Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0002808 ( Pmc/Corpus ); précédent : 0002807; suivant : 0002809 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Core-shell nanostructured hybrid composites for volatile organic compound detection</title>
<author>
<name sortKey="Tung, Tran Thanh" sort="Tung, Tran Thanh" uniqKey="Tung T" first="Tran Thanh" last="Tung">Tran Thanh Tung</name>
<affiliation>
<nlm:aff id="af1-ijn-10-203">School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-ijn-10-203">Smart Plastics Group, European University of Brittany (UEB), LIMATB-UBS, Lorient, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Losic, Dusan" sort="Losic, Dusan" uniqKey="Losic D" first="Dusan" last="Losic">Dusan Losic</name>
<affiliation>
<nlm:aff id="af1-ijn-10-203">School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Park, Seung Jun" sort="Park, Seung Jun" uniqKey="Park S" first="Seung Jun" last="Park">Seung Jun Park</name>
<affiliation>
<nlm:aff id="af3-ijn-10-203">Department of Bionanotechnology, Gachon University, Sujeong-gu, Seongnam-si, Gyeonggi-do South Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Feller, Jean Francois" sort="Feller, Jean Francois" uniqKey="Feller J" first="Jean-Francois" last="Feller">Jean-Francois Feller</name>
<affiliation>
<nlm:aff id="af2-ijn-10-203">Smart Plastics Group, European University of Brittany (UEB), LIMATB-UBS, Lorient, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Taeyoung" sort="Kim, Taeyoung" uniqKey="Kim T" first="Taeyoung" last="Kim">Taeyoung Kim</name>
<affiliation>
<nlm:aff id="af3-ijn-10-203">Department of Bionanotechnology, Gachon University, Sujeong-gu, Seongnam-si, Gyeonggi-do South Korea</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26357471</idno>
<idno type="pmc">4559249</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4559249</idno>
<idno type="RBID">PMC:4559249</idno>
<idno type="doi">10.2147/IJN.S88305</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000280</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000280</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Core-shell nanostructured hybrid composites for volatile organic compound detection</title>
<author>
<name sortKey="Tung, Tran Thanh" sort="Tung, Tran Thanh" uniqKey="Tung T" first="Tran Thanh" last="Tung">Tran Thanh Tung</name>
<affiliation>
<nlm:aff id="af1-ijn-10-203">School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-ijn-10-203">Smart Plastics Group, European University of Brittany (UEB), LIMATB-UBS, Lorient, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Losic, Dusan" sort="Losic, Dusan" uniqKey="Losic D" first="Dusan" last="Losic">Dusan Losic</name>
<affiliation>
<nlm:aff id="af1-ijn-10-203">School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Park, Seung Jun" sort="Park, Seung Jun" uniqKey="Park S" first="Seung Jun" last="Park">Seung Jun Park</name>
<affiliation>
<nlm:aff id="af3-ijn-10-203">Department of Bionanotechnology, Gachon University, Sujeong-gu, Seongnam-si, Gyeonggi-do South Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Feller, Jean Francois" sort="Feller, Jean Francois" uniqKey="Feller J" first="Jean-Francois" last="Feller">Jean-Francois Feller</name>
<affiliation>
<nlm:aff id="af2-ijn-10-203">Smart Plastics Group, European University of Brittany (UEB), LIMATB-UBS, Lorient, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Taeyoung" sort="Kim, Taeyoung" uniqKey="Kim T" first="Taeyoung" last="Kim">Taeyoung Kim</name>
<affiliation>
<nlm:aff id="af3-ijn-10-203">Department of Bionanotechnology, Gachon University, Sujeong-gu, Seongnam-si, Gyeonggi-do South Korea</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International Journal of Nanomedicine</title>
<idno type="ISSN">1176-9114</idno>
<idno type="eISSN">1178-2013</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>We report a high-performance chemiresistive sensor for detection of volatile organic compound (VOC) vapors based on core-shell hybridized nanostructures of Fe
<sub>3</sub>
O
<sub>4</sub>
magnetic nanoparticles (MNPs) and poly(3,4-ethylenedioxythiophene) (PEDOT)-conducting polymers. The MNPs were prepared using microwave-assisted synthesis in the presence of polymerized ionic liquids (PILs), which were used as a linker to couple the MNP and PEDOT. The resulting PEDOT–PIL-modified Fe
<sub>3</sub>
O
<sub>4</sub>
hybrids were then explored as a sensing channel material for a chemiresistive sensor to detect VOC vapors. The PEDOT–PIL-modified Fe
<sub>3</sub>
O
<sub>4</sub>
sensor exhibited a tunable response, with high sensitivity (down to a concentration of 1 ppm) and low noise level, to VOCs; these VOCs include acetone vapor, which is present in the exhaled breath of potential lung cancer patients. The present sensor, based on the hybrid nanostructured sensing materials, exhibited a 38.8% higher sensitivity and an 11% lower noise level than its PEDOT–PIL-only counterpart. This approach of embedding MNPs in conducting polymers could lead to the development of new electronic noses, which have significant potential for the use in the early diagnosis of lung cancer via the detection of VOC biomarkers.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Jemal, A" uniqKey="Jemal A">A Jemal</name>
</author>
<author>
<name sortKey="Siegel, R" uniqKey="Siegel R">R Siegel</name>
</author>
<author>
<name sortKey="Ward, E" uniqKey="Ward E">E Ward</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peng, G" uniqKey="Peng G">G Peng</name>
</author>
<author>
<name sortKey="Tisch, U" uniqKey="Tisch U">U Tisch</name>
</author>
<author>
<name sortKey="Adams, O" uniqKey="Adams O">O Adams</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, Zq" uniqKey="Xu Z">ZQ Xu</name>
</author>
<author>
<name sortKey="Broza, Yy" uniqKey="Broza Y">YY Broza</name>
</author>
<author>
<name sortKey="Ionsecu, R" uniqKey="Ionsecu R">R Ionsecu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haick, H" uniqKey="Haick H">H Haick</name>
</author>
<author>
<name sortKey="Broza, Yy" uniqKey="Broza Y">YY Broza</name>
</author>
<author>
<name sortKey="Mochalski, P" uniqKey="Mochalski P">P Mochalski</name>
</author>
<author>
<name sortKey="Ruzsanyi, V" uniqKey="Ruzsanyi V">V Ruzsanyi</name>
</author>
<author>
<name sortKey="Amann, A" uniqKey="Amann A">A Amann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Lacy Costello, B" uniqKey="De Lacy Costello B">B de Lacy Costello</name>
</author>
<author>
<name sortKey="Amann, A" uniqKey="Amann A">A Amann</name>
</author>
<author>
<name sortKey="Al Kateb, H" uniqKey="Al Kateb H">H Al-Kateb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Broza, Yy" uniqKey="Broza Y">YY Broza</name>
</author>
<author>
<name sortKey="Zuri, L" uniqKey="Zuri L">L Zuri</name>
</author>
<author>
<name sortKey="Haick, H" uniqKey="Haick H">H Haick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chatterjee, S" uniqKey="Chatterjee S">S Chatterjee</name>
</author>
<author>
<name sortKey="Castro, M" uniqKey="Castro M">M Castro</name>
</author>
<author>
<name sortKey="Feller, Jf" uniqKey="Feller J">JF Feller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nag, S" uniqKey="Nag S">S Nag</name>
</author>
<author>
<name sortKey="Duarte, L" uniqKey="Duarte L">L Duarte</name>
</author>
<author>
<name sortKey="Bertrand, E" uniqKey="Bertrand E">E Bertrand</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shin, J" uniqKey="Shin J">J Shin</name>
</author>
<author>
<name sortKey="Choi, Sj" uniqKey="Choi S">SJ Choi</name>
</author>
<author>
<name sortKey="Lee, I" uniqKey="Lee I">I Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gordon, Sm" uniqKey="Gordon S">SM Gordon</name>
</author>
<author>
<name sortKey="Szidon, Jp" uniqKey="Szidon J">JP Szidon</name>
</author>
<author>
<name sortKey="Krotoszynski, Bk" uniqKey="Krotoszynski B">BK Krotoszynski</name>
</author>
<author>
<name sortKey="Gibbons, Rd" uniqKey="Gibbons R">RD Gibbons</name>
</author>
<author>
<name sortKey="O Eill, Hj" uniqKey="O Eill H">HJ O’Neill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miekisch, W" uniqKey="Miekisch W">W Miekisch</name>
</author>
<author>
<name sortKey="Fuchs, P" uniqKey="Fuchs P">P Fuchs</name>
</author>
<author>
<name sortKey="Kamysek, S" uniqKey="Kamysek S">S Kamysek</name>
</author>
<author>
<name sortKey="Neumann, C" uniqKey="Neumann C">C Neumann</name>
</author>
<author>
<name sortKey="Schubert, Jk" uniqKey="Schubert J">JK Schubert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Phillips, M" uniqKey="Phillips M">M Phillips</name>
</author>
<author>
<name sortKey="Gleeson, K" uniqKey="Gleeson K">K Gleeson</name>
</author>
<author>
<name sortKey="Hughes, Jm" uniqKey="Hughes J">JM Hughes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Kh" uniqKey="Kim K">KH Kim</name>
</author>
<author>
<name sortKey="Jahan, Sa" uniqKey="Jahan S">SA Jahan</name>
</author>
<author>
<name sortKey="Kabir, E" uniqKey="Kabir E">E Kabir</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peled, N" uniqKey="Peled N">N Peled</name>
</author>
<author>
<name sortKey="Ionescu, R" uniqKey="Ionescu R">R Ionescu</name>
</author>
<author>
<name sortKey="Nol, P" uniqKey="Nol P">P Nol</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smith, D" uniqKey="Smith D">D Smith</name>
</author>
<author>
<name sortKey="Wang, T" uniqKey="Wang T">T Wang</name>
</author>
<author>
<name sortKey="Sule Suso, J" uniqKey="Sule Suso J">J Sulé-Suso</name>
</author>
<author>
<name sortKey="Spane, P" uniqKey="Spane P">P Spane</name>
</author>
<author>
<name sortKey="El Haj, A" uniqKey="El Haj A">A El-Haj</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Amann, A" uniqKey="Amann A">A Amann</name>
</author>
<author>
<name sortKey="Span L, P" uniqKey="Span L P">P Spanĕl</name>
</author>
<author>
<name sortKey="Smith, D" uniqKey="Smith D">D Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yates, Dh" uniqKey="Yates D">DH Yates</name>
</author>
<author>
<name sortKey="Kharitonov, Sa" uniqKey="Kharitonov S">SA Kharitonov</name>
</author>
<author>
<name sortKey="Robbins, Ra" uniqKey="Robbins R">RA Robbins</name>
</author>
<author>
<name sortKey="Thomas, Ps" uniqKey="Thomas P">PS Thomas</name>
</author>
<author>
<name sortKey="Barnes, Pj" uniqKey="Barnes P">PJ Barnes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kolle, C" uniqKey="Kolle C">C Kolle</name>
</author>
<author>
<name sortKey="Gruber, W" uniqKey="Gruber W">W Gruber</name>
</author>
<author>
<name sortKey="Trettnak, W" uniqKey="Trettnak W">W Trettnak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Giubileo, G" uniqKey="Giubileo G">G Giubileo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Groves, Wa" uniqKey="Groves W">WA Groves</name>
</author>
<author>
<name sortKey="Zellers, Et" uniqKey="Zellers E">ET Zellers</name>
</author>
<author>
<name sortKey="Frye, Gc" uniqKey="Frye G">GC Frye</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arshak, K" uniqKey="Arshak K">K Arshak</name>
</author>
<author>
<name sortKey="Moore, E" uniqKey="Moore E">E Moore</name>
</author>
<author>
<name sortKey="Lyons, Gm" uniqKey="Lyons G">GM Lyons</name>
</author>
<author>
<name sortKey="Harris, J" uniqKey="Harris J">J Harris</name>
</author>
<author>
<name sortKey="Clifford, S" uniqKey="Clifford S">S Clifford</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Toda, K" uniqKey="Toda K">K Toda</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J Li</name>
</author>
<author>
<name sortKey="Dasgupta, Pk" uniqKey="Dasgupta P">PK Dasgupta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Amorim, Lc" uniqKey="Amorim L">LC Amorim</name>
</author>
<author>
<name sortKey="De L Cardeal, Z" uniqKey="De L Cardeal Z">Z de L Cardeal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Id" uniqKey="Kim I">ID Kim</name>
</author>
<author>
<name sortKey="Rothschild, A" uniqKey="Rothschild A">A Rothschild</name>
</author>
<author>
<name sortKey="Lee, Bh" uniqKey="Lee B">BH Lee</name>
</author>
<author>
<name sortKey="Kim, Dy" uniqKey="Kim D">DY Kim</name>
</author>
<author>
<name sortKey="Jo, Sm" uniqKey="Jo S">SM Jo</name>
</author>
<author>
<name sortKey="Tuller, Hl" uniqKey="Tuller H">HL Tuller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Persaud, K" uniqKey="Persaud K">K Persaud</name>
</author>
<author>
<name sortKey="Dodd, G" uniqKey="Dodd G">G Dodd</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krasteva, N" uniqKey="Krasteva N">N Krasteva</name>
</author>
<author>
<name sortKey="Fogel, Y" uniqKey="Fogel Y">Y Fogel</name>
</author>
<author>
<name sortKey="Bauer, Re" uniqKey="Bauer R">RE Bauer</name>
</author>
<author>
<name sortKey="Mullen, K" uniqKey="Mullen K">K Müllen</name>
</author>
<author>
<name sortKey="Joseph, Y" uniqKey="Joseph Y">Y Joseph</name>
</author>
<author>
<name sortKey="Matsuzawa, N" uniqKey="Matsuzawa N">N Matsuzawa</name>
</author>
<author>
<name sortKey="Yasuda, A" uniqKey="Yasuda A">A Yasuda</name>
</author>
<author>
<name sortKey="Vossmeyer, T" uniqKey="Vossmeyer T">T Vossmeyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Joseph, Y" uniqKey="Joseph Y">Y Joseph</name>
</author>
<author>
<name sortKey="Guse, B" uniqKey="Guse B">B Guse</name>
</author>
<author>
<name sortKey="Vossmeyer, T" uniqKey="Vossmeyer T">T Vossmeyer</name>
</author>
<author>
<name sortKey="Yasuda, A" uniqKey="Yasuda A">A Yasuda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Neaves, Pi" uniqKey="Neaves P">PI Neaves</name>
</author>
<author>
<name sortKey="Hatfield, Jv" uniqKey="Hatfield J">JV Hatfield</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Js" uniqKey="Lee J">JS Lee</name>
</author>
<author>
<name sortKey="Jun, J" uniqKey="Jun J">J Jun</name>
</author>
<author>
<name sortKey="Shin, Dh" uniqKey="Shin D">DH Shin</name>
</author>
<author>
<name sortKey="Jang, J" uniqKey="Jang J">J Jang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Park, E" uniqKey="Park E">E Park</name>
</author>
<author>
<name sortKey="Kwon, Os" uniqKey="Kwon O">OS Kwon</name>
</author>
<author>
<name sortKey="Park, Sj" uniqKey="Park S">SJ Park</name>
</author>
<author>
<name sortKey="Lee, Js" uniqKey="Lee J">JS Lee</name>
</author>
<author>
<name sortKey="You, S" uniqKey="You S">S You</name>
</author>
<author>
<name sortKey="Jang, J" uniqKey="Jang J">J Jang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kwon, Os" uniqKey="Kwon O">OS Kwon</name>
</author>
<author>
<name sortKey="Park, Sj" uniqKey="Park S">SJ Park</name>
</author>
<author>
<name sortKey="Lee, Js" uniqKey="Lee J">JS Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Severin, Ej" uniqKey="Severin E">EJ Severin</name>
</author>
<author>
<name sortKey="Doleman, Bj" uniqKey="Doleman B">BJ Doleman</name>
</author>
<author>
<name sortKey="Lewis, Ns" uniqKey="Lewis N">NS Lewis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kong, J" uniqKey="Kong J">J Kong</name>
</author>
<author>
<name sortKey="Franklin, Nr" uniqKey="Franklin N">NR Franklin</name>
</author>
<author>
<name sortKey="Zhou, C" uniqKey="Zhou C">C Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lim, Jh" uniqKey="Lim J">JH Lim</name>
</author>
<author>
<name sortKey="Park, J" uniqKey="Park J">J Park</name>
</author>
<author>
<name sortKey="Oh, Eh" uniqKey="Oh E">EH Oh</name>
</author>
<author>
<name sortKey="Ko, Hj" uniqKey="Ko H">HJ Ko</name>
</author>
<author>
<name sortKey="Hong, S" uniqKey="Hong S">S Hong</name>
</author>
<author>
<name sortKey="Park, Th" uniqKey="Park T">TH Park</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Th" uniqKey="Kim T">TH Kim</name>
</author>
<author>
<name sortKey="Lee, Sh" uniqKey="Lee S">SH Lee</name>
</author>
<author>
<name sortKey="Lee, J" uniqKey="Lee J">J Lee</name>
</author>
<author>
<name sortKey="Song, Hs" uniqKey="Song H">HS Song</name>
</author>
<author>
<name sortKey="Oh, Eh" uniqKey="Oh E">EH Oh</name>
</author>
<author>
<name sortKey="Park, Th" uniqKey="Park T">TH Park</name>
</author>
<author>
<name sortKey="Hong, S" uniqKey="Hong S">S Hong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vedala, H" uniqKey="Vedala H">H Vedala</name>
</author>
<author>
<name sortKey="Sorescu, Dc" uniqKey="Sorescu D">DC Sorescu</name>
</author>
<author>
<name sortKey="Kotchey, Gp" uniqKey="Kotchey G">GP Kotchey</name>
</author>
<author>
<name sortKey="Star, A" uniqKey="Star A">A Star</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tien, Hw" uniqKey="Tien H">HW Tien</name>
</author>
<author>
<name sortKey="Huang, Yl" uniqKey="Huang Y">YL Huang</name>
</author>
<author>
<name sortKey="Yang, Sy" uniqKey="Yang S">SY Yang</name>
</author>
<author>
<name sortKey="Wang, Jy" uniqKey="Wang J">JY Wang</name>
</author>
<author>
<name sortKey="Ma, Ccm" uniqKey="Ma C">CCM Ma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hieu, Nv" uniqKey="Hieu N">NV Hieu</name>
</author>
<author>
<name sortKey="Duc, Nap" uniqKey="Duc N">NAP Duc</name>
</author>
<author>
<name sortKey="Trung, T" uniqKey="Trung T">T Trung</name>
</author>
<author>
<name sortKey="Tuan, Ma" uniqKey="Tuan M">MA Tuan</name>
</author>
<author>
<name sortKey="Chien, Nd" uniqKey="Chien N">ND Chien</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Joseph, Y" uniqKey="Joseph Y">Y Joseph</name>
</author>
<author>
<name sortKey="Guse, B" uniqKey="Guse B">B Guse</name>
</author>
<author>
<name sortKey="Nelles, G" uniqKey="Nelles G">G Nelles</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, Yf" uniqKey="Sun Y">YF Sun</name>
</author>
<author>
<name sortKey="Liu, Sb" uniqKey="Liu S">SB Liu</name>
</author>
<author>
<name sortKey="Meng, Fl" uniqKey="Meng F">FL Meng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khoang, Nd" uniqKey="Khoang N">ND Khoang</name>
</author>
<author>
<name sortKey="Trung, Dd" uniqKey="Trung D">DD Trung</name>
</author>
<author>
<name sortKey="Duy, Nv" uniqKey="Duy N">NV Duy</name>
</author>
<author>
<name sortKey="Hoa, Nd" uniqKey="Hoa N">ND Hoa</name>
</author>
<author>
<name sortKey="Hieu, Nv" uniqKey="Hieu N">NV Hieu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hieu, Nv" uniqKey="Hieu N">NV Hieu</name>
</author>
<author>
<name sortKey="Van, Pth" uniqKey="Van P">PTH Van</name>
</author>
<author>
<name sortKey="Nhan, Lt" uniqKey="Nhan L">LT Nhan</name>
</author>
<author>
<name sortKey="Duy, Nv" uniqKey="Duy N">NV Duy</name>
</author>
<author>
<name sortKey="Hoa, Nd" uniqKey="Hoa N">ND Hoa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cho, S" uniqKey="Cho S">S Cho</name>
</author>
<author>
<name sortKey="Lee, Js" uniqKey="Lee J">JS Lee</name>
</author>
<author>
<name sortKey="Jun, J" uniqKey="Jun J">J Jun</name>
</author>
<author>
<name sortKey="Jang, J" uniqKey="Jang J">J Jang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shin, S" uniqKey="Shin S">S Shin</name>
</author>
<author>
<name sortKey="Jang, J" uniqKey="Jang J">J Jang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Callaway, Mk" uniqKey="Callaway M">MK Callaway</name>
</author>
<author>
<name sortKey="Ochoa, Jm" uniqKey="Ochoa J">JM Ochoa</name>
</author>
<author>
<name sortKey="Perez, Ee" uniqKey="Perez E">EE Perez</name>
</author>
<author>
<name sortKey="Ulrich, Pe" uniqKey="Ulrich P">PE Ulrich</name>
</author>
<author>
<name sortKey="Alocilja, Ec" uniqKey="Alocilja E">EC Alocilja</name>
</author>
<author>
<name sortKey="Vetrone, Sa" uniqKey="Vetrone S">SA Vetrone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yuk, Js" uniqKey="Yuk J">JS Yuk</name>
</author>
<author>
<name sortKey="Rose, J" uniqKey="Rose J">J Rose</name>
</author>
<author>
<name sortKey="Alocilja, Ec" uniqKey="Alocilja E">EC Alocilja</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, B" uniqKey="Zhao B">B Zhao</name>
</author>
<author>
<name sortKey="Nan, Z" uniqKey="Nan Z">Z Nan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tahmasebi, E" uniqKey="Tahmasebi E">E Tahmasebi</name>
</author>
<author>
<name sortKey="Yamini, Y" uniqKey="Yamini Y">Y Yamini</name>
</author>
<author>
<name sortKey="Seidi, S" uniqKey="Seidi S">S Seidi</name>
</author>
<author>
<name sortKey="Rezazadeh, M" uniqKey="Rezazadeh M">M Rezazadeh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Ty" uniqKey="Kim T">TY Kim</name>
</author>
<author>
<name sortKey="Lee, Th" uniqKey="Lee T">TH Lee</name>
</author>
<author>
<name sortKey="Kim, Je" uniqKey="Kim J">JE Kim</name>
</author>
<author>
<name sortKey="Kasi, Rm" uniqKey="Kasi R">RM Kasi</name>
</author>
<author>
<name sortKey="Sung, Csp" uniqKey="Sung C">CSP Sung</name>
</author>
<author>
<name sortKey="Suh, Ks" uniqKey="Suh K">KS Suh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tung, Tt" uniqKey="Tung T">TT Tung</name>
</author>
<author>
<name sortKey="Kim, Ty" uniqKey="Kim T">TY Kim</name>
</author>
<author>
<name sortKey="Shim, Jp" uniqKey="Shim J">JP Shim</name>
</author>
<author>
<name sortKey="Yang, Ws" uniqKey="Yang W">WS Yang</name>
</author>
<author>
<name sortKey="Kim, H" uniqKey="Kim H">H Kim</name>
</author>
<author>
<name sortKey="Suh, Ks" uniqKey="Suh K">KS Suh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chandra, V" uniqKey="Chandra V">V Chandra</name>
</author>
<author>
<name sortKey="Park, J" uniqKey="Park J">J Park</name>
</author>
<author>
<name sortKey="Chun, Y" uniqKey="Chun Y">Y Chun</name>
</author>
<author>
<name sortKey="Lee, Jw" uniqKey="Lee J">JW Lee</name>
</author>
<author>
<name sortKey="Hwang, Ic" uniqKey="Hwang I">IC Hwang</name>
</author>
<author>
<name sortKey="Kim, Ks" uniqKey="Kim K">KS Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tung, Tt" uniqKey="Tung T">TT Tung</name>
</author>
<author>
<name sortKey="Castro, M" uniqKey="Castro M">M Castro</name>
</author>
<author>
<name sortKey="Kim, Ty" uniqKey="Kim T">TY Kim</name>
</author>
<author>
<name sortKey="Suh, Ks" uniqKey="Suh K">KS Suh</name>
</author>
<author>
<name sortKey="Feller, Jf" uniqKey="Feller J">JF Feller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, T" uniqKey="Kim T">T Kim</name>
</author>
<author>
<name sortKey="Tung, Tt" uniqKey="Tung T">TT Tung</name>
</author>
<author>
<name sortKey="Lee, T" uniqKey="Lee T">T Lee</name>
</author>
<author>
<name sortKey="Kim, J" uniqKey="Kim J">J Kim</name>
</author>
<author>
<name sortKey="Suh, Ks" uniqKey="Suh K">KS Suh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Janata, J" uniqKey="Janata J">J Janata</name>
</author>
<author>
<name sortKey="Josowicz, M" uniqKey="Josowicz M">M Josowicz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bai, H" uniqKey="Bai H">H Bai</name>
</author>
<author>
<name sortKey="Shi, G" uniqKey="Shi G">G Shi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heeger, Aj" uniqKey="Heeger A">AJ Heeger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tung, Tt" uniqKey="Tung T">TT Tung</name>
</author>
<author>
<name sortKey="Castro, M" uniqKey="Castro M">M Castro</name>
</author>
<author>
<name sortKey="Pillin, I" uniqKey="Pillin I">I Pillin</name>
</author>
<author>
<name sortKey="Kim, Ty" uniqKey="Kim T">TY Kim</name>
</author>
<author>
<name sortKey="Suh, Ks" uniqKey="Suh K">KS Suh</name>
</author>
<author>
<name sortKey="Feller, Jf" uniqKey="Feller J">JF Feller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feller, Jf" uniqKey="Feller J">JF Feller</name>
</author>
<author>
<name sortKey="Lu, J" uniqKey="Lu J">J Lu</name>
</author>
<author>
<name sortKey="Zhang, K" uniqKey="Zhang K">K Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, J" uniqKey="Lu J">J Lu</name>
</author>
<author>
<name sortKey="Kumar, B" uniqKey="Kumar B">B Kumar</name>
</author>
<author>
<name sortKey="Castro, M" uniqKey="Castro M">M Castro</name>
</author>
<author>
<name sortKey="Feller, Jf" uniqKey="Feller J">JF Feller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Nh" uniqKey="Kim N">NH Kim</name>
</author>
<author>
<name sortKey="Choi, Sj" uniqKey="Choi S">SJ Choi</name>
</author>
<author>
<name sortKey="Yang, Dj" uniqKey="Yang D">DJ Yang</name>
</author>
<author>
<name sortKey="Bae, J" uniqKey="Bae J">J Bae</name>
</author>
<author>
<name sortKey="Park, J" uniqKey="Park J">J Park</name>
</author>
<author>
<name sortKey="Kim, Id" uniqKey="Kim I">ID Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, I" uniqKey="Lee I">I Lee</name>
</author>
<author>
<name sortKey="Choi, Sj" uniqKey="Choi S">SJ Choi</name>
</author>
<author>
<name sortKey="Park, Km" uniqKey="Park K">KM Park</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Choi, Sj" uniqKey="Choi S">SJ Choi</name>
</author>
<author>
<name sortKey="Choi, C" uniqKey="Choi C">C Choi</name>
</author>
<author>
<name sortKey="Kim, Sj" uniqKey="Kim S">SJ Kim</name>
</author>
<author>
<name sortKey="Cho, Hj" uniqKey="Cho H">HJ Cho</name>
</author>
<author>
<name sortKey="Jeon, S" uniqKey="Jeon S">S Jeon</name>
</author>
<author>
<name sortKey="Kim, Id" uniqKey="Kim I">ID Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peng, G" uniqKey="Peng G">G Peng</name>
</author>
<author>
<name sortKey="Hakim, M" uniqKey="Hakim M">M Hakim</name>
</author>
<author>
<name sortKey="Broza, Yy" uniqKey="Broza Y">YY Broza</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, J" uniqKey="Li J">J Li</name>
</author>
<author>
<name sortKey="Lu, Y" uniqKey="Lu Y">Y Lu</name>
</author>
<author>
<name sortKey="Ye, Q" uniqKey="Ye Q">Q Ye</name>
</author>
<author>
<name sortKey="Cinke, M" uniqKey="Cinke M">M Cinke</name>
</author>
<author>
<name sortKey="Han, J" uniqKey="Han J">J Han</name>
</author>
<author>
<name sortKey="Mayyappan, M" uniqKey="Mayyappan M">M Mayyappan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hakim, M" uniqKey="Hakim M">M Hakim</name>
</author>
<author>
<name sortKey="Broza, Yy" uniqKey="Broza Y">YY Broza</name>
</author>
<author>
<name sortKey="Barash, O" uniqKey="Barash O">O Barash</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Int J Nanomedicine</journal-id>
<journal-id journal-id-type="iso-abbrev">Int J Nanomedicine</journal-id>
<journal-id journal-id-type="publisher-id">International Journal of Nanomedicine</journal-id>
<journal-title-group>
<journal-title>International Journal of Nanomedicine</journal-title>
</journal-title-group>
<issn pub-type="ppub">1176-9114</issn>
<issn pub-type="epub">1178-2013</issn>
<publisher>
<publisher-name>Dove Medical Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26357471</article-id>
<article-id pub-id-type="pmc">4559249</article-id>
<article-id pub-id-type="doi">10.2147/IJN.S88305</article-id>
<article-id pub-id-type="publisher-id">ijn-10-203</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Original Research</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Core-shell nanostructured hybrid composites for volatile organic compound detection</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Tung</surname>
<given-names>Tran Thanh</given-names>
</name>
<xref ref-type="aff" rid="af1-ijn-10-203">1</xref>
<xref ref-type="aff" rid="af2-ijn-10-203">2</xref>
<xref ref-type="corresp" rid="c1-ijn-10-203"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Losic</surname>
<given-names>Dusan</given-names>
</name>
<xref ref-type="aff" rid="af1-ijn-10-203">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Park</surname>
<given-names>Seung Jun</given-names>
</name>
<xref ref-type="aff" rid="af3-ijn-10-203">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Feller</surname>
<given-names>Jean-Francois</given-names>
</name>
<xref ref-type="aff" rid="af2-ijn-10-203">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kim</surname>
<given-names>TaeYoung</given-names>
</name>
<xref ref-type="aff" rid="af3-ijn-10-203">3</xref>
<xref ref-type="corresp" rid="c2-ijn-10-203"></xref>
</contrib>
</contrib-group>
<aff id="af1-ijn-10-203">
<label>1</label>
School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, Australia</aff>
<aff id="af2-ijn-10-203">
<label>2</label>
Smart Plastics Group, European University of Brittany (UEB), LIMATB-UBS, Lorient, France</aff>
<aff id="af3-ijn-10-203">
<label>3</label>
Department of Bionanotechnology, Gachon University, Sujeong-gu, Seongnam-si, Gyeonggi-do South Korea</aff>
<author-notes>
<corresp id="c1-ijn-10-203">Correspondence: Tran Thanh Tung, School of Chemical Engineering, The University of Adelaide, North Terrace, 5005 Adelaide, South Australia, Email
<email>tran.tung@adelaide.edu.au</email>
</corresp>
<corresp id="c2-ijn-10-203">TaeYoung Kim, Department of Bionanotechnology, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 461-701, South Korea, Email
<email>taeykim@gachon.ac.kr</email>
</corresp>
</author-notes>
<pub-date pub-type="collection">
<year>2015</year>
</pub-date>
<pub-date pub-type="epub">
<day>28</day>
<month>8</month>
<year>2015</year>
</pub-date>
<volume>10</volume>
<issue>Spec Iss</issue>
<fpage>203</fpage>
<lpage>214</lpage>
<permissions>
<copyright-statement>© 2015 Tung et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License</copyright-statement>
<copyright-year>2015</copyright-year>
<license>
<license-p>The full terms of the License are available at
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by-nc/3.0/">http://creativecommons.org/licenses/by-nc/3.0/</ext-link>
. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.</license-p>
</license>
</permissions>
<abstract>
<p>We report a high-performance chemiresistive sensor for detection of volatile organic compound (VOC) vapors based on core-shell hybridized nanostructures of Fe
<sub>3</sub>
O
<sub>4</sub>
magnetic nanoparticles (MNPs) and poly(3,4-ethylenedioxythiophene) (PEDOT)-conducting polymers. The MNPs were prepared using microwave-assisted synthesis in the presence of polymerized ionic liquids (PILs), which were used as a linker to couple the MNP and PEDOT. The resulting PEDOT–PIL-modified Fe
<sub>3</sub>
O
<sub>4</sub>
hybrids were then explored as a sensing channel material for a chemiresistive sensor to detect VOC vapors. The PEDOT–PIL-modified Fe
<sub>3</sub>
O
<sub>4</sub>
sensor exhibited a tunable response, with high sensitivity (down to a concentration of 1 ppm) and low noise level, to VOCs; these VOCs include acetone vapor, which is present in the exhaled breath of potential lung cancer patients. The present sensor, based on the hybrid nanostructured sensing materials, exhibited a 38.8% higher sensitivity and an 11% lower noise level than its PEDOT–PIL-only counterpart. This approach of embedding MNPs in conducting polymers could lead to the development of new electronic noses, which have significant potential for the use in the early diagnosis of lung cancer via the detection of VOC biomarkers.</p>
</abstract>
<kwd-group>
<title>Keywords</title>
<kwd>hybrid nanomaterials</kwd>
<kwd>nanoparticle</kwd>
<kwd>conducting polymer</kwd>
<kwd>electronic nose</kwd>
<kwd>lung cancer detection</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro">
<title>Introduction</title>
<p>The early and accurate detection of lung cancer is essential to the effective treatment of patients and reduction of the mortality rate associated with the cancer disease.
<xref rid="b1-ijn-10-203" ref-type="bibr">1</xref>
<xref rid="b5-ijn-10-203" ref-type="bibr">5</xref>
Among various detection methods, breath analysis has attracted significant attention owing to its noninvasive nature and simplicity. This method also has the potential to diagnose lung cancer at an early stage by detecting volatile organic compound (VOC) biomarkers in exhaled breath.
<xref rid="b6-ijn-10-203" ref-type="bibr">6</xref>
<xref rid="b9-ijn-10-203" ref-type="bibr">9</xref>
As such, a number of breath-analysis tools have been developed including gas chromatography/mass spectrometry,
<xref rid="b10-ijn-10-203" ref-type="bibr">10</xref>
<xref rid="b14-ijn-10-203" ref-type="bibr">14</xref>
ion flow tube mass spectrometry,
<xref rid="b15-ijn-10-203" ref-type="bibr">15</xref>
,
<xref rid="b16-ijn-10-203" ref-type="bibr">16</xref>
chemo-luminescence sensors,
<xref rid="b17-ijn-10-203" ref-type="bibr">17</xref>
optochemical fibers,
<xref rid="b18-ijn-10-203" ref-type="bibr">18</xref>
infrared spectroscopy,
<xref rid="b19-ijn-10-203" ref-type="bibr">19</xref>
and polymer-coated surface acoustic wave sensors.
<xref rid="b20-ijn-10-203" ref-type="bibr">20</xref>
Incorporating most of the conventional breath analysis techniques into portable sensing devices is difficult, however, owing to the bulky and expensive nature of these instruments and complexity of their operation.
<xref rid="b21-ijn-10-203" ref-type="bibr">21</xref>
,
<xref rid="b22-ijn-10-203" ref-type="bibr">22</xref>
Furthermore, these methods often require a presampling step to increase the relative concentration of breath VOCs to detectable levels.
<xref rid="b2-ijn-10-203" ref-type="bibr">2</xref>
,
<xref rid="b23-ijn-10-203" ref-type="bibr">23</xref>
Therefore, the development of highly efficient, sensitive, simple, inexpensive, and reliable breath sensing devices is essential for early diagnosis of cancer disease by breath analysis.</p>
<p>A chemiresistive sensor, also referred to as an electronic nose is portable, fast, noninvasive, and highly responsive to various VOCs
<xref rid="b2-ijn-10-203" ref-type="bibr">2</xref>
,
<xref rid="b9-ijn-10-203" ref-type="bibr">9</xref>
,
<xref rid="b24-ijn-10-203" ref-type="bibr">24</xref>
and constitutes a robust and cost-effective solution for VOC detection. These sensors rely on changes in the electrical resistance of channel materials arising from their interaction with VOC biomarkers. Developing a channel material that can efficiently interact with the VOC molecules in the exhaled breath is crucial. Efficient channel materials should rapidly adsorb/desorb the target analytes, and exhibit high sensitivity and stability (ie, low noise level) in their presence. Chemiresistive sensors have been fabricated from various channel materials including metal oxides,
<xref rid="b25-ijn-10-203" ref-type="bibr">25</xref>
<xref rid="b27-ijn-10-203" ref-type="bibr">27</xref>
intrinsically conducting polymers,
<xref rid="b28-ijn-10-203" ref-type="bibr">28</xref>
<xref rid="b31-ijn-10-203" ref-type="bibr">31</xref>
functionalized carbon nanomaterials or nanocomposites,
<xref rid="b32-ijn-10-203" ref-type="bibr">32</xref>
<xref rid="b35-ijn-10-203" ref-type="bibr">35</xref>
and quartz crystal microbalance. Nanomaterials are considered as efficient channel materials with excellent sensing capability, owing to their unique nanoscale features and high surface-to-volume ratio.
<xref rid="b36-ijn-10-203" ref-type="bibr">36</xref>
,
<xref rid="b37-ijn-10-203" ref-type="bibr">37</xref>
For example, metal or metal oxide nanoparticles used as channel materials showed an improved sensitivity to specific analyte molecules.
<xref rid="b38-ijn-10-203" ref-type="bibr">38</xref>
<xref rid="b41-ijn-10-203" ref-type="bibr">41</xref>
However, these nanoparticle-based sensors need further improvement in terms of sensitivity, selectivity, and stability for their practical use in applications. This can be achieved through added functionalities of hybrid nanomaterials that combine inorganic nanoparticles and organic molecules.
<xref rid="b42-ijn-10-203" ref-type="bibr">42</xref>
,
<xref rid="b43-ijn-10-203" ref-type="bibr">43</xref>
In this regard, core-shell-structured hybrid materials of magnetic nanoparticles (MNPs) (eg, Fe
<sub>3</sub>
O
<sub>4</sub>
) and conducting polymers (eg, poly(3,4-ethylenedioxythiophene) [PEDOT],
<xref rid="b44-ijn-10-203" ref-type="bibr">44</xref>
polyaniline [PANi],
<xref rid="b45-ijn-10-203" ref-type="bibr">45</xref>
,
<xref rid="b46-ijn-10-203" ref-type="bibr">46</xref>
and polypyrrole [PPy]
<xref rid="b47-ijn-10-203" ref-type="bibr">47</xref>
,
<xref rid="b48-ijn-10-203" ref-type="bibr">48</xref>
) are especially promising sensing materials owing to their synergistic effect. These hybrid materials have been used for a number of applications including drug delivery, sensors, wastewater treatment, energy storage, and catalysts.</p>
<p>Herein, we propose a highly sensitive and stable chemiresistive sensor based on core-shell nanostructured hybrid materials consisting of MNPs and conducting polymers. The hybrid materials consisted of a Fe
<sub>3</sub>
O
<sub>4</sub>
core surrounded by a PEDOT shell; a polymerized ionic liquid (PIL) was used as a linker to couple the core and shell materials. Coupling the PEDOT and Fe
<sub>3</sub>
O
<sub>4</sub>
via the PIL-mediated process yielded the core-shell nanostructured PEDOT–PIL-modified Fe
<sub>3</sub>
O
<sub>4</sub>
(PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
) hybrid materials. The hybrid material was then used as an active sensing material for the detection of various VOC molecules. The synthesis of core-shell hybrid nanostructures of PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
and sensing device are illustrated in
<xref ref-type="fig" rid="f1-ijn-10-203">Figure 1</xref>
. PIL is expected to play multiple roles in the microwave synthesis of Fe
<sub>3</sub>
O
<sub>4</sub>
nanoparticles. For example, they: 1) consist entirely of highly polarizable ions that absorb microwaves efficiently, thereby resulting in improved yields of products; 2) act as a stabilizer for the Fe
<sub>3</sub>
O
<sub>4</sub>
nanoparticles and prevent their aggregation in the solution; and 3) function as a surface-functionalizing material that imparts specific functionalities to the surfaces of Fe
<sub>3</sub>
O
<sub>4</sub>
nanoparticles for efficient hybridization with conducting polymers. The sensor arrays based on the hybrid PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
channel materials exhibited high sensitivity (1 ppm concentration) to VOC biomarkers including methanol, ethanol, acetone, benzene, and toluene, which are present in the exhaled breath of lung cancer patients.
<xref rid="b6-ijn-10-203" ref-type="bibr">6</xref>
<xref rid="b9-ijn-10-203" ref-type="bibr">9</xref>
The sensors also exhibited a high stability with a low level of noise, indicative of the high reliability of the sensing channels. The results suggest that the sensors based on PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
channel materials have significant potential for applications, including the point of care diagnostics and early diagnosis of cancer disease, via the detection of biomarkers.</p>
</sec>
<sec>
<title>Experiment</title>
<sec sec-type="materials">
<title>Materials</title>
<p>Iron(II) chloride tetrahydrate (>99.0%), iron(III) chloride hexahydrate (ACS reagent, 97%), bromoethane (98%), 1-vinylimidazole (99%), and azobis(2-methylpropionitrile) (99%) were purchased from Sigma-Aldrich (St Louis, MO, USA) and used without further purification. Ammonium persulfate (APS) (98%) and ammonia solution (28%) were purchased from Tokyo Chemical Industry (TCI) Chemicals (Tokyo, Japan). Methanol (99%), ethanol (98%), acetone (98%), benzene (98%), toluene (99.8%), and chloroform (99.5%) were used as purchased.</p>
</sec>
<sec>
<title>Microwave-assisted synthesis of Fe
<sub>3</sub>
O
<sub>4</sub>
nanoparticles</title>
<p>PIL of poly(1-vinyl-3-ethylimidazolium) salts bearing the anion (Br
<sup></sup>
) was synthesized in accordance with a previously reported procedure.
<xref rid="b49-ijn-10-203" ref-type="bibr">49</xref>
,
<xref rid="b50-ijn-10-203" ref-type="bibr">50</xref>
For the preparation of PIL-stabilized magnetic nanocrystals, an aqueous solution of PIL (200 mg) was slowly added, under vigorous stirring, to a mixed solution of FeCl
<sub>2</sub>
·4H
<sub>2</sub>
O (0.2 g in 5 mL of 0.5 M HCl) and FeCl
<sub>3</sub>
·6H
<sub>2</sub>
O (0.54 g in 10 mL water) at room temperature. After 15 minutes, 16 mL of ammonium hydroxide solution was added dropwise for 10 minutes. This mixture was then loaded into a tube, and placed inside a microwave reactor. The microwave reactor (MARS; CEM corporation, Matthews, NC, US) was operated at a power and pressure of 800 W and 4,000,000 Pa, respectively, and irradiated at 150°C for 10 minutes under continuous stirring. The dark-brown precipitate, ie, PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
, was obtained by removing the supernatant and washing repeatedly with water.</p>
</sec>
<sec>
<title>Synthesis of PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
nanocomposites</title>
<p>PEDOT was formed on the surface of the Fe
<sub>3</sub>
O
<sub>4</sub>
MNPs by oxidative in situ polymerization of EDOT in the presence of PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
. An oxidizing agent, APS, was then added to the mixture containing the EDOT and PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
followed by 24 hours’ reaction under vigorous stirring at room temperature. The polymerization of EDOT on the Fe
<sub>3</sub>
O
<sub>4</sub>
surface was initiated when APS was added to a mixture of PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
and EDOT monomer. The PIL on the Fe
<sub>3</sub>
O
<sub>4</sub>
surface provided efficient linkage between the PEDOT and the Fe
<sub>3</sub>
O
<sub>4</sub>
and was therefore used as a polymerization template for the PEDOT, from which hybrid core-shell-structured PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
composites were obtained. The PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
products were washed repeatedly with deionized water and ethanol in order to remove unreacted species (eg, EDOT, freely suspended PIL molecules, APS) from the products. For the sake of comparison, the PIL-doped PEDOT (PEDOT–PIL) without Fe
<sub>3</sub>
O
<sub>4</sub>
nanoparticles was also prepared under the same synthetic condition.</p>
</sec>
<sec>
<title>Preparation and characterization of sensing device</title>
<p>Sensor arrays were fabricated via spray layer-by-layer deposition onto interdigitated electrodes composed of 25% Ag/75% Pd tracks, separated by a 15 μm ceramic gap, and prepared by cleaving 22 nF capacitors. The electrode surface was rendered contaminant-free by polishing and then cleaning with ethanol. The spray layer-by-layer deposition device was equipped with a spray valve controller that allowed for precise control of the nozzle scanning speed (Vs =50 mm·s
<sup>−1</sup>
), solution flow rate, air pressure (0.1 MPa), and target-to-nozzle distance (8 cm). After fabrication, the vapor sensors were conditioned overnight at 30°C in a controlled atmosphere.</p>
</sec>
<sec>
<title>Characterization</title>
<p>Structure and morphology of the PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
and PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
samples were characterized by a Hitachi S-4800 scanning electron microscope and a TECNAI 20 transmission electron microscope (TEM) equipped with an energy dispersive X-ray fluorescence spectrometer for energy-dispersive X-ray analysis. To characterize the crystal structure, X-ray diffraction measurements were performed at 2θ values of 20°–80° and a step size of 0.02°, using a Bruker D8 advance diffractometer. In order to examine the chemical composition, X-ray photoelectron spectroscopy (XPS) measurements were performed with a VG Microtech ESCA2000 using monochromatic Al Kα radiation (hν =1,486.6 eV). Atomic force microscopy (AFM) was performed in tapping mode with an AFM XE-100. Specimens for AFM study were prepared by drop-casting Fe
<sub>3</sub>
O
<sub>4</sub>
@PIL-PEDOT suspension onto a silicon wafer and drying in a vacuum.</p>
<p>The chemiresistive property of the sensor was determined by recording the electrical responses of specimens during successive 5-minute rectangular pulses of VOC and pure nitrogen flows. Sensors were mounted in a vapor-sensing chamber and exposed at room temperature to saturated VOC analytes including ethanol, methanol, acetone, benzene, and toluene. The mass flow controllers were used to regulate the flow rate of the pure nitrogen and the solvent vapors. In addition, the electrical valves were controlled by a program developed under the Labview software. The sensing device was operated at room temperature, and the total flow rate was kept constant at 100 cm
<sup>3</sup>
·min
<sup>−1</sup>
during the measurements. Furthermore, the electrical conductivities of the conductive polymer composite (CPC)-based sensors were recorded with a Keithley 6517A multimeter and these sensors were placed in a 100×10×3 mm chamber during the dynamic vapor sensing measurements. The chemiresistive response of the CPC sensors is determined from the relative amplitude of the electrical signals (
<italic>A
<sub>R</sub>
</italic>
).
<italic>A
<sub>R</sub>
</italic>
is the ratio of the change in resistance upon exposure to solvent vapors, normalized by the initial resistance of the sensor, as indicated in
<xref ref-type="disp-formula" rid="fd1-ijn-10-203">Equation 1</xref>
:
<disp-formula id="fd1-ijn-10-203">
<mml:math id="mm1">
<mml:mrow>
<mml:msub>
<mml:mi>A</mml:mi>
<mml:mi>R</mml:mi>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mi>R</mml:mi>
<mml:mo></mml:mo>
<mml:msub>
<mml:mi>R</mml:mi>
<mml:mi>O</mml:mi>
</mml:msub>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mi>R</mml:mi>
<mml:mi>O</mml:mi>
</mml:msub>
</mml:mrow>
</mml:mfrac>
</mml:mrow>
</mml:math>
<label>(1)</label>
</disp-formula>
where
<italic>R</italic>
is the resistance of the sensing materials when exposed to analyte vapors and
<italic>R
<sub>O</sub>
</italic>
is the initial resistance when exposed to a nitrogen flow.</p>
</sec>
</sec>
<sec>
<title>Results and discussion</title>
<p>The Fe
<sub>3</sub>
O
<sub>4</sub>
MNPs were prepared in the presence of PIL by microwave-assisted synthetic method, in which microwave irradiation led to the rapid formation of PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
nanoparticles.
<xref ref-type="fig" rid="f2-ijn-10-203">Figure 2</xref>
shows the field-emission scanning electron microscopy images of the PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
(
<xref ref-type="fig" rid="f2-ijn-10-203">Figure 2A</xref>
) and PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
(
<xref ref-type="fig" rid="f2-ijn-10-203">Figure 2D</xref>
) powder samples. These images reveal that the PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
nanoparticles are larger than the PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
ones, indicating PEDOT-layer-encapsulation of the Fe
<sub>3</sub>
O
<sub>4</sub>
nanoparticles. Furthermore, the TEM images of PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
(
<xref ref-type="fig" rid="f2-ijn-10-203">Figure 2B and C</xref>
) revealed that a thin (ie, with thickness on the order of nanometers) layer of PIL formed on the surface of the ~10 nm sized Fe
<sub>3</sub>
O
<sub>4</sub>
MNPs. The PIL molecules act as a stabilizer that prevents the aggregation of Fe
<sub>3</sub>
O
<sub>4</sub>
nanoparticles in the suspension, and provide functionality for the polymerization with PEDOT on the surface of the Fe
<sub>3</sub>
O
<sub>4</sub>
. Furthermore, the TEM images of the PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
(
<xref ref-type="fig" rid="f2-ijn-10-203">Figure 2E and F</xref>
) indicated that the core Fe
<sub>3</sub>
O
<sub>4</sub>
, which consists of particles with sizes of ~15 nm, is covered by PEDOT layers. The driving force for the hybridization of PEDOT and PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
was explained in a previous study;
<xref rid="b49-ijn-10-203" ref-type="bibr">49</xref>
ie, the PIL on the surface of the Fe
<sub>3</sub>
O
<sub>4</sub>
nanoparticles functions as a charge balancing stabilizer to the positively doped PEDOT chains during the polymerization process. The AFM images of PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
in
<xref ref-type="supplementary-material" rid="SD1-ijn-10-203">Figure S1</xref>
showed that the measured particle sizes are consistent with those observed by TEM. The formation of MNPs via microwave irradiation was confirmed by X-ray diffraction measurement, as shown in
<xref ref-type="supplementary-material" rid="SD2-ijn-10-203">Figure S2</xref>
. The magnetic property of the PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
was also examined by measuring magnetization as a function of an external magnetic field at 300 K. The magnetic hysteresis loop (
<xref ref-type="supplementary-material" rid="SD3-ijn-10-203">Figure S3</xref>
) shows nonlinear and reversible characteristics without remanence or coercivity, which implies that the PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
exhibits superparamagnetic behavior.
<xref rid="b51-ijn-10-203" ref-type="bibr">51</xref>
The magnetic property of the PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
may play the role of improving device performance, especially by depressing the noise of sensing signal which will be discussed later.</p>
<p>The chemical composition of the resulting PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
nanoparticles and PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
hybrids were characterized by XPS.
<xref ref-type="fig" rid="f3-ijn-10-203">Figure 3</xref>
shows the XPS spectra of the PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
(
<xref ref-type="fig" rid="f3-ijn-10-203">Figure 3A and B</xref>
) and the PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
(
<xref ref-type="fig" rid="f3-ijn-10-203">Figure 3C and D</xref>
). The Fe 2p (
<xref ref-type="fig" rid="f3-ijn-10-203">Figure 3A</xref>
) and N1s spectra (
<xref ref-type="fig" rid="f3-ijn-10-203">Figure 3B</xref>
) exhibited peaks corresponding to the Fe
<sub>3</sub>
O
<sub>4</sub>
nanoparticles and the imidazolium ring in the PIL, respectively; this ring confirmed the presence of PIL molecules on Fe
<sub>3</sub>
O
<sub>4</sub>
nanoparticles. In addition, the peak at 169 eV in the S 2p spectrum (
<xref ref-type="fig" rid="f3-ijn-10-203">Figure 3C</xref>
) is associated with the S
<sub>2</sub>
O
<sub>8</sub>
<sup></sup>
anion of the APS oxidant, and those at 164 and 165 eV are attributed to the spin-split doublets of sulfur atoms in the PEDOT backbone.
<xref rid="b52-ijn-10-203" ref-type="bibr">52</xref>
The deconvolution of the O 1s spectrum revealed three different peaks (
<xref ref-type="fig" rid="f3-ijn-10-203">Figure 3D</xref>
). The most intense peak at 533.4 eV corresponds to the oxygen in ether (C–O–C), while the peaks at 531.7 and 535.5 eV originate from the S=O and C=O bonds, respectively.
<xref rid="b53-ijn-10-203" ref-type="bibr">53</xref>
These data are consistent with the formation of PEDOT on Fe
<sub>3</sub>
O
<sub>4</sub>
nanoparticles using PIL as a linker.</p>
<p>A chemiresistive sensor was fabricated by depositing the PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
nanostructures onto interdigitated microelectrodes. The performance of the sensors, during this exposure for analytes including ethanol, methanol, acetone, benzene, and toluene, was evaluated in terms of their sensor response, which is defined (see
<xref ref-type="disp-formula" rid="fd1-ijn-10-203">Equation 1</xref>
) as the relative resistance change (
<italic>A
<sub>R</sub>
</italic>
<italic>R</italic>
/
<italic>R
<sub>O</sub>
</italic>
). Upon exposure to the analyte vapors, the sensor showed a sharp increase in resistance with analyte’s sorption and exhibited a positive vapor coefficient. The resistance of each of the sensors returned to its initial value when the analyte vapor flow was turned off and the N
<sub>2</sub>
gas flow restored; this was indicative of a complete desorption of vapor molecules from the sensing materials and full recovery of the device. The reproducibility of the results was demonstrated for vapor exposures performed between the recovery periods. The performance of the sensor based on the PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
composite was compared with that of its PEDOT–PIL-only counterpart; the nonconductive PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
was excluded from the chemiresistive VOC sensing test.</p>
<p>
<xref ref-type="fig" rid="f4-ijn-10-203">Figure 4</xref>
shows the normalized sensor response of the PEDOT–PIL and PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
channels to saturated concentrations of the different VOCs. The sensing behavior of the PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
channels differed markedly from that of the PEDOT–PIL and varied significantly with the type of VOC molecules. In the case of the PEDOT–PIL sensors, the maximum amplitude of the signal is less than 0.22 and the electrical response to different VOCs can be written in descending order of sensitivity as:
<italic>A
<sub>R</sub>
</italic>
<sub>methanol</sub>
>
<italic>A
<sub>R</sub>
</italic>
<sub>ethanol</sub>
>
<italic>A
<sub>R</sub>
</italic>
<sub>acetone</sub>
>
<italic>A
<sub>R</sub>
</italic>
<sub>benzene</sub>
>
<italic>A
<sub>R</sub>
</italic>
<sub>toluene</sub>
(
<xref ref-type="fig" rid="f4-ijn-10-203">Figure 4A</xref>
). The interactions between the sensor arrays and vapor molecules lead to changes in both the carrier density and mobility. The conformation of the conductive polymer chains can also be modified owing to the strong interaction with certain organic solvents, which may lead to changes in the conductivity.
<xref rid="b54-ijn-10-203" ref-type="bibr">54</xref>
<xref rid="b56-ijn-10-203" ref-type="bibr">56</xref>
Moreover, the diffusion of analytes into the composites sensor may also affect the doping activity of the PIL on PEDOT, thereby leading to an increase in the resistance.</p>
<p>The sensitivity of the sensors made with PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
channels (
<xref ref-type="fig" rid="f4-ijn-10-203">Figure 4B</xref>
) increased with increasing amplitude. The response of the PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
sensor to VOC analytes can be written in descending order as
<italic>A
<sub>R</sub>
</italic>
<sub>methanol</sub>
>
<italic>A
<sub>R</sub>
</italic>
<sub>acetone</sub>
>
<italic>A
<sub>R</sub>
</italic>
<sub>ethanol</sub>
>
<italic>A
<sub>R</sub>
</italic>
<sub>benzene</sub>
>
<italic>A
<sub>R</sub>
</italic>
<sub>toluene</sub>
. The differing sensing behaviors of the PEDOT–PIL and PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
channels are indicative of the different molecular interaction between these sensing materials and the VOCs; this implies that the hybridization of Fe
<sub>3</sub>
O
<sub>4</sub>
and PEDOT plays an important role in increasing the sensitivity and selectivity of the sensor. As shown in
<xref ref-type="supplementary-material" rid="SD4-ijn-10-203">Figure S4</xref>
, the sensitivity of the PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
is much higher than that of PEDOT–PIL for all analyte vapors used in this study. We interpreted this result by the fact that the incorporation of Fe
<sub>3</sub>
O
<sub>4</sub>
nanoparticles affects the surface area and swelling behavior of channel materials in the presence of analyte vapors. Then, the efficient swelling can trigger macroscopic resistance variation as the conducting network is easily disconnected. In addition, compared to its PEDOT–PIL-only counterpart, the sensor with PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
channels exhibited a more stable sensing curve with lower levels of noise. Therefore, the PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
sensor exhibited a better sensor response than its counterpart. This improved performance is likely due to an increase in the electroactive surface area of the PEDOT by incorporation of Fe
<sub>3</sub>
O
<sub>4</sub>
nanoparticles, which allow for an enhanced charge-exchange rate and dissipation of the noise by electron circulation.
<xref rid="b52-ijn-10-203" ref-type="bibr">52</xref>
It is also observed that the magnetic properties of Fe
<sub>3</sub>
O
<sub>4</sub>
nanoparticles would be responsible for the reduction of noise level.
<xref rid="b57-ijn-10-203" ref-type="bibr">57</xref>
</p>
<p>The amplitude of the response,
<italic>A
<sub>R</sub>
</italic>
, depends on the molecular interaction between the sensing materials and the VOC analyte molecules, as expressed in
<xref ref-type="disp-formula" rid="fd2-ijn-10-203">Equation 2</xref>
:
<disp-formula id="fd2-ijn-10-203">
<mml:math id="mm2">
<mml:mrow>
<mml:msub>
<mml:mi>A</mml:mi>
<mml:mi>R</mml:mi>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mi>a</mml:mi>
<mml:msup>
<mml:mi>e</mml:mi>
<mml:mrow>
<mml:mfrac>
<mml:mi>b</mml:mi>
<mml:mrow>
<mml:msub>
<mml:mi>χ</mml:mi>
<mml:mrow>
<mml:mn>12</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfrac>
</mml:mrow>
</mml:msup>
</mml:mrow>
</mml:math>
<label>(2)</label>
</disp-formula>
where
<italic>a</italic>
and
<italic>b</italic>
are constants, and
<italic>χ</italic>
<sub>12</sub>
is the Flory–Huggins intermolecular interaction parameter derived from
<xref ref-type="disp-formula" rid="fd3-ijn-10-203">Equation 3</xref>
:
<disp-formula id="fd3-ijn-10-203">
<mml:math id="mm3">
<mml:mrow>
<mml:msub>
<mml:mi>χ</mml:mi>
<mml:mrow>
<mml:mn>12</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:msub>
<mml:mi>V</mml:mi>
<mml:mi>m</mml:mi>
</mml:msub>
<mml:msup>
<mml:mrow>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mi>δ</mml:mi>
<mml:mrow>
<mml:mi>T</mml:mi>
<mml:mi>P</mml:mi>
<mml:mi>o</mml:mi>
<mml:mi>l</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo></mml:mo>
<mml:msub>
<mml:mi>δ</mml:mi>
<mml:mrow>
<mml:mi>T</mml:mi>
<mml:mi>a</mml:mi>
<mml:mi>n</mml:mi>
<mml:mi>a</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
<mml:mn>2</mml:mn>
</mml:msup>
</mml:mrow>
<mml:mrow>
<mml:mi>R</mml:mi>
<mml:mi>T</mml:mi>
</mml:mrow>
</mml:mfrac>
</mml:mrow>
</mml:math>
<label>(3)</label>
</disp-formula>
where
<italic>V
<sub>m</sub>
</italic>
is the molar volume of the analyte molecules (cm
<sup>3</sup>
·mol
<sup>−1</sup>
);
<italic>R</italic>
=8.314 J·K
<sup>−1</sup>
·M
<sup>−1</sup>
;
<italic>T</italic>
is absolute temperature in Kelvin;
<italic>δ
<sub>TPol</sub>
</italic>
is polymer global solubility parameter (J·cm
<sup>−3</sup>
)
<sup>1/2</sup>
; and
<italic>δ
<sub>Tana</sub>
</italic>
is analyte global solubility parameter (J·cm
<sup>−3</sup>
)
<sup>1/2</sup>
.</p>
<p>In general, the interphase swelling of the conducting polymer composite increases with decreasing
<italic>χ</italic>
<sub>12</sub>
, thereby leading to an increase in the resistance, and the relative amplitude
<italic>A
<sub>R</sub>
</italic>
.</p>
<p>
<xref ref-type="fig" rid="f5-ijn-10-203">Figure 5A</xref>
shows a plot of the sensor response toward the concentration of acetone vapor. The chemiresistive response of the conductive polymer composite sensors can be described by the Langmuir–Henry-clustering model (
<xref ref-type="disp-formula" rid="fd4-ijn-10-203">Equation 4</xref>
), which can predict different chemiresistive behavior in a range of vapor concentrations:
<xref rid="b58-ijn-10-203" ref-type="bibr">58</xref>
,
<xref rid="b59-ijn-10-203" ref-type="bibr">59</xref>
<disp-formula id="fd4-ijn-10-203">
<mml:math id="mm4">
<mml:mrow>
<mml:msub>
<mml:mi>A</mml:mi>
<mml:mi>R</mml:mi>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:msub>
<mml:mi>b</mml:mi>
<mml:mi>L</mml:mi>
</mml:msub>
<mml:mo stretchy="false">(</mml:mo>
<mml:msup>
<mml:mi>f</mml:mi>
<mml:mo></mml:mo>
</mml:msup>
<mml:mo></mml:mo>
<mml:mi>f</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
<mml:mo>+</mml:mo>
<mml:msub>
<mml:mi>b</mml:mi>
<mml:mi>L</mml:mi>
</mml:msub>
<mml:mi>f</mml:mi>
</mml:mrow>
</mml:mfrac>
<mml:mo>+</mml:mo>
<mml:msub>
<mml:mi>k</mml:mi>
<mml:mi>H</mml:mi>
</mml:msub>
<mml:mi>f</mml:mi>
<mml:mo>+</mml:mo>
<mml:mo stretchy="false">(</mml:mo>
<mml:mi>f</mml:mi>
<mml:mo></mml:mo>
<mml:msup>
<mml:mi>f</mml:mi>
<mml:mo></mml:mo>
</mml:msup>
<mml:mo stretchy="false">)</mml:mo>
<mml:msup>
<mml:mi>f</mml:mi>
<mml:msup>
<mml:mi>n</mml:mi>
<mml:mo></mml:mo>
</mml:msup>
</mml:msup>
</mml:mrow>
</mml:math>
<label>(4)</label>
</disp-formula>
where
<italic>b
<sub>L</sub>
</italic>
is the Langmuir affinity constant,
<italic>k
<sub>H</sub>
</italic>
the Henry’s solubility coefficient,
<italic>n</italic>
′ the number of vapor molecules per cluster, and
<italic>f</italic>
the solvent fraction;
<italic>f</italic>
′ and
<italic>f</italic>
″ correspond to transitions between different regimes of diffusion.</p>
<p>In
<xref ref-type="fig" rid="f5-ijn-10-203">Figure 5A</xref>
, the sensor gives responses proportional to the analyte concentration in the ppm range, suggesting that the dominant mode that can take place in this sensor is Henry’s diffusion.
<xref ref-type="fig" rid="f5-ijn-10-203">Figure 5B</xref>
compares the response of the PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
and PEDOT–PIL sensors to the target VOC; ie, acetone at a concentration of 1 ppm. Acetone is a typical biomarker for lung cancer since, owing to metabolic disorders, it is found in concentrations of >1.5 ppm in the exhaled breath of lung cancer patients.
<xref rid="b60-ijn-10-203" ref-type="bibr">60</xref>
<xref rid="b63-ijn-10-203" ref-type="bibr">63</xref>
Therefore, the improved sensing performance to acetone vapors is essential to lung cancer diagnosis. In terms of amplitude of the signal, the PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
sensor exhibited a 38.8% higher response to acetone vapor than its PEDOT–PIL counterpart. Moreover, the sensor exhibited a stable sensing curve, indicative of low noise and high signal-to-noise ratio (SNR). The noise of the sensor can be calculated as the root-mean-square deviation (RMS) of the relative resistance change from the baseline.
<xref rid="b64-ijn-10-203" ref-type="bibr">64</xref>
The standard deviation in the baseline resistance, prior to acetone exposure, was taken from ten data points, as shown in
<xref ref-type="fig" rid="f5-ijn-10-203">Figure 5C</xref>
.</p>
<p>A polynomial fit to the plotted data provides a curve-fitting equation and the statistical parameters for calculating the data-point range:
<disp-formula id="fd5-ijn-10-203">
<mml:math id="mm5">
<mml:mrow>
<mml:msub>
<mml:mi>V</mml:mi>
<mml:mrow>
<mml:msup>
<mml:mi>x</mml:mi>
<mml:mn>2</mml:mn>
</mml:msup>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mstyle displaystyle="true">
<mml:mo></mml:mo>
<mml:mrow>
<mml:msup>
<mml:mrow>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mi>y</mml:mi>
<mml:mi>i</mml:mi>
</mml:msub>
<mml:mo></mml:mo>
<mml:mi>y</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
<mml:mn>2</mml:mn>
</mml:msup>
</mml:mrow>
</mml:mstyle>
</mml:mrow>
</mml:math>
<label>(5)</label>
</disp-formula>
where
<italic>y
<sub>i</sub>
</italic>
is the measured data point and
<italic>y</italic>
is the corresponding value calculated from the curve-fitting equation. The RMS noise is calculated from the following equation:
<disp-formula id="fd6-ijn-10-203">
<mml:math id="mm6">
<mml:mrow>
<mml:mi>R</mml:mi>
<mml:mi>M</mml:mi>
<mml:msub>
<mml:mi>S</mml:mi>
<mml:mrow>
<mml:mi>n</mml:mi>
<mml:mi>o</mml:mi>
<mml:mi>i</mml:mi>
<mml:mi>s</mml:mi>
<mml:mi>e</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:msqrt>
<mml:mrow>
<mml:mfrac>
<mml:mrow>
<mml:msub>
<mml:mi>V</mml:mi>
<mml:mrow>
<mml:msup>
<mml:mi>x</mml:mi>
<mml:mn>2</mml:mn>
</mml:msup>
</mml:mrow>
</mml:msub>
</mml:mrow>
<mml:mi>N</mml:mi>
</mml:mfrac>
</mml:mrow>
</mml:msqrt>
</mml:mrow>
</mml:math>
<label>(6)</label>
</disp-formula>
where
<italic>N</italic>
is the number of data points used in the curve fitting.</p>
<p>Noise levels of 0.00240 and 0.00217 (
<xref ref-type="fig" rid="f5-ijn-10-203">Figure 5D</xref>
) calculated for the PEDOT–PIL and PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
sensors, respectively, revealed that the PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
resulted in an 11% reduction in the noise associated with the sensor response. Therefore, the PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
-based sensor arrays exhibit more reliable response to acetone vapor at concentrations in the ppm range. In addition, according to the The International Union of Pure and Applied Chemistry definition, the signal is considered to be a true signal when its SNR equals 3.
<xref rid="b64-ijn-10-203" ref-type="bibr">64</xref>
Thus, the detection limit (DL) can be extrapolated from the linear calibration curve by using the following equation:
<disp-formula id="fd7-ijn-10-203">
<mml:math id="mm7">
<mml:mrow>
<mml:mtext>DL</mml:mtext>
<mml:mo stretchy="false">(</mml:mo>
<mml:mtext>ppm</mml:mtext>
<mml:mo stretchy="false">)</mml:mo>
<mml:mo>=</mml:mo>
<mml:mn>3</mml:mn>
<mml:mfrac>
<mml:mrow>
<mml:mi>R</mml:mi>
<mml:mi>M</mml:mi>
<mml:mi>S</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>s</mml:mi>
<mml:mi>l</mml:mi>
<mml:mi>o</mml:mi>
<mml:mi>p</mml:mi>
<mml:mi>e</mml:mi>
</mml:mrow>
</mml:mfrac>
</mml:mrow>
</mml:math>
<label>(7)</label>
</disp-formula>
</p>
<p>The detection limit of the PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
-based sensor is estimated as 257 ppb, which is two-times lower than the PEDOT–PIL-only sensor (515 ppb). These results suggest that the PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
-based sensor has significant potential for use in the detection of VOC biomarkers for lung cancer diagnosis.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>We demonstrated a chemiresistive sensor based on core-shell hybridized nanostructures of Fe
<sub>3</sub>
O
<sub>4</sub>
and PEDOT for the efficient detection of VOC biomarkers. These hybrid nanostructures were synthesized by using PILs as surface-functionalizing materials, which prevented the aggregation of Fe
<sub>3</sub>
O
<sub>4</sub>
nanoparticles and promoted the formation of PEDOT on the Fe
<sub>3</sub>
O
<sub>4</sub>
surface. The resulting PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
hybrids were used as sensing channel materials to detect various VOC vapors such as methanol, ethanol, acetone, benzene, and toluene. These sensors exhibited a remarkable sensing response (ie, high sensitivity, selectivity, and SNR) to the VOC vapors. In addition, the PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
sensor exhibited a significantly higher sensing response to 1 ppm acetone vapor analyte, ie, a 38.8% higher sensitivity and an 11% lower noise level, than the PEDOT–PIL sensor. The sensor presented in this work exhibited high sensitivity with a detection limit in the ppb range and reliable sensing behavior to VOC biomarkers; this reliable sensing behavior is essential to the early diagnosis of lung cancer.</p>
</sec>
<sec sec-type="supplementary-material">
<title>Supplementary materials</title>
<supplementary-material content-type="local-data" id="SD1-ijn-10-203">
<label>Figure S1</label>
<caption>
<p>AFM image of the PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
, showing that the magnetic NPs are fully covered by conducting polymer, PEDOT.</p>
<p>
<bold>Note:</bold>
The red arrows represent the position where the scan line cross the sample.</p>
<p>
<bold>Abbreviations:</bold>
AFM, atomic force microscopy; NPs, nanoparticles; PEDOT, poly(3,4-ethylenedioxythiophene); PIL, polymerized ionic liquid.</p>
</caption>
<media mimetype="image" mime-subtype="tif" xlink:href="ijn-10-203s1.tif" xlink:type="simple" id="d35e1577" position="anchor"></media>
</supplementary-material>
<supplementary-material content-type="local-data" id="SD2-ijn-10-203">
<label>Figure S2</label>
<caption>
<p>An X-ray diffraction pattern of the synthesized Fe
<sub>3</sub>
O
<sub>4</sub>
nanoparticles modified with PIL.</p>
<p>
<bold>Abbreviation:</bold>
PIL, polymerized ionic liquid.</p>
</caption>
<media mimetype="image" mime-subtype="tif" xlink:href="ijn-10-203s2.tif" xlink:type="simple" id="d35e1594" position="anchor"></media>
</supplementary-material>
<supplementary-material content-type="local-data" id="SD3-ijn-10-203">
<label>Figure S3</label>
<caption>
<p>Zoom out on hysteresis loops showing the saturation of magnetization.</p>
<p>
<bold>Notes:</bold>
Inset, top left: the magnetization curves as a function of applied magnetic field of Fe
<sub>3</sub>
O
<sub>4</sub>
@PIL; bottom right: digital photo showing magnetic response to an external field.</p>
<p>
<bold>Abbreviation:</bold>
PIL, polymerized ionic liquid.</p>
</caption>
<media mimetype="image" mime-subtype="tif" xlink:href="ijn-10-203s3.tif" xlink:type="simple" id="d35e1615" position="anchor"></media>
</supplementary-material>
<supplementary-material content-type="local-data" id="SD4-ijn-10-203">
<label>Figure S4</label>
<caption>
<p>Comparison of the selectivity of the PEDOT–PIL and PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
sensors toward a set of VOC biomarkers.</p>
<p>
<bold>Abbreviations:</bold>
Ar, relative amplitude of the electrical signals; PEDOT, poly(3,4-ethylenedioxythiophene); PIL, polymerized ionic liquid; VOC, volatile organic compound.</p>
</caption>
<media mimetype="image" mime-subtype="tif" xlink:href="ijn-10-203s4.tif" xlink:type="simple" id="d35e1632" position="anchor"></media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>This research was supported by the R&D Program of the Society of the National Research Foundation (NRF) funded by the Ministry of Science, ICT and Future Planning (grant number 2013M3C8A3078806). The authors are also grateful for the grant of the University of Adelaide, South Australia.</p>
</ack>
<fn-group>
<fn>
<p>
<bold>Disclosure</bold>
</p>
<p>The authors report no conflicts of interest in this work.</p>
</fn>
</fn-group>
<ref-list>
<title>References</title>
<ref id="b1-ijn-10-203">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jemal</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Siegel</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Ward</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cancer statistics</article-title>
<source>CA Cancer J Clin</source>
<year>2008</year>
<volume>58</volume>
<fpage>71</fpage>
<lpage>96</lpage>
<pub-id pub-id-type="pmid">18287387</pub-id>
</element-citation>
</ref>
<ref id="b2-ijn-10-203">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peng</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Tisch</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Adams</surname>
<given-names>O</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Diagnosing lung cancer in exhaled breath using gold nanoparticles</article-title>
<source>Nat Nanotechnol</source>
<year>2009</year>
<volume>4</volume>
<fpage>669</fpage>
<lpage>673</lpage>
<pub-id pub-id-type="pmid">19809459</pub-id>
</element-citation>
</ref>
<ref id="b3-ijn-10-203">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>ZQ</given-names>
</name>
<name>
<surname>Broza</surname>
<given-names>YY</given-names>
</name>
<name>
<surname>Ionsecu</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A nanomaterial-based breath test for distinguishing gastric cancer from benign gastric conditions</article-title>
<source>Br J Cancer</source>
<year>2013</year>
<volume>108</volume>
<fpage>941</fpage>
<lpage>950</lpage>
<pub-id pub-id-type="pmid">23462808</pub-id>
</element-citation>
</ref>
<ref id="b4-ijn-10-203">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haick</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Broza</surname>
<given-names>YY</given-names>
</name>
<name>
<surname>Mochalski</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Ruzsanyi</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Amann</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Assessment, origin, and implementation of breath volatile cancer markers</article-title>
<source>Chem Soc Rev</source>
<year>2004</year>
<volume>43</volume>
<fpage>1423</fpage>
<lpage>1449</lpage>
<pub-id pub-id-type="pmid">24305596</pub-id>
</element-citation>
</ref>
<ref id="b5-ijn-10-203">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Lacy Costello</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Amann</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Al-Kateb</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A review of the volatiles from the healthy human body</article-title>
<source>J Breath Res</source>
<year>2014</year>
<volume>8</volume>
<fpage>014001</fpage>
<pub-id pub-id-type="pmid">24421258</pub-id>
</element-citation>
</ref>
<ref id="b6-ijn-10-203">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Broza</surname>
<given-names>YY</given-names>
</name>
<name>
<surname>Zuri</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Haick</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Combined volatolomics for monitoring of human body chemistry</article-title>
<source>Sci Rep</source>
<year>2014</year>
<volume>4</volume>
<fpage>4611</fpage>
<pub-id pub-id-type="pmid">24714440</pub-id>
</element-citation>
</ref>
<ref id="b7-ijn-10-203">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chatterjee</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Castro</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Feller</surname>
<given-names>JF</given-names>
</name>
</person-group>
<article-title>An e-nose made of carbon nanotube based quantum resistive sensors for the detection of eighteen polar/nonpolar VOC biomarkers of lung cancer</article-title>
<source>J Mater Chem B</source>
<year>2013</year>
<volume>1</volume>
<fpage>4563</fpage>
<lpage>4575</lpage>
</element-citation>
</ref>
<ref id="b8-ijn-10-203">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nag</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Duarte</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Bertrand</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ultrasensitive QRS made by supramolecular assembly of functionalized cyclodextrins and graphene for the detection of lung cancer VOC biomarkers</article-title>
<source>J Mater Chem B</source>
<year>2014</year>
<volume>2</volume>
<fpage>6571</fpage>
<lpage>6579</lpage>
</element-citation>
</ref>
<ref id="b9-ijn-10-203">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shin</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>I</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Thin-wall assembled SnO
<sub>2</sub>
fibers functionalized by catalytic Pt nanoparticles and their superior exhaled-breath-sensing properties for the diagnosis of diabetes</article-title>
<source>Adv Funct Mater</source>
<year>2013</year>
<volume>23</volume>
<fpage>2357</fpage>
<lpage>2367</lpage>
</element-citation>
</ref>
<ref id="b10-ijn-10-203">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gordon</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Szidon</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Krotoszynski</surname>
<given-names>BK</given-names>
</name>
<name>
<surname>Gibbons</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>O’Neill</surname>
<given-names>HJ</given-names>
</name>
</person-group>
<article-title>Volatile organic compounds in exhaled air from patients with lung cancer</article-title>
<source>Clin Chem</source>
<year>1985</year>
<volume>31</volume>
<issue>8</issue>
<fpage>1278</fpage>
<lpage>1282</lpage>
<pub-id pub-id-type="pmid">4017231</pub-id>
</element-citation>
</ref>
<ref id="b11-ijn-10-203">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miekisch</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Fuchs</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Kamysek</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Neumann</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Schubert</surname>
<given-names>JK</given-names>
</name>
</person-group>
<article-title>Assessment of propofol concentrations in human breath and blood by means of HS-SPME-GC-MS</article-title>
<source>Clin Chim Acta</source>
<year>2008</year>
<volume>395</volume>
<fpage>32</fpage>
<lpage>37</lpage>
<pub-id pub-id-type="pmid">18498766</pub-id>
</element-citation>
</ref>
<ref id="b12-ijn-10-203">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Phillips</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gleeson</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hughes</surname>
<given-names>JM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study</article-title>
<source>Lancet</source>
<year>1999</year>
<volume>353</volume>
<fpage>1930</fpage>
<lpage>1933</lpage>
<pub-id pub-id-type="pmid">10371572</pub-id>
</element-citation>
</ref>
<ref id="b13-ijn-10-203">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>KH</given-names>
</name>
<name>
<surname>Jahan</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Kabir</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>A review of breath analysis for diagnosis of human health</article-title>
<source>Trends Analyt Chem</source>
<year>2012</year>
<volume>33</volume>
<fpage>1</fpage>
<lpage>8</lpage>
</element-citation>
</ref>
<ref id="b14-ijn-10-203">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peled</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Ionescu</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Nol</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Detection of volatile organic compounds in cattle naturally infected with Mycobacterium bovis</article-title>
<source>Sens Actuators B Chem</source>
<year>2012</year>
<volume>171–172</volume>
<fpage>588</fpage>
<lpage>594</lpage>
</element-citation>
</ref>
<ref id="b15-ijn-10-203">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Smith</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Sulé-Suso</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Spane</surname>
<given-names>P</given-names>
</name>
<name>
<surname>El-Haj</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Quantification of acetaldehyde released by lung cancer cells in vitro using selected ion low tube mass spectrometry</article-title>
<source>Rapid Commun Mass Spectrom</source>
<year>2003</year>
<volume>17</volume>
<fpage>845</fpage>
<lpage>850</lpage>
<pub-id pub-id-type="pmid">12672140</pub-id>
</element-citation>
</ref>
<ref id="b16-ijn-10-203">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Amann</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Spanĕl</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Breath analysis: the approach towards clinical applications</article-title>
<source>Mini Rev Med Chem</source>
<year>2007</year>
<volume>7</volume>
<fpage>115</fpage>
<lpage>129</lpage>
<pub-id pub-id-type="pmid">17305586</pub-id>
</element-citation>
</ref>
<ref id="b17-ijn-10-203">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yates</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Kharitonov</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Robbins</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>PS</given-names>
</name>
<name>
<surname>Barnes</surname>
<given-names>PJ</given-names>
</name>
</person-group>
<article-title>Effect of a nitric oxide synthase inhibitor and a glucocorticosteroid on exhaled nitric oxide</article-title>
<source>Am J Respir Crit Care Med</source>
<year>1995</year>
<volume>152</volume>
<fpage>892</fpage>
<lpage>896</lpage>
<pub-id pub-id-type="pmid">7663801</pub-id>
</element-citation>
</ref>
<ref id="b18-ijn-10-203">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kolle</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Gruber</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Trettnak</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Fast optochemical sensor for continuous monitoring of oxygen in breath-gas analysis</article-title>
<source>Sens Actuators B Chem</source>
<year>1997</year>
<volume>38</volume>
<fpage>141</fpage>
<lpage>149</lpage>
</element-citation>
</ref>
<ref id="b19-ijn-10-203">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Giubileo</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Medical diagnostics by laser-based analysis of exhaled breath</article-title>
<source>SPIE Proceedings</source>
<year>2002</year>
<volume>4762</volume>
<fpage>318</fpage>
<lpage>325</lpage>
</element-citation>
</ref>
<ref id="b20-ijn-10-203">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Groves</surname>
<given-names>WA</given-names>
</name>
<name>
<surname>Zellers</surname>
<given-names>ET</given-names>
</name>
<name>
<surname>Frye</surname>
<given-names>GC</given-names>
</name>
</person-group>
<article-title>Analyzing organic vapors in exhaled breath using a surface acoustic wave sensor array with preconcentration: Selection and characterization of the preconcentrator adsorbent</article-title>
<source>Anal Chim Acta</source>
<year>1998</year>
<volume>371</volume>
<fpage>131</fpage>
<lpage>143</lpage>
</element-citation>
</ref>
<ref id="b21-ijn-10-203">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arshak</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Moore</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Lyons</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Clifford</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>A review of gas sensors employed in electronic nose applications</article-title>
<source>Sensor Review</source>
<year>2004</year>
<volume>24</volume>
<fpage>181</fpage>
<lpage>198</lpage>
</element-citation>
</ref>
<ref id="b22-ijn-10-203">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Toda</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Dasgupta</surname>
<given-names>PK</given-names>
</name>
</person-group>
<article-title>Measurement of ammonia in human breath with a liquid-film conductivity sensor</article-title>
<source>Anal Chem</source>
<year>2006</year>
<volume>78</volume>
<fpage>7284</fpage>
<lpage>7291</lpage>
<pub-id pub-id-type="pmid">17037934</pub-id>
</element-citation>
</ref>
<ref id="b23-ijn-10-203">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Amorim</surname>
<given-names>LC</given-names>
</name>
<name>
<surname>de L Cardeal</surname>
<given-names>Z</given-names>
</name>
</person-group>
<article-title>Breath air analysis and its use as a biomarker in biological monitoring of occupational and environmental exposure to chemical agents</article-title>
<source>J Chromatogr B Analyt Technol Biomed Life Sci</source>
<year>2007</year>
<volume>853</volume>
<fpage>1</fpage>
<lpage>9</lpage>
</element-citation>
</ref>
<ref id="b24-ijn-10-203">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>ID</given-names>
</name>
<name>
<surname>Rothschild</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>BH</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>DY</given-names>
</name>
<name>
<surname>Jo</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Tuller</surname>
<given-names>HL</given-names>
</name>
</person-group>
<article-title>Ultrasensitive chemiresistors based on electrospun TiO
<sub>2</sub>
nanofibers</article-title>
<source>Nano Lett</source>
<year>2006</year>
<volume>6</volume>
<fpage>2009</fpage>
<lpage>2013</lpage>
<pub-id pub-id-type="pmid">16968017</pub-id>
</element-citation>
</ref>
<ref id="b25-ijn-10-203">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Persaud</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Dodd</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose</article-title>
<source>Nature</source>
<year>1982</year>
<volume>299</volume>
<fpage>352</fpage>
<lpage>355</lpage>
<pub-id pub-id-type="pmid">7110356</pub-id>
</element-citation>
</ref>
<ref id="b26-ijn-10-203">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krasteva</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Fogel</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Bauer</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Müllen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Joseph</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Matsuzawa</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Yasuda</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Vossmeyer</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Vapor sorption and electrical response of Au-nanoparticle/dendrimer composites</article-title>
<source>Adv Funct Mater</source>
<year>2007</year>
<volume>17</volume>
<fpage>881</fpage>
<lpage>888</lpage>
</element-citation>
</ref>
<ref id="b27-ijn-10-203">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Joseph</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Guse</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Vossmeyer</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Yasuda</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Gold nanoparticle/organic networks as chemiresistor coatings: the effect of film morphology on vapor sensitivity</article-title>
<source>J Phys Chem C</source>
<year>2008</year>
<volume>112</volume>
<fpage>12507</fpage>
<lpage>12514</lpage>
</element-citation>
</ref>
<ref id="b28-ijn-10-203">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Neaves</surname>
<given-names>PI</given-names>
</name>
<name>
<surname>Hatfield</surname>
<given-names>JV</given-names>
</name>
</person-group>
<article-title>A new generation of integrated electronic noses</article-title>
<source>Sens Actuators B Chem</source>
<year>1995</year>
<volume>27</volume>
<fpage>223</fpage>
<lpage>231</lpage>
</element-citation>
</ref>
<ref id="b29-ijn-10-203">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Jun</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Shin</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Jang</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Urchin-like polypyrrole nanoparticles for highly sensitive and selective chemiresistive sensor application</article-title>
<source>Nanoscale</source>
<year>2014</year>
<volume>6</volume>
<fpage>4188</fpage>
<lpage>4194</lpage>
<pub-id pub-id-type="pmid">24609508</pub-id>
</element-citation>
</ref>
<ref id="b30-ijn-10-203">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Park</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Kwon</surname>
<given-names>OS</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>You</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Jang</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>One-pot synthesis of silver nanoparticles decorated poly(3,4-ethylenedioxythiophene) nanotubes for chemical sensor applicaion</article-title>
<source>J Mater Chem</source>
<year>2012</year>
<volume>22</volume>
<fpage>1521</fpage>
<lpage>1526</lpage>
</element-citation>
</ref>
<ref id="b31-ijn-10-203">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kwon</surname>
<given-names>OS</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>JS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Multidimensional conducting polymer nanotubes for ultrasensitive chemical nerve agent sensing</article-title>
<source>Nano Lett</source>
<year>2012</year>
<volume>12</volume>
<fpage>2797</fpage>
<lpage>2802</lpage>
<pub-id pub-id-type="pmid">22545863</pub-id>
</element-citation>
</ref>
<ref id="b32-ijn-10-203">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Severin</surname>
<given-names>EJ</given-names>
</name>
<name>
<surname>Doleman</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Lewis</surname>
<given-names>NS</given-names>
</name>
</person-group>
<article-title>An investigation of the concentration dependence and response to analyte mixtures of carbon black/insulating organic polymer composite vapor detectors</article-title>
<source>Anal Chem</source>
<year>2000</year>
<volume>72</volume>
<fpage>658</fpage>
<lpage>668</lpage>
<pub-id pub-id-type="pmid">10701248</pub-id>
</element-citation>
</ref>
<ref id="b33-ijn-10-203">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kong</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Franklin</surname>
<given-names>NR</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Nanotube molecular wires as chemical sensors</article-title>
<source>Science</source>
<year>2000</year>
<volume>287</volume>
<fpage>622</fpage>
<lpage>625</lpage>
<pub-id pub-id-type="pmid">10649989</pub-id>
</element-citation>
</ref>
<ref id="b34-ijn-10-203">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lim</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Oh</surname>
<given-names>EH</given-names>
</name>
<name>
<surname>Ko</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>TH</given-names>
</name>
</person-group>
<article-title>Nanovesicle-based bioelectronic nose for the diagnosis of lung cancer from human blood</article-title>
<source>Adv Healthc Mater</source>
<year>2014</year>
<volume>3</volume>
<fpage>360</fpage>
<lpage>366</lpage>
<pub-id pub-id-type="pmid">23868879</pub-id>
</element-citation>
</ref>
<ref id="b35-ijn-10-203">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>TH</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Oh</surname>
<given-names>EH</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>TH</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Wide contact structures for low-noise nanochannel devices based on a carbon nanotube network</article-title>
<source>Adv Mater</source>
<year>2009</year>
<volume>21</volume>
<fpage>91</fpage>
<lpage>94</lpage>
</element-citation>
</ref>
<ref id="b36-ijn-10-203">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vedala</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Sorescu</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Kotchey</surname>
<given-names>GP</given-names>
</name>
<name>
<surname>Star</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Chemical sensitivity of graphene edges decorated with metal nanoparticles</article-title>
<source>Nano Lett</source>
<year>2011</year>
<volume>11</volume>
<fpage>2342</fpage>
<lpage>2347</lpage>
<pub-id pub-id-type="pmid">21591652</pub-id>
</element-citation>
</ref>
<ref id="b37-ijn-10-203">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tien</surname>
<given-names>HW</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>YL</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>SY</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>CCM</given-names>
</name>
</person-group>
<article-title>The production of graphene nanosheets decorated with silver nanoparticles for use in transparent, conductive films</article-title>
<source>Carbon</source>
<year>2011</year>
<volume>49</volume>
<fpage>1550</fpage>
<lpage>1560</lpage>
</element-citation>
</ref>
<ref id="b38-ijn-10-203">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hieu</surname>
<given-names>NV</given-names>
</name>
<name>
<surname>Duc</surname>
<given-names>NAP</given-names>
</name>
<name>
<surname>Trung</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Tuan</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Chien</surname>
<given-names>ND</given-names>
</name>
</person-group>
<article-title>Gas-sensing properties of tin oxide doped with metal oxides and carbon nanotubes: A competitive sensor for ethanol and liquid petroleum gas</article-title>
<source>Sens Actuators B Chem</source>
<year>2010</year>
<volume>144</volume>
<fpage>450</fpage>
<lpage>456</lpage>
</element-citation>
</ref>
<ref id="b39-ijn-10-203">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Joseph</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Guse</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Nelles</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Aging of 1,ω-alkyldithiol interlinked Au-nanoparticle networks</article-title>
<source>Chem Mater</source>
<year>2009</year>
<volume>21</volume>
<fpage>1670</fpage>
<lpage>1676</lpage>
</element-citation>
</ref>
<ref id="b40-ijn-10-203">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>YF</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>SB</given-names>
</name>
<name>
<surname>Meng</surname>
<given-names>FL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Metal oxide nanostructures and their gas sensing properties</article-title>
<source>Sensors (Basel)</source>
<year>2012</year>
<volume>12</volume>
<issue>3</issue>
<fpage>2610</fpage>
<lpage>2631</lpage>
<pub-id pub-id-type="pmid">22736968</pub-id>
</element-citation>
</ref>
<ref id="b41-ijn-10-203">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Khoang</surname>
<given-names>ND</given-names>
</name>
<name>
<surname>Trung</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Duy</surname>
<given-names>NV</given-names>
</name>
<name>
<surname>Hoa</surname>
<given-names>ND</given-names>
</name>
<name>
<surname>Hieu</surname>
<given-names>NV</given-names>
</name>
</person-group>
<article-title>Design of SnO
<sub>2</sub>
/ZnO hierarchical nanostructures for enhanced ethanol gas-sensing performance</article-title>
<source>Sens Actuators B Chem</source>
<year>2012</year>
<volume>174</volume>
<fpage>594</fpage>
<lpage>601</lpage>
</element-citation>
</ref>
<ref id="b42-ijn-10-203">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hieu</surname>
<given-names>NV</given-names>
</name>
<name>
<surname>Van</surname>
<given-names>PTH</given-names>
</name>
<name>
<surname>Nhan</surname>
<given-names>LT</given-names>
</name>
<name>
<surname>Duy</surname>
<given-names>NV</given-names>
</name>
<name>
<surname>Hoa</surname>
<given-names>ND</given-names>
</name>
</person-group>
<article-title>Giant enhancement of H
<sub>2</sub>
S gas response by decorating n-type SnO
<sub>2</sub>
nanowires with p-type NiO nanoparticles</article-title>
<source>Appl Phys Lett</source>
<year>2012</year>
<volume>101</volume>
<fpage>253106</fpage>
</element-citation>
</ref>
<ref id="b43-ijn-10-203">
<label>43</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cho</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Jun</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jang</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>High-sensitivity hydrogen gas sensors based on Pd-decorated nanoporous poly(aniline-co-aniline-2-sulfonic acid): poly(4-styrenesulfonic acid)</article-title>
<source>J Mater Chem A</source>
<year>2014</year>
<volume>2</volume>
<fpage>1955</fpage>
<lpage>1966</lpage>
</element-citation>
</ref>
<ref id="b44-ijn-10-203">
<label>44</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shin</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Jang</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Thiol containing polymer encapsulated magnetic nanoparticles as reusable and efficiently separable adsorbent for heavy metal ions</article-title>
<source>Chem Commun (Camb)</source>
<year>2007</year>
<issue>41</issue>
<fpage>4230</fpage>
<lpage>4232</lpage>
<pub-id pub-id-type="pmid">18217589</pub-id>
</element-citation>
</ref>
<ref id="b45-ijn-10-203">
<label>45</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Callaway</surname>
<given-names>MK</given-names>
</name>
<name>
<surname>Ochoa</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Perez</surname>
<given-names>EE</given-names>
</name>
<name>
<surname>Ulrich</surname>
<given-names>PE</given-names>
</name>
<name>
<surname>Alocilja</surname>
<given-names>EC</given-names>
</name>
<name>
<surname>Vetrone</surname>
<given-names>SA</given-names>
</name>
</person-group>
<article-title>Investigation of the toxicity of amine-coated, carboxyl-coated and polyaniline-coated FeO magnetic nanoparticles in Caenorhabditis elegans</article-title>
<source>Biosens Bioelectron</source>
<year>2013</year>
<volume>4</volume>
<issue>5</issue>
</element-citation>
</ref>
<ref id="b46-ijn-10-203">
<label>46</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yuk</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Rose</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Alocilja</surname>
<given-names>EC</given-names>
</name>
</person-group>
<article-title>Characterization of polyaniline-coated magnetic nanoparticles for application in a disposable membrane strip biosensor</article-title>
<source>The European Physical Journal Applied Physics</source>
<year>2010</year>
<volume>50</volume>
<fpage>11401</fpage>
<lpage>11406</lpage>
</element-citation>
</ref>
<ref id="b47-ijn-10-203">
<label>47</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Nan</surname>
<given-names>Z</given-names>
</name>
</person-group>
<article-title>Preparation of stable magnetic nanofluids containing Fe3O4@PPy nanoparticles by a novel one-pot route</article-title>
<source>Nanoscale Res Lett</source>
<year>2011</year>
<volume>6</volume>
<fpage>230</fpage>
<pub-id pub-id-type="pmid">21711771</pub-id>
</element-citation>
</ref>
<ref id="b48-ijn-10-203">
<label>48</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tahmasebi</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Yamini</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Seidi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rezazadeh</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Extraction of three nitrophenols using polypyrrole-coated magnetic nanoparticles based on anion exchange process</article-title>
<source>J Chromatogr A</source>
<year>2013</year>
<volume>1314</volume>
<fpage>15</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="pmid">24054421</pub-id>
</element-citation>
</ref>
<ref id="b49-ijn-10-203">
<label>49</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>TY</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>TH</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Kasi</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Sung</surname>
<given-names>CSP</given-names>
</name>
<name>
<surname>Suh</surname>
<given-names>KS</given-names>
</name>
</person-group>
<article-title>Organic solvent dispersion of poly(3,4-ethylenedioxythiophene) with the use of polymeric ionic liquid</article-title>
<source>J Polym Sci A Polym Chem</source>
<year>2008</year>
<volume>46</volume>
<fpage>6872</fpage>
<lpage>6879</lpage>
</element-citation>
</ref>
<ref id="b50-ijn-10-203">
<label>50</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tung</surname>
<given-names>TT</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>TY</given-names>
</name>
<name>
<surname>Shim</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>WS</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Suh</surname>
<given-names>KS</given-names>
</name>
</person-group>
<article-title>Poly(ionic liquids)-stabilized graphene sheets and their hybrid poly(3,4- ethylenedioxythiophene)</article-title>
<source>Org Electron</source>
<year>2011</year>
<volume>12</volume>
<fpage>2215</fpage>
<lpage>2224</lpage>
</element-citation>
</ref>
<ref id="b51-ijn-10-203">
<label>51</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chandra</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Chun</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Hwang</surname>
<given-names>IC</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>KS</given-names>
</name>
</person-group>
<article-title>Water-dispersible magnetic-reduced graphene oxide composite for arsenic removal</article-title>
<source>ACS Nano</source>
<year>2010</year>
<volume>4</volume>
<fpage>3979</fpage>
<lpage>3986</lpage>
<pub-id pub-id-type="pmid">20552997</pub-id>
</element-citation>
</ref>
<ref id="b52-ijn-10-203">
<label>52</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tung</surname>
<given-names>TT</given-names>
</name>
<name>
<surname>Castro</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>TY</given-names>
</name>
<name>
<surname>Suh</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Feller</surname>
<given-names>JF</given-names>
</name>
</person-group>
<article-title>Graphene quantum resistive sensing skin for the detection of alteration biomarkers</article-title>
<source>J Mater Chem</source>
<year>2012</year>
<volume>22</volume>
<fpage>21754</fpage>
<lpage>21766</lpage>
</element-citation>
</ref>
<ref id="b53-ijn-10-203">
<label>53</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Tung</surname>
<given-names>TT</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Suh</surname>
<given-names>KS</given-names>
</name>
</person-group>
<article-title>Poly(ionic liquid)-mediated hybridization of single-walled carbon nanotubes and conducting polymers</article-title>
<source>Chem Asian J</source>
<year>2010</year>
<volume>5</volume>
<fpage>256</fpage>
<lpage>260</lpage>
<pub-id pub-id-type="pmid">20052704</pub-id>
</element-citation>
</ref>
<ref id="b54-ijn-10-203">
<label>54</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Janata</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Josowicz</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Conducting polymers in electronic chemical sensors</article-title>
<source>Nat Mater</source>
<year>2003</year>
<volume>2</volume>
<fpage>19</fpage>
<lpage>24</lpage>
<pub-id pub-id-type="pmid">12652667</pub-id>
</element-citation>
</ref>
<ref id="b55-ijn-10-203">
<label>55</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bai</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Gas sensors based on conducting polymers</article-title>
<source>Sensors</source>
<year>2007</year>
<volume>7</volume>
<fpage>267</fpage>
<lpage>307</lpage>
</element-citation>
</ref>
<ref id="b56-ijn-10-203">
<label>56</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Heeger</surname>
<given-names>AJ</given-names>
</name>
</person-group>
<article-title>Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials (Nobel Lecture) Copyright(c) The Nobel Foundation 2001. We thank the Nobel Foundation, Stockholm, for permission to print this lecture</article-title>
<source>Angew Chem Int Ed Engl</source>
<year>2001</year>
<volume>40</volume>
<fpage>2591</fpage>
<lpage>2611</lpage>
<pub-id pub-id-type="pmid">11458348</pub-id>
</element-citation>
</ref>
<ref id="b57-ijn-10-203">
<label>57</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tung</surname>
<given-names>TT</given-names>
</name>
<name>
<surname>Castro</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Pillin</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>TY</given-names>
</name>
<name>
<surname>Suh</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Feller</surname>
<given-names>JF</given-names>
</name>
</person-group>
<article-title>Graphene–Fe
<sub>3</sub>
O
<sub>4</sub>
/PIL–PEDOT for the design of sensitive and stable quantum chemo-resistive VOC sensors</article-title>
<source>Carbon</source>
<year>2014</year>
<volume>74</volume>
<fpage>104</fpage>
<lpage>112</lpage>
</element-citation>
</ref>
<ref id="b58-ijn-10-203">
<label>58</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feller</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Novel architecture of carbon nanotube decorated poly(methyl methacrylate) microbead vapour sensors assembled by spray layer by layer</article-title>
<source>J Mater Chem</source>
<year>2011</year>
<volume>21</volume>
<fpage>4142</fpage>
<lpage>4149</lpage>
</element-citation>
</ref>
<ref id="b59-ijn-10-203">
<label>59</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Castro</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Feller</surname>
<given-names>JF</given-names>
</name>
</person-group>
<article-title>Vapour sensing with conductive polymer nanocomposites (CPC): polycarbonate-carbon nanotubes transducers with hierarchical structure processed by spray layer by layer</article-title>
<source>Sens Actuators B Chem</source>
<year>2009</year>
<volume>140</volume>
<fpage>451</fpage>
<lpage>460</lpage>
</element-citation>
</ref>
<ref id="b60-ijn-10-203">
<label>60</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>NH</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Bae</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>ID</given-names>
</name>
</person-group>
<article-title>Highly sensitive and selective hydrogen sulfide and toluene sensors using Pd functionalized WO
<sub>3</sub>
nanofibers for potential diagnosis of halitosis and lung cancer</article-title>
<source>Sens Actuators B Chem</source>
<year>2014</year>
<volume>193</volume>
<fpage>574</fpage>
<lpage>581</lpage>
</element-citation>
</ref>
<ref id="b61-ijn-10-203">
<label>61</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>KM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The stability, sensitivity and response transients of ZnO, SnO
<sub>2</sub>
and WO
<sub>3</sub>
sensors under acetone, toluene and H
<sub>2</sub>
S environments</article-title>
<source>Sens Actuators B Chem</source>
<year>2014</year>
<volume>197</volume>
<fpage>300</fpage>
<lpage>307</lpage>
</element-citation>
</ref>
<ref id="b62-ijn-10-203">
<label>62</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Choi</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Cho</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Jeon</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>ID</given-names>
</name>
</person-group>
<article-title>Facile synthesis of hierarchical porous WO
<sub>3</sub>
nanofibers having 1D nanoneedles and their functionalization with non-oxidized graphene flakes for selective detection of acetone molecules</article-title>
<source>RSC Adv</source>
<year>2015</year>
<volume>5</volume>
<fpage>7584</fpage>
<lpage>7588</lpage>
</element-citation>
</ref>
<ref id="b63-ijn-10-203">
<label>63</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peng</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Hakim</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Broza</surname>
<given-names>YY</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Detection of lung, breast, colorec-tal, and prostate cancers from exhaled breath using a single array of nanosensors</article-title>
<source>Br J Cancer</source>
<year>2010</year>
<volume>103</volume>
<fpage>542</fpage>
<lpage>551</lpage>
<pub-id pub-id-type="pmid">20648015</pub-id>
</element-citation>
</ref>
<ref id="b64-ijn-10-203">
<label>64</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ye</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Cinke</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mayyappan</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Carbon nanoture sensors for gas and organic vapor detection</article-title>
<source>Nano Lett</source>
<year>2003</year>
<volume>3</volume>
<fpage>929</fpage>
<lpage>933</lpage>
</element-citation>
</ref>
<ref id="b65-ijn-10-203">
<label>65</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hakim</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Broza</surname>
<given-names>YY</given-names>
</name>
<name>
<surname>Barash</surname>
<given-names>O</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Volatile organic compounds of lung cancer and possible biochemical pathways</article-title>
<source>Chem Rev</source>
<year>2012</year>
<volume>11(11)</volume>
<issue>2</issue>
<fpage>5949</fpage>
<pub-id pub-id-type="pmid">22991938</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="f1-ijn-10-203" position="float">
<label>Figure 1</label>
<caption>
<p>Schematics of the synthesis of core-shell PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
hybrid, and its application in chemiresistive sensor for detection of lung cancer VOCs.</p>
<p>
<bold>Note:</bold>
The human body photo was adapted with permission from Hakim M, Broza YY, Barash O, et al. Volatile organic compounds of lung cancer and possible biochemical pathways.
<italic>Chem Rev</italic>
. 2012;11(11)2:5949.
<xref rid="b65-ijn-10-203" ref-type="bibr">65</xref>
Copyright © 2012 American Chemical Society.</p>
<p>
<bold>Abbreviations:</bold>
APS, ammonium persulfate; Ar, relative amplitude of the electrical signals; Mw, microwave; min, minute; PEDOT, poly(3,4-ethylenedioxythiophene); PIL, polymerized ionic liquid; VOCs, volatile organic compounds; EDOT, 3,4-ethylenedioxythiophene.</p>
</caption>
<graphic xlink:href="ijn-10-203Fig1"></graphic>
</fig>
<fig id="f2-ijn-10-203" position="float">
<label>Figure 2</label>
<caption>
<p>SEM and TEM images of the (
<bold>A</bold>
<bold>C</bold>
) PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
and (
<bold>D</bold>
<bold>F</bold>
) PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
composites.</p>
<p>
<bold>Abbreviations:</bold>
PEDOT, poly(3,4-ethylenedioxythiophene); PIL, polymerized ionic liquid; SEM, scanning electron microscopy; TEM, transmission electron microscopy.</p>
</caption>
<graphic xlink:href="ijn-10-203Fig2"></graphic>
</fig>
<fig id="f3-ijn-10-203" position="float">
<label>Figure 3</label>
<caption>
<p>XPS spectra.</p>
<p>
<bold>Notes:</bold>
(
<bold>A</bold>
) Fe 2p and (
<bold>B</bold>
) N 1s XPS spectra of the PIL-modified Fe
<sub>3</sub>
O
<sub>4</sub>
nanoparticles. (
<bold>C</bold>
) S 2p and (
<bold>D</bold>
) O 1s XPS spectra of the PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
hybrid composite.</p>
<p>
<bold>Abbreviations:</bold>
PEDOT, poly(3,4-ethylenedioxythiophene); PIL, polymerized ionic liquid; XPS, X-ray photoelectron spectroscopy; p, atomic “p” orbital; s, atomic “s” orbital.</p>
</caption>
<graphic xlink:href="ijn-10-203Fig3"></graphic>
</fig>
<fig id="f4-ijn-10-203" position="float">
<label>Figure 4</label>
<caption>
<p>Sensing response of the (
<bold>A</bold>
) PEDOT–PIL and (
<bold>B</bold>
) PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
composite to VOC analytes.</p>
<p>
<bold>Abbreviations:</bold>
Ar, relative amplitude of the electrical signals; PEDOT, poly(3,4-ethylenedioxythiophene); PIL, polymerized ionic liquid; VOC, volatile organic compound.</p>
</caption>
<graphic xlink:href="ijn-10-203Fig4"></graphic>
</fig>
<fig id="f5-ijn-10-203" position="float">
<label>Figure 5</label>
<caption>
<p>Performance of PEDOT-PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
sensor.</p>
<p>
<bold>Notes:</bold>
(
<bold>A</bold>
) Calibration of PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
sensor to concentration of acetone vapor; (
<bold>B</bold>
) sensing response of the PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
-composite-based and PEDOT–PIL sensors to acetone vapor at a concentration of 1 ppm; (
<bold>C</bold>
) the standard deviation in the baseline resistance after exposing to acetone; (
<bold>D</bold>
) comparison of the RMS noise of the PEDOT–PIL and PEDOT–PIL@Fe
<sub>3</sub>
O
<sub>4</sub>
sensors.</p>
<p>
<bold>Abbreviations:</bold>
Ar, relative amplitude of the electrical signals; PEDOT, poly(3,4-ethylenedioxythiophene); PIL, polymerized ionic liquid; RMS, root-mean-square deviation; ppm, parts per million.</p>
</caption>
<graphic xlink:href="ijn-10-203Fig5"></graphic>
</fig>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0002808 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0002808 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024