1Mb in the
<italic>B. napus</italic>
genome.</p>
</caption>
<graphic xlink:href="exbotj_erv420_f0005"></graphic>
</fig>
<p content-type="indent">To investigate the heredity of miRNA expression, small RNA populations from seedlings of the same developmental stage (six leaves) of the two parental lines (Tapidor and Ningyou7) and their four DH lines were analysed. After normalization of small RNA reads, the expression levels of miRNAs in Tapidor and Ningyou7 were compared with those in the four DH lines. Using a 2-fold change of the average expression level of a miRNA in the four DH lines relative to their parental lines as the threshold value (
<xref rid="CIT0048" ref-type="bibr">Stupar
<italic>et al.</italic>
, 2007</xref>
), the additive genetic effect of miRNAs in
<italic>B. napus</italic>
was estimated. Significantly, a higher number of miRNAs with a non-additive rather than with an additive genetic effect (2- to 3-fold) were observed in the four DH lines (
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S12</ext-link>
, available at
<italic>JXB</italic>
online), suggesting the potential dominance of non-additive genetics of miRNAs in
<italic>B. napus</italic>
.</p>
<p content-type="indent">Finally, the expression levels of other small RNAs in the
<italic>B. napus</italic>
genome were investigated and a genomic bias was also observed for siRNA expression (
<xref ref-type="fig" rid="F5">Fig. 5</xref>
). However, this was totally in contrast to the A
<sub>n</sub>
-biased miRNA expression, i.e. a higher abundance of small RNA reads was observed in the C
<sub>n</sub>
but not in the A
<sub>n</sub>
subgenome (2.1-fold difference between the two subgenomes), suggesting that more siRNAs are generated or expressed from the C
<sub>n</sub>
subgenome. Consistent with this, the content of LTR retrotransposons was found to be 10.3-fold higher in the C
<sub>n</sub>
subgenome than in the A
<sub>n</sub>
subgenome (
<xref ref-type="fig" rid="F5">Fig. 5</xref>
), a phenomenon also observed previously (
<xref rid="CIT0005" ref-type="bibr">Chalhoub
<italic>et al.</italic>
, 2014</xref>
;
<xref rid="CIT0005" ref-type="bibr">Liu
<italic>et al.</italic>
, 2014</xref>
), implying the possible involvement of these repetitive transposable elements in the biogenesis of siRNAs.</p>
</sec>
</sec>
<sec id="s19">
<title>Discussion</title>
<p>This study carried out the first genome-wide investigation of miRNAs in
<italic>B. napus</italic>
using the newly sequenced
<italic>B. napus</italic>
genome. In addition to known
<italic>B. napus</italic>
miRNAs, identified mainly based on the two progenitor genomes of
<italic>B. napus</italic>
(
<xref rid="CIT0072" ref-type="bibr">Zhou
<italic>et al.</italic>
, 2012</xref>
;
<xref rid="CIT0019" ref-type="bibr">Korbes
<italic>et al.</italic>
, 2012</xref>
;
<xref rid="CIT0064" ref-type="bibr">Xu
<italic>et al.</italic>
, 2012</xref>
;
<xref rid="CIT0070" ref-type="bibr">Zhao
<italic>et al.</italic>
, 2012</xref>
,
<xref rid="CIT0043" ref-type="bibr">Shen
<italic>et al.</italic>
, 2014</xref>
), a new set of
<italic>B. napus</italic>
miRNAs was identified, including both conserved and novel ones. As expected, the number of
<italic>B. napus</italic>
miRNAs identified so far is significantly higher than that in the model dicot species
<italic>Arabidopsis thaliana</italic>
and monocot species rice (
<italic>Oryza sativa</italic>
). To the best of our knowledge, this represents the largest miRNA population ever found in a single plant species up to now, thus offering a unique dataset for the study of the origin, genomic structure, and evolution of miRNAs in allopolyploid plant genomes.</p>
<p content-type="indent">The results of this study support the observation of a high genomic conservation between the subgenomes of
<italic>B. napus</italic>
and its two progenitor genomes (
<xref rid="CIT0005" ref-type="bibr">Chalhoub
<italic>et al.</italic>
, 2014</xref>
). In many cases, it was not possible to distinguish the miRNA reads between the A and C subgenomes as they share the same mature sequence. The genomic synteny regions applied in this study allowed a precise localization of miRNA loci in the orthologous regions of both subgenomes. Only miRNAs with unique mature sequences in the A or C subgenome were defined as A or C subgenome-specific sequences, respectively. The majority of the two progenitor
<italic>MIRNA</italic>
orthologues were found to exist in the corresponding subgenomes of
<italic>B. napus</italic>
, and only a small group of
<italic>MIRNA</italic>
s showed an opposite match to the subgenomes. These mismatches might be a result of the homeologous recombination or gene-level duplication events during/after the AA-CC hybridization. Also, 115
<italic>MIRNA</italic>
s were found only in the genomes of the two progenitors and not in the
<italic>B. napus</italic>
genome, strongly suggesting a possible loss of these
<italic>MIRNA</italic>
s due to sequence deletion or mutation (
<xref ref-type="table" rid="T2">Table 2</xref>
,
<xref ref-type="fig" rid="F4">Fig. 4a</xref>
), although these
<italic>MIRNA</italic>
s could be undetected due to limited assembly of the two progenitor genomes. Because of a high genetic redundancy after the AA-CC hybridization, it is conceivable that the miRNA loss occurred in the
<italic>B. napus</italic>
genome. As
<italic>B. napus</italic>
has a very recent origin (~7500 years ago;
<xref rid="CIT0005" ref-type="bibr">Chalhoub
<italic>et al.</italic>
, 2014</xref>
), it would be expected that the numbers of conserved miRNAs in
<italic>B. napus</italic>
will be decreased to a relatively stable level in future, as observed in the tetraploid cotton genome (
<xref rid="CIT0063" ref-type="bibr">Xie and Zhang, 2015</xref>
). However, the allopolyploidization event resulted in an increase in the number of
<italic>MIRNA</italic>
s in
<italic>B. napus</italic>
by generating new
<italic>MIRNA</italic>
s through gene or genomic segmental duplication events. As revealed by the genomic microsynteny analysis, at least 12 of the 18 newly generated
<italic>MIRNA</italic>
s in
<italic>B. napus</italic>
obviously originated from the existing conserved
<italic>MIRNA</italic>
s (miR156, miR171, and miR166 families) in the two progenitors via such genomic reorganization. For instance, miR156 affects the flowering time and responses to biotic and abiotic stress (
<xref rid="CIT0049" ref-type="bibr">Sunkar
<italic>et al.</italic>
, 2012</xref>
;
<xref rid="CIT0046" ref-type="bibr">Stief
<italic>et al.</italic>
, 2014</xref>
). Similarly, miR171 also participates in the biotic and abiotic stress responses (
<xref rid="CIT0071" ref-type="bibr">Zhou
<italic>et al.</italic>
, 2007</xref>
;
<xref rid="CIT0024" ref-type="bibr">Liu
<italic>et al.</italic>
, 2008</xref>
), while miR166 can alter the development and polarity of the leaf via an interaction with HD-ZIP genes (
<xref rid="CIT0009" ref-type="bibr">Emery
<italic>et al.</italic>
, 2003</xref>
;
<xref rid="CIT0060" ref-type="bibr">Williams
<italic>et al.</italic>
, 2005</xref>
). Following this, it is reasonable to speculate that the 12 new copies of these conserved
<italic>MIRNA</italic>
s might greatly contribute to the environmental adaptation of
<italic>B. napus.</italic>
Their origins might be attributed to natural selection. In addition, a significant expansion of a few conserved miRNA families, such as miR156, miR160, and miR169, have obviously enlarged the number of miRNAs in
<italic>B. napus</italic>
(
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S10</ext-link>
), but these expansions have mostly occurred before the AA-CC hybridization, as such expansion events could also be observed in the two progenitor genomes (
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S10</ext-link>
). This is consistent with the very recent origin of the AACC genome in
<italic>B. napus</italic>
. Unequal genomic/segmental duplications as well as tandem duplications of
<italic>MIRNA</italic>
s obviously might also have greatly contributed to the
<italic>MIRNA</italic>
expansion in the
<italic>B. napus</italic>
genome (
<xref rid="CIT0043" ref-type="bibr">Shen
<italic>et al.</italic>
, 2014</xref>
).</p>
<p content-type="indent">An interesting finding in this study was the partitioned expression of miRNAs between the two subgenomes of
<italic>B. napus</italic>
. A significantly higher abundance of miRNAs in the A
<sub>n</sub>
subgenome than in the C
<sub>n</sub>
subgenome was observed in at least 13 miRNA families in two different genetic backgrounds (Tapidor and Ningyou7) and under different environmental conditions. Furthermore, similar results observed in the four Tapidor/Ningyou7-derived DH lines provide further genetic evidence for partitioning of miRNA expression between the two subgenomes in
<italic>B. napus.</italic>
It is of great interest and importance to explore the regulation and functional relevance of the partitioning of miRNA expression in oilseed rape in the future. In this study, a potential dominance of non-additive genetics for miRNAs in
<italic>B. napus</italic>
was suggested for the first time by heredity analyses of the expression patterns of each miRNA using small RNA populations from the parental lines (Tapidor and Ningyou7) and four Tapidor/Ningyou7-derived DH lines. Nevertheless, further investigations using more DH lines or offspring lines from different parental lines and in particular their degradome data are needed to confirm this observation.</p>
<p content-type="indent">miRNAs are believed to have played an important role in genome polyploidy (
<xref rid="CIT0034" ref-type="bibr">Ng
<italic>et al.</italic>
, 2012</xref>
), as well as in regulating network in speciation and subsequent evolution of polyploidy crops (
<xref rid="CIT0066" ref-type="bibr">Yao
<italic>et al.</italic>
, 2007</xref>
;
<xref rid="CIT0017" ref-type="bibr">Kenan-Eichler
<italic>et al.</italic>
, 2011</xref>
; Ta
<xref rid="CIT0034" ref-type="bibr">ng
<italic>et al.</italic>
, 2012</xref>
;
<xref rid="CIT0010" ref-type="bibr">Gong
<italic>et al.</italic>
, 2013</xref>
;
<xref rid="CIT0063" ref-type="bibr">Xie and Zhang, 2015</xref>
). In upland cotton (AADD,
<italic>Gossypium hirsutum</italic>
L.), miRNA loss and gain after the hybridization of AA and DD species were detected at the genomic level. However, significant expansions of several AADD-specific miRNA families were identified in cotton but not in
<italic>B. napus</italic>
. This might be attributed to the post-Neolithic origin of
<italic>B. napus</italic>
(
<xref rid="CIT0005" ref-type="bibr">Chalhoub
<italic>et al.</italic>
, 2014</xref>
). The allotetraploid cotton arose from the union of two types of diploid cotton genomes about 1–2 million years ago (
<xref rid="CIT0022" ref-type="bibr">Li
<italic>et al.</italic>
, 2015</xref>
;
<xref rid="CIT0063" ref-type="bibr">Zhang
<italic>et al.</italic>
, 2015</xref>
). Similar to the observations here in
<italic>B. napus</italic>
, the biased expressions of miRNAs in the two subgenomes of a tetraploid were also observed in cotton (
<xref rid="CIT0010" ref-type="bibr">Gong
<italic>et al.</italic>
, 2013</xref>
;
<xref rid="CIT0063" ref-type="bibr">Xie and Zhang, 2015</xref>
). Significantly higher expression of ~20 conserved miRNAs in the AA subgenome than in the DD subgenome in cotton were reported (
<xref rid="CIT0010" ref-type="bibr">Gong
<italic>et al.</italic>
, 2013</xref>
). These results suggest that miRNAs play an important role in the regulation network in speciation and subsequent evolution of polyploidy crops.</p>
<p content-type="indent">Increasing data suggest that miRNAs are involved in regulating plant responses to diverse developmental and physiological processes, as well as plant responses to diverse biotic and abiotic stress (
<xref rid="CIT0018" ref-type="bibr">Khraiwesh
<italic>et al.</italic>
, 2012</xref>
). By comparison with previously sequenced small RNA populations from roots (
<xref rid="CIT0043" ref-type="bibr">Shen
<italic>et al.</italic>
, 2014</xref>
), a number of miRNAs were identified here that are differentially expressed between the root and leaf of
<italic>B. napus</italic>
. Among these are miR159, miR164, miR166, miR168, miR172, miR319, and miR390, which have been demonstrated previously to have an effect on leaf development in
<italic>Arabidopsis</italic>
(
<xref rid="CIT0009" ref-type="bibr">Emery
<italic>et al.</italic>
, 2003</xref>
;
<xref rid="CIT0036" ref-type="bibr">Palatnik
<italic>et al.</italic>
, 2003</xref>
;
<xref rid="CIT0001" ref-type="bibr">Achard
<italic>et al.</italic>
, 2004</xref>
;
<xref rid="CIT0002" ref-type="bibr">Allen
<italic>et al.</italic>
, 2005</xref>
;
<xref rid="CIT0021" ref-type="bibr">Laufs
<italic>et al.</italic>
, 2004</xref>
;
<xref rid="CIT0053" ref-type="bibr">Vaucheret
<italic>et al.</italic>
, 2004</xref>
;
<xref rid="CIT0012" ref-type="bibr">Guo
<italic>et al.</italic>
, 2005</xref>
;
<xref rid="CIT0042" ref-type="bibr">Schwab
<italic>et al.</italic>
, 2005</xref>
;
<xref rid="CIT0060" ref-type="bibr">Williams
<italic>et al.</italic>
, 2005</xref>
), as well as miR160 and miR393, which have been shown to influence the development of roots via inhibition of their target genes (
<italic>ARF</italic>
and
<italic>TIR</italic>
, respectively) in
<italic>Arabidopsis</italic>
(
<xref rid="CIT0033" ref-type="bibr">Navarro
<italic>et al.</italic>
, 2006</xref>
;
<xref rid="CIT0025" ref-type="bibr">Liu
<italic>et al.</italic>
, 2007</xref>
). The opposite expression patterns between miRNAs and their targets occurred in the root and leaf of
<italic>B. napus</italic>
, suggesting their conserved role in the regulation of developmental or physiological processes in the root and leaf of
<italic>B. napus.</italic>
Of great importance, a subset of novel miRNAs were identified that could have a specific function in regulating the expression of specific traits, such as biosynthesis of lipids and GSLs in oilseed rape. Further experimental investigation and analysis are needed to gain insights into the underlying mechanisms.</p>
</sec>
<sec sec-type="supplementary-material" id="s20">
<title>Supplementary data</title>
<p>Supplementary data are available at
<italic>JXB</italic>
online.</p>
<p>
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S1</ext-link>
. Small RNAs generated from
<italic>B. napus</italic>
by this study.</p>
<p>
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S2</ext-link>
. Primers used in this study.</p>
<p>
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S3</ext-link>
. A list of miRNAs identified in
<italic>B. napus</italic>
by this study.</p>
<p>
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S4</ext-link>
. Predicted miRNA targets and targets with degradomic evidence.</p>
<p>
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S5</ext-link>
. Details about miRNAs predicted to target glucosinolate-related genes in Darmor (reference genome), Tapidor, and Ningyou7.</p>
<p>
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S6</ext-link>
. Lipid-related miRNAs identified in
<italic>B. napus</italic>
in this study.</p>
<p>
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S7</ext-link>
. Differential expressed miRNAs in root and leaf at the seedling stage.</p>
<p>
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S8</ext-link>
. The 646 miRNAs (
<xref rid="CIT0043" ref-type="bibr">Shen
<italic>et al.</italic>
, 2014</xref>
) with high similarity (>95%) between
<italic>B. napus</italic>
and its two progenitors.</p>
<p>
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S9</ext-link>
. The 851 miRNAs previously identified in the two progenitor genomes (
<xref rid="CIT0043" ref-type="bibr">Shen
<italic>et al.</italic>
, 2014</xref>
) mapped to the
<italic>B. napus</italic>
genome.</p>
<p>
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S10</ext-link>
. Changes of conserved miRNA family sizes in
<italic>B. napus</italic>
and its two progenitors compared with
<italic>A. thaliana.</italic>
</p>
<p>
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S11</ext-link>
. The loss and gain of miRNAs in
<italic>B. napus</italic>
after the hybridization of its two progenitors.</p>
<p>
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Table S12</ext-link>
. The additive genetic effects of miRNA expression between DH lines and their parents.</p>
<p>
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Fig. S1</ext-link>
. Frequency distribution of small RNA reads with different length by this study.</p>
<p>
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Fig. S2</ext-link>
. Expression analysis of nine conserved and 13 novel miRNAs by stem–loop RT-PCR.</p>
<p>
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Fig. S3</ext-link>
. Eleven differentially expressed miRNAs in leaf and roots in three
<italic>B. napus</italic>
cultivars.</p>
<p>
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv420/-/DC1">Supplementary Fig. S4</ext-link>
. RACE reactions with three selected miRNAs as examples.</p>
<supplementary-material id="PMC_1" content-type="local-data">
<caption>
<title>Supplementary Data</title>
</caption>
<media mimetype="text" mime-subtype="html" xlink:href="supp_66_22_7241__index.html"></media>
<media xlink:role="associated-file" mimetype="application" mime-subtype="pdf" xlink:href="supp_erv420_Supplementary_FigureS1_S4.pdf"></media>
<media xlink:role="associated-file" mimetype="application" mime-subtype="vnd.ms-excel" xlink:href="supp_erv420_Supplementary_Table_S1.xls"></media>
<media xlink:role="associated-file" mimetype="application" mime-subtype="pdf" xlink:href="supp_erv420_Supplementary_Table_S2.pdf"></media>
<media xlink:role="associated-file" mimetype="application" mime-subtype="vnd.ms-excel" xlink:href="supp_erv420_Supplementary_Table_S3.xls"></media>
<media xlink:role="associated-file" mimetype="application" mime-subtype="vnd.ms-excel" xlink:href="supp_erv420_Supplementary_Table_S4.xls"></media>
<media xlink:role="associated-file" mimetype="application" mime-subtype="vnd.ms-excel" xlink:href="supp_erv420_Supplementary_Table_S5.xls"></media>
<media xlink:role="associated-file" mimetype="application" mime-subtype="vnd.ms-excel" xlink:href="supp_erv420_Supplementary_Table_S6.xls"></media>
<media xlink:role="associated-file" mimetype="application" mime-subtype="vnd.ms-excel" xlink:href="supp_erv420_Supplementary_Table_S7.xlsx"></media>
<media xlink:role="associated-file" mimetype="application" mime-subtype="vnd.ms-excel" xlink:href="supp_erv420_Supplementary_Table_S8.xls"></media>
<media xlink:role="associated-file" mimetype="application" mime-subtype="vnd.ms-excel" xlink:href="supp_erv420_Supplementary_Table_S9.xls"></media>
<media xlink:role="associated-file" mimetype="application" mime-subtype="vnd.ms-excel" xlink:href="supp_erv420_Supplementary_Table_S10.xlsx"></media>
<media xlink:role="associated-file" mimetype="application" mime-subtype="vnd.ms-excel" xlink:href="supp_erv420_Supplementary_Table_S11.xls"></media>
<media xlink:role="associated-file" mimetype="application" mime-subtype="vnd.ms-excel" xlink:href="supp_erv420_Supplementary_Table_S12.xls"></media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<title>Acknowledgements</title>
<p>This work was supported by the National Basic Research Program of China (2011CB109306/2015CB150200), the Ministry of Science and Technology of China (2013IM030700), the National Science Foundation of China (31100876), and the FNR (Fachagentur Nachwachsende Rohstoffe), Germany (22410312). The authors thank DAAD and the China Scholarship Council for travel grants and the Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP).</p>
</ack>
<ref-list>
<title>References</title>
<ref id="CIT0001">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Achard</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Herr</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Baulcombe</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Harberd</surname>
<given-names>NP</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Modulation of floral development by a gibberellin-regulated microRNA</article-title>
.
<source>Development</source>
<volume>131</volume>
,
<fpage>3357</fpage>
<lpage>3365</lpage>
.
<pub-id pub-id-type="pmid">15226253</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0002">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Allen</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Gustafson</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Carrington</surname>
<given-names>JC</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>microRNA-directed phasing during
<italic>trans</italic>
-acting siRNA biogenesis in plants</article-title>
.
<source>Cell</source>
<volume>121</volume>
,
<fpage>207</fpage>
<lpage>221</lpage>
.
<pub-id pub-id-type="pmid">15851028</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0003">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bancroft</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Morgan</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Fraser</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<year>2011</year>
<article-title>Dissecting the genome of the polyploid crop oilseed rape by transcriptome sequencing</article-title>
.
<source>Nature Biotechnology</source>
<volume>29</volume>
,
<fpage>762</fpage>
<lpage>766</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0004">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Berger</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Altmann</surname>
<given-names>T</given-names>
</name>
</person-group>
<year>2000</year>
<article-title>A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in
<italic>Arabidopsis</italic>
thaliana</article-title>
.
<source>Genes and Development</source>
<volume>14</volume>
,
<fpage>1119</fpage>
<lpage>1131</lpage>
.
<pub-id pub-id-type="pmid">10809670</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0005">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chalhoub</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Denoeud</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<year>2014</year>
<article-title>Plant genetics. Early allopolyploid evolution in the post-Neolithic
<italic>Brassica napus</italic>
oilseed genome</article-title>
.
<source>Science</source>
<volume>345</volume>
,
<fpage>950</fpage>
<lpage>953</lpage>
.
<pub-id pub-id-type="pmid">25146293</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0006">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>X</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Small RNAs and their roles in plant development</article-title>
.
<source>Annual Review of Cell and Developmental Biology</source>
<volume>25</volume>
,
<fpage>21</fpage>
<lpage>44</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0007">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chi</surname>
<given-names>WT</given-names>
</name>
<name>
<surname>Fung</surname>
<given-names>RW</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>HC</given-names>
</name>
<name>
<surname>Hsu</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Charng</surname>
<given-names>YY</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Temperature-induced lipocalin is required for basal and acquired thermotolerance in
<italic>Arabidopsis</italic>
</article-title>
.
<source>Plant, Cell and Environment</source>
<volume>32</volume>
,
<fpage>917</fpage>
<lpage>927</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0008">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dai</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>PX</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>psRNATarget: a plant small RNA target analysis server</article-title>
.
<source>Nucleic Acids Research</source>
<volume>39</volume>
,
<fpage>W155</fpage>
<lpage>W159</lpage>
.
<pub-id pub-id-type="pmid">21622958</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0009">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Emery</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Floyd</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Alvarez</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Eshed</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hawker</surname>
<given-names>NP</given-names>
</name>
<name>
<surname>Izhaki</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Baum</surname>
<given-names>SF</given-names>
</name>
<name>
<surname>Bowman</surname>
<given-names>JL</given-names>
</name>
</person-group>
<year>2003</year>
<article-title>Radial patterning of
<italic>Arabidopsis</italic>
shoots by class III HD-ZIP and KANADI genes</article-title>
.
<source>Current Biology</source>
<volume>13</volume>
,
<fpage>1768</fpage>
<lpage>1774</lpage>
.
<pub-id pub-id-type="pmid">14561401</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0010">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gong</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Kakrana</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Arikit</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Meyers</surname>
<given-names>BC</given-names>
</name>
<name>
<surname>Wendel</surname>
<given-names>JF</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Composition and expression of conserved microRNA genes in diploid cotton (
<italic>Gossypium</italic>
) species</article-title>
.
<source>Genome Biology and Evolution</source>
<volume>5</volume>
,
<fpage>2449</fpage>
<lpage>2459</lpage>
.
<pub-id pub-id-type="pmid">24281048</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0011">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grubb</surname>
<given-names>CD</given-names>
</name>
<name>
<surname>Abel</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Glucosinolate metabolism and its control</article-title>
.
<source>Trends in Plant Science</source>
<volume>11</volume>
,
<fpage>89</fpage>
<lpage>100</lpage>
.
<pub-id pub-id-type="pmid">16406306</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0012">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Fei</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Chua</surname>
<given-names>NH</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for
<italic>Arabidopsis</italic>
lateral root development</article-title>
.
<source>The Plant Cell</source>
<volume>17</volume>
,
<fpage>1376</fpage>
<lpage>1386</lpage>
.
<pub-id pub-id-type="pmid">15829603</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0013">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>He</surname>
<given-names>XF</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>YY</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>HS</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>Characterization of conserved and novel microRNAs and their targets, including a TuMV-induced TIR-NBS-LRR class R gene-derived novel miRNA in
<italic>Brassica</italic>
</article-title>
.
<source>FEBS Letters</source>
<volume>582</volume>
,
<fpage>2445</fpage>
<lpage>2452</lpage>
.
<pub-id pub-id-type="pmid">18558089</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0014">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Koh</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Feurtado</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Tsang</surname>
<given-names>EW</given-names>
</name>
<name>
<surname>Cutler</surname>
<given-names>AJ</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>MicroRNAs and their putative targets in
<italic>Brassica napus</italic>
seed maturation</article-title>
.
<source>BMC Genomics</source>
<volume>14</volume>
,
<fpage>140</fpage>
.
<pub-id pub-id-type="pmid">23448243</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0015">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jones-Rhoades</surname>
<given-names>MW</given-names>
</name>
<name>
<surname>Bartel</surname>
<given-names>DP</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Computational identification of plant microRNAs and their targets, including a stress-induced miRNA</article-title>
.
<source>Molecular Cell</source>
<volume>14</volume>
,
<fpage>787</fpage>
<lpage>799</lpage>
.
<pub-id pub-id-type="pmid">15200956</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0016">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kavanagh</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Jornvall</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Persson</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Oppermann</surname>
<given-names>U</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>Medium- and short-chain dehydrogenase/reductase gene and protein families: the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes</article-title>
.
<source>Cellular and Molecular Life Sciences</source>
<volume>65</volume>
,
<fpage>3895</fpage>
<lpage>3906</lpage>
.
<pub-id pub-id-type="pmid">19011750</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0017">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kenan-Eichler</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Leshkowitz</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Tal</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Noor</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Melamed-Bessudo</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Feldman</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Levy</surname>
<given-names>AA</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Wheat hybridization and polyploidization results in deregulation of small RNAs</article-title>
.
<source>Genetics</source>
<volume>188</volume>
,
<fpage>263</fpage>
<lpage>272</lpage>
.
<pub-id pub-id-type="pmid">21467573</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0018">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Khraiwesh</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>J</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants</article-title>
.
<source>Biochimica et Biophysica Acta</source>
<volume>1819</volume>
,
<fpage>137</fpage>
<lpage>148</lpage>
.
<pub-id pub-id-type="pmid">21605713</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0019">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Korbes</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>Machado</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Guzman</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<year>2012</year>
<article-title>Identifying conserved and novel microRNAs in developing seeds of
<italic>Brassica napus</italic>
using deep sequencing</article-title>
.
<source>PLoS One</source>
<volume>7</volume>
,
<fpage>e50663</fpage>
.
<pub-id pub-id-type="pmid">23226347</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0020">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krzywinski</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Schein</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Birol</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Connors</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gascoyne</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Horsman</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Marra</surname>
<given-names>MA</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Circos: an information aesthetic for comparative genomics</article-title>
.
<source>Genome Research</source>
<volume>19</volume>
,
<fpage>1639</fpage>
<lpage>1645</lpage>
.
<pub-id pub-id-type="pmid">19541911</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0021">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Laufs</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Peaucelle</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Morin</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Traas</surname>
<given-names>J</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>MicroRNA regulation of the CUC genes is required for boundary size control in
<italic>Arabidopsis</italic>
meristems</article-title>
.
<source>Development</source>
<volume>131</volume>
,
<fpage>4311</fpage>
<lpage>4322</lpage>
.
<pub-id pub-id-type="pmid">15294871</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0022">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>FG</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>GY</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>CR</given-names>
</name>
<etal></etal>
</person-group>
<year>2015</year>
<article-title>Genome sequence of cultivated Upland cotton (
<italic>Gossypium hirsutum</italic>
TM-1) provides insights into genome evolution</article-title>
.
<source>Nature Biotechnology</source>
<volume>33</volume>
,
<fpage>524</fpage>
<lpage>U242</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0023">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li-Beisson</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Shorrosh</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Beisson</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<year>2013</year>
<article-title>Acyl-lipid metabolism</article-title>
.
<source>The Arabidopsis Book</source>
<volume>11</volume>
,
<fpage>e0161</fpage>
.
<pub-id pub-id-type="pmid">23505340</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0024">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>HH</given-names>
</name>
<name>
<surname>Tian</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>YJ</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>CC</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>Microarray-based analysis of stress-regulated microRNAs in
<italic>Arabidopsis thaliana</italic>
</article-title>
.
<source>RNA</source>
<volume>14</volume>
,
<fpage>836</fpage>
<lpage>843</lpage>
.
<pub-id pub-id-type="pmid">18356539</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0025">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>PP</given-names>
</name>
<name>
<surname>Montgomery</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Fahlgren</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Kasschau</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Nonogaki</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Carrington</surname>
<given-names>JC</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages</article-title>
.
<source>The Plant Journal</source>
<volume>52</volume>
,
<fpage>133</fpage>
<lpage>146</lpage>
.
<pub-id pub-id-type="pmid">17672844</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0026">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
<year>2014</year>
<article-title>The
<italic>Brassica oleracea</italic>
genome reveals the asymmetrical evolution of polyploid genomes</article-title>
.
<source>Nature Communications</source>
<volume>5</volume>
,
<fpage>3930</fpage>
.</mixed-citation>
</ref>
<ref id="CIT0027">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Meyers</surname>
<given-names>BC</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>PJ</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Construction of small RNA cDNA libraries for deep sequencing</article-title>
.
<source>Methods</source>
<volume>43</volume>
,
<fpage>110</fpage>
<lpage>117</lpage>
.
<pub-id pub-id-type="pmid">17889797</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0028">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lukasik</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Pietrykowska</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Paczek</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Szweykowska-Kulinska</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Zielenkiewicz</surname>
<given-names>P</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>High-throughput sequencing identification of novel and conserved miRNAs in the
<italic>Brassica oleracea</italic>
leaves</article-title>
.
<source>BMC Genomics</source>
<volume>14</volume>
,
<fpage>801</fpage>
.
<pub-id pub-id-type="pmid">24245539</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0029">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ma</surname>
<given-names>ZR</given-names>
</name>
<name>
<surname>Coruh</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Axtell</surname>
<given-names>MJ</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>
<italic>Arabidopsis lyrata</italic>
small RNAs: transient MIRNA and small interfering RNA loci within the
<italic>Arabidopsis</italic>
genus</article-title>
.
<source>The Plant Cell</source>
<volume>22</volume>
,
<fpage>1090</fpage>
<lpage>1103</lpage>
.
<pub-id pub-id-type="pmid">20407023</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0030">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mallory</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Bartel</surname>
<given-names>DP</given-names>
</name>
<name>
<surname>Bartel</surname>
<given-names>B</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>MicroRNA-directed regulation of
<italic>Arabidopsis</italic>
AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes</article-title>
.
<source>The Plant Cell</source>
<volume>17</volume>
,
<fpage>1360</fpage>
<lpage>1375</lpage>
.
<pub-id pub-id-type="pmid">15829600</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0031">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meyers</surname>
<given-names>BC</given-names>
</name>
<name>
<surname>Axtell</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Bartel</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<year>2008</year>
<article-title>Criteria for annotation of plant MicroRNAs</article-title>
.
<source>The Plant Cell</source>
<volume>20</volume>
,
<fpage>3186</fpage>
<lpage>3190</lpage>
.
<pub-id pub-id-type="pmid">19074682</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0032">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mugford</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>Yoshimoto</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Reichelt</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<year>2009</year>
<article-title>Disruption of adenosine-5’-phosphosulfate kinase in
<italic>Arabidopsis</italic>
reduces levels of sulfated secondary metabolites</article-title>
.
<source>The Plant Cell</source>
<volume>21</volume>
,
<fpage>910</fpage>
<lpage>927</lpage>
.
<pub-id pub-id-type="pmid">19304933</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0033">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Navarro</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Dunoyer</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Jay</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Arnold</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Dharmasiri</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Estelle</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Voinnet</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>JD</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>A plant miRNA contributes to antibacterial resistance by repressing auxin signaling</article-title>
.
<source>Science</source>
<volume>312</volume>
,
<fpage>436</fpage>
<lpage>439</lpage>
.
<pub-id pub-id-type="pmid">16627744</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0034">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ng</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>ZJ</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Big roles for small RNAs in polyploidy, hybrid vigor, and hybrid incompatibility</article-title>
.
<source>Current Opinion in Plant Biology</source>
<volume>15</volume>
,
<fpage>154</fpage>
<lpage>161</lpage>
.
<pub-id pub-id-type="pmid">22326630</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0035">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Niu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>GZ</given-names>
</name>
<name>
<surname>Ye</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>WH</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>QM</given-names>
</name>
<name>
<surname>Xue</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>XD</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>YG</given-names>
</name>
<name>
<surname>Xue</surname>
<given-names>HW</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Global analysis of gene expression profiles in
<italic>Brassica napus</italic>
developing seeds reveals a conserved lipid metabolism regulation with
<italic>Arabidopsis thaliana</italic>
</article-title>
.
<source>Molecular Plant</source>
<volume>2</volume>
,
<fpage>1107</fpage>
<lpage>1122</lpage>
.
<pub-id pub-id-type="pmid">19825684</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0036">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Palatnik</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Allen</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Schommer</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Schwab</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Carrington</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Weigel</surname>
<given-names>D</given-names>
</name>
</person-group>
<year>2003</year>
<article-title>Control of leaf morphogenesis by microRNAs</article-title>
.
<source>Nature</source>
<volume>425</volume>
,
<fpage>257</fpage>
<lpage>263</lpage>
.
<pub-id pub-id-type="pmid">12931144</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0037">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Passardi</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Longet</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Penel</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Dunand</surname>
<given-names>C</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>The class III peroxidase multigenic family in rice and its evolution in land plants</article-title>
.
<source>Phytochemistry</source>
<volume>65</volume>
,
<fpage>1879</fpage>
<lpage>1893</lpage>
.
<pub-id pub-id-type="pmid">15279994</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0038">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pollard</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Beisson</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ohlrogge</surname>
<given-names>JB</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>Building lipid barriers: biosynthesis of cutin and suberin</article-title>
.
<source>Trends in Plant Science</source>
<volume>13</volume>
,
<fpage>236</fpage>
<lpage>246</lpage>
.
<pub-id pub-id-type="pmid">18440267</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0039">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qiu</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Morgan</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<year>2006</year>
<article-title>A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content</article-title>
.
<source>Theoretical and Applied Genetics</source>
<volume>114</volume>
,
<fpage>67</fpage>
<lpage>80</lpage>
.
<pub-id pub-id-type="pmid">17033785</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0040">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reintanz</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Lehnen</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Reichelt</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gershenzon</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kowalczyk</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sandberg</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Godde</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Uhl</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Palme</surname>
<given-names>K</given-names>
</name>
</person-group>
<year>2001</year>
<article-title>
<italic>bus</italic>
, a bushy
<italic>Arabidopsis</italic>
CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates</article-title>
.
<source>The Plant Cell</source>
<volume>13</volume>
,
<fpage>351</fpage>
<lpage>367</lpage>
.
<pub-id pub-id-type="pmid">11226190</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0041">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rogers</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Biogenesis, turnover, and mode of action of plant microRNAs</article-title>
.
<source>The Plant Cell</source>
<volume>25</volume>
,
<fpage>2383</fpage>
<lpage>2399</lpage>
.
<pub-id pub-id-type="pmid">23881412</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0042">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schwab</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Palatnik</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Riester</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Schommer</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Schmid</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Weigel</surname>
<given-names>D</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Specific effects of microRNAs on the plant transcriptome</article-title>
.
<source>Developmental Cell</source>
<volume>8</volume>
,
<fpage>517</fpage>
<lpage>527</lpage>
.
<pub-id pub-id-type="pmid">15809034</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0043">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shen</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Suhrkamp</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Menkhaus</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Verreet</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>D</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Identification and characterization of microRNAs in oilseed rape (
<italic>Brassica napus</italic>
) responsive to infection with the pathogenic fungus
<italic>Verticillium longisporum</italic>
using
<italic>Brassica</italic>
AA (
<italic>Brassica rapa</italic>
) and CC (
<italic>Brassica oleracea</italic>
) as reference genomes</article-title>
.
<source>New Phytologist</source>
<volume>204</volume>
,
<fpage>577</fpage>
<lpage>594</lpage>
.
<pub-id pub-id-type="pmid">25132374</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0044">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Song</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Nicholas</surname>
<given-names>KK</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>Z</given-names>
</name>
</person-group>
<year>2010</year>
<italic>a</italic>
<article-title>MiR-RACE, a new efficient approach to determine the precise sequences of computationally identified trifoliate orange (
<italic>Poncirus trifoliata</italic>
) microRNAs</article-title>
.
<source>PloS One</source>
<volume>5</volume>
,
<fpage>e10861</fpage>
.
<pub-id pub-id-type="pmid">20539756</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0045">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Song</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Jia</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Z</given-names>
</name>
</person-group>
<year>2010</year>
<italic>b</italic>
<article-title>Computational identification of citrus microRNAs and target analysis in citrus expressed sequence tags</article-title>
.
<source>Plant Biology</source>
<volume>12</volume>
,
<fpage>927</fpage>
<lpage>934</lpage>
.
<pub-id pub-id-type="pmid">21040308</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0046">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stief</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Altmann</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hoffmann</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Pant</surname>
<given-names>BD</given-names>
</name>
<name>
<surname>Scheible</surname>
<given-names>WR</given-names>
</name>
<name>
<surname>Baurle</surname>
<given-names>I</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>
<italic>Arabidopsis</italic>
miR156 regulates tolerance to recurring environmental stress through SPL transcription factors</article-title>
.
<source>The Plant Cell</source>
<volume>26</volume>
,
<fpage>1792</fpage>
<lpage>1807</lpage>
.
<pub-id pub-id-type="pmid">24769482</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0047">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stocks</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>Moxon</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Mapleson</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Woolfenden</surname>
<given-names>HC</given-names>
</name>
<name>
<surname>Mohorianu</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Folkes</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Schwach</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Dalmay</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Moulton</surname>
<given-names>V</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>The UEA sRNA workbench: a suite of tools for analysing and visualizing next generation sequencing microRNA and small RNA datasets</article-title>
.
<source>Bioinformatics</source>
<volume>28</volume>
,
<fpage>2059</fpage>
<lpage>2061</lpage>
.
<pub-id pub-id-type="pmid">22628521</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0048">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stupar</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Hermanson</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Springer</surname>
<given-names>NM</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Nonadditive expression and parent-of-origin effects identified by microarray and allele-specific expression profiling of maize endosperm</article-title>
.
<source>Plant Physiology</source>
<volume>145</volume>
,
<fpage>411</fpage>
<lpage>425</lpage>
.
<pub-id pub-id-type="pmid">17766400</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0049">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sunkar</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>YF</given-names>
</name>
<name>
<surname>Jagadeeswaran</surname>
<given-names>G</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Functions of microRNAs in plant stress responses</article-title>
.
<source>Trends in Plant Science</source>
<volume>17</volume>
,
<fpage>196</fpage>
<lpage>203</lpage>
.
<pub-id pub-id-type="pmid">22365280</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0050">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tang</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Gui</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>QH</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>L</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Identification of wounding and topping responsive small RNAs in tobacco (
<italic>Nicotiana tabacum</italic>
)</article-title>
.
<source>BMC Plant Biology</source>
<volume>12</volume>
,
<fpage>28</fpage>
.
<pub-id pub-id-type="pmid">22353177</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0051">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tempel</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Using and understanding RepeatMasker</article-title>
.
<source>Methods in Molecular Biology</source>
<volume>859</volume>
,
<fpage>29</fpage>
<lpage>51</lpage>
.
<pub-id pub-id-type="pmid">22367864</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0052">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nagaharu</surname>
<given-names>N</given-names>
</name>
</person-group>
<year>1935</year>
<article-title>Genome analysis in
<italic>Brassica</italic>
with special reference to the experimental formation of
<italic>B. napus</italic>
and peculiar mode of fertilization</article-title>
.
<source>Japanese Journal of Botany</source>
<volume>7</volume>
,
<fpage>389</fpage>
<lpage>452</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0053">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vaucheret</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Vazquez</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Crete</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Bartel</surname>
<given-names>DP</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development</article-title>
.
<source>Genes and Development</source>
<volume>18</volume>
,
<fpage>1187</fpage>
<lpage>1197</lpage>
.
<pub-id pub-id-type="pmid">15131082</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0054">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vazquez</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Legrand</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Windels</surname>
<given-names>D</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>The biosynthetic pathways and biological scopes of plant small RNAs</article-title>
.
<source>Trends in Plant Science</source>
<volume>15</volume>
,
<fpage>337</fpage>
<lpage>345</lpage>
.
<pub-id pub-id-type="pmid">20427224</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0055">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Voinnet</surname>
<given-names>O</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Origin, biogenesis, and activity of plant microRNAs</article-title>
.
<source>Cell</source>
<volume>136</volume>
,
<fpage>669</fpage>
<lpage>687</lpage>
.
<pub-id pub-id-type="pmid">19239888</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0056">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>J</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>MicroRNA expression analysis of rosette and folding leaves in Chinese cabbage using high-throughput Solexa sequencing</article-title>
.
<source>Gene</source>
<volume>532</volume>
,
<fpage>222</fpage>
<lpage>229</lpage>
.
<pub-id pub-id-type="pmid">24055726</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0057">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Tong</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<year>2014</year>
<article-title>Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis</article-title>
.
<source>Genome Biology</source>
<volume>15</volume>
,
<fpage>R39</fpage>
.
<pub-id pub-id-type="pmid">24576357</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0058">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<year>2011</year>
<article-title>The genome of the mesopolyploid crop species
<italic>Brassica rapa</italic>
</article-title>
.
<source>Nature Genetics</source>
<volume>43</volume>
,
<fpage>1035</fpage>
<lpage>1039</lpage>
.
<pub-id pub-id-type="pmid">21873998</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0059">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Debarry</surname>
<given-names>JD</given-names>
</name>
<etal></etal>
</person-group>
<year>2012</year>
<article-title>MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity</article-title>
.
<source>Nucleic Acids Research</source>
<volume>40</volume>
,
<fpage>e49</fpage>
.
<pub-id pub-id-type="pmid">22217600</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0060">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Williams</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Grigg</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Christensen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Fletcher</surname>
<given-names>JC</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Regulation of
<italic>Arabidopsis</italic>
shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes</article-title>
.
<source>Development</source>
<volume>132</volume>
,
<fpage>3657</fpage>
<lpage>3668</lpage>
.
<pub-id pub-id-type="pmid">16033795</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0061">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wittstock</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Burow</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Glucosinolate breakdown in
<italic>Arabidopsis</italic>
: mechanism, regulation and biological significance</article-title>
.
<source>The Arabidopsis Book</source>
<volume>8</volume>
,
<fpage>e0134</fpage>
.
<pub-id pub-id-type="pmid">22303260</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0062">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Tian</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Reed</surname>
<given-names>JW</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>
<italic>Arabidopsis</italic>
microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction</article-title>
.
<source>Development</source>
<volume>133</volume>
,
<fpage>4211</fpage>
<lpage>4218</lpage>
.
<pub-id pub-id-type="pmid">17021043</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0063">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xie</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>B</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>microRNA evolution and expression analysis in polyploidized cotton genome</article-title>
.
<source>Plant Biotechnology Journal</source>
<volume>13</volume>
,
<fpage>421</fpage>
<lpage>434</lpage>
.
<pub-id pub-id-type="pmid">25561162</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0064">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>MY</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>QX</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>YZ</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>YL</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Identification of miRNAs and their targets from
<italic>Brassica napus</italic>
by high-throughput sequencing and degradome analysis</article-title>
.
<source>BMC genomics</source>
<volume>13</volume>
,
<fpage>421</fpage>
.
<pub-id pub-id-type="pmid">22920854</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0065">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons</article-title>
.
<source>Nucleic Acids Research</source>
<volume>35</volume>
,
<fpage>W265</fpage>
<lpage>W268</lpage>
.
<pub-id pub-id-type="pmid">17485477</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0066">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Ni</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Sunkar</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>Q</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Cloning and characterization of microRNAs from wheat (
<italic>Triticum aestivum</italic>
L.)</article-title>
.
<source>Genome Biology</source>
<volume>8</volume>
,
<fpage>R96</fpage>
.
<pub-id pub-id-type="pmid">17543110</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0067">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>de Ruiter</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Cariaso</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Prins</surname>
<given-names>M</given-names>
</name>
<name>
<surname>van Tunen</surname>
<given-names>A</given-names>
</name>
<name>
<surname>He</surname>
<given-names>Y</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Identification of conserved and novel microRNAs that are responsive to heat stress in
<italic>Brassica rapa</italic>
</article-title>
.
<source>Journal of Experimental Botany</source>
<volume>63</volume>
,
<fpage>1025</fpage>
<lpage>1038</lpage>
.
<pub-id pub-id-type="pmid">22025521</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0068">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>B</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>MicroRNA: a new target for improving plant tolerance to abiotic stress</article-title>
.
<source>Journal of Experimental Botany</source>
<volume>66</volume>
,
<fpage>1749</fpage>
<lpage>1761</lpage>
.
<pub-id pub-id-type="pmid">25697792</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0069">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>TZ</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>WK</given-names>
</name>
<etal></etal>
</person-group>
<year>2015</year>
<article-title>Sequencing of allotetraploid cotton (
<italic>Gossypium hirsutum</italic>
L. acc. TM-1) provides a resource for fiber improvement</article-title>
.
<source>Nature Biotechnology</source>
<volume>33</volume>
,
<fpage>531</fpage>
<lpage>537</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0070">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>YT</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>SX</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>WC</given-names>
</name>
<name>
<surname>Qi</surname>
<given-names>CK</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>XJ</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Small RNA profiling in two
<italic>Brassica napus</italic>
cultivars identifies microRNAs with oil production- and development-correlated expression and new small RNA classes</article-title>
.
<source>Plant Physiology</source>
<volume>158</volume>
,
<fpage>813</fpage>
<lpage>823</lpage>
.
<pub-id pub-id-type="pmid">22138974</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0071">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>W</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>UV-B responsive microRNA genes in
<italic>Arabidopsis thaliana</italic>
</article-title>
.
<source>Molecular Systems Biology</source>
<volume>3</volume>
,
<fpage>103</fpage>
.
<pub-id pub-id-type="pmid">17437028</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0072">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>ZS</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>ZM</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Genome-wide identification of
<italic>Brassica napus</italic>
microRNAs and their targets in response to cadmium</article-title>
.
<source>Journal of Experimental Botany</source>
<volume>63</volume>
,
<fpage>4597</fpage>
<lpage>4613</lpage>
.
<pub-id pub-id-type="pmid">22760473</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000552  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000552  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024