Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0005371 ( Pmc/Corpus ); précédent : 0005370; suivant : 0005372 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Impact of Competition and Allelopathy on the Trade-Off between Plant Defense and Growth in Two Contrasting Tree Species</title>
<author>
<name sortKey="Fernandez, Catherine" sort="Fernandez, Catherine" uniqKey="Fernandez C" first="Catherine" last="Fernandez">Catherine Fernandez</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale - Aix Marseille Université - Centre National de la Recherche Scientifique - IRD - Avignon Université</institution>
<country>Marseille, France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Monnier, Yogan" sort="Monnier, Yogan" uniqKey="Monnier Y" first="Yogan" last="Monnier">Yogan Monnier</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale - Aix Marseille Université - Centre National de la Recherche Scientifique - IRD - Avignon Université</institution>
<country>Marseille, France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Santonja, Mathieu" sort="Santonja, Mathieu" uniqKey="Santonja M" first="Mathieu" last="Santonja">Mathieu Santonja</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale - Aix Marseille Université - Centre National de la Recherche Scientifique - IRD - Avignon Université</institution>
<country>Marseille, France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gallet, Christiane" sort="Gallet, Christiane" uniqKey="Gallet C" first="Christiane" last="Gallet">Christiane Gallet</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Laboratoire d'Ecologie Alpine - Université de Savoie-Mont-Blanc</institution>
<country>Chambéry, France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Weston, Leslie A" sort="Weston, Leslie A" uniqKey="Weston L" first="Leslie A." last="Weston">Leslie A. Weston</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Graham Centre for Agricultural Innovation- Charles Sturt University</institution>
<country>Wagga Wagga, NSW, Australia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Prevosto, Bernard" sort="Prevosto, Bernard" uniqKey="Prevosto B" first="Bernard" last="Prévosto">Bernard Prévosto</name>
<affiliation>
<nlm:aff id="aff4">
<institution>Institut National de Recherche en Sciences et Technologies Pour l'Environnement et l'Agriculture</institution>
<country>Aix-en-Provence, France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Saunier, Amelie" sort="Saunier, Amelie" uniqKey="Saunier A" first="Amélie" last="Saunier">Amélie Saunier</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale - Aix Marseille Université - Centre National de la Recherche Scientifique - IRD - Avignon Université</institution>
<country>Marseille, France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Baldy, Virginie" sort="Baldy, Virginie" uniqKey="Baldy V" first="Virginie" last="Baldy">Virginie Baldy</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale - Aix Marseille Université - Centre National de la Recherche Scientifique - IRD - Avignon Université</institution>
<country>Marseille, France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bousquet Melou, Anne" sort="Bousquet Melou, Anne" uniqKey="Bousquet Melou A" first="Anne" last="Bousquet-Mélou">Anne Bousquet-Mélou</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale - Aix Marseille Université - Centre National de la Recherche Scientifique - IRD - Avignon Université</institution>
<country>Marseille, France</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27200062</idno>
<idno type="pmc">4855863</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4855863</idno>
<idno type="RBID">PMC:4855863</idno>
<idno type="doi">10.3389/fpls.2016.00594</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000537</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000537</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">The Impact of Competition and Allelopathy on the Trade-Off between Plant Defense and Growth in Two Contrasting Tree Species</title>
<author>
<name sortKey="Fernandez, Catherine" sort="Fernandez, Catherine" uniqKey="Fernandez C" first="Catherine" last="Fernandez">Catherine Fernandez</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale - Aix Marseille Université - Centre National de la Recherche Scientifique - IRD - Avignon Université</institution>
<country>Marseille, France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Monnier, Yogan" sort="Monnier, Yogan" uniqKey="Monnier Y" first="Yogan" last="Monnier">Yogan Monnier</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale - Aix Marseille Université - Centre National de la Recherche Scientifique - IRD - Avignon Université</institution>
<country>Marseille, France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Santonja, Mathieu" sort="Santonja, Mathieu" uniqKey="Santonja M" first="Mathieu" last="Santonja">Mathieu Santonja</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale - Aix Marseille Université - Centre National de la Recherche Scientifique - IRD - Avignon Université</institution>
<country>Marseille, France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gallet, Christiane" sort="Gallet, Christiane" uniqKey="Gallet C" first="Christiane" last="Gallet">Christiane Gallet</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Laboratoire d'Ecologie Alpine - Université de Savoie-Mont-Blanc</institution>
<country>Chambéry, France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Weston, Leslie A" sort="Weston, Leslie A" uniqKey="Weston L" first="Leslie A." last="Weston">Leslie A. Weston</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Graham Centre for Agricultural Innovation- Charles Sturt University</institution>
<country>Wagga Wagga, NSW, Australia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Prevosto, Bernard" sort="Prevosto, Bernard" uniqKey="Prevosto B" first="Bernard" last="Prévosto">Bernard Prévosto</name>
<affiliation>
<nlm:aff id="aff4">
<institution>Institut National de Recherche en Sciences et Technologies Pour l'Environnement et l'Agriculture</institution>
<country>Aix-en-Provence, France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Saunier, Amelie" sort="Saunier, Amelie" uniqKey="Saunier A" first="Amélie" last="Saunier">Amélie Saunier</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale - Aix Marseille Université - Centre National de la Recherche Scientifique - IRD - Avignon Université</institution>
<country>Marseille, France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Baldy, Virginie" sort="Baldy, Virginie" uniqKey="Baldy V" first="Virginie" last="Baldy">Virginie Baldy</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale - Aix Marseille Université - Centre National de la Recherche Scientifique - IRD - Avignon Université</institution>
<country>Marseille, France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bousquet Melou, Anne" sort="Bousquet Melou, Anne" uniqKey="Bousquet Melou A" first="Anne" last="Bousquet-Mélou">Anne Bousquet-Mélou</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale - Aix Marseille Université - Centre National de la Recherche Scientifique - IRD - Avignon Université</institution>
<country>Marseille, France</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in Plant Science</title>
<idno type="eISSN">1664-462X</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>In contrast to plant-animal interactions, the conceptual framework regarding the impact of secondary metabolites in mediating plant-plant interference is currently less well defined. Here, we address hypotheses about the role of chemically-mediated plant-plant interference (i.e., allelopathy) as a driver of Mediterranean forest dynamics. Growth and defense abilities of a pioneer (
<italic>Pinus halepensis</italic>
) and a late-successional (
<italic>Quercus pubescens</italic>
) Mediterranean forest species were evaluated under three different plant interference conditions: (i) allelopathy simulated by application of aqueous needle extracts of
<italic>Pinus</italic>
, (ii) resource competition created by the physical presence of a neighboring species (
<italic>Pinus</italic>
or
<italic>Quercus</italic>
), and (iii) a combination of both allelopathy and competition. After 24 months of experimentation in simulated field conditions,
<italic>Quercus</italic>
was more affected by plant interference treatments than was
<italic>Pinus</italic>
, and a hierarchical response to biotic interference (allelopathy < competition < allelopathy + competition) was observed in terms of relative impact on growth and plant defense. Both species modulated their respective metabolic profiles according to plant interference treatment and thus their inherent chemical defense status, resulting in a physiological trade-off between plant growth and production of defense metabolites. For
<italic>Quercus</italic>
, an increase in secondary metabolite production and a decrease in plant growth were observed in all treatments. In contrast, this trade-off in
<italic>Pinus</italic>
was only observed in competition and allelopathy + competition treatments. Although
<italic>Pinus</italic>
and
<italic>Quercus</italic>
expressed differential responses when subjected to a single interference condition, either allelopathy or competition, species responses were similar or positively correlated when strong interference conditions (allelopathy + competition) were imposed.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Adams, R P" uniqKey="Adams R">R. P. Adams</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Agrawal, A A" uniqKey="Agrawal A">A. A. Agrawal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bais, H P" uniqKey="Bais H">H. P. Bais</name>
</author>
<author>
<name sortKey="Park, S W" uniqKey="Park S">S. W. Park</name>
</author>
<author>
<name sortKey="Weir, T L" uniqKey="Weir T">T. L. Weir</name>
</author>
<author>
<name sortKey="Callaway, R M" uniqKey="Callaway R">R. M. Callaway</name>
</author>
<author>
<name sortKey="Vivanco, J M" uniqKey="Vivanco J">J. M. Vivanco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ballhorn, D J" uniqKey="Ballhorn D">D. J. Ballhorn</name>
</author>
<author>
<name sortKey="Godschalx, A L" uniqKey="Godschalx A">A. L. Godschalx</name>
</author>
<author>
<name sortKey="Smart, S M" uniqKey="Smart S">S. M. Smart</name>
</author>
<author>
<name sortKey="Kautz, S" uniqKey="Kautz S">S. Kautz</name>
</author>
<author>
<name sortKey="Schadler, M" uniqKey="Schadler M">M. Schadler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barton, K E" uniqKey="Barton K">K. E. Barton</name>
</author>
<author>
<name sortKey="Bowers, M D" uniqKey="Bowers M">M. D. Bowers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Broncano, M J" uniqKey="Broncano M">M. J. Broncano</name>
</author>
<author>
<name sortKey="Riba, M" uniqKey="Riba M">M. Riba</name>
</author>
<author>
<name sortKey="Retana, J" uniqKey="Retana J">J. Retana</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Broz, A K" uniqKey="Broz A">A. K. Broz</name>
</author>
<author>
<name sortKey="Broeckling, C D" uniqKey="Broeckling C">C. D. Broeckling</name>
</author>
<author>
<name sortKey="De La Pe A, C" uniqKey="De La Pe A C">C. De-la-Peña</name>
</author>
<author>
<name sortKey="Lewis, M R" uniqKey="Lewis M">M. R. Lewis</name>
</author>
<author>
<name sortKey="Greene, E" uniqKey="Greene E">E. Greene</name>
</author>
<author>
<name sortKey="Callaway, R M" uniqKey="Callaway R">R. M. Callaway</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burns, J H" uniqKey="Burns J">J. H. Burns</name>
</author>
<author>
<name sortKey="Strauss, S Y" uniqKey="Strauss S">S. Y. Strauss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Callaway, R M" uniqKey="Callaway R">R. M. Callaway</name>
</author>
<author>
<name sortKey="Aschehoug, E T" uniqKey="Aschehoug E">E. T. Aschehoug</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Callaway, R M" uniqKey="Callaway R">R. M. Callaway</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Callaway, R M" uniqKey="Callaway R">R. M. Callaway</name>
</author>
<author>
<name sortKey="Ridenour, W M" uniqKey="Ridenour W">W. M. Ridenour</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cespedes, C L" uniqKey="Cespedes C">C. L. Céspedes</name>
</author>
<author>
<name sortKey="Uchoa, A" uniqKey="Uchoa A">A. Uchoa</name>
</author>
<author>
<name sortKey="Salazar, J R" uniqKey="Salazar J">J. R. Salazar</name>
</author>
<author>
<name sortKey="Perich, F" uniqKey="Perich F">F. Perich</name>
</author>
<author>
<name sortKey="Pardo, F" uniqKey="Pardo F">F. Pardo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chomel, M" uniqKey="Chomel M">M. Chomel</name>
</author>
<author>
<name sortKey="Fernandez, C" uniqKey="Fernandez C">C. Fernandez</name>
</author>
<author>
<name sortKey="Bousquet Melou, A" uniqKey="Bousquet Melou A">A. Bousquet-Mélou</name>
</author>
<author>
<name sortKey="Gers, C" uniqKey="Gers C">C. Gers</name>
</author>
<author>
<name sortKey="Monnier, Y" uniqKey="Monnier Y">Y. Monnier</name>
</author>
<author>
<name sortKey="Santonja, M" uniqKey="Santonja M">M. Santonja</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cipollini, D F" uniqKey="Cipollini D">D. F. Cipollini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cipollini, D F" uniqKey="Cipollini D">D. F. Cipollini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Delvas, N" uniqKey="Delvas N">N. Delvas</name>
</author>
<author>
<name sortKey="Bauce, E" uniqKey="Bauce E">E. Bauce</name>
</author>
<author>
<name sortKey="Labbe, C" uniqKey="Labbe C">C. Labbé</name>
</author>
<author>
<name sortKey="Ollevier, T" uniqKey="Ollevier T">T. Ollevier</name>
</author>
<author>
<name sortKey="Belanger, R" uniqKey="Belanger R">R. Bélanger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fernandez, C" uniqKey="Fernandez C">C. Fernandez</name>
</author>
<author>
<name sortKey="Lelong, B" uniqKey="Lelong B">B. Lelong</name>
</author>
<author>
<name sortKey="Vila, B" uniqKey="Vila B">B. Vila</name>
</author>
<author>
<name sortKey="Mevy, J P" uniqKey="Mevy J">J. P. Mévy</name>
</author>
<author>
<name sortKey="Robles, C" uniqKey="Robles C">C. Robles</name>
</author>
<author>
<name sortKey="Greff, S" uniqKey="Greff S">S. Greff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fernandez, C" uniqKey="Fernandez C">C. Fernandez</name>
</author>
<author>
<name sortKey="Voiriot, S" uniqKey="Voiriot S">S. Voiriot</name>
</author>
<author>
<name sortKey="Mevy, J P" uniqKey="Mevy J">J. P. Mévy</name>
</author>
<author>
<name sortKey="Vila, B" uniqKey="Vila B">B. Vila</name>
</author>
<author>
<name sortKey="Orme O, E" uniqKey="Orme O E">E. Ormeño</name>
</author>
<author>
<name sortKey="Dupouyet, S" uniqKey="Dupouyet S">S. Dupouyet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fernandez, C" uniqKey="Fernandez C">C. Fernandez</name>
</author>
<author>
<name sortKey="Monnier, Y" uniqKey="Monnier Y">Y. Monnier</name>
</author>
<author>
<name sortKey="Orme O, E" uniqKey="Orme O E">E. Ormeño</name>
</author>
<author>
<name sortKey="Baldy, V" uniqKey="Baldy V">V. Baldy</name>
</author>
<author>
<name sortKey="Greff, S" uniqKey="Greff S">S. Greff</name>
</author>
<author>
<name sortKey="Pasqualini, V" uniqKey="Pasqualini V">V. Pasqualini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fernandez, C" uniqKey="Fernandez C">C. Fernandez</name>
</author>
<author>
<name sortKey="Santonja, M" uniqKey="Santonja M">M. Santonja</name>
</author>
<author>
<name sortKey="Gros, R" uniqKey="Gros R">R. Gros</name>
</author>
<author>
<name sortKey="Monnier, Y" uniqKey="Monnier Y">Y. Monnier</name>
</author>
<author>
<name sortKey="Chomel, M" uniqKey="Chomel M">M. Chomel</name>
</author>
<author>
<name sortKey="Baldy, V" uniqKey="Baldy V">V. Baldy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gallet, C" uniqKey="Gallet C">C. Gallet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Genard Zielinski, A C" uniqKey="Genard Zielinski A">A. C. Genard-Zielinski</name>
</author>
<author>
<name sortKey="Orme O, E" uniqKey="Orme O E">E. Ormeño</name>
</author>
<author>
<name sortKey="Boissard, C" uniqKey="Boissard C">C. Boissard</name>
</author>
<author>
<name sortKey="Fernandez, C" uniqKey="Fernandez C">C. Fernandez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gershenzon, J" uniqKey="Gershenzon J">J. Gershenzon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gershenzon, J" uniqKey="Gershenzon J">J. Gershenzon</name>
</author>
<author>
<name sortKey="Fontana, A" uniqKey="Fontana A">A. Fontana</name>
</author>
<author>
<name sortKey="Burow, M" uniqKey="Burow M">M. Burow</name>
</author>
<author>
<name sortKey="Wittstock, U" uniqKey="Wittstock U">U. Wittstock</name>
</author>
<author>
<name sortKey="Degenhardt, J" uniqKey="Degenhardt J">J. Degenhardt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gershenzon, J" uniqKey="Gershenzon J">J. Gershenzon</name>
</author>
<author>
<name sortKey="Dudareva, N" uniqKey="Dudareva N">N. Dudareva</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gomez Aparicio, L" uniqKey="Gomez Aparicio L">L. Gomez-Aparicio</name>
</author>
<author>
<name sortKey="Perez Ramos, I M" uniqKey="Perez Ramos I">I. M. Perez-Ramos</name>
</author>
<author>
<name sortKey="Mendoza, I" uniqKey="Mendoza I">I. Mendoza</name>
</author>
<author>
<name sortKey="Matias, L" uniqKey="Matias L">L. Matias</name>
</author>
<author>
<name sortKey="Quero, J L" uniqKey="Quero J">J. L. Quero</name>
</author>
<author>
<name sortKey="Zamora, R" uniqKey="Zamora R">R. Zamora</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goodger, J Q D" uniqKey="Goodger J">J. Q. D. Goodger</name>
</author>
<author>
<name sortKey="Heskes, A M" uniqKey="Heskes A">A. M. Heskes</name>
</author>
<author>
<name sortKey="Woodrow, I E" uniqKey="Woodrow I">I. E. Woodrow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hartley, S E" uniqKey="Hartley S">S. E. Hartley</name>
</author>
<author>
<name sortKey="Eschen, R" uniqKey="Eschen R">R. Eschen</name>
</author>
<author>
<name sortKey="Horwood, J M" uniqKey="Horwood J">J. M. Horwood</name>
</author>
<author>
<name sortKey="Robinson, L" uniqKey="Robinson L">L. Robinson</name>
</author>
<author>
<name sortKey="Hill, E M" uniqKey="Hill E">E. M. Hill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Herm, D A" uniqKey="Herm D">D. A. Herm</name>
</author>
<author>
<name sortKey="Mattson, W J" uniqKey="Mattson W">W. J. Mattson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huot, B" uniqKey="Huot B">B. Huot</name>
</author>
<author>
<name sortKey="Yao, J" uniqKey="Yao J">J. Yao</name>
</author>
<author>
<name sortKey="Montgomery, B L" uniqKey="Montgomery B">B. L. Montgomery</name>
</author>
<author>
<name sortKey="He, S Y" uniqKey="He S">S. Y. He</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Inderjit Del Moral, R" uniqKey="Inderjit Del Moral R">R. Inderjit Del Moral</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Inderjit Nilsen, E T" uniqKey="Inderjit Nilsen E">E. T. Inderjit Nilsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Inderjit, Wardle D A" uniqKey="Inderjit W">Wardle, D. A. Inderjit</name>
</author>
<author>
<name sortKey="Karban, R" uniqKey="Karban R">R. Karban</name>
</author>
<author>
<name sortKey="Callaway, R M" uniqKey="Callaway R">R. M. Callaway</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jones, T" uniqKey="Jones T">T. Jones</name>
</author>
<author>
<name sortKey="Kulseth, S" uniqKey="Kulseth S">S. Kulseth</name>
</author>
<author>
<name sortKey="Mechtenberg, K" uniqKey="Mechtenberg K">K. Mechtenberg</name>
</author>
<author>
<name sortKey="Jorgenson, C" uniqKey="Jorgenson C">C. Jorgenson</name>
</author>
<author>
<name sortKey="Zehfus, M" uniqKey="Zehfus M">M. Zehfus</name>
</author>
<author>
<name sortKey="Brown, P" uniqKey="Brown P">P. Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kordali, S" uniqKey="Kordali S">S. Kordali</name>
</author>
<author>
<name sortKey="Cakir, A" uniqKey="Cakir A">A. Cakir</name>
</author>
<author>
<name sortKey="Sutay, S" uniqKey="Sutay S">S. Sutay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lankau, R A" uniqKey="Lankau R">R. A. Lankau</name>
</author>
<author>
<name sortKey="Strauss, S Y" uniqKey="Strauss S">S. Y. Strauss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lankau, R A" uniqKey="Lankau R">R. A. Lankau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lankau, R A" uniqKey="Lankau R">R. A. Lankau</name>
</author>
<author>
<name sortKey="Kliebenstein, D J" uniqKey="Kliebenstein D">D. J. Kliebenstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lankau, R A" uniqKey="Lankau R">R. A. Lankau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lookingbill, T R" uniqKey="Lookingbill T">T. R. Lookingbill</name>
</author>
<author>
<name sortKey="Zavala, M A" uniqKey="Zavala M">M. A. Zavala</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maestre, F T" uniqKey="Maestre F">F. T. Maestre</name>
</author>
<author>
<name sortKey="Cortina, J" uniqKey="Cortina J">J. Cortina</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mallik, A U" uniqKey="Mallik A">A. U. Mallik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meiners, S J" uniqKey="Meiners S">S. J. Meiners</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Metlen, K L" uniqKey="Metlen K">K. L. Metlen</name>
</author>
<author>
<name sortKey="Aschehoug, E T" uniqKey="Aschehoug E">E. T. Aschehoug</name>
</author>
<author>
<name sortKey="Callaway, R M" uniqKey="Callaway R">R. M. Callaway</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Monnier, Y" uniqKey="Monnier Y">Y. Monnier</name>
</author>
<author>
<name sortKey="Vila, B" uniqKey="Vila B">B. Vila</name>
</author>
<author>
<name sortKey="Montes, N" uniqKey="Montes N">N. Montes</name>
</author>
<author>
<name sortKey="Bousquet Melou, A" uniqKey="Bousquet Melou A">A. Bousquet-Melou</name>
</author>
<author>
<name sortKey="Prevosto, B" uniqKey="Prevosto B">B. Prévosto</name>
</author>
<author>
<name sortKey="Fernandez, C" uniqKey="Fernandez C">C. Fernandez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Monnier, Y" uniqKey="Monnier Y">Y. Monnier</name>
</author>
<author>
<name sortKey="Bousquet Melou, A" uniqKey="Bousquet Melou A">A. Bousquet-Mélou</name>
</author>
<author>
<name sortKey="Vila, B" uniqKey="Vila B">B. Vila</name>
</author>
<author>
<name sortKey="Prevosto, B" uniqKey="Prevosto B">B. Prévosto</name>
</author>
<author>
<name sortKey="Fernandez, C" uniqKey="Fernandez C">C. Fernandez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Novoplansky, A" uniqKey="Novoplansky A">A. Novoplansky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Olofsdotter, M" uniqKey="Olofsdotter M">M. Olofsdotter</name>
</author>
<author>
<name sortKey="Navarez, D" uniqKey="Navarez D">D. Navarez</name>
</author>
<author>
<name sortKey="Rebulanan, M" uniqKey="Rebulanan M">M. Rebulanan</name>
</author>
<author>
<name sortKey="Streibig, J C" uniqKey="Streibig J">J. C. Streibig</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Orme O, E" uniqKey="Orme O E">E. Ormeño</name>
</author>
<author>
<name sortKey="Fernandez, C" uniqKey="Fernandez C">C. Fernandez</name>
</author>
<author>
<name sortKey="Mevy, J P" uniqKey="Mevy J">J. P. Mevy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Orme O, E" uniqKey="Orme O E">E. Ormeño</name>
</author>
<author>
<name sortKey="Mevy, J P" uniqKey="Mevy J">J. P. Mévy</name>
</author>
<author>
<name sortKey="Vila, B" uniqKey="Vila B">B. Vila</name>
</author>
<author>
<name sortKey="Bousquet Melou, A" uniqKey="Bousquet Melou A">A. Bousquet-Mélou</name>
</author>
<author>
<name sortKey="Greff, S" uniqKey="Greff S">S. Greff</name>
</author>
<author>
<name sortKey="Bonin, G" uniqKey="Bonin G">G. Bonin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Osswald, W F" uniqKey="Osswald W">W. F. Osswald</name>
</author>
<author>
<name sortKey="Benz, B" uniqKey="Benz B">B. Benz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pierik, R" uniqKey="Pierik R">R. Pierik</name>
</author>
<author>
<name sortKey="Mommer, L" uniqKey="Mommer L">L. Mommer</name>
</author>
<author>
<name sortKey="Voesenek, L A" uniqKey="Voesenek L">L. A. Voesenek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prevosto, B" uniqKey="Prevosto B">B. Prévosto</name>
</author>
<author>
<name sortKey="Monnier, Y" uniqKey="Monnier Y">Y. Monnier</name>
</author>
<author>
<name sortKey="Ripert, C" uniqKey="Ripert C">C. Ripert</name>
</author>
<author>
<name sortKey="Fernandez, C" uniqKey="Fernandez C">C. Fernandez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prevosto, B" uniqKey="Prevosto B">B. Prévosto</name>
</author>
<author>
<name sortKey="Gavinet, J" uniqKey="Gavinet J">J. Gavinet</name>
</author>
<author>
<name sortKey="Ripert, C" uniqKey="Ripert C">C. Ripert</name>
</author>
<author>
<name sortKey="Fernandez, C" uniqKey="Fernandez C">C. Fernandez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Puerta Pinero, C" uniqKey="Puerta Pinero C">C. Puerta-Pinero</name>
</author>
<author>
<name sortKey="Gomez, J M" uniqKey="Gomez J">J. M. Gomez</name>
</author>
<author>
<name sortKey="Valladares, F" uniqKey="Valladares F">F. Valladares</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rasher, D B" uniqKey="Rasher D">D. B. Rasher</name>
</author>
<author>
<name sortKey="Hay, M" uniqKey="Hay M">M. Hay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reigosa, M J" uniqKey="Reigosa M">M. J. Reigosa</name>
</author>
<author>
<name sortKey="Sanchez Moreiras, A" uniqKey="Sanchez Moreiras A">A. Sanchez-Moreiras</name>
</author>
<author>
<name sortKey="Gonzalez, L" uniqKey="Gonzalez L">L. Gonzalez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Richter, S" uniqKey="Richter S">S. Richter</name>
</author>
<author>
<name sortKey="Kipfer, T" uniqKey="Kipfer T">T. Kipfer</name>
</author>
<author>
<name sortKey="Wohlgemuth, T" uniqKey="Wohlgemuth T">T. Wohlgemuth</name>
</author>
<author>
<name sortKey="Calder N Guerrero, C" uniqKey="Calder N Guerrero C">C. Calderón Guerrero</name>
</author>
<author>
<name sortKey="Ghazoul, J" uniqKey="Ghazoul J">J. Ghazoul</name>
</author>
<author>
<name sortKey="Moser, B" uniqKey="Moser B">B. Moser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodriguez Calcerrada, J" uniqKey="Rodriguez Calcerrada J">J. Rodriguez-Calcerrada</name>
</author>
<author>
<name sortKey="Cano, F J" uniqKey="Cano F">F. J. Cano</name>
</author>
<author>
<name sortKey="Valbuena Carabana, M" uniqKey="Valbuena Carabana M">M. Valbuena-Carabana</name>
</author>
<author>
<name sortKey="Gil, L" uniqKey="Gil L">L. Gil</name>
</author>
<author>
<name sortKey="Aranda, I" uniqKey="Aranda I">I. Aranda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ruan, X" uniqKey="Ruan X">X. Ruan</name>
</author>
<author>
<name sortKey="Li, Z H" uniqKey="Li Z">Z. H. Li</name>
</author>
<author>
<name sortKey="Wang, Q" uniqKey="Wang Q">Q. Wang</name>
</author>
<author>
<name sortKey="Pan, C D" uniqKey="Pan C">C. D. Pan</name>
</author>
<author>
<name sortKey="Jiang, D A" uniqKey="Jiang D">D. A. Jiang</name>
</author>
<author>
<name sortKey="Wang, G G" uniqKey="Wang G">G. G. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="San Emeterio, L" uniqKey="San Emeterio L">L. San Emeterio</name>
</author>
<author>
<name sortKey="Damgaard, C" uniqKey="Damgaard C">C. Damgaard</name>
</author>
<author>
<name sortKey="Canals, R M" uniqKey="Canals R">R. M. Canals</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Santonja, M" uniqKey="Santonja M">M. Santonja</name>
</author>
<author>
<name sortKey="Baldy, V" uniqKey="Baldy V">V. Baldy</name>
</author>
<author>
<name sortKey="Fernandez, C" uniqKey="Fernandez C">C. Fernandez</name>
</author>
<author>
<name sortKey="Balesdent, J" uniqKey="Balesdent J">J. Balesdent</name>
</author>
<author>
<name sortKey="Gauquelin, T" uniqKey="Gauquelin T">T. Gauquelin</name>
</author>
<author>
<name sortKey="Baldy, V" uniqKey="Baldy V">V. Baldy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schenk, H J" uniqKey="Schenk H">H. J. Schenk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schluter, D" uniqKey="Schluter D">D. Schluter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scognamiglio, M" uniqKey="Scognamiglio M">M. Scognamiglio</name>
</author>
<author>
<name sortKey="Fiumano, V" uniqKey="Fiumano V">V. Fiumano</name>
</author>
<author>
<name sortKey="D Abrosca, B" uniqKey="D Abrosca B">B. D'Abrosca</name>
</author>
<author>
<name sortKey="Esposito, A" uniqKey="Esposito A">A. Esposito</name>
</author>
<author>
<name sortKey="Hae Choi, Y" uniqKey="Hae Choi Y">Y. Hae Choi</name>
</author>
<author>
<name sortKey="Verpoorte, R" uniqKey="Verpoorte R">R. Verpoorte</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scognamiglio, M" uniqKey="Scognamiglio M">M. Scognamiglio</name>
</author>
<author>
<name sortKey="D Abrosca, B" uniqKey="D Abrosca B">B. D'Abrosca</name>
</author>
<author>
<name sortKey="Esposito, A" uniqKey="Esposito A">A. Esposito</name>
</author>
<author>
<name sortKey="Fiorentino, A" uniqKey="Fiorentino A">A. Fiorentino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sheffer, E" uniqKey="Sheffer E">E. Sheffer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Singh, H P" uniqKey="Singh H">H. P. Singh</name>
</author>
<author>
<name sortKey="Batish, D R" uniqKey="Batish D">D. R. Batish</name>
</author>
<author>
<name sortKey="Kaur, S" uniqKey="Kaur S">S. Kaur</name>
</author>
<author>
<name sortKey="Arora, K" uniqKey="Arora K">K. Arora</name>
</author>
<author>
<name sortKey="Kohli, R" uniqKey="Kohli R">R. Kohli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Singleton, V L" uniqKey="Singleton V">V. L. Singleton</name>
</author>
<author>
<name sortKey="Rossi, J A J" uniqKey="Rossi J">J. A. J. Rossi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stamp, N" uniqKey="Stamp N">N. Stamp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thorpe, A S" uniqKey="Thorpe A">A. S. Thorpe</name>
</author>
<author>
<name sortKey="Aschehoug, E T" uniqKey="Aschehoug E">E. T. Aschehoug</name>
</author>
<author>
<name sortKey="Atwater, D Z" uniqKey="Atwater D">D. Z. Atwater</name>
</author>
<author>
<name sortKey="Callaway, R M" uniqKey="Callaway R">R. M. Callaway</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tilman, D" uniqKey="Tilman D">D. Tilman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Valladares, F" uniqKey="Valladares F">F. Valladares</name>
</author>
<author>
<name sortKey="Sanchez Gomez, D" uniqKey="Sanchez Gomez D">D. Sanchez-Gomez</name>
</author>
<author>
<name sortKey="Zavala, M A" uniqKey="Zavala M">M. A. Zavala</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Viard Cretat, F" uniqKey="Viard Cretat F">F. Viard-Crétat</name>
</author>
<author>
<name sortKey="Baptist, F" uniqKey="Baptist F">F. Baptist</name>
</author>
<author>
<name sortKey="Secher Fromell, H" uniqKey="Secher Fromell H">H. Secher-Fromell</name>
</author>
<author>
<name sortKey="Gallet, C" uniqKey="Gallet C">C. Gallet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vrchotova, N" uniqKey="Vrchotova N">N. Vrchotová</name>
</author>
<author>
<name sortKey="Triska, J" uniqKey="Triska J">J. Tríska</name>
</author>
<author>
<name sortKey="Urban, O" uniqKey="Urban O">O. Urban</name>
</author>
<author>
<name sortKey="Peknic, L" uniqKey="Peknic L">L. Peknic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weston, L A" uniqKey="Weston L">L. A. Weston</name>
</author>
<author>
<name sortKey="Skoneczny, D" uniqKey="Skoneczny D">D. Skoneczny</name>
</author>
<author>
<name sortKey="Weston, P A" uniqKey="Weston P">P. A. Weston</name>
</author>
<author>
<name sortKey="Weidenhamer, J D" uniqKey="Weidenhamer J">J. D. Weidenhamer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weston, L A" uniqKey="Weston L">L. A. Weston</name>
</author>
<author>
<name sortKey="Mathesius, U" uniqKey="Mathesius U">U. Mathesius</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, G F" uniqKey="Xu G">G. F. Xu</name>
</author>
<author>
<name sortKey="Zhang, F D" uniqKey="Zhang F">F. D. Zhang</name>
</author>
<author>
<name sortKey="Li, T L" uniqKey="Li T">T. L. Li</name>
</author>
<author>
<name sortKey="Wu, D" uniqKey="Wu D">D. Wu</name>
</author>
<author>
<name sortKey="Zhang, Y H" uniqKey="Zhang Y">Y. H. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yamawo, A" uniqKey="Yamawo A">A. Yamawo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, J Q" uniqKey="Yu J">J. Q. Yu</name>
</author>
<author>
<name sortKey="Ye, S F" uniqKey="Ye S">S. F. Ye</name>
</author>
<author>
<name sortKey="Zhang, M F" uniqKey="Zhang M">M. F. Zhang</name>
</author>
<author>
<name sortKey="Hu, W H" uniqKey="Hu W">W. H. Hu</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Front Plant Sci</journal-id>
<journal-id journal-id-type="iso-abbrev">Front Plant Sci</journal-id>
<journal-id journal-id-type="publisher-id">Front. Plant Sci.</journal-id>
<journal-title-group>
<journal-title>Frontiers in Plant Science</journal-title>
</journal-title-group>
<issn pub-type="epub">1664-462X</issn>
<publisher>
<publisher-name>Frontiers Media S.A.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27200062</article-id>
<article-id pub-id-type="pmc">4855863</article-id>
<article-id pub-id-type="doi">10.3389/fpls.2016.00594</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Plant Science</subject>
<subj-group>
<subject>Original Research</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>The Impact of Competition and Allelopathy on the Trade-Off between Plant Defense and Growth in Two Contrasting Tree Species</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Fernandez</surname>
<given-names>Catherine</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="author-notes" rid="fn001">
<sup>*</sup>
</xref>
<xref ref-type="author-notes" rid="fn003">
<sup></sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/307884/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Monnier</surname>
<given-names>Yogan</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="author-notes" rid="fn003">
<sup></sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/320197/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Santonja</surname>
<given-names>Mathieu</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/311534/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Gallet</surname>
<given-names>Christiane</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/344705/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Weston</surname>
<given-names>Leslie A.</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/311699/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Prévosto</surname>
<given-names>Bernard</given-names>
</name>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/344236/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Saunier</surname>
<given-names>Amélie</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/344233/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Baldy</surname>
<given-names>Virginie</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/311493/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bousquet-Mélou</surname>
<given-names>Anne</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/320931/overview"></uri>
</contrib>
</contrib-group>
<aff id="aff1">
<sup>1</sup>
<institution>Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale - Aix Marseille Université - Centre National de la Recherche Scientifique - IRD - Avignon Université</institution>
<country>Marseille, France</country>
</aff>
<aff id="aff2">
<sup>2</sup>
<institution>Laboratoire d'Ecologie Alpine - Université de Savoie-Mont-Blanc</institution>
<country>Chambéry, France</country>
</aff>
<aff id="aff3">
<sup>3</sup>
<institution>Graham Centre for Agricultural Innovation- Charles Sturt University</institution>
<country>Wagga Wagga, NSW, Australia</country>
</aff>
<aff id="aff4">
<sup>4</sup>
<institution>Institut National de Recherche en Sciences et Technologies Pour l'Environnement et l'Agriculture</institution>
<country>Aix-en-Provence, France</country>
</aff>
<author-notes>
<fn fn-type="edited-by">
<p>Edited by: Boris Rewald, University of Natural Resources and Life Sciences, Austria</p>
</fn>
<fn fn-type="edited-by">
<p>Reviewed by: Monica Scognamiglio, Max Planck Institute for Chemical Ecology, Germany; Tara Joy Massad, Rhodes College, USA</p>
</fn>
<corresp id="fn001">*Correspondence: Catherine Fernandez
<email xlink:type="simple">catherine.fernandez@imbe.fr</email>
</corresp>
<fn fn-type="other" id="fn002">
<p>This article was submitted to Functional Plant Ecology, a section of the journal Frontiers in Plant Science</p>
</fn>
<fn fn-type="other" id="fn003">
<p>†These authors have contributed equally to this work.</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>04</day>
<month>5</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="collection">
<year>2016</year>
</pub-date>
<volume>7</volume>
<elocation-id>594</elocation-id>
<history>
<date date-type="received">
<day>19</day>
<month>1</month>
<year>2016</year>
</date>
<date date-type="accepted">
<day>18</day>
<month>4</month>
<year>2016</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2016 Fernandez, Monnier, Santonja, Gallet, Weston, Prévosto, Saunier, Baldy and Bousquet-Mélou.</copyright-statement>
<copyright-year>2016</copyright-year>
<copyright-holder>Fernandez, Monnier, Santonja, Gallet, Weston, Prévosto, Saunier, Baldy and Bousquet-Mélou</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.</license-p>
</license>
</permissions>
<abstract>
<p>In contrast to plant-animal interactions, the conceptual framework regarding the impact of secondary metabolites in mediating plant-plant interference is currently less well defined. Here, we address hypotheses about the role of chemically-mediated plant-plant interference (i.e., allelopathy) as a driver of Mediterranean forest dynamics. Growth and defense abilities of a pioneer (
<italic>Pinus halepensis</italic>
) and a late-successional (
<italic>Quercus pubescens</italic>
) Mediterranean forest species were evaluated under three different plant interference conditions: (i) allelopathy simulated by application of aqueous needle extracts of
<italic>Pinus</italic>
, (ii) resource competition created by the physical presence of a neighboring species (
<italic>Pinus</italic>
or
<italic>Quercus</italic>
), and (iii) a combination of both allelopathy and competition. After 24 months of experimentation in simulated field conditions,
<italic>Quercus</italic>
was more affected by plant interference treatments than was
<italic>Pinus</italic>
, and a hierarchical response to biotic interference (allelopathy < competition < allelopathy + competition) was observed in terms of relative impact on growth and plant defense. Both species modulated their respective metabolic profiles according to plant interference treatment and thus their inherent chemical defense status, resulting in a physiological trade-off between plant growth and production of defense metabolites. For
<italic>Quercus</italic>
, an increase in secondary metabolite production and a decrease in plant growth were observed in all treatments. In contrast, this trade-off in
<italic>Pinus</italic>
was only observed in competition and allelopathy + competition treatments. Although
<italic>Pinus</italic>
and
<italic>Quercus</italic>
expressed differential responses when subjected to a single interference condition, either allelopathy or competition, species responses were similar or positively correlated when strong interference conditions (allelopathy + competition) were imposed.</p>
</abstract>
<kwd-group>
<kwd>allelopathy</kwd>
<kwd>competition</kwd>
<kwd>ecometabolomics</kwd>
<kwd>metabolic profiling</kwd>
<kwd>phenotypic response</kwd>
<kwd>
<italic>Pinus halepensis</italic>
</kwd>
<kwd>
<italic>Quercus pubescens</italic>
</kwd>
<kwd>secondary metabolism</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source id="cn001">Agence Nationale de la Recherche
<named-content content-type="fundref-id">10.13039/501100001665</named-content>
</funding-source>
<award-id rid="cn001">ANR-12-BSV7-0016-01</award-id>
</award-group>
</funding-group>
<counts>
<fig-count count="7"></fig-count>
<table-count count="2"></table-count>
<equation-count count="0"></equation-count>
<ref-count count="80"></ref-count>
<page-count count="14"></page-count>
<word-count count="9409"></word-count>
</counts>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="s1">
<title>Introduction</title>
<p>Interference between plants typically refers to either competition for resources (e.g., nutrients, light, water) or chemically-mediated interference (i.e., allelopathy) (Reigosa et al.,
<xref rid="B57" ref-type="bibr">1999</xref>
; Schenk,
<xref rid="B63" ref-type="bibr">2006</xref>
; San Emeterio et al.,
<xref rid="B61" ref-type="bibr">2007</xref>
). Traditionally, resource competition has been regarded as the most important driver of plant community diversity and dynamics (Tilman,
<xref rid="B72" ref-type="bibr">1982</xref>
; Schluter,
<xref rid="B64" ref-type="bibr">2000</xref>
). However, recent research has shown that allelopathy can also affect the patterning of plant communities (Callaway and Ridenour,
<xref rid="B11" ref-type="bibr">2004</xref>
; Fernandez et al.,
<xref rid="B20" ref-type="bibr">2013</xref>
). In this process, phytochemicals released into the environment inhibited the germination and growth of neighboring plants by altering their metabolism or impacting their soil community mutualists. Most of these studies have focused on plant invasion and the Novel Weapons Hypothesis (NWH). According to the NWH, allelopathic effects are purported to be strongest on species lacking historic exposure to the particular allelochemicals (Callaway and Aschehoug,
<xref rid="B9" ref-type="bibr">2000</xref>
; Bais et al.,
<xref rid="B3" ref-type="bibr">2004</xref>
). A limited conceptual framework exists for the role of plant chemicals in the natural dynamics of co-evolved native species (Inderjit et al.,
<xref rid="B33" ref-type="bibr">2011</xref>
; Meiners,
<xref rid="B43" ref-type="bibr">2014</xref>
), but it has been suggested that allelopathic interference may prove to be as important as competition for resources in modulating plant community function and dynamics. Therefore, it is crucial to evaluate the relative importance of these two plant interference mechanisms [resource competition (C) and allelopathy (A)] in experimentation, even if it is difficult and often unrealistic to separate these interactions in complex ecosystems.</p>
<p>Plants are thought to perceive their surrounding environment by using information on the distribution of essential resources (light, nutrients, and water) or chemical cues (volatile compounds, root exudates, leachates; Novoplansky,
<xref rid="B47" ref-type="bibr">2009</xref>
; Weston and Mathesius,
<xref rid="B77" ref-type="bibr">2013</xref>
). In response to interference, plants display a multitude of plastic responses to optimize their performances upon exposure to biotic stress (Pierik et al.,
<xref rid="B52" ref-type="bibr">2013</xref>
) and species differ in the way they are impacted by neighboring plants. Plants exhibit altered competitive and defense abilities in response to specific interference. Competition or competitive behaviors can also affect the plant at various organizational levels resulting in morphological responses (plant growth), biochemical responses (plant defense) and resource allocation (Novoplansky,
<xref rid="B47" ref-type="bibr">2009</xref>
; Yamawo,
<xref rid="B79" ref-type="bibr">2015</xref>
). A better understanding of these phenotypic responses is then critical to better manage vegetation composition and dynamics.</p>
<p>This trade-off between plant growth and defense (also called “the dilemma of plants”) has been often discussed but is not currently well understood (Ballhorn et al.,
<xref rid="B4" ref-type="bibr">2014</xref>
). The growth-defense dilemma is a central paradigm in plant biology, but it is generally analyzed in the context of plant herbivory with numerous hypotheses associated with resource allocation including the “optimal defense,” “carbon-nutrient balance,” and “growth differentiation hypotheses” (Herm and Mattson,
<xref rid="B29" ref-type="bibr">1992</xref>
; Stamp,
<xref rid="B70" ref-type="bibr">2003</xref>
; Agrawal,
<xref rid="B2" ref-type="bibr">2007</xref>
). However, this trade-off is less well-described in the context of complex plant interactions (Lankau and Kliebenstein,
<xref rid="B38" ref-type="bibr">2009</xref>
; Pierik et al.,
<xref rid="B52" ref-type="bibr">2013</xref>
). In this context, the compensatory continuum hypothesis predicts that plants growing under reduced competition will allocate more resources to defense than under highly competitive conditions because the development of defenses associated with anti-herbivory is most costly under competitive conditions (Cipollini,
<xref rid="B14" ref-type="bibr">2007</xref>
,
<xref rid="B15" ref-type="bibr">2010</xref>
). In contrast, the defense stress benefit hypothesis predicts that additional beneficial functions of defensive traits will emerge under competition, and these include allelopathy associational defenses (Inderjit and Del Moral,
<xref rid="B31" ref-type="bibr">1997</xref>
; Lankau and Strauss,
<xref rid="B36" ref-type="bibr">2007</xref>
). To date, several studies have documented the increase of secondary compounds or changes in chemical profile in response to the presence of neighboring plant species (i.e., competition, Barton and Bowers,
<xref rid="B5" ref-type="bibr">2006</xref>
; Jones et al.,
<xref rid="B34" ref-type="bibr">2006</xref>
; Thorpe et al.,
<xref rid="B71" ref-type="bibr">2011</xref>
; Lankau,
<xref rid="B39" ref-type="bibr">2012</xref>
) or upon exposure to specific allelochemicals or signaling molecules (i.e., allelopathy, Metlen et al.,
<xref rid="B44" ref-type="bibr">2009</xref>
; Xu et al.,
<xref rid="B78" ref-type="bibr">2010</xref>
; Scognamiglio et al.,
<xref rid="B65" ref-type="bibr">2014</xref>
). However, to our knowledge no study has evaluated response to both interference mechanisms, competition and allelopathy, to determine their relative importance with respect to the induction of secondary metabolites in receiver plants, particularly in a forest ecosystem. Metabolic profiling or metabolomic approaches offer particularly strong tools to gain insight into impacts of biotic stress on plant regulation and metabolism, as they relate to plant defense (Scognamiglio et al.,
<xref rid="B66" ref-type="bibr">2015</xref>
; Weston et al.,
<xref rid="B76" ref-type="bibr">2015</xref>
). Such an ecometabolomic approach could provide meaningful information about the physiological mechanisms plants use to respond to numerous stressors in terrestrial communities. In addition, this approach will facilitate the analysis of species-specific responses to plant-plant interferences encountered; in this case resource competition (C), allelopathy (A), or the combination of both processes (AC) (Hartley et al.,
<xref rid="B28" ref-type="bibr">2012</xref>
; Scognamiglio et al.,
<xref rid="B66" ref-type="bibr">2015</xref>
).</p>
<p>The Mediterranean tree
<italic>Pinus halepensis</italic>
L. has been the subject of recent studies because this species typically colonizes post agricultural/fire open lands and forms dense monospecific mature stands. Mature
<italic>P. halepensis</italic>
woodlands show limited regeneration of pine seedlings in the absence of any disturbances (Prévosto et al.,
<xref rid="B54" ref-type="bibr">2015</xref>
) counterbalanced by a greater regeneration of
<italic>Quercus pubescens</italic>
Willd., a late successional species (Lookingbill and Zavala,
<xref rid="B40" ref-type="bibr">2000</xref>
).
<italic>Pinus</italic>
is known to produce large quantities of secondary metabolites including phenolics and mono- and sesquiterpenoids which can induce allelopathic responses and alter plant community composition (Fernandez et al.,
<xref rid="B17" ref-type="bibr">2006</xref>
,
<xref rid="B20" ref-type="bibr">2013</xref>
) and ecosystem functioning (Chomel et al.,
<xref rid="B13" ref-type="bibr">2014</xref>
; Santonja et al.,
<xref rid="B62" ref-type="bibr">2015</xref>
). Recent studies showed that
<italic>P. halepensis</italic>
aqueous needle extracts strongly inhibited germination and growth of
<italic>P. halepensis</italic>
seedlings (Fernandez et al.,
<xref rid="B18" ref-type="bibr">2008</xref>
; Monnier et al.,
<xref rid="B45" ref-type="bibr">2011</xref>
). Secondary products may affect
<italic>P. halepensis</italic>
competitive abilities, and could also contribute to the regenerative success of
<italic>Q. pubescens</italic>
in the
<italic>P. halepensis</italic>
understory (Fernandez et al.,
<xref rid="B18" ref-type="bibr">2008</xref>
).</p>
<p>However, field assessment of allelopathic interference remains challenging because of the methodological difficulties associated with investigations concerning allelopathy. It is also particularly difficult to separate allelopathic interference from competition in studies with perennial or aquatic plants (Olofsdotter et al.,
<xref rid="B48" ref-type="bibr">1999</xref>
). Therefore, we designed a greenhouse-controlled environment experiment to further examine both allelopathy (A) and competition (C) in order to better explain the regenerative success of pine seedlings over oak seedlings in pine forests. Our objective was to evaluate the impact of allelopathy (A) (i.e., exposure to aqueous extracts of
<italic>P. halepensis</italic>
) and competition (C) (i.e., presence of neighbors) on competitive (i.e., growth) and defensive (i.e., secondary metabolite production) traits of
<italic>P. halepensis</italic>
and
<italic>Q. pubescens</italic>
. More specifically we asked the following questions: (i) Do allelopathy and competition affect the growth and defensive abilities of target plant species in a similar manner? (ii) Do allelopathy and/or competition impact specific chemical defenses? (iii) Are response interference mechanisms observed species specific? and finally (iv) is there a trade-off between growth and defense in response to allelopathy and/or competition for resources?</p>
</sec>
<sec sec-type="materials and methods" id="s2">
<title>Materials and methods</title>
<sec>
<title>Experimental site and design</title>
<p>This study was conducted over a 2-year period (from May 2006 to July 2008) in an experimental plant nursery located near Aix-en-Provence, southern France (43°30′N, 5°24′E). The local climate was meso-Mediterranean, experiencing cool to cold winters and marked summer drought. Mean annual rainfall was 620 mm (Aix-en-Provence Weather station, 1961–1996) and mean monthly temperatures ranged between 5.8°C in January to 22.1°C in July.</p>
<p>
<italic>P. halepensis</italic>
(hereafter
<italic>Pinus</italic>
) and
<italic>Q. pubescens</italic>
(hereafter
<italic>Quercus</italic>
) seeds were harvested in a Mediterranean forest near the experimental site. In May 2006, the experiment was established with 1-year-old nursery-grown
<italic>Pinus</italic>
and
<italic>Quercus</italic>
seedlings of uniform size arising from germinated seedlings and transplanted in 10 l plastic pots. We used a common well-drained soil mixture consisting of 25% calcareous sand, 25% siliceous sand, and 50% mineral soil from “Granulat Provence®”. This soil was used as the growth medium in order to alleviate any chemical inhibition associated with the use of an organic substrate. The seedlings were grown outdoors and regularly drip irrigated to prevent water stress over the course of the experiment. Fertilizer was applied once per week with irrigation (375 mg N, 42.5 mg P and 103.7 mg K) at levels found to be non-limiting for plant growth. All pots were placed under a shade cloth so as to reproduce light conditions similar to those encountered under a dense pine forest canopy, with approximately 80% light interception (Broncano et al.,
<xref rid="B6" ref-type="bibr">1998</xref>
; Maestre and Cortina,
<xref rid="B41" ref-type="bibr">2004</xref>
; Monnier et al.,
<xref rid="B45" ref-type="bibr">2011</xref>
).</p>
<p>A replicated factorial experiment in which saplings of
<italic>Pinus</italic>
and
<italic>Quercus</italic>
were exposed to three interference treatments in comparison to one control treatment was conducted with 20 replicates of each species per treatment (
<italic>n</italic>
= 160 pots). Interference treatments included: (i) allelopathy (A) mimicked by monthly watering of saplings with 0.5 l of aqueous pine needle extracts from mature
<italic>Pinus</italic>
trees; (ii) competition (C) conditions simulated by co-locating one sapling with a neighboring sapling of the other species in the same pot; (iii) a combination of the two previous treatments (i.e., allelopathy + competition AC) where neighboring saplings were co-located in the same pot (one sapling of each species) and irrigated with 0.5 l of aqueous needle extract; (iv) and a control treatment, where saplings were grown alone and irrigated with 0.5 l water (Figure
<xref ref-type="fig" rid="F1">1</xref>
).</p>
<fig id="F1" position="float">
<label>Figure 1</label>
<caption>
<p>
<bold>Diagram of factorial design utilized for experimentation</bold>
. Three interference treatments and one control were tested on
<italic>Pinus</italic>
and
<italic>Quercus</italic>
saplings: allelopathic treatment was applied by application of
<italic>Pinus</italic>
needle aqueous extract; competition treatment through neighbor presence; allelopathy + competition treatment through neighbor presence plus application of
<italic>Pinus</italic>
needle aqueous extract; and control treatment.</p>
</caption>
<graphic xlink:href="fpls-07-00594-g0001"></graphic>
</fig>
<p>To simulate allelopathic interference, the use of aqueous extracts is particularly relevant for assessment of the joint action of mixtures of metabolites rather than a single metabolite of interest (Inderjit and Nilsen,
<xref rid="B32" ref-type="bibr">2003</xref>
; Fernandez et al.,
<xref rid="B18" ref-type="bibr">2008</xref>
). Aqueous extracts of
<italic>Pinus</italic>
needles were used to simulate leaf leachates from a forest canopy that could potentially be important in chemically-mediated forest interactions (Mallik,
<xref rid="B42" ref-type="bibr">2008</xref>
). To simulate competition (C, one
<italic>Quercus</italic>
+ one
<italic>Pinus</italic>
in the same pot), the physical proximity of the root systems of both species was critical and therefore both species were co-located in the same potting container. Thus, co-location of both species could also generate chemical interference due to the release of allelochemicals from neighboring root exudates. A previous study evaluating
<italic>Pinus halepensis</italic>
growth over time revealed limited allelopathic potential associated with root extracts obtained from young seedlings (Fernandez et al.,
<xref rid="B17" ref-type="bibr">2006</xref>
). Therefore, the effect of root exudates released by small saplings in this experiment is likely to be negligible compared to interference associated with resource competition.</p>
<p>To prepare aqueous extracts of
<italic>Pinus</italic>
needles for later application to pots, 25 kg of needles were collected from a pine forest (
<italic>circa</italic>
20 years old) near Aix-en-Provence throughout the growing season, generally on a monthly basis. Fresh needles were consistently macerated in 250 l of water for 48 h, in dark conditions (Yu et al.,
<xref rid="B80" ref-type="bibr">2003</xref>
) in order to obtain leachate concentration of 10% fresh weight, corresponding to 5% dry weight (Fernandez et al.,
<xref rid="B17" ref-type="bibr">2006</xref>
). Irrigation was performed just after maceration. Preparation of aqueous extracts for irrigation of pots was performed monthly.</p>
<p>At experimental termination, soil carbon and nitrogen content were analyzed in order to be certain that target pots were not enriched by N-containing compounds present in the aqueous extract (
<italic>t</italic>
-test,
<italic>P</italic>
> 0.05).</p>
</sec>
<sec>
<title>Plant phenotypic responses</title>
<p>In July 2006, at experimental initiation,
<italic>Pinus</italic>
and
<italic>Quercus</italic>
sapling traits (height and basal diameter) were measured prior to treatment application, and no significant differences were observed for either of these two variables. Height and basal diameter were assessed in
<italic>Pinus</italic>
and
<italic>Quercus</italic>
saplings commencing in winter 2007 until summer 2008, at four specific dates (February 2007, May 2007, March 2008, and July 2008).
<italic>Pinus</italic>
height was determined as the length from the stem collar to highest apex. In
<italic>Quercus</italic>
, as most individuals were multi-stemmed with no clear leader shoot, the cumulative length of all stems was measured. At experimental termination, each sapling was excavated and transported to the laboratory where separation into roots, stems and leaves was performed. As it was not possible to separate root systems of the two species in the C treatment due to extreme intertwining of both root systems, roots were not weighed. After processing, all samples were dried at 60°C for approximately 72 h, after which the dry mass of each sample was recorded.</p>
<p>Once harvested, plant phenolics were estimated both qualitatively and quantitatively at leaf level at experimental termination as total phenolic concentration and composition in samples of
<italic>Pinus</italic>
and
<italic>Quercus</italic>
foliage. Terpenoid composition was also estimated for
<italic>Pinus</italic>
samples. At the leaf level, total phenolic concentrations were determined based on the Folin method described by Singleton and Rossi (
<xref rid="B69" ref-type="bibr">1965</xref>
). Individuals of both species (3 <
<italic>n</italic>
< 9) were sampled on the same date in July 2008 by harvesting similarly aged leaves located in similar positions on the crown. One-half g (dry weight) of leaves or needles per sample was extracted at room temperature for 1.5 h by gentle shaking in a 70% (v/v) aqueous methanol solution (20 mL) acidified with a few drops of 1N HCl and filtered. Quantification of total phenolics was performed by colorimetric reaction using the Folin-Ciocalteu reagent. After 1 h, the reaction was completed and measured at 720 nm on a spectrophotometer (Biomate3, Thermofisher). Quantitative results were expressed in mg of gallic acid equivalent g
<sup>−1</sup>
dry weight.</p>
<p>Further, a targeted metabolomic approach was used to assess plant metabolites present in sample extracts in which primary (mostly aliphatic acids) and secondary (i.e., terpenoids and phenolics) leaf metabolites were investigated as per Fernandez et al. (
<xref rid="B19" ref-type="bibr">2009</xref>
). Both polar (fatty acids, fatty diacids, simple phenols, acetophenones, phenolic acids, and cinnamic acids), and less polar metabolites (monoterpenes and sesquiterpenes) were quantified using GC-MS instrumentation (Hewlett-Packard GC6890 coupled to a HP5973N Mass Selective Detector equipped with a HP-5MS capillary column (30 m × 0.25 mm × 0.25 μm—J&W Scientific)). A specific SIM (Selected Ion Monitoring) method was developed to analyze polar metabolites by determination of molecular features including fragment ions and retention time of injected authentic reference standards (Sigma-Aldrich®). A SCAN method was developed for less polar compounds analyzed. Positive identification was performed by comparison of MS spectra to those of authentic reference standards (Sigma-Aldrich®). Database searches in the NIST 2008 mass spectral library were conducted to tentatively identify major constituents. Retention indexes of compounds were determined relative to Wisconsin Diesel Range Hydrocarbon injection (Interchim, Montluçon, France) and tentatively confirmed by comparison with those reported in the literature (Adams,
<xref rid="B1" ref-type="bibr">2007</xref>
). Concentrations were expressed in mg g-
<sup>1</sup>
of dry weight. Phenolic and terpenoid allocation refers to the ratio between total phenolic content (Folin method) or total terpenoid content (sum of all terpenoids analyzed by GC/MS) and carbon content (CHN analyser).</p>
</sec>
<sec>
<title>Data analysis and overall phenotypic responses</title>
<p>After checking ANOVA assumptions, repeated measures two-way ANOVA, followed by Tukey tests for post hoc pairwise comparisons, were performed to study temporal effects of each treatment on whole plant response variables (height, diameter) at the within species level. One-way ANOVA, followed by Tukey tests for post hoc pairwise comparisons, were performed to study the effects of each treatment on aerial biomass at the end of the experiment. Belowground biomass and belowground allocation were assessed between Control and Allelopathy treatments using two-tailed student
<italic>t</italic>
-tests.</p>
<p>One-tailed student
<italic>t</italic>
-tests were performed to test the hypothesis of higher concentrations/allocations of phenolics and terpenoids in interference treatments in comparison to the control. In the case of unequal variance, unpaired one-tailed
<italic>t</italic>
-tests with Welch's correction were conducted. Variation in chemical composition by treatment was analyzed by using Principal Component Analysis (PCA) centered and scaled to unit variance. Differences in the concentration of each compound between interference treatments and control were tested with the Mann-Whitney tests. Similarity percentages (SIMPER analysis) were performed in order to identify the molecular features for which the variations contribute most to the dissimilarity between control and interference treatment responses.</p>
<p>Phenotypic plasticity has gained increasing attention with the need to predict species responses to global climate change (Richter et al.,
<xref rid="B58" ref-type="bibr">2012</xref>
). Several metrics have been proposed to assess this environmental source of variability (Valladares et al.,
<xref rid="B73" ref-type="bibr">2006</xref>
). In the present study, we employed the phenotypic plasticity index (PI), a metric recommended to explore functionally related traits for variables with different units and with contrasting ranges. PI is based on maximum and minimum trait means across environmental conditions and was calculated for every trait and species as: (trait mean among treatment (A, C, or AC)—trait mean among control))/max trait mean (treatment or control; Valladares et al.,
<xref rid="B73" ref-type="bibr">2006</xref>
). The index scales from -1 to 1 where an index value close to 0 indicates an absence of response to the treatment. Inversely, an index value close to 1 or -1 indicates a strong response to the treatment. Positive or negative value of PI for a trait indicates respectively positive or negative phenotypic response of this trait to corresponding interference treatment. Further we represented neighbor-defensive behavior with an overall phenotypic response (OPR) by representing side by side PI of seven traits (terpenoid content, terpenoid allocation, phenolic content, phenolic allocation, height, diameter and aerial biomass) for each species in each treatment. Visualizing profiles of OPR for each species enabled the comparison of behavioral strategies among species in response to different treatments. The within-species shifts in behavioral sensitivity when facing two different treatments were then assessed through correlations between OPRs to each treatment. Similarly, the between-species variability of OPR was assessed through Spearman correlations between the OPR of both species to the same treatment. In order to further examine the trade-off between growth and defense, PCA was performed with all traits measured (height, diameter, aerial biomass, terpenoid content, terpenoid allocation, phenolic content, phenolic allocation).</p>
<p>Univariate analysis (
<italic>t</italic>
-tests, ANOVA, Tukey tests, Mann-Whitney tests) and regression analysis were performed using R Studio software (version 0.99.483, 2009–2015, R Studio, Inc.); Multivariate analysis (PCA and SIMPER analysis) were performed using PRIMER-E software (Plymouth Routines in Multivariate Ecological Research, version 6.1); OPR representation were realized using GraphPad software (GraphPad Prism version 5.00 for Windows).</p>
</sec>
</sec>
<sec sec-type="results" id="s3">
<title>Results</title>
<sec>
<title>Growth response to competition and allelopathy</title>
<p>Growth of
<italic>Pinus</italic>
and
<italic>Quercus</italic>
saplings (i.e., diameter and height) was significantly affected by all three interference treatments with increasing significance of these effects over time (two-way ANOVA; Table
<xref ref-type="table" rid="T1">1</xref>
). All treatments affected
<italic>Pinus</italic>
height similarly during the first year: 78 mm height was observed in the control and 66, 67, and 63 mm was observed in A, C, and AC treatments respectively, corresponding to a decrease in growth of approximately 16% in the interference treatments. At experimental termination, height was significantly decreased for C and AC treatments in comparison to A treatment (Figure
<xref ref-type="fig" rid="F2">2B</xref>
). No treatment effect was noted for
<italic>Pinus</italic>
diameter readings (Table
<xref ref-type="table" rid="T1">1</xref>
; Figure
<xref ref-type="fig" rid="F2">2D</xref>
). Aerial biomass of
<italic>Pinus</italic>
saplings was inhibited by C (-17%) and AC (-19%) treatments (Figure
<xref ref-type="fig" rid="F3">3B</xref>
). A treatment did not affect aerial (Figure
<xref ref-type="fig" rid="F3">3B</xref>
) and root (Figure
<xref ref-type="fig" rid="F4">4B</xref>
) biomass of
<italic>Pinus</italic>
saplings, but altered biomass allocation, resulting in a slight increase in belowground allocation of resources (i.e., increase of root/shoot ratio; Figure
<xref ref-type="fig" rid="F4">4D</xref>
).</p>
<table-wrap id="T1" position="float">
<label>Table 1</label>
<caption>
<p>
<bold>Temporal effects of interference treatments on growth traits of
<italic>
<bold>Pinus</bold>
</italic>
and
<italic>
<bold>Quercus</bold>
</italic>
</bold>
.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Factors</bold>
</th>
<th valign="top" align="center" rowspan="1" colspan="1">
<bold>DF</bold>
</th>
<th valign="top" align="center" colspan="4" style="border-bottom: thin solid #000000;" rowspan="1">
<bold>Quercus</bold>
</th>
<th valign="top" align="center" colspan="4" style="border-bottom: thin solid #000000;" rowspan="1">
<bold>Pinus</bold>
</th>
</tr>
<tr>
<th rowspan="1" colspan="1"></th>
<th rowspan="1" colspan="1"></th>
<th valign="top" align="center" colspan="2" style="border-bottom: thin solid #000000;" rowspan="1">
<bold>Diameter</bold>
</th>
<th valign="top" align="center" colspan="2" style="border-bottom: thin solid #000000;" rowspan="1">
<bold>Height</bold>
</th>
<th valign="top" align="center" colspan="2" style="border-bottom: thin solid #000000;" rowspan="1">
<bold>Diameter</bold>
</th>
<th valign="top" align="center" colspan="2" style="border-bottom: thin solid #000000;" rowspan="1">
<bold>Height</bold>
</th>
</tr>
<tr>
<th rowspan="1" colspan="1"></th>
<th rowspan="1" colspan="1"></th>
<th valign="top" align="center" rowspan="1" colspan="1">
<bold>F</bold>
</th>
<th valign="top" align="center" rowspan="1" colspan="1">
<bold>
<italic>P</italic>
-value</bold>
</th>
<th valign="top" align="center" rowspan="1" colspan="1">
<bold>F</bold>
</th>
<th valign="top" align="center" rowspan="1" colspan="1">
<bold>
<italic>P</italic>
-value</bold>
</th>
<th valign="top" align="center" rowspan="1" colspan="1">
<bold>F</bold>
</th>
<th valign="top" align="center" rowspan="1" colspan="1">
<bold>
<italic>P</italic>
-value</bold>
</th>
<th valign="top" align="center" rowspan="1" colspan="1">
<bold>F</bold>
</th>
<th valign="top" align="center" rowspan="1" colspan="1">
<bold>
<italic>P</italic>
-value</bold>
</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Time</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">252.4</td>
<td valign="top" align="center" rowspan="1" colspan="1"><
<bold>0.001</bold>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">182.7</td>
<td valign="top" align="center" rowspan="1" colspan="1"><
<bold>0.001</bold>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">1618.0</td>
<td valign="top" align="center" rowspan="1" colspan="1"><
<bold>0.001</bold>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">2558.0</td>
<td valign="top" align="center" rowspan="1" colspan="1"><
<bold>0.001</bold>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">IT</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">7.1</td>
<td valign="top" align="center" rowspan="1" colspan="1"><
<bold>0.001</bold>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">4.3</td>
<td valign="top" align="center" rowspan="1" colspan="1"><
<bold>0.01</bold>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.9</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.418</td>
<td valign="top" align="center" rowspan="1" colspan="1">12.0</td>
<td valign="top" align="center" rowspan="1" colspan="1"><
<bold>0.001</bold>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Time
<sup>*</sup>
IT</td>
<td valign="top" align="center" rowspan="1" colspan="1">9</td>
<td valign="top" align="center" rowspan="1" colspan="1">7.6</td>
<td valign="top" align="center" rowspan="1" colspan="1"><
<bold>0.001</bold>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">8.5</td>
<td valign="top" align="center" rowspan="1" colspan="1"><
<bold>0.001</bold>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.9</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.497</td>
<td valign="top" align="center" rowspan="1" colspan="1">3.5</td>
<td valign="top" align="center" rowspan="1" colspan="1"><
<bold>0.001</bold>
</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<italic>Summary of the repeated measures ANOVA for growth in diameter and height in response to interference treatments (IT) in Quercus and Pinus. Significant P-values are typed in bold (n = 20)</italic>
.</p>
</table-wrap-foot>
</table-wrap>
<fig id="F2" position="float">
<label>Figure 2</label>
<caption>
<p>
<bold>Temporal effects of interference treatment on growth of both species</bold>
. Height
<bold>(A,B)</bold>
and diameter growth
<bold>(C,D)</bold>
response in Quercus
<bold>(A–C)</bold>
and Pinus
<bold>(B–D)</bold>
across four dates of measurements (February and May 2007, March and July 2008) in Control (green lines and symbols), Allelopathy (blue lines and symbols), Competition (red lines and symbols), and Allelopathy + Competition (purple lines and symbols). Symbols represent means ± SD of 20 replicates. Different letters indicate a significant difference between treatments at
<italic>P</italic>
< 0.05 (
<sup>*</sup>
),
<italic>P</italic>
< 0.01 (
<sup>**</sup>
), and
<italic>P</italic>
< 0.001 (
<sup>***</sup>
).</p>
</caption>
<graphic xlink:href="fpls-07-00594-g0002"></graphic>
</fig>
<fig id="F3" position="float">
<label>Figure 3</label>
<caption>
<p>
<bold>Effects of interference treatment on aerial biomass of
<italic>
<bold>Pinus</bold>
</italic>
and
<italic>
<bold>Quercus</bold>
</italic>
</bold>
. Height growth response in
<italic>Quercus</italic>
<bold>(A)</bold>
and
<italic>Pinus</italic>
<bold>(B)</bold>
in Control (green bars), Allelopathy (blue bars), Competition (red bars), and Allelopathy + Competition (purple bars) treatments. Bars are means ± SD (5 ≤ N ≤ 12). Different letters indicate a significant difference between treatments.</p>
</caption>
<graphic xlink:href="fpls-07-00594-g0003"></graphic>
</fig>
<fig id="F4" position="float">
<label>Figure 4</label>
<caption>
<p>
<bold>Effects of allelopathic treatment in belowground biomass and allocation</bold>
. Belowground biomass in Quercus
<bold>(A)</bold>
and Pinus
<bold>(B)</bold>
and belowground allocation in Quercus
<bold>(C)</bold>
and Pinus
<bold>(D)</bold>
in Control (green bars) and Allelopathy (blue bars) treatments. Bars are means ± SD (5 ≤
<italic>n</italic>
≤ 8). Different letters indicate a significant difference between control and allelopathy treatments at
<italic>P</italic>
< 0.05 (
<sup>*</sup>
).</p>
</caption>
<graphic xlink:href="fpls-07-00594-g0004"></graphic>
</fig>
<p>All interference treatments reduced
<italic>Quercus</italic>
height at experimental termination. Height ranged from 324 mm for the control to 291 mm for A (−10%), 203 mm for C (−37%), and 148 mm for AC treatments (−54%) (Figure
<xref ref-type="fig" rid="F2">2A</xref>
). The effect of interference treatments on
<italic>Quercus</italic>
diameter was similar and followed the same trends. AC treatment resulted in reduced
<italic>Quercus</italic>
diameter throughout the experiment whereas A and C treatments decreased diameter significantly only at the last sampling date. At this time, the diameter was reduced from 16 mm in the control to 11 mm (−33%) for AC, 13 mm for C (−21%), and 14 mm for A (-11%) (Figure
<xref ref-type="fig" rid="F2">2C</xref>
). Similarly to other growth parameters assessed, aerial biomass of
<italic>Quercus</italic>
saplings was reduced by A (−29%), C (−71%), and AC (−76%) treatments (Figure
<xref ref-type="fig" rid="F3">3A</xref>
). Allelopathic interference in the A treatment resulted in a 50% decrease in
<italic>Quercus</italic>
root biomass with 28 g root biomass observed in A treatment in contrast to 50 g in the control (Figure
<xref ref-type="fig" rid="F4">4A</xref>
). Biomass allocation was also altered by A treatment leading to a strong decrease in belowground resource allocation (i.e., decrease in root/shoot ratio; Figure
<xref ref-type="fig" rid="F4">4C</xref>
).</p>
</sec>
<sec>
<title>Biochemical responses to neighbor presence and allelochemical exposure</title>
<p>
<italic>Pinus</italic>
responded to A, C, and AC treatments by increasing total terpenoid content (except for allelopathy) and terpenoid allocation (Table
<xref ref-type="table" rid="T2">2</xref>
). For
<italic>Pinus</italic>
, a species known to produce high concentrations of terpenoids and phenolics, 40 terpenoids, and 19 polar compounds (see Supplementary Tables
<xref ref-type="supplementary-material" rid="SM1">S1</xref>
,
<xref ref-type="supplementary-material" rid="SM2">S2</xref>
for more details) were identified. The most abundant terpenoids included α-pinene (monoterpene; up to 225 μg.g
<sup>−1</sup>
DW) and β -caryophyllene (sesquiterpene; up to 448 μg.g-
<sup>1</sup>
DW) and gallic acid was most abundant with respect to phenolic acids (up to 1468μg.g
<sup>−1</sup>
DW).</p>
<table-wrap id="T2" position="float">
<label>Table 2</label>
<caption>
<p>
<bold>Species-specific (
<italic>
<bold>Quercus</bold>
</italic>
and
<italic>
<bold>Pinus</bold>
</italic>
separately) and overall (mean of both species) effects of treatments on induced-secondary metabolism</bold>
.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="1" colspan="1"></th>
<th valign="top" align="center" rowspan="1" colspan="1">
<bold>Control</bold>
</th>
<th valign="top" align="center" rowspan="1" colspan="1">
<bold>Allelopathy</bold>
</th>
<th valign="top" align="center" rowspan="1" colspan="1">
<bold>Competition</bold>
</th>
<th valign="top" align="center" rowspan="1" colspan="1">
<bold>Competition + Allelopathy</bold>
</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" colspan="5" style="background-color:#bbbdc0" rowspan="1">
<bold>QUERCUS</bold>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Phenolic content</td>
<td valign="top" align="center" rowspan="1" colspan="1">16.51 ± 5.94</td>
<td valign="top" align="center" rowspan="1" colspan="1">22.88 ± 10.30</td>
<td valign="top" align="center" rowspan="1" colspan="1">23.17 ± 3.91</td>
<td valign="top" align="center" rowspan="1" colspan="1">25.69 ± 3.52</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Phenolic allocation</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.34 ± 0.10</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.55 ± 0.16</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.51 ± 0.08</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<bold>0.55</bold>
±
<bold>0.07
<sup>*</sup>
</bold>
</td>
</tr>
<tr>
<td valign="top" align="left" colspan="5" style="background-color:#bbbdc0" rowspan="1">
<bold>PINUS</bold>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Phenolic content</td>
<td valign="top" align="center" rowspan="1" colspan="1">18.51 ± 2.86</td>
<td valign="top" align="center" rowspan="1" colspan="1">20.04 ± 3.24</td>
<td valign="top" align="center" rowspan="1" colspan="1">22.49 ± 1.96</td>
<td valign="top" align="center" rowspan="1" colspan="1">25.71 ± 4.68</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Phenolic allocation</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.31 ± 0.04</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.37 ± 0.05</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.45 ± 0.04</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.53 ± 0.10</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Terpenoid content</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.48 ± 0.31</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.70 ± 0.33</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<bold>2.76</bold>
±
<bold>0.64
<sup>*</sup>
</bold>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<bold>2.80</bold>
±
<bold>0.59
<sup>*</sup>
</bold>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Terpenoid allocation</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.018 ± 0.003</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<bold>0.023</bold>
±
<bold>0.005
<sup>*</sup>
</bold>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<bold>0.043</bold>
±
<bold>0.001
<sup>*</sup>
</bold>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<bold>0.042</bold>
±
<bold>0.001
<sup>*</sup>
</bold>
</td>
</tr>
<tr>
<td valign="top" align="left" colspan="5" style="background-color:#bbbdc0" rowspan="1">
<bold>BOTH SPECIES</bold>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Phenolic content</td>
<td valign="top" align="center" rowspan="1" colspan="1">17.65 ± 2.71</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<bold>21.46</bold>
±
<bold>4.87
<sup>*</sup>
</bold>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<bold>22.78</bold>
±
<bold>1.82
<sup>*</sup>
</bold>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<bold>25.69</bold>
±
<bold>2.59
<sup>*</sup>
</bold>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Phenolic allocation</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.33 ± 0.05</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<bold>0.46</bold>
±
<bold>0.08
<sup>*</sup>
</bold>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<bold>0.48</bold>
±
<bold>0.04
<sup>*</sup>
</bold>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">
<bold>0.55</bold>
±
<bold>0.05
<sup>**</sup>
</bold>
</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<italic>Phenolic (Folin method) and terpenoid (sum of all terpenes measured by GC-MC method) contents are expressed as mg. g
<sup>−1</sup>
dry weight (mean ± SE) and allocation of phenolics and terpenoids as ratio of carbon content (mean ± SE). One-tailed student t-tests were performed to test the hypothesis that means of content and allocation are significantly higher with interference treatments than control treatment. Asterisks indicate a significant higher value compared to the control treatment at P < 0.05 (
<sup>*</sup>
) and P < 0.01 (
<sup>**</sup>
). Significant P-values are typed in bold</italic>
.</p>
</table-wrap-foot>
</table-wrap>
<p>PCA revealed considerable variation in terpenoid profiles in
<italic>Pinus</italic>
, particularly in regards to C and AC treatments. Figure
<xref ref-type="fig" rid="F5">5A</xref>
; Camphene was clearly induced by C treatment, and this metabolite was not observed in any of the control samples (Mann-Whitney tests, 0.05 <
<italic>P</italic>
< 0.10; PCA). Its presence accounted for much of the variation or dissimilarity between the control and C treatment (SIMPER analysis). δ3-carene, α-pinene, terpinene, ß-caryophyllene, elemol and and δ-germacrene concentrations increased respectively by a factor of 5–30 (Mann-Whitney tests, 0.05 <
<italic>P</italic>
< 0.10) in A and AC treatments but the first 3 compounds alone accounted for the much of the dissimilarity with control (SIMPER, Supplementary Table
<xref ref-type="supplementary-material" rid="SM3">S3</xref>
).</p>
<fig id="F5" position="float">
<label>Figure 5</label>
<caption>
<p>
<bold>Principal component analyses performed for metabolites most closely associated with responses to A, C, and AC (SIMPER analysis), for terpenoids for
<italic>
<bold>Pinus</bold>
</italic>
(A) and for polar metabolites in
<italic>
<bold>Pinus</bold>
</italic>
(B) and
<italic>
<bold>Quercus</bold>
</italic>
(C)</bold>
.</p>
</caption>
<graphic xlink:href="fpls-07-00594-g0005"></graphic>
</fig>
<p>After analysis of
<italic>Pinus</italic>
polar compounds, 4-hydroxyacetophenone was detected in the control and was not observed in other treatments (Mann-Whitney tests,
<italic>P</italic>
< 0.05), and this contributed largely to dissimilarity between control and all other treatments (SIMPER analysis, Supplementary Table
<xref ref-type="supplementary-material" rid="SM3">S3</xref>
). Gallic acid, citric acid, and acetophenone were mainly present in treatment C (PCA, Figure
<xref ref-type="fig" rid="F5">5B</xref>
), but in A were decreased in comparison to the control by factors of 5, 10, and 100 respectively (Mann-Whitney tests,
<italic>P</italic>
< 0.05). Vanillin and gentisic acid decreased while salicylic acid increased in treatment A, and these three compounds explained the majority of the difference between the control and A. Vanillic acid was present in high concentrations in AC treatment, which were increased over the control by a factor of 3, whereas caffeic acid increased by a factor of 10 in C extracts (Supplementary Table
<xref ref-type="supplementary-material" rid="SM2">S2</xref>
) and its presence accounted for much of the variation between the control and C (Supplementary Table
<xref ref-type="supplementary-material" rid="SM3">S3</xref>
).</p>
<p>
<italic>Quercus'</italic>
responses to interference treatments revealed a trend toward increased phenolic content and allocation with interference in comparison to the control. Specifically, the AC treatment showed enhanced phenolic production in comparison to the control (Table
<xref ref-type="table" rid="T2">2</xref>
). In the polar extracts, over 22 compounds were identified and citric and gallic acids were the two most abundant metabolites. PCA also revealed differentiation in
<italic>Quercus</italic>
polar metabolic profiles (Figure
<xref ref-type="fig" rid="F5">5C</xref>
). In this case 4-hydroxyacetophenone and vanillin were found in higher abundance in A in comparison to the control whereas salicylic and 4-hydroxybenzoic acid were found in greater abundance in treatment C and AC (Supplementary Table
<xref ref-type="supplementary-material" rid="SM2">S2</xref>
, Mann-Whitney test,
<italic>P</italic>
< 0.10; Supplementary Table
<xref ref-type="supplementary-material" rid="SM3">S3</xref>
, SIMPER analysis).</p>
</sec>
<sec>
<title>Species-specific patterns of overall phenotypic response (OPR)</title>
<p>In general, both species presented a similar OPR when exposed to interference treatments, with enhanced production of secondary metabolites and reduced overall growth as assessed by measurement of various growth traits (Figure
<xref ref-type="fig" rid="F6">6A</xref>
), showing a clear trade-off between growth and defense abilities (PCA analysis, Supplementary Figure
<xref ref-type="supplementary-material" rid="SM4">S1</xref>
). However,
<italic>Pinus</italic>
had less overall growth reduction than
<italic>Quercus</italic>
but exhibited a stronger biochemical or plant defense response when subjected to interference treatments (Figure
<xref ref-type="fig" rid="F6">6A</xref>
). The OPR to various interference treatments was more highly correlated for
<italic>Quercus</italic>
saplings (0.94 <
<italic>r</italic>
< 0.99) than
<italic>Pinus</italic>
saplings (0.76 <
<italic>r</italic>
< 0.91), which could be interpreted as a less specific response for
<italic>Quercus</italic>
saplings than for
<italic>Pinus</italic>
. OPR patterns in A and C differed among the two species, but were positively correlated in response to AC treatment (
<italic>r</italic>
= 0.95,
<italic>P</italic>
= 0.01; Figure
<xref ref-type="fig" rid="F6">6B</xref>
).</p>
<fig id="F6" position="float">
<label>Figure 6</label>
<caption>
<p>
<bold>Overall Phenotypic Responses (OPR) of
<italic>
<bold>Pinus</bold>
</italic>
and
<italic>
<bold>Quercus</bold>
</italic>
to the three interference treatments</bold>
. Global representation
<bold>(A)</bold>
of plastic index (PI) of 7 selected traits in response to Allelopathy (blue symbols), Competition (red symbols) and Allelopathy + Competition (purple symbols) treatments for
<italic>Pinus</italic>
(triangles) and
<italic>Quercus</italic>
(circle). Positive or negative value of PI for a trait indicates positive or negative phenotypic response, respectively, for this trait to corresponding interference treatment. Vertical bars indicate the magnitude of the OPR in both species to each interference treatment. Pearson correlation
<bold>(B)</bold>
between the OPR (cross for growth traits and square for biochemical traits) of both species to Allelopathy (blue symbols), Competition (red symbols) and Allelopathy + Competition (purple symbols) treatments. Asterisks indicate a significant value at
<italic>P</italic>
< 0.05 (
<sup>*</sup>
).</p>
</caption>
<graphic xlink:href="fpls-07-00594-g0006"></graphic>
</fig>
</sec>
</sec>
<sec sec-type="discussion" id="s4">
<title>Discussion</title>
<sec>
<title>Growth is more affected by competition than allelopathy</title>
<p>This study has shown that both allelopathy and competition are plant interference mechanisms that can impact the growth of the perennial forest species under evaluation in a variable manner. Specifically, a hierarchical response to the
<italic>Quercus</italic>
competition significantly affected height, diameter and aerial biomass more than did allelopathic interference and a cumulative effect was observed when the two mechanisms were combined, suggesting that allelopathy renders
<italic>Quercus</italic>
more susceptible to competition, as previously reported by Viard-Crétat et al. (
<xref rid="B74" ref-type="bibr">2012</xref>
).
<italic>Pinus</italic>
was less affected by allelopathic interference than was
<italic>Quercus</italic>
as only the
<italic>Pinus</italic>
' height decreased in response to treatment of plant extracts. Autotoxicity was not specifically observed with regards to the growth parameters of
<italic>Pinus</italic>
saplings (trees with diameter > 2.5 cm) in contrast to
<italic>Pinus</italic>
seedlings (early stage of life just after germination) which exhibited strong potential autotoxicity, both in germination and early growth (Fernandez et al.,
<xref rid="B18" ref-type="bibr">2008</xref>
). These findings suggest the importance of ontogeny on the allelopathy process as different life stages exhibited differential sensitivity to allelopathic interference.</p>
</sec>
<sec>
<title>Defense response to plant interference is highly species-specific and is more affected by competition than allelopathy</title>
<p>Plant interference treatments induced changes in production and allocation of chemical defenses, assessed by measurement of secondary metabolites, in both species evaluated. For
<italic>Pinus</italic>
and
<italic>Quercus</italic>
, total phenolic content and allocation to plant chemical defense increased according to the following gradient “Control < Allelopathy < Competition < Allelopathy + Competition” (Figure
<xref ref-type="fig" rid="F7">7</xref>
). For
<italic>Pinus</italic>
, competition resulted in the induction of higher terpenoid content than did allelopathy and no cumulative effect with combined interference mechanisms was observed. Ormeño et al. (
<xref rid="B49" ref-type="bibr">2007a</xref>
) reported an increase in terpenoid content with increasing competition for resources in
<italic>Pinus</italic>
. It should be noted that this increase was species dependent. Our findings demonstrated that plants may initiate a defensive response through chemical detection of neighbors in the absence of physical cues (allelopathy treatment with no direct contact with competitor), similar to those well-described findings for animal-defensive behavior (Callaway,
<xref rid="B10" ref-type="bibr">2002</xref>
) or against abiotic stress (Ormeño et al.,
<xref rid="B50" ref-type="bibr">2007b</xref>
). Additionally, the magnitude of response to chemical signaling is evidently dependent or associated with a cumulative effect of various interference mechanisms, i.e., differential induction of chemicals in plants exposed to allelochemicals, competition for resources and combined interference (accumulation of chemical and physical cues). The differential response pattern observed could potentially be further explained by the diversity and amount of competing signals (root exudates, volatile compounds, physical contact) perceived in the case of the presence of an interfering neighbor, in addition to the complex mixture of compounds or chemical signals released upon plant exposure by application of leachates. These results also suggest that plants can potentially modulate their chemical responses or biosynthetic pathway regulation in response to different biotic stressors or interference mechanisms (Broz et al.,
<xref rid="B7" ref-type="bibr">2010</xref>
).</p>
<fig id="F7" position="float">
<label>Figure 7</label>
<caption>
<p>
<bold>Relationship between phenolic content or phenol allocation and the gradient of interference for both
<italic>
<bold>Pinus</bold>
</italic>
and
<italic>
<bold>Quercus</bold>
</italic>
species (Control, Allelopathy, Competition, Allelopathy + Competition)</bold>
.</p>
</caption>
<graphic xlink:href="fpls-07-00594-g0007"></graphic>
</fig>
<p>The production of diverse classes of metabolites (including terpenoids, phenolics, and aliphatic acids) may represent an ecological advantage by favoring induction of the metabolite class most effective against temporal changes in external threats (Goodger et al.,
<xref rid="B27" ref-type="bibr">2013</xref>
). In plant-herbivore interactions, mixtures of secondary metabolites are described as advantageous if various components target several enemies (Gershenzon and Dudareva,
<xref rid="B25" ref-type="bibr">2007</xref>
; Gershenzon et al.,
<xref rid="B24" ref-type="bibr">2012</xref>
). Our results suggest a similar process occurs in plant-plant interference, with the specific induction of selected terpenoids or phenolics in response to variable stressors or signals.</p>
<p>For phenolics the metabolite 4-hydroxyacetophenone was upregulated specifically in response to allelopathic interference treatment for
<italic>Quercus</italic>
but this was not observed in
<italic>Pinus</italic>
. This phenolic metabolite is reported to be phytotoxic and also exhibits anti-herbivory properties (Gallet,
<xref rid="B21" ref-type="bibr">1994</xref>
; Céspedes et al.,
<xref rid="B12" ref-type="bibr">2002</xref>
; Delvas et al.,
<xref rid="B16" ref-type="bibr">2011</xref>
; Ruan et al.,
<xref rid="B60" ref-type="bibr">2011</xref>
). Previous studies have also described induction of this compound (and of its glycoside picein) in response to biotic stress conditions, but without the influence of a neighbor, which is in agreement with the absence of induction of this metabolite observed in competition treatments (Osswald and Benz,
<xref rid="B51" ref-type="bibr">1989</xref>
; Vrchotová et al.,
<xref rid="B75" ref-type="bibr">2004</xref>
). Vanillin, an abundant phenolic aldehyde, was induced in response to all interference treatments for
<italic>Quercus</italic>
, with greatest response observed in the allelopathic interference treatment. This compound was also previously identified as a phytotoxin and was shown to possess antifungal properties (Reigosa et al.,
<xref rid="B57" ref-type="bibr">1999</xref>
). Interestingly, concentrations of salicylic acid increased in the competitive interference treatments for
<italic>Quercus</italic>
. This metabolite is reported to act as a phenolic hormone by influencing many plant processes including growth, development, senescence, and stress responses (Huot et al.,
<xref rid="B30" ref-type="bibr">2014</xref>
). Accumulation in response to biotic interference could potentially activate defense gene expression (Huot et al.,
<xref rid="B30" ref-type="bibr">2014</xref>
) and thus further induce the defense process and subsequent metabolome adjustment.</p>
<p>For terpenoids, several compounds increased greatly in abundance with interference, specifically competition. While some terpenoids were previously reported to be induced by competition (δ3-carene, α-pinene ß-caryophyllene; Ormeño et al.,
<xref rid="B49" ref-type="bibr">2007a</xref>
), others are known to be associated with allelopathic activity (δ3-carene, α-pinene, Camphene; Kordali et al.,
<xref rid="B35" ref-type="bibr">2007</xref>
). However, terpenoids that are especially abundant in coniferous trees are among the most expensive forms of chemical plant defense, from a metabolic standpoint in terms of energy required for production (Gershenzon,
<xref rid="B23" ref-type="bibr">1994</xref>
). In
<italic>Pinus</italic>
, the strong upregulation of terpenoids in response to competitive interference suggests adaptive benefits from upregulation may overcome short-term metabolic disadvantages in costs associated with biosynthesis and eventual storage. Our results highlight a forest plant's ability to modulate their specific metabolic profile and thus impact their subsequent defensive capability, depending on the type of biotic interference.</p>
</sec>
<sec>
<title>Growth defense trade-off and implication for competitiveness</title>
<p>Regardless of the interference combination, increase of phenolic content and decrease of growth trait values observed for
<italic>Quercus</italic>
could be interpreted as a “growth defense trade-off.” In
<italic>Pinus</italic>
, this trend was observed only in response to interference associated with competition. In response to allelopathic interference,
<italic>Pinus</italic>
induced chemical defenses were observed but growth traits were not affected. This trade-off phenomenon has been described extensively in plant-insect or plant-pathogen interactions (for a review see Huot et al.,
<xref rid="B30" ref-type="bibr">2014</xref>
) or in the case of exposure to abiotic stress (Genard-Zielinski et al.,
<xref rid="B22" ref-type="bibr">2014</xref>
) but it has been poorly described for plant-plant interference (allelopathy or competition; Rasher and Hay,
<xref rid="B56" ref-type="bibr">2014</xref>
). Our results highlight the ability of two forest plant species to respond to competitors by adjusting resource allocation in order to increase their relative competitiveness.</p>
<p>Interestingly,
<italic>Quercus</italic>
presents a more conservative strategy in acclimation to various competitive environments in contrast to
<italic>Pinus</italic>
. This is illustrated in this study by a magnitude of response which is: (i) greater for negative plastic responses in growth traits and (ii) lower for induced positive plastic responses in defense traits. The results obtained further support conclusions of previous studies suggesting stronger induced plastic responses of
<italic>Pinus</italic>
and a more conservative behavior from
<italic>Quercus</italic>
(Monnier et al.,
<xref rid="B46" ref-type="bibr">2013</xref>
).</p>
<p>The correlation between overall phenotypic responses (Figure
<xref ref-type="fig" rid="F6">6</xref>
) of both species revealed differential species responses of
<italic>Pinus</italic>
and
<italic>Quercus</italic>
when subjected either to allelopathy or to direct resource-based competition. In the combined AC treatment both species showed a strong correlation to OPR pattern. Results provide further evidence for a common response of both species when subjected to harsher competitive environments (the AC treatment). Although phenotypic plasticity resulting in trait divergence increased the ability of plants to coexist and may be an adaptive response to competition (Burns and Strauss,
<xref rid="B8" ref-type="bibr">2012</xref>
), present results suggest that global response of competing plants may converge in certain strongly competitive environments.</p>
</sec>
<sec>
<title>Implication for plant mediterranean succession</title>
<p>The findings of this study did not support the assumption that saplings of late-successional species colonizing a pioneer forest understory developed less sensitivity to allelochemicals than the pioneer producer species. One explanation for this pattern may arise from the fact that setting up costly mechanisms of tolerance to chemical interference may be evolutionary disadvantageous in favorable growth conditions or environments (Lankau,
<xref rid="B37" ref-type="bibr">2008</xref>
). For
<italic>Quercus, Pinus</italic>
forests with intermediate densities often represent favorable environments, which are considered as “safesites” for
<italic>Quercus</italic>
establishment, creating partial shading, reducing solar radiation and improving the water availability status (Rodriguez-Calcerrada et al.,
<xref rid="B59" ref-type="bibr">2010</xref>
; Prévosto et al.,
<xref rid="B53" ref-type="bibr">2011</xref>
). Under such conditions, it is likely that allelopathy does not play a strong limiting role for
<italic>Quercus</italic>
regeneration and that development of physiological tolerance to a neighbor's allelochemicals may be more costly than beneficial. Nevertheless, this sensitivity to
<italic>Pinus</italic>
metabolites may become disadvantageous for
<italic>Quercus</italic>
in harsher conditions, such as dense
<italic>Pinus</italic>
stands where
<italic>Quercus</italic>
development is limited (Prévosto et al.,
<xref rid="B53" ref-type="bibr">2011</xref>
). In addition, previous studies noted a contradiction between suitable recruitment conditions and appropriate conditions for further
<italic>Quercus</italic>
sapling growth (Puerta-Pinero et al.,
<xref rid="B55" ref-type="bibr">2007</xref>
; Gomez-Aparicio et al.,
<xref rid="B26" ref-type="bibr">2008</xref>
; Sheffer,
<xref rid="B67" ref-type="bibr">2012</xref>
). Our results support this observation, describing increasing sensitivity to aqueous extract supply over time, likely consequent to the alteration of root system function. In terms of root growth, α-pinene was observed to inhibit root development (Singh et al.,
<xref rid="B68" ref-type="bibr">2006</xref>
; Pierik et al.,
<xref rid="B52" ref-type="bibr">2013</xref>
). Under these conditions, the adaptive strategy of
<italic>Pinus</italic>
may be to produce toxic secondary compounds and maintain lower sensitivity to these metabolites than neighboring species during early years of development which evidently provides a competitive advantage. Further studies are required to confirm the relative role played by chemical interference in the dynamics of Mediterranean vegetation communities and forest ecosystems. Studies must clearly address specific environmental conditions in which sensitivity to allelopathy represents an evolutionary and competitive disadvantage in comparison to the presence of co-existing species. The impact of drought on chemical interference mechanisms may also be of particular importance, as Mediterranean ecosystems are predicted to be warmer and drier in the face of a changing climate.</p>
</sec>
</sec>
<sec sec-type="conclusions" id="s5">
<title>Conclusions</title>
<p>Results reported for the two Mediterranean tree species,
<italic>Pinus halepensis</italic>
and
<italic>Quercus pubescens</italic>
, strongly suggest the existence of differential effects of various biotic interference mechanisms on sapling development, and the need to consider their cumulative or antagonistic effects (allelopathy and competition) in plant community dynamics (Viard-Crétat et al.,
<xref rid="B74" ref-type="bibr">2012</xref>
). The magnitude of the responses observed increased with time and highlighted the cumulative impacts of interference mechanisms, pointing to the necessity to conduct long-term (> 1 year) experiments when studying perennial species, in direct contrast to the short-term experiments usually performed in allelopathy research, which typically do not clearly reveal responses to complex biotic interferences. This study demonstrates that
<italic>Pinus</italic>
and
<italic>Quercus</italic>
may be able to adopt different resource allocation patterns in response to a range of biotic interference treatments (allelopathy < competition < allelopathy + competition). Responses observed were species specific but may converge in case of strongly competitive environments (both allelopathy and competition simultaneously).</p>
<p>Further studies are required to determine the mechanisms and adaptive implications of the observed differential sensitivity to mixtures of allelochemicals. Our findings suggest the possibility that the perception of various early competitive interference signals may prime juvenile forest plants to better tolerate strongly competitive environments later.</p>
</sec>
<sec id="s6">
<title>Author contributions</title>
<p>CF, YM, BP, and AB designed the research; CF, YM, BP, and AB conducted the research; CF, YM, MS, AS, and VB collected and analyzed the data; CF, YM, MS, CG, LW, BP, VB, and AB wrote the manuscript.</p>
<sec>
<title>Conflict of interest statement</title>
<p>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</p>
</sec>
</sec>
</body>
<back>
<ack>
<p>We are grateful to the staff of the Les Milles plant nursery (Bouches-du-Rhône Departmental Directorate of Agriculture and Forestry) for their technical assistance, and particularly Patrice Brahic for his valuable comments. We also thank Sylvie Dupouyet, Stéphane Greff, Caroline Lecareux, Céline Pernin, Willy Martin, Roland Estève, AminataN'Dyaye, Christian Ripert, Diane Cattenoz and Sylvain, Bernard and Emile for their assistance with field and laboratory studies. This study was funded by the CNRS under the Zone Atelier “Arrière-pays Méditerranéen” framework and the Agence Nationale pour la Recherche (ANR) through the project SecPriMe
<sup>2</sup>
(no. ANR-12-BSV7-0016-01). Further thanks to the research federation ECCOREV FR3098 and the LABEX OT-Med (no. ANR-11-LABX-0061).</p>
</ack>
<sec sec-type="supplementary-material" id="s7">
<title>Supplementary material</title>
<p>The Supplementary Material for this article can be found online at:
<ext-link ext-link-type="uri" xlink:href="http://journal.frontiersin.org/article/10.3389/fpls.2016.00594">http://journal.frontiersin.org/article/10.3389/fpls.2016.00594</ext-link>
</p>
<supplementary-material content-type="local-data" id="SM1">
<media xlink:href="Table1.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="SM2">
<media xlink:href="Table2.DOCX">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="SM3">
<media xlink:href="Table3.DOCX">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="SM4">
<media xlink:href="Image1.TIF">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
<ref-list>
<title>References</title>
<ref id="B1">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Adams</surname>
<given-names>R. P.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<source>Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry</source>
.
<publisher-loc>Carol Stream, IL</publisher-loc>
:
<publisher-name>Allured Publishing Corporation</publisher-name>
.</mixed-citation>
</ref>
<ref id="B2">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Agrawal</surname>
<given-names>A. A.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Macroevolution of plant defense strategies</article-title>
.
<source>J. Ecol.</source>
<volume>22</volume>
,
<fpage>103</fpage>
<lpage>109</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.tree.2006.10.012</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bais</surname>
<given-names>H. P.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>S. W.</given-names>
</name>
<name>
<surname>Weir</surname>
<given-names>T. L.</given-names>
</name>
<name>
<surname>Callaway</surname>
<given-names>R. M.</given-names>
</name>
<name>
<surname>Vivanco</surname>
<given-names>J. M.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>How plants communicate using the underground information superhighway</article-title>
.
<source>Trends Plant Sci.</source>
<volume>9</volume>
,
<fpage>26</fpage>
<lpage>32</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.tplants.2003.11.008</pub-id>
<pub-id pub-id-type="pmid">14729216</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ballhorn</surname>
<given-names>D. J.</given-names>
</name>
<name>
<surname>Godschalx</surname>
<given-names>A. L.</given-names>
</name>
<name>
<surname>Smart</surname>
<given-names>S. M.</given-names>
</name>
<name>
<surname>Kautz</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Schadler</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Chemical defense lowers plant competitiveness</article-title>
.
<source>Oecologia</source>
<volume>176</volume>
,
<fpage>811</fpage>
<lpage>824</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00442-014-3036-1</pub-id>
<pub-id pub-id-type="pmid">25173086</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barton</surname>
<given-names>K. E.</given-names>
</name>
<name>
<surname>Bowers</surname>
<given-names>M. D.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Neighbour species differentially alter resistance phenotypes in Plantago</article-title>
.
<source>Oecologia</source>
<volume>150</volume>
,
<fpage>442</fpage>
<lpage>452</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00442-006-0531-z</pub-id>
<pub-id pub-id-type="pmid">16944243</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Broncano</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Riba</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Retana</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>1998</year>
).
<article-title>Seed germination and seedling performance of two Mediterranean tree species, holm oak (
<italic>Quercus ilex</italic>
L.) and Aleppo pine (
<italic>Pinus halepensis</italic>
Mill.): a multifactor experimental approach</article-title>
.
<source>Plant Ecol.</source>
<volume>138</volume>
,
<fpage>17</fpage>
<lpage>26</lpage>
.
<pub-id pub-id-type="doi">10.1023/A:1009784215900</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Broz</surname>
<given-names>A. K.</given-names>
</name>
<name>
<surname>Broeckling</surname>
<given-names>C. D.</given-names>
</name>
<name>
<surname>De-la-Peña</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Lewis</surname>
<given-names>M. R.</given-names>
</name>
<name>
<surname>Greene</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Callaway</surname>
<given-names>R. M.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2010</year>
).
<article-title>Plant neighbor identity influences plant biochemistry and physiology related to defense</article-title>
.
<source>BMC Plant Biol.</source>
<volume>10</volume>
:
<fpage>115</fpage>
.
<pub-id pub-id-type="doi">10.1186/1471-2229-10-115</pub-id>
<pub-id pub-id-type="pmid">20565801</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Burns</surname>
<given-names>J. H.</given-names>
</name>
<name>
<surname>Strauss</surname>
<given-names>S. Y.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Effects of competition on phylogenetic signal and phenotypic plasticity in plant functional traits</article-title>
.
<source>Ecology</source>
<volume>93</volume>
,
<fpage>126</fpage>
<lpage>127</lpage>
.
<pub-id pub-id-type="doi">10.1890/11-0401.1</pub-id>
</mixed-citation>
</ref>
<ref id="B9">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Callaway</surname>
<given-names>R. M.</given-names>
</name>
<name>
<surname>Aschehoug</surname>
<given-names>E. T.</given-names>
</name>
</person-group>
(
<year>2000</year>
).
<article-title>Invasive plants versus their new and old neighbors: a mechanism for exotic invasion</article-title>
.
<source>Science</source>
<volume>290</volume>
,
<fpage>521</fpage>
<lpage>523</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.290.5491.521</pub-id>
<pub-id pub-id-type="pmid">11039934</pub-id>
</mixed-citation>
</ref>
<ref id="B10">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Callaway</surname>
<given-names>R. M.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>The detection of neighbors by plants</article-title>
.
<source>Trends Ecol. Evol.</source>
<volume>17</volume>
,
<fpage>104</fpage>
<lpage>105</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0169-5347(01)02438-7</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Callaway</surname>
<given-names>R. M.</given-names>
</name>
<name>
<surname>Ridenour</surname>
<given-names>W. M.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Novel weapons: a biochemically based hypothesis for invasive success and the evolution of increased competitive ability</article-title>
.
<source>Front. Ecol. Environ.</source>
<volume>2</volume>
,
<fpage>436</fpage>
<lpage>433</lpage>
.
<pub-id pub-id-type="doi">10.1890/1540-9295(2004)002[0436:NWISAT]2.0.CO;2</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Céspedes</surname>
<given-names>C. L.</given-names>
</name>
<name>
<surname>Uchoa</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Salazar</surname>
<given-names>J. R.</given-names>
</name>
<name>
<surname>Perich</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Pardo</surname>
<given-names>F.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>Plant growth inhibitory activity of p-hydroxyacetophenones and tremetones from Chilean endemic Baccharis species and some analogous: a comparative study</article-title>
.
<source>J. Agric. Food Chem</source>
.
<volume>50</volume>
,
<fpage>2283</fpage>
<lpage>2292</lpage>
.
<pub-id pub-id-type="doi">10.1021/jf011108g</pub-id>
<pub-id pub-id-type="pmid">11929285</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chomel</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Fernandez</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Bousquet-Mélou</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Gers</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Monnier</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Santonja</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2014</year>
).
<article-title>Secondary metabolites of
<italic>Pinus halepensis</italic>
alter decomposer organisms and litter decomposition during afforestation of abandoned agricultural zones</article-title>
.
<source>J. Ecol.</source>
<volume>102</volume>
,
<fpage>411</fpage>
<lpage>424</lpage>
.
<pub-id pub-id-type="doi">10.1111/1365-2745.12205</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cipollini</surname>
<given-names>D. F.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Consequences of the overproduction of methyl jasmonate on seed production, tolerance to defoliation and competitive effect and response of
<italic>Arabidopsis thaliana</italic>
</article-title>
.
<source>New Phytol.</source>
<volume>173</volume>
,
<fpage>146</fpage>
<lpage>453</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1469-8137.2006.01882.x</pub-id>
<pub-id pub-id-type="pmid">17176401</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cipollini</surname>
<given-names>D. F.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Constitutive expression of methyl jasmonate-inducible responses delays reproduction and constrains fitness responses to nutrients in
<italic>Arabidopsis thaliana</italic>
</article-title>
.
<source>Evol. Ecol.</source>
<volume>24</volume>
,
<fpage>59</fpage>
<lpage>68</lpage>
.
<pub-id pub-id-type="doi">10.1007/s10682-008-9290-0</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Delvas</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Bauce</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Labbé</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Ollevier</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Bélanger</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Phenolic compounds that confer resistance to spruce budworm</article-title>
.
<source>Entomol. Exp. Appl.</source>
<volume>141</volume>
,
<fpage>35</fpage>
<lpage>44</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1570-7458.2011.01161.x</pub-id>
</mixed-citation>
</ref>
<ref id="B17">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fernandez</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Lelong</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Vila</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Mévy</surname>
<given-names>J. P.</given-names>
</name>
<name>
<surname>Robles</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Greff</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2006</year>
).
<article-title>Potential allelopathic effect of
<italic>Pinus halepensis</italic>
in the secondary succession: an experimental approach</article-title>
.
<source>Chemoecology</source>
<volume>16</volume>
,
<fpage>97</fpage>
<lpage>105</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00049-006-0334-z</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fernandez</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Voiriot</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Mévy</surname>
<given-names>J. P.</given-names>
</name>
<name>
<surname>Vila</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Ormeño</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Dupouyet</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2008</year>
).
<article-title>Regeneration failure of
<italic>Pinus halepensis</italic>
Mill.: the role of autotoxicity and some abiotic environmental parameters</article-title>
.
<source>For. Ecol. Manage.</source>
<volume>255</volume>
,
<fpage>2928</fpage>
<lpage>2936</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.foreco.2008.01.072</pub-id>
</mixed-citation>
</ref>
<ref id="B19">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fernandez</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Monnier</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ormeño</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Baldy</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Greff</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Pasqualini</surname>
<given-names>V.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2009</year>
).
<article-title>Variations in Allelochemical Composition of Leachates of Different Organs and Maturity Stages of
<italic>Pinus halepensis</italic>
</article-title>
.
<source>J. Chem. Ecol.</source>
<volume>35</volume>
,
<fpage>970</fpage>
<lpage>979</lpage>
.
<pub-id pub-id-type="doi">10.1007/s10886-009-9667-8</pub-id>
<pub-id pub-id-type="pmid">19629599</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fernandez</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Santonja</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gros</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Monnier</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Chomel</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Baldy</surname>
<given-names>V.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2013</year>
).
<article-title>Allelochemicals of
<italic>Pinus halepensis</italic>
as drivers of biodiversity in Mediterranean open mosaic habitats during the colonization stage of secondary succession</article-title>
.
<source>J. Chem. Ecol.</source>
<volume>39</volume>
,
<fpage>298</fpage>
<lpage>311</lpage>
.
<pub-id pub-id-type="doi">10.1007/s10886-013-0239-6</pub-id>
<pub-id pub-id-type="pmid">23328817</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gallet</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>1994</year>
).
<article-title>Allelopathic potential in bilberry-spruce forests: influence of phenolic compounds on spruce seedlings</article-title>
.
<source>J. Chem. Ecol.</source>
<volume>20</volume>
,
<fpage>1009</fpage>
<lpage>1024</lpage>
.
<pub-id pub-id-type="doi">10.1007/BF02059738</pub-id>
<pub-id pub-id-type="pmid">24242299</pub-id>
</mixed-citation>
</ref>
<ref id="B22">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Genard-Zielinski</surname>
<given-names>A. C.</given-names>
</name>
<name>
<surname>Ormeño</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Boissard</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Fernandez</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Isoprene emissions from Downy oak under water limitation during an entire growing season: what cost for growth?</article-title>
<source>PLoS ONE</source>
<volume>9</volume>
:
<fpage>e112418</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0112418</pub-id>
<pub-id pub-id-type="pmid">25383554</pub-id>
</mixed-citation>
</ref>
<ref id="B23">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gershenzon</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>1994</year>
).
<article-title>Metabolic costs of terpenoid accumulation in higher plants</article-title>
.
<source>J. Chem. Ecol.</source>
<volume>20</volume>
,
<fpage>1281</fpage>
<lpage>1328</lpage>
.
<pub-id pub-id-type="doi">10.1007/BF02059810</pub-id>
<pub-id pub-id-type="pmid">24242341</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Gershenzon</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Fontana</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Burow</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wittstock</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Degenhardt</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Mixtures of plant secondary metabolites: Metabolic origins and ecological benefits</article-title>
, in
<source>Ecology of Plant Secondary Metabolites: From Genes to Landscapes</source>
, eds
<person-group person-group-type="editor">
<name>
<surname>Ianson</surname>
<given-names>G. I.</given-names>
</name>
<name>
<surname>Dicke</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hartley</surname>
<given-names>S. E.</given-names>
</name>
</person-group>
(
<publisher-loc>Cambridge</publisher-loc>
:
<publisher-name>Cambridge University Press</publisher-name>
),
<fpage>56</fpage>
<lpage>77</lpage>
.</mixed-citation>
</ref>
<ref id="B25">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gershenzon</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Dudareva</surname>
<given-names>N.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>The function of terpene natural products in the natural world</article-title>
.
<source>Nat. Chem. Biol.</source>
<volume>3</volume>
,
<fpage>408</fpage>
<lpage>414</lpage>
.
<pub-id pub-id-type="doi">10.1038/nchembio.2007.5</pub-id>
<pub-id pub-id-type="pmid">17576428</pub-id>
</mixed-citation>
</ref>
<ref id="B26">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gomez-Aparicio</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Perez-Ramos</surname>
<given-names>I. M.</given-names>
</name>
<name>
<surname>Mendoza</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Matias</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Quero</surname>
<given-names>J. L.</given-names>
</name>
<name>
<surname>Zamora</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2008</year>
).
<article-title>Oak seedling survival and growth along resource gradients in Mediterranean forests: implications for regeneration in current and future environmental scenarios</article-title>
.
<source>Oikos</source>
<volume>117</volume>
,
<fpage>1683</fpage>
<lpage>1699</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1600-0706.2008.16814.x</pub-id>
</mixed-citation>
</ref>
<ref id="B27">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goodger</surname>
<given-names>J. Q. D.</given-names>
</name>
<name>
<surname>Heskes</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Woodrow</surname>
<given-names>I. E.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Contrasting ontogenetic trajectories for phenolic and terpenoid defences in
<italic>Eucalyptus froggattii</italic>
</article-title>
.
<source>Ann. Bot.</source>
<volume>112</volume>
,
<fpage>651</fpage>
<lpage>659</lpage>
.
<pub-id pub-id-type="doi">10.1093/aob/mct010</pub-id>
<pub-id pub-id-type="pmid">23378522</pub-id>
</mixed-citation>
</ref>
<ref id="B28">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Hartley</surname>
<given-names>S. E.</given-names>
</name>
<name>
<surname>Eschen</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Horwood</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Robinson</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Hill</surname>
<given-names>E. M.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Plant secondary metabolites and the interactions between plants and other organisms: the potential of a metabolomic approach</article-title>
, in
<source>Ecology of Plant Secondary Metabolites: From Genes to Landscapes</source>
, eds
<person-group person-group-type="editor">
<name>
<surname>Ianson</surname>
<given-names>G. I.</given-names>
</name>
<name>
<surname>Dick</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hartley</surname>
<given-names>S. E.</given-names>
</name>
</person-group>
(
<publisher-loc>Cambridge</publisher-loc>
:
<publisher-name>Cambridge University Press</publisher-name>
),
<fpage>204</fpage>
<lpage>225</lpage>
.</mixed-citation>
</ref>
<ref id="B29">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Herm</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Mattson</surname>
<given-names>W. J.</given-names>
</name>
</person-group>
(
<year>1992</year>
).
<article-title>The dilemma of plant: to grow or defend</article-title>
.
<source>The Q. Rev. Biol.</source>
<volume>67</volume>
,
<fpage>283</fpage>
<lpage>335</lpage>
.
<pub-id pub-id-type="doi">10.1086/417659</pub-id>
<pub-id pub-id-type="pmid">27097168</pub-id>
</mixed-citation>
</ref>
<ref id="B30">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huot</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Montgomery</surname>
<given-names>B. L.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>S. Y.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Growth-defense tradeoffs in plants: a balancing act to optimize fitness</article-title>
.
<source>Mol. Plant</source>
<volume>7</volume>
,
<fpage>1267</fpage>
<lpage>1287</lpage>
.
<pub-id pub-id-type="doi">10.1093/mp/ssu049</pub-id>
<pub-id pub-id-type="pmid">24777989</pub-id>
</mixed-citation>
</ref>
<ref id="B31">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Inderjit Del Moral</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>1997</year>
).
<article-title>Is separating resource competition from allelopathy realistic?</article-title>
<source>Bot. Rev.</source>
<volume>63</volume>
,
<fpage>221</fpage>
<lpage>230</lpage>
.
<pub-id pub-id-type="doi">10.1007/BF02857949</pub-id>
</mixed-citation>
</ref>
<ref id="B32">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Inderjit Nilsen</surname>
<given-names>E. T.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>Bioassays and field studies for allelopathy in terrestrial plants: Progress and problems</article-title>
.
<source>Crit. Rev. Plant Sci.</source>
<volume>22</volume>
,
<fpage>221</fpage>
<lpage>238</lpage>
.
<pub-id pub-id-type="doi">10.1080/713610857</pub-id>
</mixed-citation>
</ref>
<ref id="B33">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Inderjit</surname>
<given-names>Wardle, D. A.</given-names>
</name>
<name>
<surname>Karban</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Callaway</surname>
<given-names>R. M.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>The ecosystem and evolutionary contexts of allelopathy</article-title>
.
<source>Trends Ecol. Evol.</source>
<volume>26</volume>
,
<fpage>655</fpage>
<lpage>662</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.tree.2011.08.003</pub-id>
<pub-id pub-id-type="pmid">21920626</pub-id>
</mixed-citation>
</ref>
<ref id="B34">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jones</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kulseth</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Mechtenberg</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Jorgenson</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Zehfus</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2006</year>
).
<article-title>Simultaneous evolution of competitiveness and defense: induced switching in
<italic>Arabis drummondii</italic>
</article-title>
.
<source>Plant Ecol.</source>
<volume>184</volume>
,
<fpage>245</fpage>
<lpage>257</lpage>
.
<pub-id pub-id-type="doi">10.1007/s11258-005-9070-7</pub-id>
</mixed-citation>
</ref>
<ref id="B35">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kordali</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Cakir</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Sutay</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Inhibitory effects of monoterpenes on seed germination and seedling growth</article-title>
.
<source>Z. Naturforsch. C</source>
<volume>62</volume>
,
<fpage>207</fpage>
<lpage>214</lpage>
.
<pub-id pub-id-type="doi">10.1515/znc-2007-3-409</pub-id>
<pub-id pub-id-type="pmid">17542486</pub-id>
</mixed-citation>
</ref>
<ref id="B36">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lankau</surname>
<given-names>R. A.</given-names>
</name>
<name>
<surname>Strauss</surname>
<given-names>S. Y.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Mutual feedbacks maintain both genetic and species diversity in a plant community</article-title>
.
<source>Science</source>
<volume>317</volume>
,
<fpage>1561</fpage>
<lpage>1563</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.1147455</pub-id>
<pub-id pub-id-type="pmid">17872447</pub-id>
</mixed-citation>
</ref>
<ref id="B37">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lankau</surname>
<given-names>R. A.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>A chemical trait creates a genetic trade-off between intra- and interspecific competitive ability</article-title>
.
<source>Ecology</source>
<volume>89</volume>
,
<fpage>1181</fpage>
<lpage>1187</lpage>
.
<pub-id pub-id-type="doi">10.1890/07-1541.1</pub-id>
<pub-id pub-id-type="pmid">18543611</pub-id>
</mixed-citation>
</ref>
<ref id="B38">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lankau</surname>
<given-names>R. A.</given-names>
</name>
<name>
<surname>Kliebenstein</surname>
<given-names>D. J.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Competition, herbivory and genetics interact to determine the accumulation and fitness consequences of a defense metabolite</article-title>
.
<source>J. Ecol.</source>
<volume>97</volume>
,
<fpage>78</fpage>
<lpage>88</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1365-2745.2008.01448.x</pub-id>
</mixed-citation>
</ref>
<ref id="B39">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lankau</surname>
<given-names>R. A.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Coevolution between invasive and native plants driven by chemical competition and soil biota</article-title>
.
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<volume>109</volume>
,
<fpage>11240</fpage>
<lpage>11245</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.1201343109</pub-id>
<pub-id pub-id-type="pmid">22733785</pub-id>
</mixed-citation>
</ref>
<ref id="B40">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lookingbill</surname>
<given-names>T. R.</given-names>
</name>
<name>
<surname>Zavala</surname>
<given-names>M. A.</given-names>
</name>
</person-group>
(
<year>2000</year>
).
<article-title>Spatial pattern of
<italic>Quercus ilex</italic>
and
<italic>Quercus pubescens</italic>
recruitment in
<italic>Pinus halepensis</italic>
dominated woodlands</article-title>
.
<source>J. Veg. Sci.</source>
<volume>11</volume>
,
<fpage>607</fpage>
<lpage>612</lpage>
.
<pub-id pub-id-type="doi">10.2307/3246590</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maestre</surname>
<given-names>F. T.</given-names>
</name>
<name>
<surname>Cortina</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Are
<italic>Pinus halepensis</italic>
plantations useful as a restoration tool in semiarid Mediterranean areas?</article-title>
<source>For. Ecol. Manage.</source>
<volume>198</volume>
,
<fpage>303</fpage>
<lpage>317</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.foreco.2004.05.040</pub-id>
</mixed-citation>
</ref>
<ref id="B42">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Mallik</surname>
<given-names>A. U.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Allelopathy in forested ecosystems</article-title>
,
<source>Allelopathy in Sustainable Agriculture and Forestry</source>
, eds
<person-group person-group-type="editor">
<name>
<surname>Zeng</surname>
<given-names>R. S.</given-names>
</name>
<name>
<surname>Mallik</surname>
<given-names>A. U.</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>S. M.</given-names>
</name>
</person-group>
(
<publisher-loc>New York, NY</publisher-loc>
:
<publisher-name>Springer</publisher-name>
),
<fpage>363</fpage>
<lpage>386</lpage>
.</mixed-citation>
</ref>
<ref id="B43">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meiners</surname>
<given-names>S. J.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Functional correlates of allelopathic potential in a successional plant community</article-title>
.
<source>Plant Ecol.</source>
<volume>215</volume>
,
<fpage>661</fpage>
<lpage>672</lpage>
.
<pub-id pub-id-type="doi">10.1007/s11258-014-0331-1</pub-id>
</mixed-citation>
</ref>
<ref id="B44">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Metlen</surname>
<given-names>K. L.</given-names>
</name>
<name>
<surname>Aschehoug</surname>
<given-names>E. T.</given-names>
</name>
<name>
<surname>Callaway</surname>
<given-names>R. M.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Plant behavioural ecology: dynamic plasticity in secondary metabolites</article-title>
.
<source>Plan Cell Environ.</source>
<volume>32</volume>
,
<fpage>641</fpage>
<lpage>653</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1365-3040.2008.01910.x</pub-id>
<pub-id pub-id-type="pmid">19021888</pub-id>
</mixed-citation>
</ref>
<ref id="B45">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Monnier</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Vila</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Montes</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Bousquet-Melou</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Prévosto</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Fernandez</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Fertilization and allelopathy modify
<italic>Pinus halepensis</italic>
saplings crown acclimation to shade</article-title>
.
<source>Trees</source>
<volume>25</volume>
,
<fpage>497</fpage>
<lpage>507</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00468-010-0525-7</pub-id>
</mixed-citation>
</ref>
<ref id="B46">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Monnier</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Bousquet-Mélou</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Vila</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Prévosto</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Fernandez</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>How nutrient availability influences acclimation to shade of two (pioneer and late-successional) Mediterranean tree species?</article-title>
<source>Eur. J. For. Res.</source>
<volume>132</volume>
,
<fpage>325</fpage>
<lpage>333</lpage>
.
<pub-id pub-id-type="doi">10.1007/s10342-012-0677-7</pub-id>
</mixed-citation>
</ref>
<ref id="B47">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Novoplansky</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Picking battles wisely: plant behaviour under competition</article-title>
.
<source>Plant Cell Environ.</source>
<volume>32</volume>
,
<fpage>726</fpage>
<lpage>741</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1365-3040.2009.01979.x</pub-id>
<pub-id pub-id-type="pmid">19389051</pub-id>
</mixed-citation>
</ref>
<ref id="B48">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Olofsdotter</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Navarez</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Rebulanan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Streibig</surname>
<given-names>J. C.</given-names>
</name>
</person-group>
(
<year>1999</year>
).
<article-title>Weed suppressing rice cultivars - does allelopathy play a role?</article-title>
<source>Weed Res.</source>
<volume>39</volume>
,
<fpage>441</fpage>
<lpage>454</lpage>
.
<pub-id pub-id-type="doi">10.1046/j.1365-3180.1999.00159.x</pub-id>
</mixed-citation>
</ref>
<ref id="B49">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ormeño</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Fernandez</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Mevy</surname>
<given-names>J. P.</given-names>
</name>
</person-group>
(
<year>2007a</year>
).
<article-title>Plant coexistence alters terpene emission and content of Mediterranean species</article-title>
.
<source>Phytochemistry</source>
<volume>68</volume>
,
<fpage>840</fpage>
<lpage>852</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.phytochem.2006.11.033</pub-id>
<pub-id pub-id-type="pmid">17258247</pub-id>
</mixed-citation>
</ref>
<ref id="B50">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ormeño</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Mévy</surname>
<given-names>J. P.</given-names>
</name>
<name>
<surname>Vila</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Bousquet-Mélou</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Greff</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Bonin</surname>
<given-names>G.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2007b</year>
).
<article-title>Water deficit stress induces different monoterpene and sesquiterpene emission changes in Mediterranean species. Relationship between terpene emissions and plant water potential</article-title>
.
<source>Chemosphere</source>
<volume>67</volume>
,
<fpage>276</fpage>
<lpage>284</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.chemosphere.2006.10.029</pub-id>
<pub-id pub-id-type="pmid">17156816</pub-id>
</mixed-citation>
</ref>
<ref id="B51">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Osswald</surname>
<given-names>W. F.</given-names>
</name>
<name>
<surname>Benz</surname>
<given-names>B.</given-names>
</name>
</person-group>
(
<year>1989</year>
).
<article-title>p-Hydroxyacetophenone and Picein contents of healthy and damaged spruce needles from different locations in Bavaria</article-title>
.
<source>Eur. J. For. Pathol.</source>
<volume>19</volume>
,
<fpage>323</fpage>
<lpage>334</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1439-0329.1989.tb00267.x</pub-id>
</mixed-citation>
</ref>
<ref id="B52">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pierik</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Mommer</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Voesenek</surname>
<given-names>L. A.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Molecular mechanisms of plant competition: neighbour detection and response strategies</article-title>
.
<source>Funct. Ecol.</source>
<volume>27</volume>
,
<fpage>841</fpage>
<lpage>853</lpage>
.
<pub-id pub-id-type="doi">10.1111/1365-2435.12010</pub-id>
</mixed-citation>
</ref>
<ref id="B53">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Prévosto</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Monnier</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ripert</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Fernandez</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Can we use shelterwoods in Mediterranean pine forests to promote oak seedling development?</article-title>
<source>For. Ecol. Manage.</source>
<volume>262</volume>
,
<fpage>1426</fpage>
<lpage>1433</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.foreco.2011.06.043</pub-id>
</mixed-citation>
</ref>
<ref id="B54">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Prévosto</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Gavinet</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ripert</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Fernandez</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Identification of windows of emergence and seedling establishment in a pine Mediterranean forest under controlled disturbances</article-title>
.
<source>Basic Appl. Ecol.</source>
<volume>16</volume>
,
<fpage>36</fpage>
<lpage>45</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.baae.2014.10.008</pub-id>
</mixed-citation>
</ref>
<ref id="B55">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Puerta-Pinero</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Gomez</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Valladares</surname>
<given-names>F.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Irradiance and oak seedling survival and growth in a heterogeneous environment</article-title>
.
<source>For. Ecol. Manage.</source>
<volume>242</volume>
,
<fpage>462</fpage>
<lpage>469</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.foreco.2007.01.079</pub-id>
</mixed-citation>
</ref>
<ref id="B56">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rasher</surname>
<given-names>D. B.</given-names>
</name>
<name>
<surname>Hay</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Competition induces allelopathy but suppresses growth and anti-herbivore defence in a chemically rich seaweed</article-title>
.
<source>Proc. R. Soc. Lond. B</source>
<volume>281</volume>
:
<fpage>20132615</fpage>
.
<pub-id pub-id-type="doi">10.1098/rspb.2013.2615</pub-id>
<pub-id pub-id-type="pmid">24403332</pub-id>
</mixed-citation>
</ref>
<ref id="B57">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reigosa</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Sanchez-Moreiras</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Gonzalez</surname>
<given-names>L.</given-names>
</name>
</person-group>
(
<year>1999</year>
).
<article-title>Ecophysiological approach in allelopathy</article-title>
.
<source>Crit. Rev. Plant Sci.</source>
<volume>18</volume>
,
<fpage>577</fpage>
<lpage>608</lpage>
.
<pub-id pub-id-type="doi">10.1080/07352689991309405</pub-id>
</mixed-citation>
</ref>
<ref id="B58">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Richter</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kipfer</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Wohlgemuth</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Calderón Guerrero</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Ghazoul</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Moser</surname>
<given-names>B.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Phenotypic plasticity facilitates resistance to climate change in a highly variable environment</article-title>
.
<source>Oecologia</source>
<volume>169</volume>
,
<fpage>269</fpage>
<lpage>279</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00442-011-2191-x</pub-id>
<pub-id pub-id-type="pmid">22081261</pub-id>
</mixed-citation>
</ref>
<ref id="B59">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rodriguez-Calcerrada</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Cano</surname>
<given-names>F. J.</given-names>
</name>
<name>
<surname>Valbuena-Carabana</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gil</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Aranda</surname>
<given-names>I.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Functional performance of oak seedlings naturally regenerated across microhabitats of distinct overstorey canopy closure</article-title>
.
<source>New For.</source>
<volume>39</volume>
,
<fpage>245</fpage>
<lpage>259</lpage>
.
<pub-id pub-id-type="doi">10.1007/s11056-009-9168-1</pub-id>
</mixed-citation>
</ref>
<ref id="B60">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ruan</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Z. H.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>C. D.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>G. G.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Autotoxicity and Allelopathy of 3,4-Dihydroxyacetophenone Isolated from
<italic>Picea schrenkiana</italic>
Needles</article-title>
.
<source>Molecules</source>
<volume>16</volume>
,
<fpage>8874</fpage>
<lpage>8893</lpage>
.
<pub-id pub-id-type="doi">10.3390/molecules16108874</pub-id>
<pub-id pub-id-type="pmid">22024957</pub-id>
</mixed-citation>
</ref>
<ref id="B61">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>San Emeterio</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Damgaard</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Canals</surname>
<given-names>R. M.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Modelling the combined effect of chemical interference and resource competition on the individual growth of two herbaceous populations</article-title>
.
<source>Plant Soil</source>
<volume>292</volume>
,
<fpage>95</fpage>
<lpage>103</lpage>
.
<pub-id pub-id-type="doi">10.1007/s11104-007-9205-9</pub-id>
</mixed-citation>
</ref>
<ref id="B62">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Santonja</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Baldy</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Fernandez</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Balesdent</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Gauquelin</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Baldy</surname>
<given-names>V.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Potential shift in plant communities with climate change: outcome on litter decomposition and nutrient release in a Mediterranean oak forest</article-title>
.
<source>Ecosystems</source>
<volume>18</volume>
,
<fpage>1253</fpage>
<lpage>1268</lpage>
.
<pub-id pub-id-type="doi">10.1007/s10021-015-9896-3</pub-id>
</mixed-citation>
</ref>
<ref id="B63">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schenk</surname>
<given-names>H. J.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Root competition: beyond resource depletion</article-title>
.
<source>J. Ecol.</source>
<volume>94</volume>
,
<fpage>725</fpage>
<lpage>739</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1365-2745.2006.01124.x</pub-id>
</mixed-citation>
</ref>
<ref id="B64">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schluter</surname>
<given-names>D.</given-names>
</name>
</person-group>
(
<year>2000</year>
).
<article-title>Ecological character displacement in adaptive radiation</article-title>
.
<source>Am. Nat.</source>
<volume>156</volume>
,
<fpage>4</fpage>
<lpage>16</lpage>
.
<pub-id pub-id-type="doi">10.1016/0169-5347(93)90098-A</pub-id>
</mixed-citation>
</ref>
<ref id="B65">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Scognamiglio</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Fiumano</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>D'Abrosca</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Esposito</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hae Choi</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Verpoorte</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2014</year>
).
<article-title>Chemical interactions between plants in Mediterranean vegetation: the influence of selected plant extracts on
<italic>Aegilops geniculata</italic>
metabolome</article-title>
.
<source>Phytochemistry</source>
<volume>106</volume>
,
<fpage>69</fpage>
<lpage>85</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.phytochem.2014.07.006</pub-id>
<pub-id pub-id-type="pmid">25073950</pub-id>
</mixed-citation>
</ref>
<ref id="B66">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Scognamiglio</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>D'Abrosca</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Esposito</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Fiorentino</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Metabolomics: an unexplored tool for allelopathy studies</article-title>
.
<source>J. Allelochem. Interact.</source>
<volume>1</volume>
,
<fpage>9</fpage>
<lpage>23</lpage>
.</mixed-citation>
</ref>
<ref id="B67">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sheffer</surname>
<given-names>E.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>A review of the development of Mediterranean pine–oak ecosystems after land abandonment and afforestation: are they novel ecosystems?</article-title>
<source>Ann. For. Sci.</source>
<volume>69</volume>
,
<fpage>429</fpage>
<lpage>443</lpage>
.
<pub-id pub-id-type="doi">10.1007/s13595-011-0181-0</pub-id>
</mixed-citation>
</ref>
<ref id="B68">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Singh</surname>
<given-names>H. P.</given-names>
</name>
<name>
<surname>Batish</surname>
<given-names>D. R.</given-names>
</name>
<name>
<surname>Kaur</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Arora</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kohli</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>a-Pinene inhibits growth and induces oxidative stress in roots</article-title>
.
<source>Ann. Bot.</source>
<volume>98</volume>
,
<fpage>1261</fpage>
<lpage>1269</lpage>
.
<pub-id pub-id-type="doi">10.1093/aob/mcl213</pub-id>
<pub-id pub-id-type="pmid">17028297</pub-id>
</mixed-citation>
</ref>
<ref id="B69">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Singleton</surname>
<given-names>V. L.</given-names>
</name>
<name>
<surname>Rossi</surname>
<given-names>J. A. J.</given-names>
</name>
</person-group>
(
<year>1965</year>
).
<article-title>Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents</article-title>
.
<source>Am. J. Enol. Vitic.</source>
<volume>16</volume>
,
<fpage>144</fpage>
<lpage>158</lpage>
.</mixed-citation>
</ref>
<ref id="B70">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stamp</surname>
<given-names>N.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>Out of the quagmire of plant defense hypotheses</article-title>
.
<source>Q. Rev. Biol.</source>
<volume>78</volume>
,
<fpage>23</fpage>
<lpage>55</lpage>
.
<pub-id pub-id-type="doi">10.1086/367580</pub-id>
<pub-id pub-id-type="pmid">12661508</pub-id>
</mixed-citation>
</ref>
<ref id="B71">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thorpe</surname>
<given-names>A. S.</given-names>
</name>
<name>
<surname>Aschehoug</surname>
<given-names>E. T.</given-names>
</name>
<name>
<surname>Atwater</surname>
<given-names>D. Z.</given-names>
</name>
<name>
<surname>Callaway</surname>
<given-names>R. M.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Interactions among plants and evolution</article-title>
.
<source>J. Ecol.</source>
<volume>99</volume>
,
<fpage>729</fpage>
<lpage>740</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1365-2745.2011.01802.x</pub-id>
</mixed-citation>
</ref>
<ref id="B72">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Tilman</surname>
<given-names>D.</given-names>
</name>
</person-group>
(
<year>1982</year>
).
<source>Resource Competition and Community Structure</source>
.
<publisher-loc>Princeton, NJ</publisher-loc>
:
<publisher-name>Princeton University Press</publisher-name>
.</mixed-citation>
</ref>
<ref id="B73">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Valladares</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Sanchez-Gomez</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Zavala</surname>
<given-names>M. A.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications</article-title>
.
<source>J. Ecol.</source>
<volume>94</volume>
,
<fpage>1103</fpage>
<lpage>1116</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1365-2745.2006.01176.x</pub-id>
</mixed-citation>
</ref>
<ref id="B74">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Viard-Crétat</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Baptist</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Secher-Fromell</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Gallet</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>The allelopathic effects of
<italic>Festuca paniculata</italic>
depend on competition in subalpine grasslands</article-title>
.
<source>Plant Ecol.</source>
<volume>213</volume>
,
<fpage>1963</fpage>
<lpage>1973</lpage>
.
<pub-id pub-id-type="doi">10.1007/s11258-012-0143-0</pub-id>
</mixed-citation>
</ref>
<ref id="B75">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vrchotová</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Tríska</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Urban</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Peknic</surname>
<given-names>L.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Variability of catechin and 4-hydroxyacetophenone distribution in Norway spruce needles in relation to their position, age, and growing conditions</article-title>
.
<source>Environ. Pollut.</source>
<volume>131</volume>
,
<fpage>55</fpage>
<lpage>59</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.envpol.2004.02.004</pub-id>
<pub-id pub-id-type="pmid">15210275</pub-id>
</mixed-citation>
</ref>
<ref id="B76">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weston</surname>
<given-names>L. A.</given-names>
</name>
<name>
<surname>Skoneczny</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Weston</surname>
<given-names>P. A.</given-names>
</name>
<name>
<surname>Weidenhamer</surname>
<given-names>J. D.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Metabolic profiling: an overview—new approaches for the detection and functional analysis of biologically active secondary plant products</article-title>
.
<source>J. Allelochem. Interact.</source>
<volume>1</volume>
,
<fpage>15</fpage>
<lpage>27</lpage>
.</mixed-citation>
</ref>
<ref id="B77">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weston</surname>
<given-names>L. A.</given-names>
</name>
<name>
<surname>Mathesius</surname>
<given-names>U.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy</article-title>
.
<source>J. Chem. Ecol.</source>
<volume>39</volume>
,
<fpage>283</fpage>
<lpage>297</lpage>
.
<pub-id pub-id-type="doi">10.1007/s10886-013-0248-5</pub-id>
<pub-id pub-id-type="pmid">23397456</pub-id>
</mixed-citation>
</ref>
<ref id="B78">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>G. F.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>F. D.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>T. L.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y. H.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Induced effects of exogenous phenolic acids on allelopathy of a wild rice accession (
<italic>Oryza longistaminata</italic>
, S37)</article-title>
.
<source>Rice Sci.</source>
<volume>17</volume>
,
<fpage>135</fpage>
<lpage>140</lpage>
.
<pub-id pub-id-type="doi">10.1016/S1672-6308(08)60116-X</pub-id>
</mixed-citation>
</ref>
<ref id="B79">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yamawo</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Relatedness of neighboring plants alters the expression of indirect defense traits in a extrafloral nectary-bearing plant</article-title>
.
<source>Evol. Biol.</source>
<volume>42</volume>
,
<fpage>12</fpage>
<lpage>19</lpage>
.
<pub-id pub-id-type="doi">10.1007/s11692-014-9295-2</pub-id>
</mixed-citation>
</ref>
<ref id="B80">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>J. Q.</given-names>
</name>
<name>
<surname>Ye</surname>
<given-names>S. F.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>M. F.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>W. H.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>Effects of root exudates and aqueous root extracts of cucumber (
<italic>Cucumis sativus</italic>
) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber</article-title>
.
<source>Biochem. Syst. Ecol.</source>
<volume>31</volume>
,
<fpage>129</fpage>
<lpage>139</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0305-1978(02)00150-3</pub-id>
</mixed-citation>
</ref>
</ref-list>
<glossary>
<def-list>
<title>Abbreviations</title>
<def-item>
<term>A</term>
<def>
<p>Allelopathy</p>
</def>
</def-item>
<def-item>
<term>C</term>
<def>
<p>Resource Competition</p>
</def>
</def-item>
<def-item>
<term>AC</term>
<def>
<p>Allelopathy and Resource Competition.</p>
</def>
</def-item>
</def-list>
</glossary>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0005371 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0005371 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024