Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

ESAT-6–dependent cytosolic pattern recognition drives noncognate tuberculosis control in vivo

Identifieur interne : 000448 ( Pmc/Corpus ); précédent : 000447; suivant : 000449

ESAT-6–dependent cytosolic pattern recognition drives noncognate tuberculosis control in vivo

Auteurs : Andreas Kupz ; Ulrike Zedler ; Manuela St Ber ; Carolina Perdomo ; Anca Dorhoi ; Roland Brosch ; Stefan H. E. Kaufmann

Source :

RBID : PMC:4887189

Abstract

IFN-γ is a critical mediator of host defense against Mycobacterium tuberculosis (Mtb) infection. Antigen-specific CD4+ T cells have long been regarded as the main producer of IFN-γ in tuberculosis (TB), and CD4+ T cell immunity is the main target of current TB vaccine candidates. However, given the recent failures of such a TB vaccine candidate in clinical trials, strategies to harness CD4-independent mechanisms of protection should be included in future vaccine design. Here, we have reported that noncognate IFN-γ production by Mtb antigen–independent memory CD8+ T cells and NK cells is protective during Mtb infection and evaluated the mechanistic regulation of IFN-γ production by these cells in vivo. Transfer of arenavirus- or protein-specific CD8+ T cells or NK cells reduced the mortality and morbidity rates of mice highly susceptible to TB in an IFN-γ–dependent manner. Secretion of IFN-γ by these cell populations required IL-18, sensing of mycobacterial viability, Mtb protein 6-kDa early secretory antigenic target–mediated (ESAT-6–mediated) cytosolic contact, and activation of NLR family pyrin domain–containing protein 3 (NLRP3) inflammasomes in CD11c+ cell subsets. Neutralization of IL-18 abrogated protection in susceptible recipient mice that had received noncognate cells. Moreover, improved Mycobacteriumbovis bacillus Calmette-Guérin (BCG) vaccine–induced protection was lost in the absence of ESAT-6–dependent cytosolic contact. Our findings provide a comprehensive mechanistic framework for antigen-independent IFN-γ secretion in response to Mtb with critical implications for future intervention strategies against TB.


Url:
DOI: 10.1172/JCI84978
PubMed: 27111234
PubMed Central: 4887189

Links to Exploration step

PMC:4887189

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">ESAT-6–dependent cytosolic pattern recognition drives noncognate tuberculosis control in vivo</title>
<author>
<name sortKey="Kupz, Andreas" sort="Kupz, Andreas" uniqKey="Kupz A" first="Andreas" last="Kupz">Andreas Kupz</name>
<affiliation>
<nlm:aff id="A1">Max Planck Institute for Infection Biology, Berlin, Germany.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2">Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zedler, Ulrike" sort="Zedler, Ulrike" uniqKey="Zedler U" first="Ulrike" last="Zedler">Ulrike Zedler</name>
<affiliation>
<nlm:aff id="A1">Max Planck Institute for Infection Biology, Berlin, Germany.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="St Ber, Manuela" sort="St Ber, Manuela" uniqKey="St Ber M" first="Manuela" last="St Ber">Manuela St Ber</name>
<affiliation>
<nlm:aff id="A1">Max Planck Institute for Infection Biology, Berlin, Germany.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Perdomo, Carolina" sort="Perdomo, Carolina" uniqKey="Perdomo C" first="Carolina" last="Perdomo">Carolina Perdomo</name>
<affiliation>
<nlm:aff id="A1">Max Planck Institute for Infection Biology, Berlin, Germany.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dorhoi, Anca" sort="Dorhoi, Anca" uniqKey="Dorhoi A" first="Anca" last="Dorhoi">Anca Dorhoi</name>
<affiliation>
<nlm:aff id="A1">Max Planck Institute for Infection Biology, Berlin, Germany.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brosch, Roland" sort="Brosch, Roland" uniqKey="Brosch R" first="Roland" last="Brosch">Roland Brosch</name>
<affiliation>
<nlm:aff id="A3">Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kaufmann, Stefan H E" sort="Kaufmann, Stefan H E" uniqKey="Kaufmann S" first="Stefan H. E." last="Kaufmann">Stefan H. E. Kaufmann</name>
<affiliation>
<nlm:aff id="A1">Max Planck Institute for Infection Biology, Berlin, Germany.</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27111234</idno>
<idno type="pmc">4887189</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4887189</idno>
<idno type="RBID">PMC:4887189</idno>
<idno type="doi">10.1172/JCI84978</idno>
<date when="????">????</date>
<idno type="wicri:Area/Pmc/Corpus">000448</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000448</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">ESAT-6–dependent cytosolic pattern recognition drives noncognate tuberculosis control in vivo</title>
<author>
<name sortKey="Kupz, Andreas" sort="Kupz, Andreas" uniqKey="Kupz A" first="Andreas" last="Kupz">Andreas Kupz</name>
<affiliation>
<nlm:aff id="A1">Max Planck Institute for Infection Biology, Berlin, Germany.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2">Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zedler, Ulrike" sort="Zedler, Ulrike" uniqKey="Zedler U" first="Ulrike" last="Zedler">Ulrike Zedler</name>
<affiliation>
<nlm:aff id="A1">Max Planck Institute for Infection Biology, Berlin, Germany.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="St Ber, Manuela" sort="St Ber, Manuela" uniqKey="St Ber M" first="Manuela" last="St Ber">Manuela St Ber</name>
<affiliation>
<nlm:aff id="A1">Max Planck Institute for Infection Biology, Berlin, Germany.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Perdomo, Carolina" sort="Perdomo, Carolina" uniqKey="Perdomo C" first="Carolina" last="Perdomo">Carolina Perdomo</name>
<affiliation>
<nlm:aff id="A1">Max Planck Institute for Infection Biology, Berlin, Germany.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dorhoi, Anca" sort="Dorhoi, Anca" uniqKey="Dorhoi A" first="Anca" last="Dorhoi">Anca Dorhoi</name>
<affiliation>
<nlm:aff id="A1">Max Planck Institute for Infection Biology, Berlin, Germany.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brosch, Roland" sort="Brosch, Roland" uniqKey="Brosch R" first="Roland" last="Brosch">Roland Brosch</name>
<affiliation>
<nlm:aff id="A3">Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kaufmann, Stefan H E" sort="Kaufmann, Stefan H E" uniqKey="Kaufmann S" first="Stefan H. E." last="Kaufmann">Stefan H. E. Kaufmann</name>
<affiliation>
<nlm:aff id="A1">Max Planck Institute for Infection Biology, Berlin, Germany.</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of Clinical Investigation</title>
<idno type="ISSN">0021-9738</idno>
<idno type="eISSN">1558-8238</idno>
<imprint>
<date when="????">????</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>IFN-γ is a critical mediator of host defense against
<italic>Mycobacterium tuberculosis</italic>
(
<italic>Mtb</italic>
) infection. Antigen-specific CD4
<sup>+</sup>
T cells have long been regarded as the main producer of IFN-γ in tuberculosis (TB), and CD4
<sup>+</sup>
T cell immunity is the main target of current TB vaccine candidates. However, given the recent failures of such a TB vaccine candidate in clinical trials, strategies to harness CD4-independent mechanisms of protection should be included in future vaccine design. Here, we have reported that noncognate IFN-γ production by
<italic>Mtb</italic>
antigen–independent memory CD8
<sup>+</sup>
T cells and NK cells is protective during
<italic>Mtb</italic>
infection and evaluated the mechanistic regulation of IFN-γ production by these cells in vivo. Transfer of arenavirus- or protein-specific CD8
<sup>+</sup>
T cells or NK cells reduced the mortality and morbidity rates of mice highly susceptible to TB in an IFN-γ–dependent manner. Secretion of IFN-γ by these cell populations required IL-18, sensing of mycobacterial viability,
<italic>Mtb</italic>
protein 6-kDa early secretory antigenic target–mediated (ESAT-6–mediated) cytosolic contact, and activation of NLR family pyrin domain–containing protein 3 (NLRP3) inflammasomes in CD11c
<sup>+</sup>
cell subsets. Neutralization of IL-18 abrogated protection in susceptible recipient mice that had received noncognate cells. Moreover, improved
<italic>Mycobacterium</italic>
<italic>bovis</italic>
bacillus Calmette-Guérin (BCG) vaccine–induced protection was lost in the absence of ESAT-6–dependent cytosolic contact. Our findings provide a comprehensive mechanistic framework for antigen-independent IFN-γ secretion in response to
<italic>Mt</italic>
b with critical implications for future intervention strategies against TB.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Clin Invest</journal-id>
<journal-id journal-id-type="iso-abbrev">J. Clin. Invest</journal-id>
<journal-id journal-id-type="publisher-id">J Clin Invest</journal-id>
<journal-title-group>
<journal-title>The Journal of Clinical Investigation</journal-title>
</journal-title-group>
<issn pub-type="ppub">0021-9738</issn>
<issn pub-type="epub">1558-8238</issn>
<publisher>
<publisher-name>American Society for Clinical Investigation</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27111234</article-id>
<article-id pub-id-type="pmc">4887189</article-id>
<article-id pub-id-type="publisher-id">84978</article-id>
<article-id pub-id-type="doi">10.1172/JCI84978</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>ESAT-6–dependent cytosolic pattern recognition drives noncognate tuberculosis control in vivo</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Kupz</surname>
<given-names>Andreas</given-names>
</name>
<email>kupz@mpiib-berlin.mpg.de</email>
<xref ref-type="aff" rid="A1">1</xref>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zedler</surname>
<given-names>Ulrike</given-names>
</name>
<email>zedler@mpiib-berlin.mpg.de</email>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Stäber</surname>
<given-names>Manuela</given-names>
</name>
<email>staeber@mpiib-berlin.mpg.de</email>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Perdomo</surname>
<given-names>Carolina</given-names>
</name>
<email>perdomo@mpiib-berlin.mpg.de</email>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dorhoi</surname>
<given-names>Anca</given-names>
</name>
<email>dorhoi@mpiib-berlin.mpg.de</email>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="true">http://orcid.org/0000-0003-2587-3863</contrib-id>
<name>
<surname>Brosch</surname>
<given-names>Roland</given-names>
</name>
<email>rbrosch@pasteur.fr</email>
<xref ref-type="aff" rid="A3">3</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="true">http://orcid.org/0000-0001-9866-8268</contrib-id>
<name>
<surname>Kaufmann</surname>
<given-names>Stefan H.E.</given-names>
</name>
<email>kaufmann@mpiib-berlin.mpg.de</email>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
</contrib-group>
<aff id="A1">
<label>1</label>
Max Planck Institute for Infection Biology, Berlin, Germany.</aff>
<aff id="A2">
<label>2</label>
Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia.</aff>
<aff id="A3">
<label>3</label>
Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France.</aff>
<author-notes>
<corresp>Address correspondence to: Stefan H.E. Kaufmann or Andreas Kupz, Max Plank Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany. Phone: 49.30.28460.500; E-mail:
<email>kaufmann@mpiib-berlin.mpg.de</email>
. Phone: 49.30.28460.520; E-mail:
<email>kupz@mpiib-berlin.mpg.de</email>
or
<email>andreas.kupz@jcu.edu.au</email>
.</corresp>
</author-notes>
<pub-date date-type="pub" publication-format="electronic" iso-8601-date="2016-04-25">
<day>25</day>
<month>4</month>
<year>2016</year>
</pub-date>
<pub-date date-type="pub" publication-format="print" iso-8601-date="2016-06-01">
<day>1</day>
<month>6</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>1</day>
<month>9</month>
<year>2016</year>
</pub-date>
<pmc-comment> PMC Release delay is 3 months and 0 days and was based on the . </pmc-comment>
<volume>126</volume>
<issue>6</issue>
<fpage>2109</fpage>
<lpage>2122</lpage>
<history>
<date date-type="received">
<day>5</day>
<month>10</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>8</day>
<month>3</month>
<year>2016</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2016, American Society for Clinical Investigation</copyright-statement>
<copyright-year>2016</copyright-year>
<copyright-holder>American Society for Clinical Investigation</copyright-holder>
</permissions>
<self-uri xlink:href="https://www.jci.org/articles/view/84978">This article is available online at https://www.jci.org/articles/view/84978</self-uri>
<abstract>
<p>IFN-γ is a critical mediator of host defense against
<italic>Mycobacterium tuberculosis</italic>
(
<italic>Mtb</italic>
) infection. Antigen-specific CD4
<sup>+</sup>
T cells have long been regarded as the main producer of IFN-γ in tuberculosis (TB), and CD4
<sup>+</sup>
T cell immunity is the main target of current TB vaccine candidates. However, given the recent failures of such a TB vaccine candidate in clinical trials, strategies to harness CD4-independent mechanisms of protection should be included in future vaccine design. Here, we have reported that noncognate IFN-γ production by
<italic>Mtb</italic>
antigen–independent memory CD8
<sup>+</sup>
T cells and NK cells is protective during
<italic>Mtb</italic>
infection and evaluated the mechanistic regulation of IFN-γ production by these cells in vivo. Transfer of arenavirus- or protein-specific CD8
<sup>+</sup>
T cells or NK cells reduced the mortality and morbidity rates of mice highly susceptible to TB in an IFN-γ–dependent manner. Secretion of IFN-γ by these cell populations required IL-18, sensing of mycobacterial viability,
<italic>Mtb</italic>
protein 6-kDa early secretory antigenic target–mediated (ESAT-6–mediated) cytosolic contact, and activation of NLR family pyrin domain–containing protein 3 (NLRP3) inflammasomes in CD11c
<sup>+</sup>
cell subsets. Neutralization of IL-18 abrogated protection in susceptible recipient mice that had received noncognate cells. Moreover, improved
<italic>Mycobacterium</italic>
<italic>bovis</italic>
bacillus Calmette-Guérin (BCG) vaccine–induced protection was lost in the absence of ESAT-6–dependent cytosolic contact. Our findings provide a comprehensive mechanistic framework for antigen-independent IFN-γ secretion in response to
<italic>Mt</italic>
b with critical implications for future intervention strategies against TB.</p>
</abstract>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000448 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000448 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4887189
   |texte=   ESAT-6–dependent cytosolic pattern recognition drives noncognate tuberculosis control in vivo
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:27111234" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024