Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts

Identifieur interne : 000274 ( Pmc/Corpus ); précédent : 000273; suivant : 000275

Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts

Auteurs : Dorothea Frank ; Markus Reichstein ; Michael Bahn ; Kirsten Thonicke ; David Frank ; Miguel D. Mahecha ; Pete Smith ; Marijn Van Der Velde ; Sara Vicca ; Flurin Babst ; Christian Beer ; Nina Buchmann ; Josep G. Canadell ; Philippe Ciais ; Wolfgang Cramer ; Andreas Ibrom ; Franco Miglietta ; Ben Poulter ; Anja Rammig ; Sonia I. Seneviratne ; Ariane Walz ; Martin Wattenbach ; Miguel A. Zavala ; Jakob Zscheischler

Source :

RBID : PMC:4676934

Abstract

Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance-induced mechanisms and processes to also operate in an extreme context. The paucity of well-defined studies currently renders a quantitative meta-analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land-cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground-based observational case studies reveals that many regions in the (sub-)tropics are understudied. Hence, regional investigations are needed to allow a global upscaling of the impacts of climate extremes on global carbon–climate feedbacks.


Url:
DOI: 10.1111/gcb.12916
PubMed: 25752680
PubMed Central: 4676934

Links to Exploration step

PMC:4676934

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts</title>
<author>
<name sortKey="Frank, Dorothea" sort="Frank, Dorothea" uniqKey="Frank D" first="Dorothea" last="Frank">Dorothea Frank</name>
<affiliation>
<nlm:aff id="au1">
<institution>Max Planck Institute for Biogeochemistry</institution>
<addr-line>07745, Jena, Germany</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Reichstein, Markus" sort="Reichstein, Markus" uniqKey="Reichstein M" first="Markus" last="Reichstein">Markus Reichstein</name>
<affiliation>
<nlm:aff id="au1">
<institution>Max Planck Institute for Biogeochemistry</institution>
<addr-line>07745, Jena, Germany</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bahn, Michael" sort="Bahn, Michael" uniqKey="Bahn M" first="Michael" last="Bahn">Michael Bahn</name>
<affiliation>
<nlm:aff id="au2">
<institution>Institute of Ecology, University of Innsbruck</institution>
<addr-line>6020, Innsbruck, Austria</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Thonicke, Kirsten" sort="Thonicke, Kirsten" uniqKey="Thonicke K" first="Kirsten" last="Thonicke">Kirsten Thonicke</name>
<affiliation>
<nlm:aff id="au3">
<institution>Potsdam Institute for Climate Impact Research (PIK) e.V.</institution>
<addr-line>14773, Potsdam, Germany</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au4">
<institution>Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB)</institution>
<addr-line>14195, Berlin, Germany</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Frank, David" sort="Frank, David" uniqKey="Frank D" first="David" last="Frank">David Frank</name>
<affiliation>
<nlm:aff id="au5">
<institution>Swiss Federal Research Institute WSL</institution>
<addr-line>8903, Birmensdorf, Switzerland</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au6">
<institution>Oeschger Centre for Climate Change Research, University of Bern</institution>
<addr-line>CH-3012, Bern, Switzerland</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mahecha, Miguel D" sort="Mahecha, Miguel D" uniqKey="Mahecha M" first="Miguel D" last="Mahecha">Miguel D. Mahecha</name>
<affiliation>
<nlm:aff id="au1">
<institution>Max Planck Institute for Biogeochemistry</institution>
<addr-line>07745, Jena, Germany</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Smith, Pete" sort="Smith, Pete" uniqKey="Smith P" first="Pete" last="Smith">Pete Smith</name>
<affiliation>
<nlm:aff id="au7">
<institution>Institute of Biological and Environmental Sciences, University of Aberdeen</institution>
<addr-line>23 St Machar Drive, Aberdeen, AB24 3UU, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Van Der Velde, Marijn" sort="Van Der Velde, Marijn" uniqKey="Van Der Velde M" first="Marijn" last="Van Der Velde">Marijn Van Der Velde</name>
<affiliation>
<nlm:aff id="au8">
<institution>Ecosystems Services and Management Program, International Institute of Applied Systems Analysis (IIASA)</institution>
<addr-line>A-2361, Laxenburg, Austria</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vicca, Sara" sort="Vicca, Sara" uniqKey="Vicca S" first="Sara" last="Vicca">Sara Vicca</name>
<affiliation>
<nlm:aff id="au9">
<institution>Research Group of Plant and Vegetation Ecology, Biology Department, University of Antwerp</institution>
<addr-line>Wilrijk, Belgium</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Babst, Flurin" sort="Babst, Flurin" uniqKey="Babst F" first="Flurin" last="Babst">Flurin Babst</name>
<affiliation>
<nlm:aff id="au3">
<institution>Potsdam Institute for Climate Impact Research (PIK) e.V.</institution>
<addr-line>14773, Potsdam, Germany</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au10">
<institution>Laboratory of Tree-Ring Research, The University of Arizona</institution>
<addr-line>1215 E Lowell St, Tucson, AZ, 85721, USA</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Beer, Christian" sort="Beer, Christian" uniqKey="Beer C" first="Christian" last="Beer">Christian Beer</name>
<affiliation>
<nlm:aff id="au1">
<institution>Max Planck Institute for Biogeochemistry</institution>
<addr-line>07745, Jena, Germany</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au11">
<institution>Department of Environmental Science and Analytical Chemistry (ACES), Bolin Centre for Climate Research, Stockholm University</institution>
<addr-line>10691, Stockholm, Sweden</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Buchmann, Nina" sort="Buchmann, Nina" uniqKey="Buchmann N" first="Nina" last="Buchmann">Nina Buchmann</name>
<affiliation>
<nlm:aff id="au12">
<institution>ETH Zurich</institution>
<addr-line>8092, Zurich, Switzerland</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Canadell, Josep G" sort="Canadell, Josep G" uniqKey="Canadell J" first="Josep G" last="Canadell">Josep G. Canadell</name>
<affiliation>
<nlm:aff id="au13">
<institution>Global Carbon Project, CSIRO Oceans and Atmosphere Flagship</institution>
<addr-line>GPO Box 3023, Canberra, ACT, 2601, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ciais, Philippe" sort="Ciais, Philippe" uniqKey="Ciais P" first="Philippe" last="Ciais">Philippe Ciais</name>
<affiliation>
<nlm:aff id="au14">
<institution>IPSL – Laboratoire des Sciences du Climat et de l’Environnement CEA-CNRS-UVSQ</institution>
<addr-line>91191, Gif sur Yvette, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cramer, Wolfgang" sort="Cramer, Wolfgang" uniqKey="Cramer W" first="Wolfgang" last="Cramer">Wolfgang Cramer</name>
<affiliation>
<nlm:aff id="au15">
<institution>Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE), Aix Marseille Université, CNRS, IRD, Avignon Université</institution>
<addr-line>Aix-en-Provence, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ibrom, Andreas" sort="Ibrom, Andreas" uniqKey="Ibrom A" first="Andreas" last="Ibrom">Andreas Ibrom</name>
<affiliation>
<nlm:aff id="au16">
<institution>Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU)</institution>
<addr-line>Frederiksborgvej 399, 4000, Roskilde, Denmark</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Miglietta, Franco" sort="Miglietta, Franco" uniqKey="Miglietta F" first="Franco" last="Miglietta">Franco Miglietta</name>
<affiliation>
<nlm:aff id="au17">
<institution>IBIMET-CNR</institution>
<addr-line>Via Caproni, 8, 50145, Firenze, Italy</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au18">
<institution>FoxLab, Fondazione E.Mach</institution>
<addr-line>Via Mach 1, 30158, San Michele a/Adige, Trento, Italy</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Poulter, Ben" sort="Poulter, Ben" uniqKey="Poulter B" first="Ben" last="Poulter">Ben Poulter</name>
<affiliation>
<nlm:aff id="au14">
<institution>IPSL – Laboratoire des Sciences du Climat et de l’Environnement CEA-CNRS-UVSQ</institution>
<addr-line>91191, Gif sur Yvette, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rammig, Anja" sort="Rammig, Anja" uniqKey="Rammig A" first="Anja" last="Rammig">Anja Rammig</name>
<affiliation>
<nlm:aff id="au6">
<institution>Oeschger Centre for Climate Change Research, University of Bern</institution>
<addr-line>CH-3012, Bern, Switzerland</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au7">
<institution>Institute of Biological and Environmental Sciences, University of Aberdeen</institution>
<addr-line>23 St Machar Drive, Aberdeen, AB24 3UU, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Seneviratne, Sonia I" sort="Seneviratne, Sonia I" uniqKey="Seneviratne S" first="Sonia I" last="Seneviratne">Sonia I. Seneviratne</name>
<affiliation>
<nlm:aff id="au12">
<institution>ETH Zurich</institution>
<addr-line>8092, Zurich, Switzerland</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Walz, Ariane" sort="Walz, Ariane" uniqKey="Walz A" first="Ariane" last="Walz">Ariane Walz</name>
<affiliation>
<nlm:aff id="au19">
<institution>Institute of Earth and Environmental Science, University of Potsdam</institution>
<addr-line>14476, Potsdam, Germany</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wattenbach, Martin" sort="Wattenbach, Martin" uniqKey="Wattenbach M" first="Martin" last="Wattenbach">Martin Wattenbach</name>
<affiliation>
<nlm:aff id="au20">
<institution>Helmholtz Centre Potsdam, GFZ German Research Centre For Geosciences</institution>
<addr-line>14473, Potsdam, Germany</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zavala, Miguel A" sort="Zavala, Miguel A" uniqKey="Zavala M" first="Miguel A" last="Zavala">Miguel A. Zavala</name>
<affiliation>
<nlm:aff id="au21">
<institution>Forest Ecology and Restoration Group, Universidad de Alcalá</institution>
<addr-line>Alcalá de Henares, Madrid, Spain</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zscheischler, Jakob" sort="Zscheischler, Jakob" uniqKey="Zscheischler J" first="Jakob" last="Zscheischler">Jakob Zscheischler</name>
<affiliation>
<nlm:aff id="au1">
<institution>Max Planck Institute for Biogeochemistry</institution>
<addr-line>07745, Jena, Germany</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25752680</idno>
<idno type="pmc">4676934</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4676934</idno>
<idno type="RBID">PMC:4676934</idno>
<idno type="doi">10.1111/gcb.12916</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000274</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000274</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts</title>
<author>
<name sortKey="Frank, Dorothea" sort="Frank, Dorothea" uniqKey="Frank D" first="Dorothea" last="Frank">Dorothea Frank</name>
<affiliation>
<nlm:aff id="au1">
<institution>Max Planck Institute for Biogeochemistry</institution>
<addr-line>07745, Jena, Germany</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Reichstein, Markus" sort="Reichstein, Markus" uniqKey="Reichstein M" first="Markus" last="Reichstein">Markus Reichstein</name>
<affiliation>
<nlm:aff id="au1">
<institution>Max Planck Institute for Biogeochemistry</institution>
<addr-line>07745, Jena, Germany</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bahn, Michael" sort="Bahn, Michael" uniqKey="Bahn M" first="Michael" last="Bahn">Michael Bahn</name>
<affiliation>
<nlm:aff id="au2">
<institution>Institute of Ecology, University of Innsbruck</institution>
<addr-line>6020, Innsbruck, Austria</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Thonicke, Kirsten" sort="Thonicke, Kirsten" uniqKey="Thonicke K" first="Kirsten" last="Thonicke">Kirsten Thonicke</name>
<affiliation>
<nlm:aff id="au3">
<institution>Potsdam Institute for Climate Impact Research (PIK) e.V.</institution>
<addr-line>14773, Potsdam, Germany</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au4">
<institution>Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB)</institution>
<addr-line>14195, Berlin, Germany</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Frank, David" sort="Frank, David" uniqKey="Frank D" first="David" last="Frank">David Frank</name>
<affiliation>
<nlm:aff id="au5">
<institution>Swiss Federal Research Institute WSL</institution>
<addr-line>8903, Birmensdorf, Switzerland</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au6">
<institution>Oeschger Centre for Climate Change Research, University of Bern</institution>
<addr-line>CH-3012, Bern, Switzerland</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mahecha, Miguel D" sort="Mahecha, Miguel D" uniqKey="Mahecha M" first="Miguel D" last="Mahecha">Miguel D. Mahecha</name>
<affiliation>
<nlm:aff id="au1">
<institution>Max Planck Institute for Biogeochemistry</institution>
<addr-line>07745, Jena, Germany</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Smith, Pete" sort="Smith, Pete" uniqKey="Smith P" first="Pete" last="Smith">Pete Smith</name>
<affiliation>
<nlm:aff id="au7">
<institution>Institute of Biological and Environmental Sciences, University of Aberdeen</institution>
<addr-line>23 St Machar Drive, Aberdeen, AB24 3UU, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Van Der Velde, Marijn" sort="Van Der Velde, Marijn" uniqKey="Van Der Velde M" first="Marijn" last="Van Der Velde">Marijn Van Der Velde</name>
<affiliation>
<nlm:aff id="au8">
<institution>Ecosystems Services and Management Program, International Institute of Applied Systems Analysis (IIASA)</institution>
<addr-line>A-2361, Laxenburg, Austria</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vicca, Sara" sort="Vicca, Sara" uniqKey="Vicca S" first="Sara" last="Vicca">Sara Vicca</name>
<affiliation>
<nlm:aff id="au9">
<institution>Research Group of Plant and Vegetation Ecology, Biology Department, University of Antwerp</institution>
<addr-line>Wilrijk, Belgium</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Babst, Flurin" sort="Babst, Flurin" uniqKey="Babst F" first="Flurin" last="Babst">Flurin Babst</name>
<affiliation>
<nlm:aff id="au3">
<institution>Potsdam Institute for Climate Impact Research (PIK) e.V.</institution>
<addr-line>14773, Potsdam, Germany</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au10">
<institution>Laboratory of Tree-Ring Research, The University of Arizona</institution>
<addr-line>1215 E Lowell St, Tucson, AZ, 85721, USA</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Beer, Christian" sort="Beer, Christian" uniqKey="Beer C" first="Christian" last="Beer">Christian Beer</name>
<affiliation>
<nlm:aff id="au1">
<institution>Max Planck Institute for Biogeochemistry</institution>
<addr-line>07745, Jena, Germany</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au11">
<institution>Department of Environmental Science and Analytical Chemistry (ACES), Bolin Centre for Climate Research, Stockholm University</institution>
<addr-line>10691, Stockholm, Sweden</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Buchmann, Nina" sort="Buchmann, Nina" uniqKey="Buchmann N" first="Nina" last="Buchmann">Nina Buchmann</name>
<affiliation>
<nlm:aff id="au12">
<institution>ETH Zurich</institution>
<addr-line>8092, Zurich, Switzerland</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Canadell, Josep G" sort="Canadell, Josep G" uniqKey="Canadell J" first="Josep G" last="Canadell">Josep G. Canadell</name>
<affiliation>
<nlm:aff id="au13">
<institution>Global Carbon Project, CSIRO Oceans and Atmosphere Flagship</institution>
<addr-line>GPO Box 3023, Canberra, ACT, 2601, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ciais, Philippe" sort="Ciais, Philippe" uniqKey="Ciais P" first="Philippe" last="Ciais">Philippe Ciais</name>
<affiliation>
<nlm:aff id="au14">
<institution>IPSL – Laboratoire des Sciences du Climat et de l’Environnement CEA-CNRS-UVSQ</institution>
<addr-line>91191, Gif sur Yvette, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cramer, Wolfgang" sort="Cramer, Wolfgang" uniqKey="Cramer W" first="Wolfgang" last="Cramer">Wolfgang Cramer</name>
<affiliation>
<nlm:aff id="au15">
<institution>Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE), Aix Marseille Université, CNRS, IRD, Avignon Université</institution>
<addr-line>Aix-en-Provence, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ibrom, Andreas" sort="Ibrom, Andreas" uniqKey="Ibrom A" first="Andreas" last="Ibrom">Andreas Ibrom</name>
<affiliation>
<nlm:aff id="au16">
<institution>Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU)</institution>
<addr-line>Frederiksborgvej 399, 4000, Roskilde, Denmark</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Miglietta, Franco" sort="Miglietta, Franco" uniqKey="Miglietta F" first="Franco" last="Miglietta">Franco Miglietta</name>
<affiliation>
<nlm:aff id="au17">
<institution>IBIMET-CNR</institution>
<addr-line>Via Caproni, 8, 50145, Firenze, Italy</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au18">
<institution>FoxLab, Fondazione E.Mach</institution>
<addr-line>Via Mach 1, 30158, San Michele a/Adige, Trento, Italy</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Poulter, Ben" sort="Poulter, Ben" uniqKey="Poulter B" first="Ben" last="Poulter">Ben Poulter</name>
<affiliation>
<nlm:aff id="au14">
<institution>IPSL – Laboratoire des Sciences du Climat et de l’Environnement CEA-CNRS-UVSQ</institution>
<addr-line>91191, Gif sur Yvette, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rammig, Anja" sort="Rammig, Anja" uniqKey="Rammig A" first="Anja" last="Rammig">Anja Rammig</name>
<affiliation>
<nlm:aff id="au6">
<institution>Oeschger Centre for Climate Change Research, University of Bern</institution>
<addr-line>CH-3012, Bern, Switzerland</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au7">
<institution>Institute of Biological and Environmental Sciences, University of Aberdeen</institution>
<addr-line>23 St Machar Drive, Aberdeen, AB24 3UU, UK</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Seneviratne, Sonia I" sort="Seneviratne, Sonia I" uniqKey="Seneviratne S" first="Sonia I" last="Seneviratne">Sonia I. Seneviratne</name>
<affiliation>
<nlm:aff id="au12">
<institution>ETH Zurich</institution>
<addr-line>8092, Zurich, Switzerland</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Walz, Ariane" sort="Walz, Ariane" uniqKey="Walz A" first="Ariane" last="Walz">Ariane Walz</name>
<affiliation>
<nlm:aff id="au19">
<institution>Institute of Earth and Environmental Science, University of Potsdam</institution>
<addr-line>14476, Potsdam, Germany</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wattenbach, Martin" sort="Wattenbach, Martin" uniqKey="Wattenbach M" first="Martin" last="Wattenbach">Martin Wattenbach</name>
<affiliation>
<nlm:aff id="au20">
<institution>Helmholtz Centre Potsdam, GFZ German Research Centre For Geosciences</institution>
<addr-line>14473, Potsdam, Germany</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zavala, Miguel A" sort="Zavala, Miguel A" uniqKey="Zavala M" first="Miguel A" last="Zavala">Miguel A. Zavala</name>
<affiliation>
<nlm:aff id="au21">
<institution>Forest Ecology and Restoration Group, Universidad de Alcalá</institution>
<addr-line>Alcalá de Henares, Madrid, Spain</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zscheischler, Jakob" sort="Zscheischler, Jakob" uniqKey="Zscheischler J" first="Jakob" last="Zscheischler">Jakob Zscheischler</name>
<affiliation>
<nlm:aff id="au1">
<institution>Max Planck Institute for Biogeochemistry</institution>
<addr-line>07745, Jena, Germany</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Global Change Biology</title>
<idno type="ISSN">1354-1013</idno>
<idno type="eISSN">1365-2486</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance-induced mechanisms and processes to also operate in an extreme context. The paucity of well-defined studies currently renders a quantitative meta-analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land-cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground-based observational case studies reveals that many regions in the (sub-)tropics are understudied. Hence, regional investigations are needed to allow a global upscaling of the impacts of climate extremes on global carbon–climate feedbacks.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Adams, Hd" uniqKey="Adams H">HD Adams</name>
</author>
<author>
<name sortKey="Guardiola Claramonte, M" uniqKey="Guardiola Claramonte M">M Guardiola-Claramonte</name>
</author>
<author>
<name sortKey="Barron Gafford, Ga" uniqKey="Barron Gafford G">GA Barron-Gafford</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Albertson, Fw" uniqKey="Albertson F">FW Albertson</name>
</author>
<author>
<name sortKey="Tomanek, Gw" uniqKey="Tomanek G">GW Tomanek</name>
</author>
<author>
<name sortKey="Andrew Riegel, A" uniqKey="Andrew Riegel A">A Andrew Riegel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aldersley, A" uniqKey="Aldersley A">A Aldersley</name>
</author>
<author>
<name sortKey="Murray, Sj" uniqKey="Murray S">SJ Murray</name>
</author>
<author>
<name sortKey="Cornell, Se" uniqKey="Cornell S">SE Cornell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Allard, V" uniqKey="Allard V">V Allard</name>
</author>
<author>
<name sortKey="Ourcival, J M" uniqKey="Ourcival J">J-M Ourcival</name>
</author>
<author>
<name sortKey="Rambal, S" uniqKey="Rambal S">S Rambal</name>
</author>
<author>
<name sortKey="Joffre, R" uniqKey="Joffre R">R Joffre</name>
</author>
<author>
<name sortKey="Rocheteau, A" uniqKey="Rocheteau A">A Rocheteau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Allen, Cd" uniqKey="Allen C">CD Allen</name>
</author>
<author>
<name sortKey="Macalady, Ak" uniqKey="Macalady A">AK Macalady</name>
</author>
<author>
<name sortKey="Chenchouni, H" uniqKey="Chenchouni H">H Chenchouni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aragao, Leoc" uniqKey="Aragao L">LEOC Aragão</name>
</author>
<author>
<name sortKey="Shimabukuro, Ye" uniqKey="Shimabukuro Y">YE Shimabukuro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Araus, Jl" uniqKey="Araus J">JL Araus</name>
</author>
<author>
<name sortKey="Slafer, Ga" uniqKey="Slafer G">GA Slafer</name>
</author>
<author>
<name sortKey="Reynolds, Mp" uniqKey="Reynolds M">MP Reynolds</name>
</author>
<author>
<name sortKey="Royo, C" uniqKey="Royo C">C Royo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Archibald, S" uniqKey="Archibald S">S Archibald</name>
</author>
<author>
<name sortKey="Lehman, Cer" uniqKey="Lehman C">CER Lehman</name>
</author>
<author>
<name sortKey="Gomez Dans, Jl" uniqKey="Gomez Dans J">JL Gomez-Dans</name>
</author>
<author>
<name sortKey="Bradstock, Ra" uniqKey="Bradstock R">RA Bradstock</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Atkin, Ok" uniqKey="Atkin O">OK Atkin</name>
</author>
<author>
<name sortKey="Macherel, D" uniqKey="Macherel D">D Macherel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Babst, F" uniqKey="Babst F">F Babst</name>
</author>
<author>
<name sortKey="Carrer, M" uniqKey="Carrer M">M Carrer</name>
</author>
<author>
<name sortKey="Poulter, B" uniqKey="Poulter B">B Poulter</name>
</author>
<author>
<name sortKey="Urbinati, C" uniqKey="Urbinati C">C Urbinati</name>
</author>
<author>
<name sortKey="Neuwirth, B" uniqKey="Neuwirth B">B Neuwirth</name>
</author>
<author>
<name sortKey="Frank, D" uniqKey="Frank D">D Frank</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Babst, F" uniqKey="Babst F">F Babst</name>
</author>
<author>
<name sortKey="Bouriaud, O" uniqKey="Bouriaud O">O Bouriaud</name>
</author>
<author>
<name sortKey="Papale, D" uniqKey="Papale D">D Papale</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Backhaus, S" uniqKey="Backhaus S">S Backhaus</name>
</author>
<author>
<name sortKey="Kreyling, J" uniqKey="Kreyling J">J Kreyling</name>
</author>
<author>
<name sortKey="Grant, K" uniqKey="Grant K">K Grant</name>
</author>
<author>
<name sortKey="Beierkuhnlein, C" uniqKey="Beierkuhnlein C">C Beierkuhnlein</name>
</author>
<author>
<name sortKey="Walter, J" uniqKey="Walter J">J Walter</name>
</author>
<author>
<name sortKey="Jentsch, A" uniqKey="Jentsch A">A Jentsch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bahn, M" uniqKey="Bahn M">M Bahn</name>
</author>
<author>
<name sortKey="Reichstein, M" uniqKey="Reichstein M">M Reichstein</name>
</author>
<author>
<name sortKey="Dukes, Js" uniqKey="Dukes J">JS Dukes</name>
</author>
<author>
<name sortKey="Smith, Md" uniqKey="Smith M">MD Smith</name>
</author>
<author>
<name sortKey="Mcdowell, Ng" uniqKey="Mcdowell N">NG McDowell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baldocchi, D" uniqKey="Baldocchi D">D Baldocchi</name>
</author>
<author>
<name sortKey="Reichstein, M" uniqKey="Reichstein M">M Reichstein</name>
</author>
<author>
<name sortKey="Papale, D" uniqKey="Papale D">D Papale</name>
</author>
<author>
<name sortKey="Koteen, L" uniqKey="Koteen L">L Koteen</name>
</author>
<author>
<name sortKey="Vargas, R" uniqKey="Vargas R">R Vargas</name>
</author>
<author>
<name sortKey="Agarwal, D" uniqKey="Agarwal D">D Agarwal</name>
</author>
<author>
<name sortKey="Cook, R" uniqKey="Cook R">R Cook</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barber, Va" uniqKey="Barber V">VA Barber</name>
</author>
<author>
<name sortKey="Juday, Gp" uniqKey="Juday G">GP Juday</name>
</author>
<author>
<name sortKey="Finney, Bp" uniqKey="Finney B">BP Finney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barlow, J" uniqKey="Barlow J">J Barlow</name>
</author>
<author>
<name sortKey="Peres, Ca" uniqKey="Peres C">CA Peres</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barriopedro, D" uniqKey="Barriopedro D">D Barriopedro</name>
</author>
<author>
<name sortKey="Fischer, Em" uniqKey="Fischer E">EM Fischer</name>
</author>
<author>
<name sortKey="Luterbacher, J" uniqKey="Luterbacher J">J Luterbacher</name>
</author>
<author>
<name sortKey="Trigo, Rm" uniqKey="Trigo R">RM Trigo</name>
</author>
<author>
<name sortKey="Garcia Herrera, R" uniqKey="Garcia Herrera R">R García-Herrera</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bastos, A" uniqKey="Bastos A">A Bastos</name>
</author>
<author>
<name sortKey="Gouveia, Cm" uniqKey="Gouveia C">CM Gouveia</name>
</author>
<author>
<name sortKey="Trigo, Rm" uniqKey="Trigo R">RM Trigo</name>
</author>
<author>
<name sortKey="Running, Sw" uniqKey="Running S">SW Running</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bastos, A" uniqKey="Bastos A">A Bastos</name>
</author>
<author>
<name sortKey="Running, Sw" uniqKey="Running S">SW Running</name>
</author>
<author>
<name sortKey="Gouveia, C" uniqKey="Gouveia C">C Gouveia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bebi, P" uniqKey="Bebi P">P Bebi</name>
</author>
<author>
<name sortKey="Kulakowski, D" uniqKey="Kulakowski D">D Kulakowski</name>
</author>
<author>
<name sortKey="Rixen, C" uniqKey="Rixen C">C Rixen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beier, C" uniqKey="Beier C">C Beier</name>
</author>
<author>
<name sortKey="Beierkuhnlein, C" uniqKey="Beierkuhnlein C">C Beierkuhnlein</name>
</author>
<author>
<name sortKey="Wohlgemuth, T" uniqKey="Wohlgemuth T">T Wohlgemuth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Berhe, Aa" uniqKey="Berhe A">AA Berhe</name>
</author>
<author>
<name sortKey="Kleber, M" uniqKey="Kleber M">M Kleber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Berry, Pm" uniqKey="Berry P">PM Berry</name>
</author>
<author>
<name sortKey="Sterling, M" uniqKey="Sterling M">M Sterling</name>
</author>
<author>
<name sortKey="Baker, Cj" uniqKey="Baker C">CJ Baker</name>
</author>
<author>
<name sortKey="Spink, J" uniqKey="Spink J">J Spink</name>
</author>
<author>
<name sortKey="Sparkes, Dl" uniqKey="Sparkes D">DL Sparkes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bloor, Jmg" uniqKey="Bloor J">JMG Bloor</name>
</author>
<author>
<name sortKey="Bardgett, Rd" uniqKey="Bardgett R">RD Bardgett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boening, C" uniqKey="Boening C">C Boening</name>
</author>
<author>
<name sortKey="Willis, Jk" uniqKey="Willis J">JK Willis</name>
</author>
<author>
<name sortKey="Landerer, Fw" uniqKey="Landerer F">FW Landerer</name>
</author>
<author>
<name sortKey="Nerem, Rs" uniqKey="Nerem R">RS Nerem</name>
</author>
<author>
<name sortKey="Fasullo, J" uniqKey="Fasullo J">J Fasullo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bokhorst, Sf" uniqKey="Bokhorst S">SF Bokhorst</name>
</author>
<author>
<name sortKey="Bjerke, Jw" uniqKey="Bjerke J">JW Bjerke</name>
</author>
<author>
<name sortKey="T Mmervik, H" uniqKey="T Mmervik H">H Tømmervik</name>
</author>
<author>
<name sortKey="Callaghan, Tv" uniqKey="Callaghan T">TV Callaghan</name>
</author>
<author>
<name sortKey="Phoenix, Gk" uniqKey="Phoenix G">GK Phoenix</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bond, Wj" uniqKey="Bond W">WJ Bond</name>
</author>
<author>
<name sortKey="Woodward, Fi" uniqKey="Woodward F">FI Woodward</name>
</author>
<author>
<name sortKey="Midgley, Gf" uniqKey="Midgley G">GF Midgley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Borken, W" uniqKey="Borken W">W Borken</name>
</author>
<author>
<name sortKey="Matzner, E" uniqKey="Matzner E">E Matzner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bowman, Dmjs" uniqKey="Bowman D">DMJS Bowman</name>
</author>
<author>
<name sortKey="Balch, Jk" uniqKey="Balch J">JK Balch</name>
</author>
<author>
<name sortKey="Artaxo, P" uniqKey="Artaxo P">P Artaxo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bragg, Dc" uniqKey="Bragg D">DC Bragg</name>
</author>
<author>
<name sortKey="Shelton, Mg" uniqKey="Shelton M">MG Shelton</name>
</author>
<author>
<name sortKey="Zeide, B" uniqKey="Zeide B">B Zeide</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brando, Pm" uniqKey="Brando P">PM Brando</name>
</author>
<author>
<name sortKey="Nepstad, Dc" uniqKey="Nepstad D">DC Nepstad</name>
</author>
<author>
<name sortKey="Balch, Jk" uniqKey="Balch J">JK Balch</name>
</author>
<author>
<name sortKey="Bolker, B" uniqKey="Bolker B">B Bolker</name>
</author>
<author>
<name sortKey="Christman, Mc" uniqKey="Christman M">MC Christman</name>
</author>
<author>
<name sortKey="Coe, M" uniqKey="Coe M">M Coe</name>
</author>
<author>
<name sortKey="Putz, Fe" uniqKey="Putz F">FE Putz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brando, Pm" uniqKey="Brando P">PM Brando</name>
</author>
<author>
<name sortKey="Balch, Jk" uniqKey="Balch J">JK Balch</name>
</author>
<author>
<name sortKey="Nepstad, Dc" uniqKey="Nepstad D">DC Nepstad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Breda, N" uniqKey="Breda N">N Bréda</name>
</author>
<author>
<name sortKey="Huc, R" uniqKey="Huc R">R Huc</name>
</author>
<author>
<name sortKey="Granier, A" uniqKey="Granier A">A Granier</name>
</author>
<author>
<name sortKey="Dreyer, E" uniqKey="Dreyer E">E Dreyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Breshears, Dd" uniqKey="Breshears D">DD Breshears</name>
</author>
<author>
<name sortKey="Whicker, Jj" uniqKey="Whicker J">JJ Whicker</name>
</author>
<author>
<name sortKey="Johansen, Mp" uniqKey="Johansen M">MP Johansen</name>
</author>
<author>
<name sortKey="Pinder, Je" uniqKey="Pinder J">JE Pinder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Breshears, Dd" uniqKey="Breshears D">DD Breshears</name>
</author>
<author>
<name sortKey="Cobb, Ns" uniqKey="Cobb N">NS Cobb</name>
</author>
<author>
<name sortKey="Rich, Pm" uniqKey="Rich P">PM Rich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Canadell, J" uniqKey="Canadell J">J Canadell</name>
</author>
<author>
<name sortKey="Jackson, Rb" uniqKey="Jackson R">RB Jackson</name>
</author>
<author>
<name sortKey="Ehleringer, Jr" uniqKey="Ehleringer J">JR Ehleringer</name>
</author>
<author>
<name sortKey="Mooney, Ha" uniqKey="Mooney H">HA Mooney</name>
</author>
<author>
<name sortKey="Sala, Oe" uniqKey="Sala O">OE Sala</name>
</author>
<author>
<name sortKey="Schulze, Ed" uniqKey="Schulze E">ED Schulze</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Certini, G" uniqKey="Certini G">G Certini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chambers, Jq" uniqKey="Chambers J">JQ Chambers</name>
</author>
<author>
<name sortKey="Fisher, Ji" uniqKey="Fisher J">JI Fisher</name>
</author>
<author>
<name sortKey="Zeng, Hc" uniqKey="Zeng H">HC Zeng</name>
</author>
<author>
<name sortKey="Chapman, El" uniqKey="Chapman E">EL Chapman</name>
</author>
<author>
<name sortKey="Baker, Db" uniqKey="Baker D">DB Baker</name>
</author>
<author>
<name sortKey="Hurtt, Gc" uniqKey="Hurtt G">GC Hurtt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Changnon, Sa" uniqKey="Changnon S">SA Changnon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chaves, Mm" uniqKey="Chaves M">MM Chaves</name>
</author>
<author>
<name sortKey="Flexas, J" uniqKey="Flexas J">J Flexas</name>
</author>
<author>
<name sortKey="Pinheiro, C" uniqKey="Pinheiro C">C Pinheiro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ciais, P" uniqKey="Ciais P">P Ciais</name>
</author>
<author>
<name sortKey="Reichstein, M" uniqKey="Reichstein M">M Reichstein</name>
</author>
<author>
<name sortKey="Viovy, N" uniqKey="Viovy N">N Viovy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Conner, Wh" uniqKey="Conner W">WH Conner</name>
</author>
<author>
<name sortKey="Inabinette, Lw" uniqKey="Inabinette L">LW Inabinette</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Corlett, Rt" uniqKey="Corlett R">RT Corlett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cornelissen, T" uniqKey="Cornelissen T">T Cornelissen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coumou, D" uniqKey="Coumou D">D Coumou</name>
</author>
<author>
<name sortKey="Rahmstorf, S" uniqKey="Rahmstorf S">S Rahmstorf</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Couwenberg, J" uniqKey="Couwenberg J">J Couwenberg</name>
</author>
<author>
<name sortKey="Dommain, R" uniqKey="Dommain R">R Dommain</name>
</author>
<author>
<name sortKey="Joosten, H" uniqKey="Joosten H">H Joosten</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Curiel Yuste, J" uniqKey="Curiel Yuste J">J Curiel-Yuste</name>
</author>
<author>
<name sortKey="Pe Uelas, J" uniqKey="Pe Uelas J">J Peñuelas</name>
</author>
<author>
<name sortKey="Estiarte, M" uniqKey="Estiarte M">M Estiarte</name>
</author>
<author>
<name sortKey="Garcia Mas, J" uniqKey="Garcia Mas J">J Garcia-Mas</name>
</author>
<author>
<name sortKey="Ogaya, R" uniqKey="Ogaya R">R Ogaya</name>
</author>
<author>
<name sortKey="Pujol, M" uniqKey="Pujol M">M Pujol</name>
</author>
<author>
<name sortKey="Sardans, J" uniqKey="Sardans J">J Sardans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davidson, Ea" uniqKey="Davidson E">EA Davidson</name>
</author>
<author>
<name sortKey="Janssens, Ia" uniqKey="Janssens I">IA Janssens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Boeck, Hj" uniqKey="De Boeck H">HJ De Boeck</name>
</author>
<author>
<name sortKey="Dreesen, Fe" uniqKey="Dreesen F">FE Dreesen</name>
</author>
<author>
<name sortKey="Janssens, Ia" uniqKey="Janssens I">IA Janssens</name>
</author>
<author>
<name sortKey="Nijs, I" uniqKey="Nijs I">I Nijs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Desprez Loustau, M L" uniqKey="Desprez Loustau M">M-L Desprez-Loustau</name>
</author>
<author>
<name sortKey="Marcais, B" uniqKey="Marcais B">B Marçais</name>
</author>
<author>
<name sortKey="Nageleisen, L M" uniqKey="Nageleisen L">L-M Nageleisen</name>
</author>
<author>
<name sortKey="Piou, D" uniqKey="Piou D">D Piou</name>
</author>
<author>
<name sortKey="Vannini, A" uniqKey="Vannini A">A Vannini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Diez, Jm" uniqKey="Diez J">JM Diez</name>
</author>
<author>
<name sortKey="D Ntonio, Cm" uniqKey="D Ntonio C">CM D’antonio</name>
</author>
<author>
<name sortKey="Dukes, Js" uniqKey="Dukes J">JS Dukes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Diffenbaugh, Ns" uniqKey="Diffenbaugh N">NS Diffenbaugh</name>
</author>
<author>
<name sortKey="Ashfaq, M" uniqKey="Ashfaq M">M Ashfaq</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dinsmore, Kj" uniqKey="Dinsmore K">KJ Dinsmore</name>
</author>
<author>
<name sortKey="Billett, Mf" uniqKey="Billett M">MF Billett</name>
</author>
<author>
<name sortKey="Dyson, Ke" uniqKey="Dyson K">KE Dyson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dittmar, C" uniqKey="Dittmar C">C Dittmar</name>
</author>
<author>
<name sortKey="Elling, W" uniqKey="Elling W">W Elling</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dittmar, C" uniqKey="Dittmar C">C Dittmar</name>
</author>
<author>
<name sortKey="Fricke, W" uniqKey="Fricke W">W Fricke</name>
</author>
<author>
<name sortKey="Elling, W" uniqKey="Elling W">W Elling</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Doughty, Ce" uniqKey="Doughty C">CE Doughty</name>
</author>
<author>
<name sortKey="Goulden, Ml" uniqKey="Goulden M">ML Goulden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drever, C" uniqKey="Drever C">C Drever</name>
</author>
<author>
<name sortKey="Messier, C" uniqKey="Messier C">C Messier</name>
</author>
<author>
<name sortKey="Bergeron, Y" uniqKey="Bergeron Y">Y Bergeron</name>
</author>
<author>
<name sortKey="Flannigan, M" uniqKey="Flannigan M">M Flannigan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Durre, I" uniqKey="Durre I">I Durre</name>
</author>
<author>
<name sortKey="Wallace, Jm" uniqKey="Wallace J">JM Wallace</name>
</author>
<author>
<name sortKey="Lettenmaier, Dp" uniqKey="Lettenmaier D">DP Lettenmaier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eamus, D" uniqKey="Eamus D">D Eamus</name>
</author>
<author>
<name sortKey="Boulain, N" uniqKey="Boulain N">N Boulain</name>
</author>
<author>
<name sortKey="Cleverly, J" uniqKey="Cleverly J">J Cleverly</name>
</author>
<author>
<name sortKey="Breshears, Dd" uniqKey="Breshears D">DD Breshears</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eilmann, B" uniqKey="Eilmann B">B Eilmann</name>
</author>
<author>
<name sortKey="Zweifel, R" uniqKey="Zweifel R">R Zweifel</name>
</author>
<author>
<name sortKey="Buchmann, N" uniqKey="Buchmann N">N Buchmann</name>
</author>
<author>
<name sortKey="Pannatier, Eg" uniqKey="Pannatier E">EG Pannatier</name>
</author>
<author>
<name sortKey="Rigling, A" uniqKey="Rigling A">A Rigling</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fischer, Em" uniqKey="Fischer E">EM Fischer</name>
</author>
<author>
<name sortKey="Seneviratne, Si" uniqKey="Seneviratne S">SI Seneviratne</name>
</author>
<author>
<name sortKey="Luthi, D" uniqKey="Luthi D">D Lüthi</name>
</author>
<author>
<name sortKey="Sch R, C" uniqKey="Sch R C">C Schär</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fischlin, A" uniqKey="Fischlin A">A Fischlin</name>
</author>
<author>
<name sortKey="Midgley, Gf" uniqKey="Midgley G">GF Midgley</name>
</author>
<author>
<name sortKey="Price, Jt" uniqKey="Price J">JT Price</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fisher, Em" uniqKey="Fisher E">EM Fisher</name>
</author>
<author>
<name sortKey="Knutti, R" uniqKey="Knutti R">R Knutti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fisk, Jp" uniqKey="Fisk J">JP Fisk</name>
</author>
<author>
<name sortKey="Hurtt, Gc" uniqKey="Hurtt G">GC Hurtt</name>
</author>
<author>
<name sortKey="Chambers, Jq" uniqKey="Chambers J">JQ Chambers</name>
</author>
<author>
<name sortKey="Zeng, H" uniqKey="Zeng H">H Zeng</name>
</author>
<author>
<name sortKey="Dolan, Ka" uniqKey="Dolan K">KA Dolan</name>
</author>
<author>
<name sortKey="Negr N Juarez, Ri" uniqKey="Negr N Juarez R">RI Negrón-Juárez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Founda, D" uniqKey="Founda D">D Founda</name>
</author>
<author>
<name sortKey="Giannakopoulos, C" uniqKey="Giannakopoulos C">C Giannakopoulos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frankenberg, C" uniqKey="Frankenberg C">C Frankenberg</name>
</author>
<author>
<name sortKey="Fisher, Jb" uniqKey="Fisher J">JB Fisher</name>
</author>
<author>
<name sortKey="Worden, J" uniqKey="Worden J">J Worden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frank, Dc" uniqKey="Frank D">DC Frank</name>
</author>
<author>
<name sortKey="Esper, J" uniqKey="Esper J">J Esper</name>
</author>
<author>
<name sortKey="Raible, Cc" uniqKey="Raible C">CC Raible</name>
</author>
<author>
<name sortKey="Buntgen, U" uniqKey="Buntgen U">U Buntgen</name>
</author>
<author>
<name sortKey="Trouet, V" uniqKey="Trouet V">V Trouet</name>
</author>
<author>
<name sortKey="Stocker, B" uniqKey="Stocker B">B Stocker</name>
</author>
<author>
<name sortKey="Joos, F" uniqKey="Joos F">F Joos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Freeman, C" uniqKey="Freeman C">C Freeman</name>
</author>
<author>
<name sortKey="Ostle, N" uniqKey="Ostle N">N Ostle</name>
</author>
<author>
<name sortKey="Kang, H" uniqKey="Kang H">H Kang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Friedlingstein, P" uniqKey="Friedlingstein P">P Friedlingstein</name>
</author>
<author>
<name sortKey="Cox, P" uniqKey="Cox P">P Cox</name>
</author>
<author>
<name sortKey="Betts, R" uniqKey="Betts R">R Betts</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frolking, S" uniqKey="Frolking S">S Frolking</name>
</author>
<author>
<name sortKey="Talbot, J" uniqKey="Talbot J">J Talbot</name>
</author>
<author>
<name sortKey="Jones, Mc" uniqKey="Jones M">MC Jones</name>
</author>
<author>
<name sortKey="Treat, Cc" uniqKey="Treat C">CC Treat</name>
</author>
<author>
<name sortKey="Kauffman, Jb" uniqKey="Kauffman J">JB Kauffman</name>
</author>
<author>
<name sortKey="Tuittila, Es" uniqKey="Tuittila E">ES Tuittila</name>
</author>
<author>
<name sortKey="Roulet, N" uniqKey="Roulet N">N Roulet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fuchslueger, L" uniqKey="Fuchslueger L">L Fuchslueger</name>
</author>
<author>
<name sortKey="Bahn, M" uniqKey="Bahn M">M Bahn</name>
</author>
<author>
<name sortKey="Fritz, K" uniqKey="Fritz K">K Fritz</name>
</author>
<author>
<name sortKey="Hasibeder, R" uniqKey="Hasibeder R">R Hasibeder</name>
</author>
<author>
<name sortKey="Richter, A" uniqKey="Richter A">A Richter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fuhrer, J" uniqKey="Fuhrer J">J Fuhrer</name>
</author>
<author>
<name sortKey="Beniston, M" uniqKey="Beniston M">M Beniston</name>
</author>
<author>
<name sortKey="Fischlin, A" uniqKey="Fischlin A">A Fischlin</name>
</author>
<author>
<name sortKey="Frei, C" uniqKey="Frei C">C Frei</name>
</author>
<author>
<name sortKey="Goyette, S" uniqKey="Goyette S">S Goyette</name>
</author>
<author>
<name sortKey="Jasper, K" uniqKey="Jasper K">K Jasper</name>
</author>
<author>
<name sortKey="Pfister, C" uniqKey="Pfister C">C Pfister</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ganteaume, A" uniqKey="Ganteaume A">A Ganteaume</name>
</author>
<author>
<name sortKey="Camia, A" uniqKey="Camia A">A Camia</name>
</author>
<author>
<name sortKey="Jappiot, M" uniqKey="Jappiot M">M Jappiot</name>
</author>
<author>
<name sortKey="San Miguel Ayanz, J" uniqKey="San Miguel Ayanz J">J San-Miguel-Ayanz</name>
</author>
<author>
<name sortKey="Long Fournel, M" uniqKey="Long Fournel M">M Long-Fournel</name>
</author>
<author>
<name sortKey="Lampin, C" uniqKey="Lampin C">C Lampin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garcia Ruiz, Jm" uniqKey="Garcia Ruiz J">JM García-Ruiz</name>
</author>
<author>
<name sortKey="Nadal Romero, E" uniqKey="Nadal Romero E">E Nadal-Romero</name>
</author>
<author>
<name sortKey="Lana Renault, N" uniqKey="Lana Renault N">N Lana-Renault</name>
</author>
<author>
<name sortKey="Begueria, S" uniqKey="Begueria S">S Beguería</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gerten, D" uniqKey="Gerten D">D Gerten</name>
</author>
<author>
<name sortKey="Luo, Y" uniqKey="Luo Y">Y Luo</name>
</author>
<author>
<name sortKey="Le Maire, G" uniqKey="Le Maire G">G Le Maire</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gilgen, Ak" uniqKey="Gilgen A">AK Gilgen</name>
</author>
<author>
<name sortKey="Buchmann, N" uniqKey="Buchmann N">N Buchmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goebel, M O" uniqKey="Goebel M">M-O Goebel</name>
</author>
<author>
<name sortKey="Bachmann, J" uniqKey="Bachmann J">J Bachmann</name>
</author>
<author>
<name sortKey="Reichstein, M" uniqKey="Reichstein M">M Reichstein</name>
</author>
<author>
<name sortKey="Janssens, Ia" uniqKey="Janssens I">IA Janssens</name>
</author>
<author>
<name sortKey="Guggenberger, G" uniqKey="Guggenberger G">G Guggenberger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goldsmith, St" uniqKey="Goldsmith S">ST Goldsmith</name>
</author>
<author>
<name sortKey="Carey, Ae" uniqKey="Carey A">AE Carey</name>
</author>
<author>
<name sortKey="Lyons, Bw" uniqKey="Lyons B">BW Lyons</name>
</author>
<author>
<name sortKey="Kao, S J" uniqKey="Kao S">S-J Kao</name>
</author>
<author>
<name sortKey="Lee, T Y" uniqKey="Lee T">T-Y Lee</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gouttevin, I" uniqKey="Gouttevin I">I Gouttevin</name>
</author>
<author>
<name sortKey="Menegoz, M" uniqKey="Menegoz M">M Menegoz</name>
</author>
<author>
<name sortKey="Domine, F" uniqKey="Domine F">F Domine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Granda, E" uniqKey="Granda E">E Granda</name>
</author>
<author>
<name sortKey="Camarero, Jj" uniqKey="Camarero J">JJ Camarero</name>
</author>
<author>
<name sortKey="Gimeno, Te" uniqKey="Gimeno T">TE Gimeno</name>
</author>
<author>
<name sortKey="Martinez Fernandez, J" uniqKey="Martinez Fernandez J">J Martínez-Fernández</name>
</author>
<author>
<name sortKey="Valladares, F" uniqKey="Valladares F">F Valladares</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Granier, A" uniqKey="Granier A">A Granier</name>
</author>
<author>
<name sortKey="Reichstein, M" uniqKey="Reichstein M">M Reichstein</name>
</author>
<author>
<name sortKey="Breda, N" uniqKey="Breda N">N Bréda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grippa, M" uniqKey="Grippa M">M Grippa</name>
</author>
<author>
<name sortKey="Kergoat, L" uniqKey="Kergoat L">L Kergoat</name>
</author>
<author>
<name sortKey="Toan, Tl" uniqKey="Toan T">TL Toan</name>
</author>
<author>
<name sortKey="Mognard, Nm" uniqKey="Mognard N">NM Mognard</name>
</author>
<author>
<name sortKey="Delbart, N" uniqKey="Delbart N">N Delbart</name>
</author>
<author>
<name sortKey="L Ermitte, J" uniqKey="L Ermitte J">J L′Hermitte</name>
</author>
<author>
<name sortKey="Vicente Settano, Sm" uniqKey="Vicente Settano S">SM Vicente-Settano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guanter, L" uniqKey="Guanter L">L Guanter</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Jung, M" uniqKey="Jung M">M Jung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haarsma, Rj" uniqKey="Haarsma R">RJ Haarsma</name>
</author>
<author>
<name sortKey="Selten, F" uniqKey="Selten F">F Selten</name>
</author>
<author>
<name sortKey="Hurk, Bv" uniqKey="Hurk B">BV Hurk</name>
</author>
<author>
<name sortKey="Hazeleger, W" uniqKey="Hazeleger W">W Hazeleger</name>
</author>
<author>
<name sortKey="Wang, Xl" uniqKey="Wang X">XL Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hanson, Ce" uniqKey="Hanson C">CE Hanson</name>
</author>
<author>
<name sortKey="Palutikof, Jp" uniqKey="Palutikof J">JP Palutikof</name>
</author>
<author>
<name sortKey="Dlugolecki, A" uniqKey="Dlugolecki A">A Dlugolecki</name>
</author>
<author>
<name sortKey="Giannakopoulos, C" uniqKey="Giannakopoulos C">C Giannakopoulos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hao, Zx" uniqKey="Hao Z">ZX Hao</name>
</author>
<author>
<name sortKey="Zheng, Jy" uniqKey="Zheng J">JY Zheng</name>
</author>
<author>
<name sortKey="Ge, Qs" uniqKey="Ge Q">QS Ge</name>
</author>
<author>
<name sortKey="Wang, W C" uniqKey="Wang W">W-C Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haverd, V" uniqKey="Haverd V">V Haverd</name>
</author>
<author>
<name sortKey="Raupach, Mr" uniqKey="Raupach M">MR Raupach</name>
</author>
<author>
<name sortKey="Briggs, Pr" uniqKey="Briggs P">PR Briggs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hicke, Ja" uniqKey="Hicke J">JA Hicke</name>
</author>
<author>
<name sortKey="Allen, Cd" uniqKey="Allen C">CD Allen</name>
</author>
<author>
<name sortKey="Desai, Ar" uniqKey="Desai A">AR Desai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hilton, Rg" uniqKey="Hilton R">RG Hilton</name>
</author>
<author>
<name sortKey="Galy, A" uniqKey="Galy A">A Galy</name>
</author>
<author>
<name sortKey="Hovius, N" uniqKey="Hovius N">N Hovius</name>
</author>
<author>
<name sortKey="Chen, M C" uniqKey="Chen M">M-C Chen</name>
</author>
<author>
<name sortKey="Horng, M J" uniqKey="Horng M">M-J Horng</name>
</author>
<author>
<name sortKey="Chen, H" uniqKey="Chen H">H Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hirschi, M" uniqKey="Hirschi M">M Hirschi</name>
</author>
<author>
<name sortKey="Seneviratne, Si" uniqKey="Seneviratne S">SI Seneviratne</name>
</author>
<author>
<name sortKey="Alexandrov, V" uniqKey="Alexandrov V">V Alexandrov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hong, C C" uniqKey="Hong C">C-C Hong</name>
</author>
<author>
<name sortKey="Hsu, H H" uniqKey="Hsu H">H-H Hsu</name>
</author>
<author>
<name sortKey="Lin, N H" uniqKey="Lin N">N-H Lin</name>
</author>
<author>
<name sortKey="Chiu, H" uniqKey="Chiu H">H Chiu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Houze, Ra" uniqKey="Houze R">RA Houze</name>
</author>
<author>
<name sortKey="Rasmussen, Kl" uniqKey="Rasmussen K">KL Rasmussen</name>
</author>
<author>
<name sortKey="Medina, S" uniqKey="Medina S">S Medina</name>
</author>
<author>
<name sortKey="Brodzik, Sr" uniqKey="Brodzik S">SR Brodzik</name>
</author>
<author>
<name sortKey="Romatschke, U" uniqKey="Romatschke U">U Romatschke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Imbert, D" uniqKey="Imbert D">D Imbert</name>
</author>
<author>
<name sortKey="Portecop, J" uniqKey="Portecop J">J Portecop</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Field, Cb" uniqKey="Field C">CB Field</name>
</author>
<author>
<name sortKey="Barros, V" uniqKey="Barros V">V Barros</name>
</author>
<author>
<name sortKey="Stocker, Tf" uniqKey="Stocker T">TF Stocker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stocker, Tf" uniqKey="Stocker T">TF Stocker</name>
</author>
<author>
<name sortKey="Qin, D" uniqKey="Qin D">D Qin</name>
</author>
<author>
<name sortKey="Plattner, G K" uniqKey="Plattner G">G-K Plattner</name>
</author>
<author>
<name sortKey="Tignor, M" uniqKey="Tignor M">M Tignor</name>
</author>
<author>
<name sortKey="Allen, Sk" uniqKey="Allen S">SK Allen</name>
</author>
<author>
<name sortKey="Boschung, J" uniqKey="Boschung J">J Boschung</name>
</author>
<author>
<name sortKey="Nauels, A" uniqKey="Nauels A">A Nauels</name>
</author>
<author>
<name sortKey="Xia, Y" uniqKey="Xia Y">Y Xia</name>
</author>
<author>
<name sortKey="Bex, V" uniqKey="Bex V">V Bex</name>
</author>
<author>
<name sortKey="Midgley, Pm" uniqKey="Midgley P">PM Midgley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Irland, Lc" uniqKey="Irland L">LC Irland</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jactel, H" uniqKey="Jactel H">H Jactel</name>
</author>
<author>
<name sortKey="Petit, J" uniqKey="Petit J">J Petit</name>
</author>
<author>
<name sortKey="Desprez Loustau, M L" uniqKey="Desprez Loustau M">M-L Desprez-Loustau</name>
</author>
<author>
<name sortKey="Delzon, S" uniqKey="Delzon S">S Delzon</name>
</author>
<author>
<name sortKey="Piou, D" uniqKey="Piou D">D Piou</name>
</author>
<author>
<name sortKey="Battisti, A" uniqKey="Battisti A">A Battisti</name>
</author>
<author>
<name sortKey="Koricheva, J" uniqKey="Koricheva J">J Koricheva</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jarvis, P" uniqKey="Jarvis P">P Jarvis</name>
</author>
<author>
<name sortKey="Rey, A" uniqKey="Rey A">A Rey</name>
</author>
<author>
<name sortKey="Petsikos, C" uniqKey="Petsikos C">C Petsikos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jentsch, A" uniqKey="Jentsch A">A Jentsch</name>
</author>
<author>
<name sortKey="Kreyling, J" uniqKey="Kreyling J">J Kreyling</name>
</author>
<author>
<name sortKey="Boettcher Treschkow, J" uniqKey="Boettcher Treschkow J">J Boettcher-Treschkow</name>
</author>
<author>
<name sortKey="Beierkuhnlein, C" uniqKey="Beierkuhnlein C">C Beierkuhnlein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jentsch, A" uniqKey="Jentsch A">A Jentsch</name>
</author>
<author>
<name sortKey="Kreyling, J" uniqKey="Kreyling J">J Kreyling</name>
</author>
<author>
<name sortKey="Elmer, M" uniqKey="Elmer M">M Elmer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jepsen, J" uniqKey="Jepsen J">J Jepsen</name>
</author>
<author>
<name sortKey="Hagen, S" uniqKey="Hagen S">S Hagen</name>
</author>
<author>
<name sortKey="Hogda, K" uniqKey="Hogda K">K Hogda</name>
</author>
<author>
<name sortKey="Ims, R" uniqKey="Ims R">R Ims</name>
</author>
<author>
<name sortKey="Karlsen, S" uniqKey="Karlsen S">S Karlsen</name>
</author>
<author>
<name sortKey="Tommervik, H" uniqKey="Tommervik H">H Tommervik</name>
</author>
<author>
<name sortKey="Yoccoz, N" uniqKey="Yoccoz N">N Yoccoz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johansen, Mp" uniqKey="Johansen M">MP Johansen</name>
</author>
<author>
<name sortKey="Hakonson, Te" uniqKey="Hakonson T">TE Hakonson</name>
</author>
<author>
<name sortKey="Breshears, Dd" uniqKey="Breshears D">DD Breshears</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johnson, Dm" uniqKey="Johnson D">DM Johnson</name>
</author>
<author>
<name sortKey="Buntgen, U" uniqKey="Buntgen U">U Büntgen</name>
</author>
<author>
<name sortKey="Frank, Dc" uniqKey="Frank D">DC Frank</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jung, M" uniqKey="Jung M">M Jung</name>
</author>
<author>
<name sortKey="Reichstein, M" uniqKey="Reichstein M">M Reichstein</name>
</author>
<author>
<name sortKey="Margolis, Ha" uniqKey="Margolis H">HA Margolis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jung, B J" uniqKey="Jung B">B-J Jung</name>
</author>
<author>
<name sortKey="Lee, H J" uniqKey="Lee H">H-J Lee</name>
</author>
<author>
<name sortKey="Jeong, J J" uniqKey="Jeong J">J-J Jeong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jungkunst, Hf" uniqKey="Jungkunst H">HF Jungkunst</name>
</author>
<author>
<name sortKey="Fiedler, S" uniqKey="Fiedler S">S Fiedler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kasin, I" uniqKey="Kasin I">I Kasin</name>
</author>
<author>
<name sortKey="Ohlson, M" uniqKey="Ohlson M">M Ohlson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Katz, Rw" uniqKey="Katz R">RW Katz</name>
</author>
<author>
<name sortKey="Brown, Bg" uniqKey="Brown B">BG Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kausrud, K" uniqKey="Kausrud K">K Kausrud</name>
</author>
<author>
<name sortKey="Okland, B" uniqKey="Okland B">B Okland</name>
</author>
<author>
<name sortKey="Skarpaas, O" uniqKey="Skarpaas O">O Skarpaas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Keenan, T" uniqKey="Keenan T">T Keenan</name>
</author>
<author>
<name sortKey="Sabate, S" uniqKey="Sabate S">S Sabate</name>
</author>
<author>
<name sortKey="Gracia, C" uniqKey="Gracia C">C Gracia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Keith, H" uniqKey="Keith H">H Keith</name>
</author>
<author>
<name sortKey="Van Gorsel, E" uniqKey="Van Gorsel E">E van Gorsel</name>
</author>
<author>
<name sortKey="Jacobsen, Kl" uniqKey="Jacobsen K">KL Jacobsen</name>
</author>
<author>
<name sortKey="Cleugh, Ha" uniqKey="Cleugh H">HA Cleugh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, D G" uniqKey="Kim D">D-G Kim</name>
</author>
<author>
<name sortKey="Vargas, R" uniqKey="Vargas R">R Vargas</name>
</author>
<author>
<name sortKey="Bond Lamberty, B" uniqKey="Bond Lamberty B">B Bond-Lamberty</name>
</author>
<author>
<name sortKey="Turetsky, Mr" uniqKey="Turetsky M">MR Turetsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Knapp, Ak" uniqKey="Knapp A">AK Knapp</name>
</author>
<author>
<name sortKey="Beier, C" uniqKey="Beier C">C Beier</name>
</author>
<author>
<name sortKey="Briske, Dd" uniqKey="Briske D">DD Briske</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Komonen, A" uniqKey="Komonen A">A Komonen</name>
</author>
<author>
<name sortKey="Schroeder, Lm" uniqKey="Schroeder L">LM Schroeder</name>
</author>
<author>
<name sortKey="Weslien, J" uniqKey="Weslien J">J Weslien</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Konovalov, Ib" uniqKey="Konovalov I">IB Konovalov</name>
</author>
<author>
<name sortKey="Beekmann, M" uniqKey="Beekmann M">M Beekmann</name>
</author>
<author>
<name sortKey="Kuznetsova, In" uniqKey="Kuznetsova I">IN Kuznetsova</name>
</author>
<author>
<name sortKey="Yurova, A" uniqKey="Yurova A">A Yurova</name>
</author>
<author>
<name sortKey="Zvyagintsev, Am" uniqKey="Zvyagintsev A">AM Zvyagintsev</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kopittke, Gr" uniqKey="Kopittke G">GR Kopittke</name>
</author>
<author>
<name sortKey="Tietema, A" uniqKey="Tietema A">A Tietema</name>
</author>
<author>
<name sortKey="Van Loon, Ee" uniqKey="Van Loon E">EE van Loon</name>
</author>
<author>
<name sortKey="Assheman, D" uniqKey="Assheman D">D Assheman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kramer, K" uniqKey="Kramer K">K Kramer</name>
</author>
<author>
<name sortKey="Vreugdenhil, Sj" uniqKey="Vreugdenhil S">SJ Vreugdenhil</name>
</author>
<author>
<name sortKey="Van Der Werf, Dc" uniqKey="Van Der Werf D">DC van der Werf</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kreuzwieser, J" uniqKey="Kreuzwieser J">J Kreuzwieser</name>
</author>
<author>
<name sortKey="Papadopoulou, E" uniqKey="Papadopoulou E">E Papadopoulou</name>
</author>
<author>
<name sortKey="Rennenberg, H" uniqKey="Rennenberg H">H Rennenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kreyling, J" uniqKey="Kreyling J">J Kreyling</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kreyling, J" uniqKey="Kreyling J">J Kreyling</name>
</author>
<author>
<name sortKey="Jentsch, A" uniqKey="Jentsch A">A Jentsch</name>
</author>
<author>
<name sortKey="Beierkuhnlein, C" uniqKey="Beierkuhnlein C">C Beierkuhnlein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kreyling, J" uniqKey="Kreyling J">J Kreyling</name>
</author>
<author>
<name sortKey="Jentsch, A" uniqKey="Jentsch A">A Jentsch</name>
</author>
<author>
<name sortKey="Beier, C" uniqKey="Beier C">C Beier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kurz, Wa" uniqKey="Kurz W">WA Kurz</name>
</author>
<author>
<name sortKey="Stinson, G" uniqKey="Stinson G">G Stinson</name>
</author>
<author>
<name sortKey="Rampley, G" uniqKey="Rampley G">G Rampley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kurz, Wa" uniqKey="Kurz W">WA Kurz</name>
</author>
<author>
<name sortKey="Dymond, Cc" uniqKey="Dymond C">CC Dymond</name>
</author>
<author>
<name sortKey="Stinson, G" uniqKey="Stinson G">G Stinson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lal, R" uniqKey="Lal R">R Lal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lal, R" uniqKey="Lal R">R Lal</name>
</author>
<author>
<name sortKey="Pimentel, D" uniqKey="Pimentel D">D Pimentel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lal, R" uniqKey="Lal R">R Lal</name>
</author>
<author>
<name sortKey="Lorenz, K" uniqKey="Lorenz K">K Lorenz</name>
</author>
<author>
<name sortKey="Huttl, Rf" uniqKey="Huttl R">RF Hüttl</name>
</author>
<author>
<name sortKey="Schneider, Bu" uniqKey="Schneider B">BU Schneider</name>
</author>
<author>
<name sortKey="Von Braun, J" uniqKey="Von Braun J">J von Braun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Larcher, W" uniqKey="Larcher W">W Larcher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lawlor, Dw" uniqKey="Lawlor D">DW Lawlor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lewis, Sl" uniqKey="Lewis S">SL Lewis</name>
</author>
<author>
<name sortKey="Brando, Pm" uniqKey="Brando P">PM Brando</name>
</author>
<author>
<name sortKey="Phillips, Ol" uniqKey="Phillips O">OL Phillips</name>
</author>
<author>
<name sortKey="Van Der Heijden, Gmf" uniqKey="Van Der Heijden G">GMF Van Der Heijden</name>
</author>
<author>
<name sortKey="Nepstad, D" uniqKey="Nepstad D">D Nepstad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, F" uniqKey="Li F">F Li</name>
</author>
<author>
<name sortKey="Bond Lamberty, B" uniqKey="Bond Lamberty B">B Bond-Lamberty</name>
</author>
<author>
<name sortKey="Levis, S" uniqKey="Levis S">S Levis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lindroth, A" uniqKey="Lindroth A">A Lindroth</name>
</author>
<author>
<name sortKey="Lagergren, F" uniqKey="Lagergren F">F Lagergren</name>
</author>
<author>
<name sortKey="Grelle, A" uniqKey="Grelle A">A Grelle</name>
</author>
<author>
<name sortKey="Klemedtsson, L" uniqKey="Klemedtsson L">L Klemedtsson</name>
</author>
<author>
<name sortKey="Langvall, O" uniqKey="Langvall O">O Langvall</name>
</author>
<author>
<name sortKey="Weslien, P" uniqKey="Weslien P">P Weslien</name>
</author>
<author>
<name sortKey="Tuulik, J" uniqKey="Tuulik J">J Tuulik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lobell, Db" uniqKey="Lobell D">DB Lobell</name>
</author>
<author>
<name sortKey="Sibley, A" uniqKey="Sibley A">A Sibley</name>
</author>
<author>
<name sortKey="Ortiz Monasterio, Ji" uniqKey="Ortiz Monasterio J">JI Ortiz-Monasterio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Major, J" uniqKey="Major J">J Major</name>
</author>
<author>
<name sortKey="Lehmann, J" uniqKey="Lehmann J">J Lehmann</name>
</author>
<author>
<name sortKey="Rondon, M" uniqKey="Rondon M">M Rondon</name>
</author>
<author>
<name sortKey="Goodale, C" uniqKey="Goodale C">C Goodale</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marino, Gp" uniqKey="Marino G">GP Marino</name>
</author>
<author>
<name sortKey="Kaiser, Dp" uniqKey="Kaiser D">DP Kaiser</name>
</author>
<author>
<name sortKey="Gu, L" uniqKey="Gu L">L Gu</name>
</author>
<author>
<name sortKey="Ricciuto, Dm" uniqKey="Ricciuto D">DM Ricciuto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mayr, S" uniqKey="Mayr S">S Mayr</name>
</author>
<author>
<name sortKey="Gruber, A" uniqKey="Gruber A">A Gruber</name>
</author>
<author>
<name sortKey="Bauer, H" uniqKey="Bauer H">H Bauer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mayr, S" uniqKey="Mayr S">S Mayr</name>
</author>
<author>
<name sortKey="Cochard, H" uniqKey="Cochard H">H Cochard</name>
</author>
<author>
<name sortKey="Ameglio, T" uniqKey="Ameglio T">T Améglio</name>
</author>
<author>
<name sortKey="Kikuta, Sb" uniqKey="Kikuta S">SB Kikuta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mccarthy, Hr" uniqKey="Mccarthy H">HR McCarthy</name>
</author>
<author>
<name sortKey="Oren, R" uniqKey="Oren R">R Oren</name>
</author>
<author>
<name sortKey="Kim, Hs" uniqKey="Kim H">HS Kim</name>
</author>
<author>
<name sortKey="Johnsen, Kh" uniqKey="Johnsen K">KH Johnsen</name>
</author>
<author>
<name sortKey="Maier, C" uniqKey="Maier C">C Maier</name>
</author>
<author>
<name sortKey="Pritchard, Sg" uniqKey="Pritchard S">SG Pritchard</name>
</author>
<author>
<name sortKey="Davis, Ma" uniqKey="Davis M">MA Davis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcdowell, N" uniqKey="Mcdowell N">N McDowell</name>
</author>
<author>
<name sortKey="Pockman, Wt" uniqKey="Pockman W">WT Pockman</name>
</author>
<author>
<name sortKey="Allen, Cd" uniqKey="Allen C">CD Allen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcdowell, Ng" uniqKey="Mcdowell N">NG McDowell</name>
</author>
<author>
<name sortKey="Beerling, Dj" uniqKey="Beerling D">DJ Beerling</name>
</author>
<author>
<name sortKey="Breshears, Dd" uniqKey="Breshears D">DD Breshears</name>
</author>
<author>
<name sortKey="Fisher, Ra" uniqKey="Fisher R">RA Fisher</name>
</author>
<author>
<name sortKey="Raffa, Kf" uniqKey="Raffa K">KF Raffa</name>
</author>
<author>
<name sortKey="Stitt, M" uniqKey="Stitt M">M Stitt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcdowell, Ng" uniqKey="Mcdowell N">NG McDowell</name>
</author>
<author>
<name sortKey="Fisher, Ra" uniqKey="Fisher R">RA Fisher</name>
</author>
<author>
<name sortKey="Xu, C" uniqKey="Xu C">C Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Menzel, A" uniqKey="Menzel A">A Menzel</name>
</author>
<author>
<name sortKey="Sparks, Th" uniqKey="Sparks T">TH Sparks</name>
</author>
<author>
<name sortKey="Estrella, N" uniqKey="Estrella N">N Estrella</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Michaelian, M" uniqKey="Michaelian M">M Michaelian</name>
</author>
<author>
<name sortKey="Hogg, Eh" uniqKey="Hogg E">EH Hogg</name>
</author>
<author>
<name sortKey="Hall, Rj" uniqKey="Hall R">RJ Hall</name>
</author>
<author>
<name sortKey="Arsenault, E" uniqKey="Arsenault E">E Arsenault</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Migliavacca, M" uniqKey="Migliavacca M">M Migliavacca</name>
</author>
<author>
<name sortKey="Meroni, M" uniqKey="Meroni M">M Meroni</name>
</author>
<author>
<name sortKey="Manca, G" uniqKey="Manca G">G Manca</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mildrexler, Dj" uniqKey="Mildrexler D">DJ Mildrexler</name>
</author>
<author>
<name sortKey="Zhao, Ms" uniqKey="Zhao M">MS Zhao</name>
</author>
<author>
<name sortKey="Running, Sw" uniqKey="Running S">SW Running</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Misson, L" uniqKey="Misson L">L Misson</name>
</author>
<author>
<name sortKey="Limousin, J M" uniqKey="Limousin J">J-M Limousin</name>
</author>
<author>
<name sortKey="Rodriguez, R" uniqKey="Rodriguez R">R Rodriguez</name>
</author>
<author>
<name sortKey="Letts, Mg" uniqKey="Letts M">MG Letts</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Misson, L" uniqKey="Misson L">L Misson</name>
</author>
<author>
<name sortKey="Degueldre, D" uniqKey="Degueldre D">D Degueldre</name>
</author>
<author>
<name sortKey="Collin, C" uniqKey="Collin C">C Collin</name>
</author>
<author>
<name sortKey="Rodriguez, R" uniqKey="Rodriguez R">R Rodriguez</name>
</author>
<author>
<name sortKey="Rocheteau, A" uniqKey="Rocheteau A">A Rocheteau</name>
</author>
<author>
<name sortKey="Ourcival, J M" uniqKey="Ourcival J">J-M Ourcival</name>
</author>
<author>
<name sortKey="Rambal, S" uniqKey="Rambal S">S Rambal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Der Molen, Mk" uniqKey="Van Der Molen M">MK van der Molen</name>
</author>
<author>
<name sortKey="Dolman, Aj" uniqKey="Dolman A">AJ Dolman</name>
</author>
<author>
<name sortKey="Ciais, P" uniqKey="Ciais P">P Ciais</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Monson, Rk" uniqKey="Monson R">RK Monson</name>
</author>
<author>
<name sortKey="Lipson, Dl" uniqKey="Lipson D">DL Lipson</name>
</author>
<author>
<name sortKey="Burns, Sp" uniqKey="Burns S">SP Burns</name>
</author>
<author>
<name sortKey="Turnipseed, Aa" uniqKey="Turnipseed A">AA Turnipseed</name>
</author>
<author>
<name sortKey="Delany, Ac" uniqKey="Delany A">AC Delany</name>
</author>
<author>
<name sortKey="Williams, Mw" uniqKey="Williams M">MW Williams</name>
</author>
<author>
<name sortKey="Schmidt, Sk" uniqKey="Schmidt S">SK Schmidt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morgan, Ja" uniqKey="Morgan J">JA Morgan</name>
</author>
<author>
<name sortKey="Lecain, Dr" uniqKey="Lecain D">DR LeCain</name>
</author>
<author>
<name sortKey="Pendall, E" uniqKey="Pendall E">E Pendall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moriondo, M" uniqKey="Moriondo M">M Moriondo</name>
</author>
<author>
<name sortKey="Good, P" uniqKey="Good P">P Good</name>
</author>
<author>
<name sortKey="Durao, R" uniqKey="Durao R">R Durao</name>
</author>
<author>
<name sortKey="Bindi, M" uniqKey="Bindi M">M Bindi</name>
</author>
<author>
<name sortKey="Giannakopoulos, C" uniqKey="Giannakopoulos C">C Giannakopoulos</name>
</author>
<author>
<name sortKey="Corte Real, J" uniqKey="Corte Real J">J Corte-Real</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morton, Dc" uniqKey="Morton D">DC Morton</name>
</author>
<author>
<name sortKey="Le Page, Y" uniqKey="Le Page Y">Y Le Page</name>
</author>
<author>
<name sortKey="Defries, R" uniqKey="Defries R">R DeFries</name>
</author>
<author>
<name sortKey="Collatz, Gj" uniqKey="Collatz G">GJ Collatz</name>
</author>
<author>
<name sortKey="Hurtt, Gc" uniqKey="Hurtt G">GC Hurtt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mueller, B" uniqKey="Mueller B">B Mueller</name>
</author>
<author>
<name sortKey="Seneviratne, Si" uniqKey="Seneviratne S">SI Seneviratne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muhr, J" uniqKey="Muhr J">J Muhr</name>
</author>
<author>
<name sortKey="Franke, J" uniqKey="Franke J">J Franke</name>
</author>
<author>
<name sortKey="Borken, W" uniqKey="Borken W">W Borken</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Myneni, Rb" uniqKey="Myneni R">RB Myneni</name>
</author>
<author>
<name sortKey="Keeling, Cd" uniqKey="Keeling C">CD Keeling</name>
</author>
<author>
<name sortKey="Tucker, Cj" uniqKey="Tucker C">CJ Tucker</name>
</author>
<author>
<name sortKey="Asrar, G" uniqKey="Asrar G">G Asrar</name>
</author>
<author>
<name sortKey="Nemani, Rr" uniqKey="Nemani R">RR Nemani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nagy, L" uniqKey="Nagy L">L Nagy</name>
</author>
<author>
<name sortKey="Kreyling, J" uniqKey="Kreyling J">J Kreyling</name>
</author>
<author>
<name sortKey="Gellesch, E" uniqKey="Gellesch E">E Gellesch</name>
</author>
<author>
<name sortKey="Beierkuhnlein, C" uniqKey="Beierkuhnlein C">C Beierkuhnlein</name>
</author>
<author>
<name sortKey="Jentsch, A" uniqKey="Jentsch A">A Jentsch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Negr N Juarez, R" uniqKey="Negr N Juarez R">R Negrón-Juárez</name>
</author>
<author>
<name sortKey="Baker, Db" uniqKey="Baker D">DB Baker</name>
</author>
<author>
<name sortKey="Zeng, H" uniqKey="Zeng H">H Zeng</name>
</author>
<author>
<name sortKey="Henkel, Tk" uniqKey="Henkel T">TK Henkel</name>
</author>
<author>
<name sortKey="Chambers, Jq" uniqKey="Chambers J">JQ Chambers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Negr N Juarez, Ri" uniqKey="Negr N Juarez R">RI Negrón-Juárez</name>
</author>
<author>
<name sortKey="Chambers, Jq" uniqKey="Chambers J">JQ Chambers</name>
</author>
<author>
<name sortKey="Guimaraes, G" uniqKey="Guimaraes G">G Guimaraes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nepstad, Dc" uniqKey="Nepstad D">DC Nepstad</name>
</author>
<author>
<name sortKey="Decarvalho, Cr" uniqKey="Decarvalho C">CR Decarvalho</name>
</author>
<author>
<name sortKey="Davidson, Ea" uniqKey="Davidson E">EA Davidson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Netherer, S" uniqKey="Netherer S">S Netherer</name>
</author>
<author>
<name sortKey="Schopf, A" uniqKey="Schopf A">A Schopf</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nicholls, N" uniqKey="Nicholls N">N Nicholls</name>
</author>
<author>
<name sortKey="Alexander, L" uniqKey="Alexander L">L Alexander</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Niu, S" uniqKey="Niu S">S Niu</name>
</author>
<author>
<name sortKey="Luo, Y" uniqKey="Luo Y">Y Luo</name>
</author>
<author>
<name sortKey="Li, D" uniqKey="Li D">D Li</name>
</author>
<author>
<name sortKey="Cao, S" uniqKey="Cao S">S Cao</name>
</author>
<author>
<name sortKey="Xia, J" uniqKey="Xia J">J Xia</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J Li</name>
</author>
<author>
<name sortKey="Smith, Md" uniqKey="Smith M">MD Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nyk Nen, M L" uniqKey="Nyk Nen M">M-L Nykänen</name>
</author>
<author>
<name sortKey="Peltola, H" uniqKey="Peltola H">H Peltola</name>
</author>
<author>
<name sortKey="Quine, Cp" uniqKey="Quine C">CP Quine</name>
</author>
<author>
<name sortKey="Kellom Ki, S" uniqKey="Kellom Ki S">S Kellomäki</name>
</author>
<author>
<name sortKey="Broadgate, M" uniqKey="Broadgate M">M Broadgate</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Oost, K" uniqKey="Van Oost K">K van Oost</name>
</author>
<author>
<name sortKey="Quine, Ta" uniqKey="Quine T">TA Quine</name>
</author>
<author>
<name sortKey="Govers, G" uniqKey="Govers G">G Govers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey=" Ygarden, L" uniqKey=" Ygarden L">L Øygarden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Page, Se" uniqKey="Page S">SE Page</name>
</author>
<author>
<name sortKey="Siegert, F" uniqKey="Siegert F">F Siegert</name>
</author>
<author>
<name sortKey="Rieley, Jo" uniqKey="Rieley J">JO Rieley</name>
</author>
<author>
<name sortKey="Boehm, Hdv" uniqKey="Boehm H">HDV Boehm</name>
</author>
<author>
<name sortKey="Jaya, A" uniqKey="Jaya A">A Jaya</name>
</author>
<author>
<name sortKey="Limin, S" uniqKey="Limin S">S Limin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Palacio, S" uniqKey="Palacio S">S Palacio</name>
</author>
<author>
<name sortKey="Hoch, G" uniqKey="Hoch G">G Hoch</name>
</author>
<author>
<name sortKey="Sala, A" uniqKey="Sala A">A Sala</name>
</author>
<author>
<name sortKey="Korner, C" uniqKey="Korner C">C Körner</name>
</author>
<author>
<name sortKey="Millard, P" uniqKey="Millard P">P Millard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pan, Y" uniqKey="Pan Y">Y Pan</name>
</author>
<author>
<name sortKey="Birdsey, Ra" uniqKey="Birdsey R">RA Birdsey</name>
</author>
<author>
<name sortKey="Fang, J" uniqKey="Fang J">J Fang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parry, Ml" uniqKey="Parry M">ML Parry</name>
</author>
<author>
<name sortKey="Canziani, Of" uniqKey="Canziani O">OF Canziani</name>
</author>
<author>
<name sortKey="Palutikof, Jp" uniqKey="Palutikof J">JP Palutikof</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pausas, Jg" uniqKey="Pausas J">JG Pausas</name>
</author>
<author>
<name sortKey="Paula, S" uniqKey="Paula S">S Paula</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peng, Ss" uniqKey="Peng S">SS Peng</name>
</author>
<author>
<name sortKey="Piao, S" uniqKey="Piao S">S Piao</name>
</author>
<author>
<name sortKey="Zeng, Z" uniqKey="Zeng Z">Z Zeng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pe Uelas, J" uniqKey="Pe Uelas J">J Peñuelas</name>
</author>
<author>
<name sortKey="Sardans, J" uniqKey="Sardans J">J Sardans</name>
</author>
<author>
<name sortKey="Estiarte, M" uniqKey="Estiarte M">M Estiarte</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Phillips, Ol" uniqKey="Phillips O">OL Phillips</name>
</author>
<author>
<name sortKey="Aragao, Leoc" uniqKey="Aragao L">LEOC Aragão</name>
</author>
<author>
<name sortKey="Lewis, Sl" uniqKey="Lewis S">SL Lewis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pilegaard, K" uniqKey="Pilegaard K">K Pilegaard</name>
</author>
<author>
<name sortKey="Ibrom, A" uniqKey="Ibrom A">A Ibrom</name>
</author>
<author>
<name sortKey="Courtney, Ms" uniqKey="Courtney M">MS Courtney</name>
</author>
<author>
<name sortKey="Hummelsh J, P" uniqKey="Hummelsh J P">P Hummelshøj</name>
</author>
<author>
<name sortKey="Jensen, No" uniqKey="Jensen N">NO Jensen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Polle, A" uniqKey="Polle A">A Polle</name>
</author>
<author>
<name sortKey="Kroniger, W" uniqKey="Kroniger W">W Kröniger</name>
</author>
<author>
<name sortKey="Rennenberg, H" uniqKey="Rennenberg H">H Rennenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Porter, Jr" uniqKey="Porter J">JR Porter</name>
</author>
<author>
<name sortKey="Semenov, Ma" uniqKey="Semenov M">MA Semenov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Posthumus, H" uniqKey="Posthumus H">H Posthumus</name>
</author>
<author>
<name sortKey="Morris, J" uniqKey="Morris J">J Morris</name>
</author>
<author>
<name sortKey="Hess, Tm" uniqKey="Hess T">TM Hess</name>
</author>
<author>
<name sortKey="Neville, D" uniqKey="Neville D">D Neville</name>
</author>
<author>
<name sortKey="Phillips, E" uniqKey="Phillips E">E Phillips</name>
</author>
<author>
<name sortKey="Baylis, A" uniqKey="Baylis A">A Baylis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poulter, B" uniqKey="Poulter B">B Poulter</name>
</author>
<author>
<name sortKey="Frank, D" uniqKey="Frank D">D Frank</name>
</author>
<author>
<name sortKey="Ciais, P" uniqKey="Ciais P">P Ciais</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Preston, Cm" uniqKey="Preston C">CM Preston</name>
</author>
<author>
<name sortKey="Schmidt, Mwi" uniqKey="Schmidt M">MWI Schmidt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Price, Dt" uniqKey="Price D">DT Price</name>
</author>
<author>
<name sortKey="Alfaro, Ri" uniqKey="Alfaro R">RI Alfaro</name>
</author>
<author>
<name sortKey="Brown, Kj" uniqKey="Brown K">KJ Brown</name>
</author>
<author>
<name sortKey="Flannigan, Md" uniqKey="Flannigan M">MD Flannigan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ramankutty, N" uniqKey="Ramankutty N">N Ramankutty</name>
</author>
<author>
<name sortKey="Evan, At" uniqKey="Evan A">AT Evan</name>
</author>
<author>
<name sortKey="Monfreda, C" uniqKey="Monfreda C">C Monfreda</name>
</author>
<author>
<name sortKey="Foley, Ja" uniqKey="Foley J">JA Foley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rammig, A" uniqKey="Rammig A">A Rammig</name>
</author>
<author>
<name sortKey="Wiedermann, M" uniqKey="Wiedermann M">M Wiedermann</name>
</author>
<author>
<name sortKey="Donges, J" uniqKey="Donges J">J Donges</name>
</author>
<author>
<name sortKey="Babst, F" uniqKey="Babst F">F Babst</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reddy, Ar" uniqKey="Reddy A">AR Reddy</name>
</author>
<author>
<name sortKey="Chaitanya, Kv" uniqKey="Chaitanya K">KV Chaitanya</name>
</author>
<author>
<name sortKey="Vivekanandan, M" uniqKey="Vivekanandan M">M Vivekanandan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reichstein, M" uniqKey="Reichstein M">M Reichstein</name>
</author>
<author>
<name sortKey="Ciais, P" uniqKey="Ciais P">P Ciais</name>
</author>
<author>
<name sortKey="Papale, D" uniqKey="Papale D">D Papale</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reichstein, M" uniqKey="Reichstein M">M Reichstein</name>
</author>
<author>
<name sortKey="Bahn, M" uniqKey="Bahn M">M Bahn</name>
</author>
<author>
<name sortKey="Ciais, P" uniqKey="Ciais P">P Ciais</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Robinet, C" uniqKey="Robinet C">C Robinet</name>
</author>
<author>
<name sortKey="Roques, A" uniqKey="Roques A">A Roques</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosenzweig, Ce" uniqKey="Rosenzweig C">CE Rosenzweig</name>
</author>
<author>
<name sortKey="Tubiello, F" uniqKey="Tubiello F">F Tubiello</name>
</author>
<author>
<name sortKey="Goldberg, R" uniqKey="Goldberg R">R Goldberg</name>
</author>
<author>
<name sortKey="Mills, E" uniqKey="Mills E">E Mills</name>
</author>
<author>
<name sortKey="Bloomfield, J" uniqKey="Bloomfield J">J Bloomfield</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rouault, G" uniqKey="Rouault G">G Rouault</name>
</author>
<author>
<name sortKey="Candau, J N" uniqKey="Candau J">J-N Candau</name>
</author>
<author>
<name sortKey="Lieutier, F" uniqKey="Lieutier F">F Lieutier</name>
</author>
<author>
<name sortKey="Nageleisen, L M" uniqKey="Nageleisen L">L-M Nageleisen</name>
</author>
<author>
<name sortKey="Martin, J C" uniqKey="Martin J">J-C Martin</name>
</author>
<author>
<name sortKey="Warzee, N" uniqKey="Warzee N">N Warzee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sala, A" uniqKey="Sala A">A Sala</name>
</author>
<author>
<name sortKey="Woodruff, Dr" uniqKey="Woodruff D">DR Woodruff</name>
</author>
<author>
<name sortKey="Meinzer, Fc" uniqKey="Meinzer F">FC Meinzer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sambaraju, Kr" uniqKey="Sambaraju K">KR Sambaraju</name>
</author>
<author>
<name sortKey="Carroll, Al" uniqKey="Carroll A">AL Carroll</name>
</author>
<author>
<name sortKey="Jhu, J" uniqKey="Jhu J">J Jhu</name>
</author>
<author>
<name sortKey="Stahl, K" uniqKey="Stahl K">K Stahl</name>
</author>
<author>
<name sortKey="Moore, Rd" uniqKey="Moore R">RD Moore</name>
</author>
<author>
<name sortKey="Aukema, Bh" uniqKey="Aukema B">BH Aukema</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schachtschabel, P" uniqKey="Schachtschabel P">P Schachtschabel</name>
</author>
<author>
<name sortKey="Blume, H P" uniqKey="Blume H">H-P Blume</name>
</author>
<author>
<name sortKey="Brummer, G" uniqKey="Brummer G">G Brümmer</name>
</author>
<author>
<name sortKey="Hartge, K H" uniqKey="Hartge K">K-H Hartge</name>
</author>
<author>
<name sortKey="Schwertmann, U" uniqKey="Schwertmann U">U Schwertmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sch R, C" uniqKey="Sch R C">C Schär</name>
</author>
<author>
<name sortKey="Vidale, Pl" uniqKey="Vidale P">PL Vidale</name>
</author>
<author>
<name sortKey="Luthi, D" uniqKey="Luthi D">D Lüthi</name>
</author>
<author>
<name sortKey="Frei, C" uniqKey="Frei C">C Frei</name>
</author>
<author>
<name sortKey="H Berli, C" uniqKey="H Berli C">C Häberli</name>
</author>
<author>
<name sortKey="Liniger, Ma" uniqKey="Liniger M">MA Liniger</name>
</author>
<author>
<name sortKey="Appenzeller, C" uniqKey="Appenzeller C">C Appenzeller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scheiter, S" uniqKey="Scheiter S">S Scheiter</name>
</author>
<author>
<name sortKey="Langgan, L" uniqKey="Langgan L">L Langgan</name>
</author>
<author>
<name sortKey="Higgins, Si" uniqKey="Higgins S">SI Higgins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schimel, D" uniqKey="Schimel D">D Schimel</name>
</author>
<author>
<name sortKey="Baker, D" uniqKey="Baker D">D Baker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schlyter, P" uniqKey="Schlyter P">P Schlyter</name>
</author>
<author>
<name sortKey="Stjernquist, I" uniqKey="Stjernquist I">I Stjernquist</name>
</author>
<author>
<name sortKey="B Rring, L" uniqKey="B Rring L">L Bärring</name>
</author>
<author>
<name sortKey="Jonsson, Am" uniqKey="Jonsson A">AM Jönsson</name>
</author>
<author>
<name sortKey="Nilsson, C" uniqKey="Nilsson C">C Nilsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schmidt, Mwi" uniqKey="Schmidt M">MWI Schmidt</name>
</author>
<author>
<name sortKey="Torn, Ms" uniqKey="Torn M">MS Torn</name>
</author>
<author>
<name sortKey="Abiven, S" uniqKey="Abiven S">S Abiven</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schulze, E D" uniqKey="Schulze E">E-D Schulze</name>
</author>
<author>
<name sortKey="Beck, E" uniqKey="Beck E">E Beck</name>
</author>
<author>
<name sortKey="Muller Hohenstein, K" uniqKey="Muller Hohenstein K">K Müller-Hohenstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schwalm, Cr" uniqKey="Schwalm C">CR Schwalm</name>
</author>
<author>
<name sortKey="Williams, Ca" uniqKey="Williams C">CA Williams</name>
</author>
<author>
<name sortKey="Schaefer, K" uniqKey="Schaefer K">K Schaefer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schwalm, Cr" uniqKey="Schwalm C">CR Schwalm</name>
</author>
<author>
<name sortKey="Williams, Ca" uniqKey="Williams C">CA Williams</name>
</author>
<author>
<name sortKey="Schaefer, K" uniqKey="Schaefer K">K Schaefer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seidl, R" uniqKey="Seidl R">R Seidl</name>
</author>
<author>
<name sortKey="Fernandes, Pm" uniqKey="Fernandes P">PM Fernandes</name>
</author>
<author>
<name sortKey="Fonseca, Tf" uniqKey="Fonseca T">TF Fonseca</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seneviratne, Si" uniqKey="Seneviratne S">SI Seneviratne</name>
</author>
<author>
<name sortKey="Luthi, D" uniqKey="Luthi D">D Lüthi</name>
</author>
<author>
<name sortKey="Litschi, M" uniqKey="Litschi M">M Litschi</name>
</author>
<author>
<name sortKey="Sch R, C" uniqKey="Sch R C">C Schär</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seneviratne, Si" uniqKey="Seneviratne S">SI Seneviratne</name>
</author>
<author>
<name sortKey="Corti, T" uniqKey="Corti T">T Corti</name>
</author>
<author>
<name sortKey="Davin, El" uniqKey="Davin E">EL Davin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seneviratne, Si" uniqKey="Seneviratne S">SI Seneviratne</name>
</author>
<author>
<name sortKey="Nicholls, N" uniqKey="Nicholls N">N Nicholls</name>
</author>
<author>
<name sortKey="Easterling, D" uniqKey="Easterling D">D Easterling</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sheik, Cs" uniqKey="Sheik C">CS Sheik</name>
</author>
<author>
<name sortKey="Beasley, Wh" uniqKey="Beasley W">WH Beasley</name>
</author>
<author>
<name sortKey="Elshahed, Ms" uniqKey="Elshahed M">MS Elshahed</name>
</author>
<author>
<name sortKey="Zhou, X" uniqKey="Zhou X">X Zhou</name>
</author>
<author>
<name sortKey="Luo, Y" uniqKey="Luo Y">Y Luo</name>
</author>
<author>
<name sortKey="Krumholz, Lr" uniqKey="Krumholz L">LR Krumholz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shi, Z" uniqKey="Shi Z">Z Shi</name>
</author>
<author>
<name sortKey="Thomey, Ml" uniqKey="Thomey M">ML Thomey</name>
</author>
<author>
<name sortKey="Mowll, W" uniqKey="Mowll W">W Mowll</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shinoda, M" uniqKey="Shinoda M">M Shinoda</name>
</author>
<author>
<name sortKey="Gillies, Ja" uniqKey="Gillies J">JA Gillies</name>
</author>
<author>
<name sortKey="Mikami, M" uniqKey="Mikami M">M Mikami</name>
</author>
<author>
<name sortKey="Shao, Y" uniqKey="Shao Y">Y Shao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Simpson, Ij" uniqKey="Simpson I">IJ Simpson</name>
</author>
<author>
<name sortKey="Rowland, Fs" uniqKey="Rowland F">FS Rowland</name>
</author>
<author>
<name sortKey="Meinardi, S" uniqKey="Meinardi S">S Meinardi</name>
</author>
<author>
<name sortKey="Blake, Dr" uniqKey="Blake D">DR Blake</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Singh, N" uniqKey="Singh N">N Singh</name>
</author>
<author>
<name sortKey="Abiven, S" uniqKey="Abiven S">S Abiven</name>
</author>
<author>
<name sortKey="Torn, Ms" uniqKey="Torn M">MS Torn</name>
</author>
<author>
<name sortKey="Schmidt, Mwi" uniqKey="Schmidt M">MWI Schmidt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smith, Md" uniqKey="Smith M">MD Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smith, Ng" uniqKey="Smith N">NG Smith</name>
</author>
<author>
<name sortKey="Dukes, Js" uniqKey="Dukes J">JS Dukes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soja, Aj" uniqKey="Soja A">AJ Soja</name>
</author>
<author>
<name sortKey="Tchebakova, Nm" uniqKey="Tchebakova N">NM Tchebakova</name>
</author>
<author>
<name sortKey="French, Nhf" uniqKey="French N">NHF French</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soussana, J F" uniqKey="Soussana J">J-F Soussana</name>
</author>
<author>
<name sortKey="Graux, Ai" uniqKey="Graux A">AI Graux</name>
</author>
<author>
<name sortKey="Tubiello, F N" uniqKey="Tubiello F">F-N Tubiello</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sowerby, A" uniqKey="Sowerby A">A Sowerby</name>
</author>
<author>
<name sortKey="Emmett, Ba" uniqKey="Emmett B">BA Emmett</name>
</author>
<author>
<name sortKey="Tietema, A" uniqKey="Tietema A">A Tietema</name>
</author>
<author>
<name sortKey="Beier, C" uniqKey="Beier C">C Beier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sperry, Js" uniqKey="Sperry J">JS Sperry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stahl, K" uniqKey="Stahl K">K Stahl</name>
</author>
<author>
<name sortKey="Moore, Rd" uniqKey="Moore R">RD Moore</name>
</author>
<author>
<name sortKey="Mckendry, Ig" uniqKey="Mckendry I">IG Mckendry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stone, R" uniqKey="Stone R">R Stone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suarez, Ml" uniqKey="Suarez M">ML Suarez</name>
</author>
<author>
<name sortKey="Kitzberger, T" uniqKey="Kitzberger T">T Kitzberger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sullivan, Jem" uniqKey="Sullivan J">JEM Sullivan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, Y" uniqKey="Sun Y">Y Sun</name>
</author>
<author>
<name sortKey="Gu, Lh" uniqKey="Gu L">LH Gu</name>
</author>
<author>
<name sortKey="Dickinson, Re" uniqKey="Dickinson R">RE Dickinson</name>
</author>
<author>
<name sortKey="Zhou, Bz" uniqKey="Zhou B">BZ Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suttie, Jm" uniqKey="Suttie J">JM Suttie</name>
</author>
<author>
<name sortKey="Reynolds, Sg" uniqKey="Reynolds S">SG Reynolds</name>
</author>
<author>
<name sortKey="Batello, C" uniqKey="Batello C">C Batello</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Teuling, Aj" uniqKey="Teuling A">AJ Teuling</name>
</author>
<author>
<name sortKey="Uijlenhoet, R" uniqKey="Uijlenhoet R">R Uijlenhoet</name>
</author>
<author>
<name sortKey="Hupet, F" uniqKey="Hupet F">F Hupet</name>
</author>
<author>
<name sortKey="Troch, Pa" uniqKey="Troch P">PA Troch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Teuling, Aj" uniqKey="Teuling A">AJ Teuling</name>
</author>
<author>
<name sortKey="Seneviratne, Si" uniqKey="Seneviratne S">SI Seneviratne</name>
</author>
<author>
<name sortKey="Stockli, R" uniqKey="Stockli R">R Stöckli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thothong, W" uniqKey="Thothong W">W Thothong</name>
</author>
<author>
<name sortKey="Huon, S" uniqKey="Huon S">S Huon</name>
</author>
<author>
<name sortKey="Janeau, Jl" uniqKey="Janeau J">JL Janeau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tian, H" uniqKey="Tian H">H Tian</name>
</author>
<author>
<name sortKey="Melillo, Jm" uniqKey="Melillo J">JM Melillo</name>
</author>
<author>
<name sortKey="Kicklighter, Dw" uniqKey="Kicklighter D">DW Kicklighter</name>
</author>
<author>
<name sortKey="Mcgiure, Ad" uniqKey="Mcgiure A">AD McGiure</name>
</author>
<author>
<name sortKey="Helfrich, J" uniqKey="Helfrich J">J Helfrich</name>
</author>
<author>
<name sortKey="Moore, B" uniqKey="Moore B">B Moore</name>
</author>
<author>
<name sortKey="Vorosmarty, Cj" uniqKey="Vorosmarty C">CJ Vörösmarty</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tolk, Ja" uniqKey="Tolk J">JA Tolk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Trenberth, Ke" uniqKey="Trenberth K">KE Trenberth</name>
</author>
<author>
<name sortKey="Fasullo, Jt" uniqKey="Fasullo J">JT Fasullo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Trigo, Rm" uniqKey="Trigo R">RM Trigo</name>
</author>
<author>
<name sortKey="Pereira, Jmc" uniqKey="Pereira J">JMC Pereira</name>
</author>
<author>
<name sortKey="Pereira, Mrg" uniqKey="Pereira M">MRG Pereira</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Turetsky, Mr" uniqKey="Turetsky M">MR Turetsky</name>
</author>
<author>
<name sortKey="Donahue, Wf" uniqKey="Donahue W">WF Donahue</name>
</author>
<author>
<name sortKey="Benscoter, Bw" uniqKey="Benscoter B">BW Benscoter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Turetsky, Mr" uniqKey="Turetsky M">MR Turetsky</name>
</author>
<author>
<name sortKey="Kane, Es" uniqKey="Kane E">ES Kane</name>
</author>
<author>
<name sortKey="Harden, Jw" uniqKey="Harden J">JW Harden</name>
</author>
<author>
<name sortKey="Ottmar, Rd" uniqKey="Ottmar R">RD Ottmar</name>
</author>
<author>
<name sortKey="Manies, Kl" uniqKey="Manies K">KL Manies</name>
</author>
<author>
<name sortKey="Hoy, E" uniqKey="Hoy E">E Hoy</name>
</author>
<author>
<name sortKey="Kasischke, Es" uniqKey="Kasischke E">ES Kasischke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Unger, S" uniqKey="Unger S">S Unger</name>
</author>
<author>
<name sortKey="Maguas, C" uniqKey="Maguas C">C Máguas</name>
</author>
<author>
<name sortKey="Pereira, Js" uniqKey="Pereira J">JS Pereira</name>
</author>
<author>
<name sortKey="Aires, Lm" uniqKey="Aires L">LM Aires</name>
</author>
<author>
<name sortKey="David, Ts" uniqKey="David T">TS David</name>
</author>
<author>
<name sortKey="Werner, C" uniqKey="Werner C">C Werner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Valentin, C" uniqKey="Valentin C">C Valentin</name>
</author>
<author>
<name sortKey="Agus, F" uniqKey="Agus F">F Agus</name>
</author>
<author>
<name sortKey="Alamban, R" uniqKey="Alamban R">R Alamban</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vandenbygaart, Aj" uniqKey="Vandenbygaart A">AJ VandenBygaart</name>
</author>
<author>
<name sortKey="Kroetsch, D" uniqKey="Kroetsch D">D Kroetsch</name>
</author>
<author>
<name sortKey="Gregorich, Eg" uniqKey="Gregorich E">EG Gregorich</name>
</author>
<author>
<name sortKey="Lobb, Da" uniqKey="Lobb D">DA Lobb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vargas, R" uniqKey="Vargas R">R Vargas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vautard, R" uniqKey="Vautard R">R Vautard</name>
</author>
<author>
<name sortKey="Yiou, P" uniqKey="Yiou P">P Yiou</name>
</author>
<author>
<name sortKey="D Ndrea, F" uniqKey="D Ndrea F">F D’andrea</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Der Velde, M" uniqKey="Van Der Velde M">M van der Velde</name>
</author>
<author>
<name sortKey="Wriedt, G" uniqKey="Wriedt G">G Wriedt</name>
</author>
<author>
<name sortKey="Bouraoui, F" uniqKey="Bouraoui F">F Bouraoui</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Der Velde, M" uniqKey="Van Der Velde M">M van der Velde</name>
</author>
<author>
<name sortKey="Tubiello, Fn" uniqKey="Tubiello F">FN Tubiello</name>
</author>
<author>
<name sortKey="Vrieling, A" uniqKey="Vrieling A">A Vrieling</name>
</author>
<author>
<name sortKey="Bouraoui, F" uniqKey="Bouraoui F">F Bouraoui</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vervuren, Pja" uniqKey="Vervuren P">PJA Vervuren</name>
</author>
<author>
<name sortKey="Blom, Cwpm" uniqKey="Blom C">CWPM Blom</name>
</author>
<author>
<name sortKey="De Kroon, H" uniqKey="De Kroon H">H De Kroon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vetter, M" uniqKey="Vetter M">M Vetter</name>
</author>
<author>
<name sortKey="Churkina, G" uniqKey="Churkina G">G Churkina</name>
</author>
<author>
<name sortKey="Jung, M" uniqKey="Jung M">M Jung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vicca, S" uniqKey="Vicca S">S Vicca</name>
</author>
<author>
<name sortKey="Gilgen, Ak" uniqKey="Gilgen A">AK Gilgen</name>
</author>
<author>
<name sortKey="Camino Serrano, M" uniqKey="Camino Serrano M">M Camino Serrano</name>
</author>
<author>
<name sortKey="Dreesen, Fe" uniqKey="Dreesen F">FE Dreesen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vicca, S" uniqKey="Vicca S">S Vicca</name>
</author>
<author>
<name sortKey="Bahn, M" uniqKey="Bahn M">M Bahn</name>
</author>
<author>
<name sortKey="Estiarte, M" uniqKey="Estiarte M">M Estiarte</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Virtanen, T" uniqKey="Virtanen T">T Virtanen</name>
</author>
<author>
<name sortKey="Neuvonen, S" uniqKey="Neuvonen S">S Neuvonen</name>
</author>
<author>
<name sortKey="Nikula, A" uniqKey="Nikula A">A Nikula</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Walter, J" uniqKey="Walter J">J Walter</name>
</author>
<author>
<name sortKey="Hein, R" uniqKey="Hein R">R Hein</name>
</author>
<author>
<name sortKey="Auge, H" uniqKey="Auge H">H Auge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Walter, J" uniqKey="Walter J">J Walter</name>
</author>
<author>
<name sortKey="Jentsch, A" uniqKey="Jentsch A">A Jentsch</name>
</author>
<author>
<name sortKey="Beierkuhnlein, C" uniqKey="Beierkuhnlein C">C Beierkuhnlein</name>
</author>
<author>
<name sortKey="Kreyling, J" uniqKey="Kreyling J">J Kreyling</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wan, Cg" uniqKey="Wan C">CG Wan</name>
</author>
<author>
<name sortKey="Yilmaz, I" uniqKey="Yilmaz I">I Yilmaz</name>
</author>
<author>
<name sortKey="Sosebee, Re" uniqKey="Sosebee R">RE Sosebee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Xb" uniqKey="Wang X">XB Wang</name>
</author>
<author>
<name sortKey="Enema, O" uniqKey="Enema O">O Enema</name>
</author>
<author>
<name sortKey="Hoogmed, Wb" uniqKey="Hoogmed W">WB Hoogmed</name>
</author>
<author>
<name sortKey="Perdok, Ud" uniqKey="Perdok U">UD Perdok</name>
</author>
<author>
<name sortKey="Cai, Dx" uniqKey="Cai D">DX Cai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wendler, G" uniqKey="Wendler G">G Wendler</name>
</author>
<author>
<name sortKey="Conner, J" uniqKey="Conner J">J Conner</name>
</author>
<author>
<name sortKey="Moor, B" uniqKey="Moor B">B Moor</name>
</author>
<author>
<name sortKey="Shulski, M" uniqKey="Shulski M">M Shulski</name>
</author>
<author>
<name sortKey="Stuefer, M" uniqKey="Stuefer M">M Stuefer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Der Werf, Gr" uniqKey="Van Der Werf G">GR van der Werf</name>
</author>
<author>
<name sortKey="Dempewolf, J" uniqKey="Dempewolf J">J Dempewolf</name>
</author>
<author>
<name sortKey="Trigg, Sn" uniqKey="Trigg S">SN Trigg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Der Werf, Gr" uniqKey="Van Der Werf G">GR van der Werf</name>
</author>
<author>
<name sortKey="Randerson, Jt" uniqKey="Randerson J">JT Randerson</name>
</author>
<author>
<name sortKey="Giglio, L" uniqKey="Giglio L">L Giglio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="White, Re" uniqKey="White R">RE White</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="White, Ps" uniqKey="White P">PS White</name>
</author>
<author>
<name sortKey="Jentsch, A" uniqKey="Jentsch A">A Jentsch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Williams, Ap" uniqKey="Williams A">AP Williams</name>
</author>
<author>
<name sortKey="Allen, Cd" uniqKey="Allen C">CD Allen</name>
</author>
<author>
<name sortKey="Macalady, Ak" uniqKey="Macalady A">AK Macalady</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yuste, Jc" uniqKey="Yuste J">JC Yuste</name>
</author>
<author>
<name sortKey="Penuelas, J" uniqKey="Penuelas J">J Penuelas</name>
</author>
<author>
<name sortKey="Estiarte, M" uniqKey="Estiarte M">M Estiarte</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zampieri, M" uniqKey="Zampieri M">M Zampieri</name>
</author>
<author>
<name sortKey="D Ndrea, F" uniqKey="D Ndrea F">F D’Andrea</name>
</author>
<author>
<name sortKey="Vautard, R" uniqKey="Vautard R">R Vautard</name>
</author>
<author>
<name sortKey="Ciais, P" uniqKey="Ciais P">P Ciais</name>
</author>
<author>
<name sortKey="De Noblet Ducoudre, N" uniqKey="De Noblet Ducoudre N">N de Noblet-Ducoudre</name>
</author>
<author>
<name sortKey="Yiou, P" uniqKey="Yiou P">P Yiou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zavalloni, C" uniqKey="Zavalloni C">C Zavalloni</name>
</author>
<author>
<name sortKey="Gielen, B" uniqKey="Gielen B">B Gielen</name>
</author>
<author>
<name sortKey="Lemmens, Cmhm" uniqKey="Lemmens C">CMHM Lemmens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zeng, Hc" uniqKey="Zeng H">HC Zeng</name>
</author>
<author>
<name sortKey="Chambers, Jq" uniqKey="Chambers J">JQ Chambers</name>
</author>
<author>
<name sortKey="Negr N Juarez, Ri" uniqKey="Negr N Juarez R">RI Negrón-Juárez</name>
</author>
<author>
<name sortKey="Hurtt, Gc" uniqKey="Hurtt G">GC Hurtt</name>
</author>
<author>
<name sortKey="Baker, Db" uniqKey="Baker D">DB Baker</name>
</author>
<author>
<name sortKey="Powell, Md" uniqKey="Powell M">MD Powell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, T" uniqKey="Zhang T">T Zhang</name>
</author>
<author>
<name sortKey="Barry, Rg" uniqKey="Barry R">RG Barry</name>
</author>
<author>
<name sortKey="Haeberli, W" uniqKey="Haeberli W">W Haeberli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zscheischler, J" uniqKey="Zscheischler J">J Zscheischler</name>
</author>
<author>
<name sortKey="Mahecha, Md" uniqKey="Mahecha M">MD Mahecha</name>
</author>
<author>
<name sortKey="Harmeling, S" uniqKey="Harmeling S">S Harmeling</name>
</author>
<author>
<name sortKey="Reichstein, M" uniqKey="Reichstein M">M Reichstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zscheischler, J" uniqKey="Zscheischler J">J Zscheischler</name>
</author>
<author>
<name sortKey="Mahecha, Md" uniqKey="Mahecha M">MD Mahecha</name>
</author>
<author>
<name sortKey="Von Buttlar, J" uniqKey="Von Buttlar J">J von Buttlar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zscheischler, J" uniqKey="Zscheischler J">J Zscheischler</name>
</author>
<author>
<name sortKey="Reichstein, M" uniqKey="Reichstein M">M Reichstein</name>
</author>
<author>
<name sortKey="Harmeling, S" uniqKey="Harmeling S">S Harmeling</name>
</author>
<author>
<name sortKey="Rammig, A" uniqKey="Rammig A">A Rammig</name>
</author>
<author>
<name sortKey="Tomelleri, E" uniqKey="Tomelleri E">E Tomelleri</name>
</author>
<author>
<name sortKey="Mahecha, Md" uniqKey="Mahecha M">MD Mahecha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zscheischler, J" uniqKey="Zscheischler J">J Zscheischler</name>
</author>
<author>
<name sortKey="Reichstein, M" uniqKey="Reichstein M">M Reichstein</name>
</author>
<author>
<name sortKey="Von Buttlar, J" uniqKey="Von Buttlar J">J von Buttlar</name>
</author>
<author>
<name sortKey="Mu, M" uniqKey="Mu M">M Mu</name>
</author>
<author>
<name sortKey="Randerson, Jt" uniqKey="Randerson J">JT Randerson</name>
</author>
<author>
<name sortKey="Mahecha, Md" uniqKey="Mahecha M">MD Mahecha</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Glob Chang Biol</journal-id>
<journal-id journal-id-type="iso-abbrev">Glob Chang Biol</journal-id>
<journal-id journal-id-type="publisher-id">gcb</journal-id>
<journal-title-group>
<journal-title>Global Change Biology</journal-title>
</journal-title-group>
<issn pub-type="ppub">1354-1013</issn>
<issn pub-type="epub">1365-2486</issn>
<publisher>
<publisher-name>John Wiley & Sons, Ltd</publisher-name>
<publisher-loc>Chichester, UK</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25752680</article-id>
<article-id pub-id-type="pmc">4676934</article-id>
<article-id pub-id-type="doi">10.1111/gcb.12916</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Reviews</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Frank</surname>
<given-names>Dorothea</given-names>
</name>
<xref ref-type="aff" rid="au1">1</xref>
<xref ref-type="corresp" rid="cor1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Reichstein</surname>
<given-names>Markus</given-names>
</name>
<xref ref-type="aff" rid="au1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bahn</surname>
<given-names>Michael</given-names>
</name>
<xref ref-type="aff" rid="au2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Thonicke</surname>
<given-names>Kirsten</given-names>
</name>
<xref ref-type="aff" rid="au3">3</xref>
<xref ref-type="aff" rid="au4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Frank</surname>
<given-names>David</given-names>
</name>
<xref ref-type="aff" rid="au5">5</xref>
<xref ref-type="aff" rid="au6">6</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mahecha</surname>
<given-names>Miguel D</given-names>
</name>
<xref ref-type="aff" rid="au1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Smith</surname>
<given-names>Pete</given-names>
</name>
<xref ref-type="aff" rid="au7">7</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>van der Velde</surname>
<given-names>Marijn</given-names>
</name>
<xref ref-type="aff" rid="au8">8</xref>
<xref ref-type="author-notes" rid="fn1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Vicca</surname>
<given-names>Sara</given-names>
</name>
<xref ref-type="aff" rid="au9">9</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Babst</surname>
<given-names>Flurin</given-names>
</name>
<xref ref-type="aff" rid="au3">3</xref>
<xref ref-type="aff" rid="au10">10</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Beer</surname>
<given-names>Christian</given-names>
</name>
<xref ref-type="aff" rid="au1">1</xref>
<xref ref-type="aff" rid="au11">11</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Buchmann</surname>
<given-names>Nina</given-names>
</name>
<xref ref-type="aff" rid="au12">12</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Canadell</surname>
<given-names>Josep G</given-names>
</name>
<xref ref-type="aff" rid="au13">13</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ciais</surname>
<given-names>Philippe</given-names>
</name>
<xref ref-type="aff" rid="au14">14</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Cramer</surname>
<given-names>Wolfgang</given-names>
</name>
<xref ref-type="aff" rid="au15">15</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ibrom</surname>
<given-names>Andreas</given-names>
</name>
<xref ref-type="aff" rid="au16">16</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Miglietta</surname>
<given-names>Franco</given-names>
</name>
<xref ref-type="aff" rid="au17">17</xref>
<xref ref-type="aff" rid="au18">18</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Poulter</surname>
<given-names>Ben</given-names>
</name>
<xref ref-type="aff" rid="au14">14</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Rammig</surname>
<given-names>Anja</given-names>
</name>
<xref ref-type="aff" rid="au6">6</xref>
<xref ref-type="aff" rid="au7">7</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Seneviratne</surname>
<given-names>Sonia I</given-names>
</name>
<xref ref-type="aff" rid="au12">12</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Walz</surname>
<given-names>Ariane</given-names>
</name>
<xref ref-type="aff" rid="au19">19</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wattenbach</surname>
<given-names>Martin</given-names>
</name>
<xref ref-type="aff" rid="au20">20</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zavala</surname>
<given-names>Miguel A</given-names>
</name>
<xref ref-type="aff" rid="au21">21</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zscheischler</surname>
<given-names>Jakob</given-names>
</name>
<xref ref-type="aff" rid="au1">1</xref>
</contrib>
<aff id="au1">
<label>1</label>
<institution>Max Planck Institute for Biogeochemistry</institution>
<addr-line>07745, Jena, Germany</addr-line>
</aff>
<aff id="au2">
<label>2</label>
<institution>Institute of Ecology, University of Innsbruck</institution>
<addr-line>6020, Innsbruck, Austria</addr-line>
</aff>
<aff id="au3">
<label>3</label>
<institution>Potsdam Institute for Climate Impact Research (PIK) e.V.</institution>
<addr-line>14773, Potsdam, Germany</addr-line>
</aff>
<aff id="au4">
<label>4</label>
<institution>Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB)</institution>
<addr-line>14195, Berlin, Germany</addr-line>
</aff>
<aff id="au5">
<label>5</label>
<institution>Swiss Federal Research Institute WSL</institution>
<addr-line>8903, Birmensdorf, Switzerland</addr-line>
</aff>
<aff id="au6">
<label>6</label>
<institution>Oeschger Centre for Climate Change Research, University of Bern</institution>
<addr-line>CH-3012, Bern, Switzerland</addr-line>
</aff>
<aff id="au7">
<label>7</label>
<institution>Institute of Biological and Environmental Sciences, University of Aberdeen</institution>
<addr-line>23 St Machar Drive, Aberdeen, AB24 3UU, UK</addr-line>
</aff>
<aff id="au8">
<label>8</label>
<institution>Ecosystems Services and Management Program, International Institute of Applied Systems Analysis (IIASA)</institution>
<addr-line>A-2361, Laxenburg, Austria</addr-line>
</aff>
<aff id="au9">
<label>9</label>
<institution>Research Group of Plant and Vegetation Ecology, Biology Department, University of Antwerp</institution>
<addr-line>Wilrijk, Belgium</addr-line>
</aff>
<aff id="au10">
<label>10</label>
<institution>Laboratory of Tree-Ring Research, The University of Arizona</institution>
<addr-line>1215 E Lowell St, Tucson, AZ, 85721, USA</addr-line>
</aff>
<aff id="au11">
<label>11</label>
<institution>Department of Environmental Science and Analytical Chemistry (ACES), Bolin Centre for Climate Research, Stockholm University</institution>
<addr-line>10691, Stockholm, Sweden</addr-line>
</aff>
<aff id="au12">
<label>12</label>
<institution>ETH Zurich</institution>
<addr-line>8092, Zurich, Switzerland</addr-line>
</aff>
<aff id="au13">
<label>13</label>
<institution>Global Carbon Project, CSIRO Oceans and Atmosphere Flagship</institution>
<addr-line>GPO Box 3023, Canberra, ACT, 2601, Australia</addr-line>
</aff>
<aff id="au14">
<label>14</label>
<institution>IPSL – Laboratoire des Sciences du Climat et de l’Environnement CEA-CNRS-UVSQ</institution>
<addr-line>91191, Gif sur Yvette, France</addr-line>
</aff>
<aff id="au15">
<label>15</label>
<institution>Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE), Aix Marseille Université, CNRS, IRD, Avignon Université</institution>
<addr-line>Aix-en-Provence, France</addr-line>
</aff>
<aff id="au16">
<label>16</label>
<institution>Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU)</institution>
<addr-line>Frederiksborgvej 399, 4000, Roskilde, Denmark</addr-line>
</aff>
<aff id="au17">
<label>17</label>
<institution>IBIMET-CNR</institution>
<addr-line>Via Caproni, 8, 50145, Firenze, Italy</addr-line>
</aff>
<aff id="au18">
<label>18</label>
<institution>FoxLab, Fondazione E.Mach</institution>
<addr-line>Via Mach 1, 30158, San Michele a/Adige, Trento, Italy</addr-line>
</aff>
<aff id="au19">
<label>19</label>
<institution>Institute of Earth and Environmental Science, University of Potsdam</institution>
<addr-line>14476, Potsdam, Germany</addr-line>
</aff>
<aff id="au20">
<label>20</label>
<institution>Helmholtz Centre Potsdam, GFZ German Research Centre For Geosciences</institution>
<addr-line>14473, Potsdam, Germany</addr-line>
</aff>
<aff id="au21">
<label>21</label>
<institution>Forest Ecology and Restoration Group, Universidad de Alcalá</institution>
<addr-line>Alcalá de Henares, Madrid, Spain</addr-line>
</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">Correspondence: Dorothea Frank, tel. + 49 3641 576284, fax + 49 3641 577200, e-mail:
<email>dfrank@bgc-jena.mpg.de</email>
</corresp>
<fn id="fn1">
<label>*</label>
<p>Present address: Institute for Environment and Sustainability, Joint Research Centre, European Commission Via E. Fermi 2749, I-21027, Ispra, VA, Italy</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<month>8</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="epub">
<day>12</day>
<month>5</month>
<year>2015</year>
</pub-date>
<volume>21</volume>
<issue>8</issue>
<fpage>2861</fpage>
<lpage>2880</lpage>
<history>
<date date-type="received">
<day>06</day>
<month>9</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>24</day>
<month>1</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>© 2015 The Authors.
<italic>Global Change Biology</italic>
published by John Wiley & Sons Ltd.</copyright-statement>
<copyright-year>2015</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance-induced mechanisms and processes to also operate in an extreme context. The paucity of well-defined studies currently renders a quantitative meta-analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land-cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground-based observational case studies reveals that many regions in the (sub-)tropics are understudied. Hence, regional investigations are needed to allow a global upscaling of the impacts of climate extremes on global carbon–climate feedbacks.</p>
</abstract>
<kwd-group>
<kwd>carbon cycle</kwd>
<kwd>climate change</kwd>
<kwd>climate extremes</kwd>
<kwd>climate variability</kwd>
<kwd>disturbance</kwd>
<kwd>terrestrial ecosystems</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec>
<title>Introduction</title>
<p>There is widespread recognition that climate change is having and will continue to have, fundamental impacts on the natural environment and on human well-being (Parry
<italic>et al</italic>
.,
<xref rid="b180" ref-type="bibr">2007</xref>
). Current projections, based upon contrasted emission scenarios, suggest somewhere between 0.3 and 4.8 °C warming by the end of this century (IPCC,
<xref rid="b99" ref-type="bibr">2013</xref>
). The associated modification of the climate system strongly influences the carbon cycling of the terrestrial biosphere and thus land–atmosphere CO
<sub>2</sub>
fluxes (Fischlin
<italic>et al</italic>
.,
<xref rid="b65" ref-type="bibr">2007</xref>
). An important observation is that climate change, and increasing concentrations of atmospheric greenhouse gases, not only lead to gradual mean global warming but may also change the frequency, the severity and even the nature of extreme events (IPCC,
<xref rid="b99" ref-type="bibr">2013</xref>
). A relatively small change in the mean or variance of a climate variable, inherently leads to disproportionally large changes in the frequency of extremes, that is the infrequent events at the high and low end of the range of values of a particular variable (Nicholls & Alexander,
<xref rid="b172" ref-type="bibr">2007</xref>
). Furthermore, climate change can fundamentally alter the inherent variability of temperature, precipitation and other weather phenomena (Seneviratne
<italic>et al</italic>
.,
<xref rid="b217" ref-type="bibr">2012</xref>
). State-of-the-art climate models project global intensification of heavy precipitation events and heat extremes, and regions with stronger or longer-lasting droughts (Fisher & Knutti,
<xref rid="b66" ref-type="bibr">2014</xref>
, IPCC,
<xref rid="b99" ref-type="bibr">2013</xref>
).</p>
<p>Concerns about increasing variability of temperature and precipitation patterns and climate extremes were first articulated over two decades ago by Katz & Brown (
<xref rid="b111" ref-type="bibr">1992</xref>
), and became widely acknowledged after the second IPCC assessment of climate change in 1995 (Nicholls & Alexander,
<xref rid="b172" ref-type="bibr">2007</xref>
). These concerns were raised because many biological systems (including human societies) are more sensitive to climate extremes than to gradual climate change, due to typically greater response strengths and shorter response times (Hanson
<italic>et al</italic>
.,
<xref rid="b88" ref-type="bibr">2006</xref>
).</p>
<p>Key characteristics of the climate, such as heat waves, seem to have already been modified beyond the natural variability within which society and its economic, social and political systems have developed (Schär
<italic>et al</italic>
.,
<xref rid="b205" ref-type="bibr">2004</xref>
; Soussana
<italic>et al</italic>
.,
<xref rid="b226" ref-type="bibr">2010</xref>
). Both the public media and the scientific community have recognized the widespread consequences of climate extremes such as the European heat wave in 2003 (Ciais
<italic>et al</italic>
.,
<xref rid="b42" ref-type="bibr">2005</xref>
; Reichstein
<italic>et al</italic>
.,
<xref rid="b196" ref-type="bibr">2007</xref>
; Bastos
<italic>et al</italic>
.,
<xref rid="b18" ref-type="bibr">2013a</xref>
), the heat wave and associated forest fires in Greece in 2007 (Founda & Giannakopoulos,
<xref rid="b68" ref-type="bibr">2009</xref>
), the dry spells in the Amazon basin in 2005 (Phillips
<italic>et al</italic>
.,
<xref rid="b185" ref-type="bibr">2009</xref>
) and 2010 (Lewis
<italic>et al</italic>
.,
<xref rid="b137" ref-type="bibr">2011</xref>
), in the U.S.A. 2000–2004 (Breshears
<italic>et al</italic>
.,
<xref rid="b36" ref-type="bibr">2005</xref>
; Schwalm
<italic>et al</italic>
.,
<xref rid="b213" ref-type="bibr">2012</xref>
), the forest fires in Russia in 2010 (Barriopedro
<italic>et al</italic>
.,
<xref rid="b17" ref-type="bibr">2011</xref>
; Konovalov
<italic>et al</italic>
.,
<xref rid="b118" ref-type="bibr">2011</xref>
; Coumou & Rahmstorf,
<xref rid="b46" ref-type="bibr">2012</xref>
; Bastos
<italic>et al</italic>
.,
<xref rid="b18" ref-type="bibr">2013a</xref>
), the Pakistan Floods in 2010 (Hong
<italic>et al</italic>
.,
<xref rid="b95" ref-type="bibr">2011</xref>
; Houze
<italic>et al</italic>
.,
<xref rid="b96" ref-type="bibr">2011</xref>
; Trenberth & Fasullo,
<xref rid="b241" ref-type="bibr">2012</xref>
), the storm Lothar in Europe in 1999 (Lindroth
<italic>et al</italic>
.,
<xref rid="b139" ref-type="bibr">2009</xref>
), hurricane Katrina in the U.S. in 2005 (Chambers
<italic>et al</italic>
.,
<xref rid="b39" ref-type="bibr">2007</xref>
), or the ice storm in southern and central China in 2008 (Stone,
<xref rid="b230" ref-type="bibr">2008</xref>
; Sun
<italic>et al</italic>
.,
<xref rid="b233" ref-type="bibr">2012</xref>
), and the 2010–2011 La Nina rains over Australia (Boening
<italic>et al</italic>
.,
<xref rid="b25" ref-type="bibr">2012</xref>
; Poulter
<italic>et al</italic>
.,
<xref rid="b190" ref-type="bibr">2014</xref>
). These documented recent events demonstrate the massive impacts climate extremes can have on harvests, economies and human health, as well as on the carbon balance of terrestrial ecosystems (IPCC,
<xref rid="b98" ref-type="bibr">2012</xref>
; Reichstein
<italic>et al</italic>
.,
<xref rid="b197" ref-type="bibr">2013</xref>
).</p>
<p>Alterations of the biosphere’s carbon balance through changes in the strength of carbon uptake or losses in turn affect the climate system (Friedlingstein
<italic>et al.,</italic>
<xref rid="b351" ref-type="bibr">2006</xref>
; Frank
<italic>et al.,</italic>
<xref rid="b350" ref-type="bibr">2010</xref>
). In addition, extreme drought will often reduce evapotranspiration and its cooling effect and thereby causes a positive local feedback on warming (e.g. Seneviratne
<italic>et al</italic>
.,
<xref rid="b216" ref-type="bibr">2010</xref>
; Teuling
<italic>et al</italic>
.,
<xref rid="b237" ref-type="bibr">2010</xref>
; Mueller & Seneviratne,
<xref rid="b164" ref-type="bibr">2012</xref>
; Peng
<italic>et al</italic>
.,
<xref rid="b182" ref-type="bibr">2014</xref>
). Regional assessments clearly indicate the relevance of climate extremes on the carbon cycle and potential climate feedbacks (e.g. for drought extreme in Europe, Ciais
<italic>et al</italic>
.,
<xref rid="b42" ref-type="bibr">2005</xref>
; Reichstein
<italic>et al</italic>
.,
<xref rid="b196" ref-type="bibr">2007</xref>
; and for western North America, Schwalm
<italic>et al</italic>
.,
<xref rid="b213" ref-type="bibr">2012</xref>
). Yet a synthesis of the direct and indirect impacts of climate extremes on the carbon cycle and the underlying mechanisms is still lacking. In a recent broad perspective, Reichstein
<italic>et al</italic>
. (
<xref rid="b197" ref-type="bibr">2013</xref>
) highlighted the possibility that climate extremes and their impacts on the global carbon cycle may lead to an amplification of positive climate–carbon cycle feedbacks. However, the underlying mechanisms, and how they likely apply to current and future response patterns observed in different biomes and ecosystem types, have not yet been synthesized in detail, especially with respect to possible differences in response time (concurrent/lagged) and direction of impacts (direct/indirect). Such detailed information is needed, given the complexity of carbon cycle responses to climate extremes, and their dependence on background climate and ecosystem conditions (Knapp
<italic>et al</italic>
.,
<xref rid="b116" ref-type="bibr">2008</xref>
).</p>
<p>In this review, we aim to (1) develop a coherent conceptual framework based on logically deductive reasoning for integrating direct and indirect effects climate extremes could have on the carbon cycle and to identify the main mechanisms underlying these effects, (2) synthesize how different types of ecosystems are affected by climate extremes based on available well-documented case studies and (3) provide an overview of likely responses of the terrestrial carbon cycle in relation to likely future climate extremes, and the specific role of lagged impacts.</p>
<p>At the outset, we acknowledge that the lack of systematically collected data and the highly nonlinear responses of ecosystems to extreme events makes a quantitative meta-analysis of effects of climate extremes on the carbon cycle across the range of observational and experimental studies virtually impossible (cf. also Vicca
<italic>et al</italic>
.,
<xref rid="b256" ref-type="bibr">2014</xref>
). While there is ample information in the literature on specific effects of extreme climatic conditions (experimentally induced or naturally occurring) on specific ecosystems, the severity of these extreme conditions and their consequences has often not been systematically evaluated. This is not only due to a lack of common metrics reported across the various studies (e.g. Vicca
<italic>et al</italic>
.,
<xref rid="b255" ref-type="bibr">2012</xref>
), but also complicated by the fact that climate extremes are by definition rare and their effects are highly context dependent, typically threshold based and highly nonlinear (e.g. Knapp
<italic>et al</italic>
.,
<xref rid="b116" ref-type="bibr">2008</xref>
; Smith,
<xref rid="b223" ref-type="bibr">2011</xref>
, Bahn
<italic>et al</italic>
.,
<xref rid="b13" ref-type="bibr">2014</xref>
). Thus, in our review, we rely on a qualitative, logically deductive reasoning, supported by multiple case studies, combined with remote sensing-based global analysis to derive hypotheses on potential effects of climate extremes on the terrestrial carbon cycle.</p>
</sec>
<sec>
<title>Definitions</title>
<sec>
<title>Climate extremes and impacts</title>
<p>Terms, such as ‘climate extremes’, ‘weather extremes’ or ‘extreme weather events’, are used in various ways in the scientific literature. Thus, for clarity, we provide and briefly justify the definitions we use in this review:</p>
<p>An ‘extreme’, as stated in Seneviratne
<italic>et al</italic>
. (
<xref rid="b217" ref-type="bibr">2012</xref>
), is ‘the occurrence of a value of a weather or climate variable above (or below) a threshold value near the upper (or lower) ends of the range of observed values of the variable’ within a defined climate reference period (e.g. 1981–2010). Thus, ‘climate extreme’ is an aggregate term encompassing both ‘extreme weather’ and ‘extreme climate’ events. The distinction of weather events and climate events is related to the timescale. An extreme climate event occurs on longer timescales than an extreme weather event and can be the accumulation of extreme weather events. This definition follows the IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (Seneviratne
<italic>et al</italic>
.,
<xref rid="b217" ref-type="bibr">2012</xref>
).</p>
<p>However, the above definitions reflecting climatological considerations do not consider potential consequences for the biosphere and the carbon cycle. Smith (
<xref rid="b223" ref-type="bibr">2011</xref>
) suggested that one has to specifically address events where both climates are anomalous and the biosphere experiences a pronounced impact outside the bounds of what is considered normal variability. Along these lines, we use the term ‘extreme impact’ to describe, from a functional perspective, when a resilience threshold (‘extreme response threshold’,
<italic>sensu</italic>
Smith,
<xref rid="b223" ref-type="bibr">2011</xref>
) is passed, placing the ecosystem and associated carbon cycling into an unusual or rare state. Thresholds are typically exceeded when stressor dose (i.e. cumulative amount defined by stress intensity multiplied by stress duration) reaches a critical level (e.g. during flooding, drought and/or extended periods of exceptionally high or low temperatures), or when the intensity of an extreme climatic event is critically high (e.g. during a storm). Thresholds can be passed at organ, plant or community level, and lead to emergent carbon cycle impacts at ecosystem level. We note that the definition of ‘extreme impact’ may partly overlap with the concept of ‘disturbance’ as it is commonly used in ecology (White & Jentsch,
<xref rid="b267" ref-type="bibr">2001</xref>
). Here, we consider every climate extreme which has an impact on the ecosystem carbon cycle a ‘disturbance’, but note that not every disturbance is caused by climate extremes. A typical example is fire, which can be part of a system intrinsic disturbance cycle. But in this study, we consider those fires which are of rare magnitude or even are unprecedented, and likely facilitated by extreme climate conditions. Given that impacts caused by ‘climate extremes’ can be considered ‘disturbances’, we assume that respective general mechanisms and processes induced by ‘disturbances’ also operate in this specific ‘extreme’ context.</p>
<p>In order to specifically address extreme impacts with repercussions to the carbon cycle, denoted as ‘carbon cycle extreme’ and to entail anomalies in biosphere–atmosphere carbon fluxes or extreme changes in ecosystem carbon pools, it is useful to distinguish ‘concurrent’ vs. ‘lagged’ and ‘direct’ vs. ‘indirect’ impacts (Fig.
<xref ref-type="fig" rid="fig01">1</xref>
). These four categories of impacts indicate how they are related to the stressor. Concurrent impacts begin to occur during the climate extreme, while lagged impacts occur sometime thereafter. Direct impacts are only caused by the climate extreme (either concurrently or lagged) if, and only if, a threshold of the climatic stress dose (dashed line in Fig.
<xref ref-type="fig" rid="fig01">1a</xref>
) is passed. Indirect impacts are facilitated by the climate extreme by increasing the susceptibility of the ecosystem, but directly initiated by another (not necessarily extreme
<italic>per se</italic>
) external trigger. Hence, here the likelihood (P) of an extreme system response is a function of both the susceptibility and the characteristics of the external trigger (cf. Fig.
<xref ref-type="fig" rid="fig01">1b</xref>
and d).</p>
<fig id="fig01" position="float">
<label>Figure 1</label>
<caption>
<p>Schematic diagram illustrating direct concurrent and lagged (a, b) and indirect concurrent and lagged (c, d) impacts of climate extremes and corresponding extreme ecosystem responses. In the direct case, the extreme impact occurs if (and only if) a threshold is reached, that is a critical dose (blue line) is passed. In the indirect case, the climate extreme increases the susceptibility (red line) to an external trigger (climatic or nonclimatic, extreme or not extreme). The likelihood as a function of the trigger and the susceptibility is indicated with the symbol ‘P’ in the circle. Concurrent responses start during the climate extreme, but may last longer for indefinite time (dashed extensions of green boxes). Lagged responses only happen after the climate extreme. The responses can be of different nonlinear shapes as indicated in Fig.
<xref ref-type="fig" rid="fig02">2</xref>
.</p>
</caption>
<graphic xlink:href="gcb0021-2861-f1"></graphic>
</fig>
<p>Examples for these four categories of impacts are as follows:</p>
<list list-type="order">
<list-item>
<p>Direct, concurrent impact: windthrow caused by storm; ice breakage; reduced productivity or increased mortality during drought, thermal stress or flooding (cf. Fig.
<xref ref-type="fig" rid="fig01">1a</xref>
) </p>
</list-item>
<list-item>
<p>Indirect, concurrent impact: loss of biomass or soil organic matter due to fire caused by lightning or human ignition, facilitated by an ongoing extreme dry and/or warm event (cf. Fig.
<xref ref-type="fig" rid="fig01">1b</xref>
) </p>
</list-item>
<list-item>
<p>Direct, lagged impact: reduced productivity/growth in the year(s) following the year of an extreme drought, caused, for example by carbohydrate depletion/reduced bud development/partial mortality during a drought in the previous year (cf. Fig.
<xref ref-type="fig" rid="fig01">1c</xref>
) </p>
</list-item>
<list-item>
<p>Indirect, lagged impact: increased pest- or pathogen-caused mortality following a climate extreme; loss of biomass or soil organic matter due to fire facilitated through deadwood accumulation after a windthrow; loss of soil carbon due to erosion during heavy precipitation or permafrost thawing and carbon losses as indirectly facilitated by reduced vegetation cover and/or changes in soil hydrophobicity following overgrazing, drought or fire (cf. Fig.
<xref ref-type="fig" rid="fig01">1d</xref>
) </p>
</list-item>
</list>
<p>Any effect, which can be attributed to a previous climate extreme, is termed here a ‘legacy effect’ and hence per definition time lagged compared to the ‘climate extreme’ [please note that we prefer this terminology compared to the sometimes synonymously used anthropomorphic term ‘memory effect’ (Walter
<italic>et al</italic>
.,
<xref rid="b260" ref-type="bibr">2013</xref>
)]. Legacy effects can include both changes in ecosystem states or process rates after the termination of a climate extreme, as well as altered ecosystem responses to environmental conditions, including subsequent extremes, and are often related to changes in species composition and their functional attributes (e.g. Smith,
<xref rid="b223" ref-type="bibr">2011</xref>
; Sala
<italic>et al</italic>
.,
<xref rid="b202" ref-type="bibr">2012</xref>
).</p>
<p>It should be noted that is essential to define the timescale under scrutiny when quantifying the overall effect of a ‘climate extreme’ on the carbon cycle (Fig.
<xref ref-type="fig" rid="fig02">2</xref>
). It is the timescale determining the degree to which concurrent and lagged effects alter the carbon balance of an ecosystem. Negative concurrent effects, often related to the resistance of an ecosystem to an extreme event, may in the long run be balanced by enhanced regrowth during recovery (Fig.
<xref ref-type="fig" rid="fig02">2</xref>
), depending on the resilience of the system. Lagged effects may impair the ability of an ecosystem to recover from an extreme event and may thereby alter the ecosystem carbon balance over a given period (Fig.
<xref ref-type="fig" rid="fig02">2</xref>
).</p>
<fig id="fig02" position="float">
<label>Figure 2</label>
<caption>
<p>Hypothesized temporal dynamics of direct and indirect concurrent and lagged effects of climate extremes (e.g. drought/heat wave; storm) and of ecosystem recovery on the ecosystem carbon balance. (Note that for simplicity regrowth after fire and pest outbreaks are not shown in this figure). Line colours correspond to the colour of the climate extreme in the figure.</p>
</caption>
<graphic xlink:href="gcb0021-2861-f2"></graphic>
</fig>
</sec>
</sec>
<sec>
<title>Impacts of climate extremes on the terrestrial carbon cycle: mechanisms and processes</title>
<p>Climate extremes can impact the structure, composition and functioning of terrestrial ecosystems and can thereby severely affect the regional carbon cycle, with the potential of causing a shift from a carbon sink towards a carbon source. During the ‘European 2003 heat wave’, which was an extreme drought event, Western European ecosystems were estimated to have lost an amount of CO
<sub>2</sub>
comparable to that which had been absorbed from the atmosphere during the previous three to five years under normal weather conditions (Ciais
<italic>et al</italic>
.,
<xref rid="b42" ref-type="bibr">2005</xref>
; Reichstein
<italic>et al</italic>
.,
<xref rid="b196" ref-type="bibr">2007</xref>
; Vetter
<italic>et al</italic>
.,
<xref rid="b254" ref-type="bibr">2008</xref>
). Likewise, during the 2000–2004 drought, the strength of the western North American carbon sink declined substantially, with reductions ranging between 30 and 298 Tg C yr
<sup>-1</sup>
(Schwalm
<italic>et al</italic>
.,
<xref rid="b213" ref-type="bibr">2012</xref>
). In 2004, heavy precipitation associated with Typhoon Mindulle led to a particulate organic carbon flux of 0.5 Mt over a 96-h period, with subsequent rapid burial of the terrestrial carbon in the ocean (Goldsmith
<italic>et al</italic>
.,
<xref rid="b79" ref-type="bibr">2008</xref>
). Also, extreme wind storms and cyclones can severely impact the regional carbon balance: In 1999 storm, Lothar reduced the European C sink by 16 Mt C, which corresponds to 30% of Europe’s net biome production (Lindroth
<italic>et al</italic>
.,
<xref rid="b139" ref-type="bibr">2009</xref>
) and, hurricane Katrina in 2005 destroyed an amount equivalent to 50–140% of the net annual U.S. C sink in forest trees (Chambers
<italic>et al</italic>
.,
<xref rid="b39" ref-type="bibr">2007</xref>
). Fires, pest and pathogen outbreaks are obviously not climate extremes, but can be facilitated by climate extremes. Extreme fire events release large quantities of carbon to the atmosphere. For example, in Indonesia, people had drained and deforested tropical wetlands which they then ignited to burn the debris awaiting the rain season to extinguish the fires, which failed due to the onset of the strong El-Niño Southern Oscillation in 1997/1998, which instead burnt the duff layers and vegetation releasing between 0.81 and 2.57 Gt C (Page
<italic>et al</italic>
.,
<xref rid="b177" ref-type="bibr">2002</xref>
). This amount was equivalent to the estimated annual release (van der Werf
<italic>et al</italic>
.,
<xref rid="b265" ref-type="bibr">2010</xref>
) and, together with the extreme fire events occurring in Siberia, produced a signal detected by atmospheric CO
<sub>2</sub>
and CH
<sub>4</sub>
monitoring stations (Simpson
<italic>et al</italic>
.,
<xref rid="b221" ref-type="bibr">2006</xref>
). Pest and pathogen outbreaks can have large impacts on forest carbon stocks and fluxes, and may impact the regional carbon cycle (Hicke
<italic>et al</italic>
.,
<xref rid="b91" ref-type="bibr">2012</xref>
), as was the case in a mountain pine beetle outbreak in British Columbia of unprecedented extent and severity, which converted the forest from a small net carbon sink to a large net carbon source (during and immediately after the outbreak) with an estimated cumulative regional impact of 270 Mt C for 2000–2020 (Kurz
<italic>et al</italic>
.,
<xref rid="b129" ref-type="bibr">2008b</xref>
).</p>
<p>To be able to generalize and project presumable impacts of climate extremes on the carbon cycle, an understanding of the likely mechanisms and processes involved in extreme impacts is crucial. In this section, we review the primary environmental–biological processes according to their hypothesized relevance to different ecosystems, and the cascade of associated consequences. The complex pathways of how climate extremes may act on the major processes and components of the terrestrial CO
<sub>2</sub>
balance are illustrated in Fig.
<xref ref-type="fig" rid="fig03">3</xref>
. We then provide a schematic overview of possible concurrent, lagged, direct and indirect impacts of climate extremes on processes underlying ecosystem carbon dynamics highlighting the importance of lagged impacts (Fig.
<xref ref-type="fig" rid="fig04">4</xref>
).</p>
<fig id="fig03" position="float">
<label>Figure 3</label>
<caption>
<p>Processes and mechanisms underlying impacts of climate extremes on the carbon cycle. Positive/enhancing impacts with a ‘+’ and negative/reducing impacts with a ‘−’sign; predominant (in-)direct impacts (dashed) arrows (for further details please see text); importance of impact/relationship is shown by arrow width (high = thick, low = thin) (modified after Reichstein
<italic>et al</italic>
.,
<xref rid="b197" ref-type="bibr">2013</xref>
).</p>
</caption>
<graphic xlink:href="gcb0021-2861-f3"></graphic>
</fig>
<fig id="fig04" position="float">
<label>Figure 4</label>
<caption>
<p>Schematic overview of concurrent, lagged, direct and indirect impacts of climate extremes on processes underlying ecosystem carbon dynamics. Respective references (selection of examples) are indicated as followed:
<sup>1</sup>
Larcher (
<xref rid="b133" ref-type="bibr">2003</xref>
) and Mayr
<italic>et al</italic>
. (
<xref rid="b147" ref-type="bibr">2007</xref>
);
<sup>2</sup>
Larcher (
<xref rid="b133" ref-type="bibr">2003</xref>
), Schulze
<italic>et al</italic>
. (
<xref rid="b211" ref-type="bibr">2005</xref>
), Lobell
<italic>et al</italic>
. (
<xref rid="b140" ref-type="bibr">2012</xref>
), Porter & Semenov (
<xref rid="b188" ref-type="bibr">2005</xref>
) and Niu
<italic>et al</italic>
. (
<xref rid="b173" ref-type="bibr">2014</xref>
);
<sup>3</sup>
Larcher (
<xref rid="b133" ref-type="bibr">2003</xref>
), Bréda
<italic>et al</italic>
. (
<xref rid="b33" ref-type="bibr">2006</xref>
), Keenan
<italic>et al</italic>
. (
<xref rid="b113" ref-type="bibr">2010</xref>
), Reichstein
<italic>et al</italic>
. (
<xref rid="b196" ref-type="bibr">2007</xref>
), Misson
<italic>et al</italic>
. (
<xref rid="b157" ref-type="bibr">2010</xref>
), Schwalm
<italic>et al</italic>
. (
<xref rid="b212" ref-type="bibr">2010</xref>
) and Eamus
<italic>et al</italic>
. (
<xref rid="b62" ref-type="bibr">2013</xref>
);
<sup>4</sup>
Rosenzweig
<italic>et al</italic>
. (
<xref rid="b200" ref-type="bibr">2002</xref>
), Vervuren
<italic>et al</italic>
. (
<xref rid="b253" ref-type="bibr">2003</xref>
), Kreuzwieser
<italic>et al</italic>
. (
<xref rid="b124" ref-type="bibr">2004</xref>
) and van der Velde
<italic>et al</italic>
. (
<xref rid="b252" ref-type="bibr">2012</xref>
);
<sup>5</sup>
Nykänen
<italic>et al</italic>
. (
<xref rid="b174" ref-type="bibr">1997</xref>
), Irland (
<xref rid="b100" ref-type="bibr">2000</xref>
), Changnon (
<xref rid="b40" ref-type="bibr">2003</xref>
), Hao
<italic>et al</italic>
. (
<xref rid="b89" ref-type="bibr">2011</xref>
) and Sun
<italic>et al</italic>
. (
<xref rid="b233" ref-type="bibr">2012</xref>
);
<sup>6</sup>
Berry
<italic>et al</italic>
. (
<xref rid="b23" ref-type="bibr">2003</xref>
), Fuhrer
<italic>et al</italic>
. (
<xref rid="b73" ref-type="bibr">2006</xref>
), MCPFE (
<xref rid="b152" ref-type="bibr">2007</xref>
), Lindroth
<italic>et al</italic>
. (
<xref rid="b139" ref-type="bibr">2009</xref>
), Zeng
<italic>et al</italic>
. (
<xref rid="b273" ref-type="bibr">2009</xref>
) and Negrón-Juárez
<italic>et al</italic>
. (
<xref rid="b169" ref-type="bibr">2010b</xref>
);
<sup>7</sup>
Larcher (
<xref rid="b133" ref-type="bibr">2003</xref>
), Schulze
<italic>et al</italic>
. (
<xref rid="b211" ref-type="bibr">2005</xref>
), Dittmar
<italic>et al</italic>
. (
<xref rid="b57" ref-type="bibr">2006</xref>
) and Bokhorst
<italic>et al</italic>
. (
<xref rid="b26" ref-type="bibr">2009</xref>
);
<sup>8</sup>
Larcher (
<xref rid="b133" ref-type="bibr">2003</xref>
), Porter & Semenov (
<xref rid="b188" ref-type="bibr">2005</xref>
), Bréda
<italic>et al</italic>
. (
<xref rid="b33" ref-type="bibr">2006</xref>
) and Lobell
<italic>et al</italic>
. (
<xref rid="b140" ref-type="bibr">2012</xref>
);
<sup>9</sup>
Barber
<italic>et al</italic>
. (
<xref rid="b15" ref-type="bibr">2000</xref>
), Eilmann
<italic>et al</italic>
. (
<xref rid="b63" ref-type="bibr">2011</xref>
), Fuhrer
<italic>et al</italic>
. (
<xref rid="b73" ref-type="bibr">2006</xref>
), Phillips
<italic>et al</italic>
. (
<xref rid="b185" ref-type="bibr">2009</xref>
), Michaelian
<italic>et al</italic>
. (
<xref rid="b155" ref-type="bibr">2011</xref>
), McDowell
<italic>et al</italic>
. (
<xref rid="b151" ref-type="bibr">2013</xref>
) and Peñuelas
<italic>et al</italic>
. (
<xref rid="b183" ref-type="bibr">2013</xref>
);
<sup>10</sup>
Vervuren
<italic>et al</italic>
. (
<xref rid="b253" ref-type="bibr">2003</xref>
) and Posthumus
<italic>et al</italic>
. (
<xref rid="b189" ref-type="bibr">2009</xref>
);
<sup>11</sup>
MCPFE (
<xref rid="b152" ref-type="bibr">2007</xref>
), Chambers
<italic>et al</italic>
. (
<xref rid="b39" ref-type="bibr">2007</xref>
), Zeng
<italic>et al</italic>
. (
<xref rid="b273" ref-type="bibr">2009</xref>
) and Negrón-Juárez
<italic>et al</italic>
. (
<xref rid="b168" ref-type="bibr">2010a</xref>
,
<xref rid="b169" ref-type="bibr">b</xref>
);
<sup>12</sup>
Fuhrer
<italic>et al</italic>
. (
<xref rid="b73" ref-type="bibr">2006</xref>
), Hilton
<italic>et al</italic>
. (
<xref rid="b92" ref-type="bibr">2008</xref>
) and García-Ruiz
<italic>et al</italic>
. (
<xref rid="b75" ref-type="bibr">2013</xref>
);
<sup>13</sup>
Wang
<italic>et al</italic>
. (
<xref rid="b262" ref-type="bibr">2006</xref>
) and Shinoda
<italic>et al</italic>
. (
<xref rid="b220" ref-type="bibr">2011</xref>
);
<sup>14</sup>
Jentsch
<italic>et al</italic>
. (
<xref rid="b352" ref-type="bibr">2011</xref>
) and Fuchslueger
<italic>et al</italic>
. (
<xref rid="b72" ref-type="bibr">2014</xref>
);
<sup>15</sup>
Moriondo
<italic>et al</italic>
. (
<xref rid="b162" ref-type="bibr">2006</xref>
) and Ganteaume
<italic>et al</italic>
. (
<xref rid="b74" ref-type="bibr">2013</xref>
);
<sup>16</sup>
Porter & Semenov (
<xref rid="b188" ref-type="bibr">2005</xref>
), Jentsch
<italic>et al</italic>
. (
<xref rid="b103" ref-type="bibr">2009</xref>
), Misson
<italic>et al</italic>
. (
<xref rid="b158" ref-type="bibr">2011</xref>
), Nagy
<italic>et al</italic>
. (
<xref rid="b167" ref-type="bibr">2013</xref>
) and Peñuelas
<italic>et al</italic>
. (
<xref rid="b183" ref-type="bibr">2013</xref>
);
<sup>17</sup>
Bréda
<italic>et al</italic>
. (
<xref rid="b33" ref-type="bibr">2006</xref>
), McDowell
<italic>et al</italic>
. (
<xref rid="b149" ref-type="bibr">2008</xref>
,
<xref rid="b150" ref-type="bibr">2011</xref>
,
<xref rid="b151" ref-type="bibr">2013</xref>
) and Walter
<italic>et al</italic>
. (
<xref rid="b259" ref-type="bibr">2012</xref>
);
<sup>18</sup>
Bréda
<italic>et al</italic>
. (
<xref rid="b33" ref-type="bibr">2006</xref>
), Adams
<italic>et al</italic>
. (
<xref rid="b1" ref-type="bibr">2009</xref>
), Allen
<italic>et al</italic>
. (
<xref rid="b5" ref-type="bibr">2010</xref>
), Michaelian
<italic>et al</italic>
. (
<xref rid="b155" ref-type="bibr">2011</xref>
), McDowell
<italic>et al</italic>
. (
<xref rid="b149" ref-type="bibr">2008</xref>
,
<xref rid="b150" ref-type="bibr">2011</xref>
) and Granda
<italic>et al</italic>
. (
<xref rid="b82" ref-type="bibr">2013</xref>
);
<sup>19</sup>
Kreyling
<italic>et al</italic>
. (
<xref rid="b126" ref-type="bibr">2011</xref>
), Suarez & Kitzberger (
<xref rid="b231" ref-type="bibr">2008</xref>
) and Diez
<italic>et al</italic>
. (
<xref rid="b53" ref-type="bibr">2012</xref>
);
<sup>20</sup>
Larcher (
<xref rid="b133" ref-type="bibr">2003</xref>
) and Walter
<italic>et al</italic>
. (
<xref rid="b260" ref-type="bibr">2013</xref>
);
<sup>21</sup>
Virtanen
<italic>et al</italic>
. (
<xref rid="b257" ref-type="bibr">1998</xref>
), Stahl
<italic>et al</italic>
. (
<xref rid="b229" ref-type="bibr">2006</xref>
), Robinet & Roques (
<xref rid="b199" ref-type="bibr">2010</xref>
) and Kausrud
<italic>et al</italic>
. (
<xref rid="b112" ref-type="bibr">2012</xref>
);
<sup>22</sup>
Bréda
<italic>et al</italic>
. (
<xref rid="b33" ref-type="bibr">2006</xref>
), Desprez-Loustau
<italic>et al</italic>
. (
<xref rid="b52" ref-type="bibr">2006</xref>
), Rouault
<italic>et al</italic>
. (
<xref rid="b201" ref-type="bibr">2006</xref>
), MCPFE (
<xref rid="b152" ref-type="bibr">2007</xref>
), McDowell
<italic>et al</italic>
. (
<xref rid="b149" ref-type="bibr">2008</xref>
,
<xref rid="b150" ref-type="bibr">2011</xref>
), Jactel
<italic>et al</italic>
. (
<xref rid="b101" ref-type="bibr">2012</xref>
), Keith
<italic>et al</italic>
. (
<xref rid="b114" ref-type="bibr">2012</xref>
), Kausrud
<italic>et al</italic>
. (
<xref rid="b112" ref-type="bibr">2012</xref>
) and Walter
<italic>et al</italic>
. (
<xref rid="b259" ref-type="bibr">2012</xref>
);
<sup>23</sup>
Schlyter
<italic>et al</italic>
. (
<xref rid="b209" ref-type="bibr">2006</xref>
), MCPFE (
<xref rid="b152" ref-type="bibr">2007</xref>
) and Komonen
<italic>et al</italic>
. (
<xref rid="b117" ref-type="bibr">2011</xref>
);
<sup>24</sup>
Trigo
<italic>et al</italic>
. (
<xref rid="b242" ref-type="bibr">2006</xref>
) and Wendler
<italic>et al</italic>
. (
<xref rid="b263" ref-type="bibr">2011</xref>
);
<sup>25</sup>
Kurz
<italic>et al</italic>
. (
<xref rid="b128" ref-type="bibr">2008a</xref>
);
<sup>26</sup>
Øygarden (
<xref rid="b176" ref-type="bibr">2003</xref>
), Valentin
<italic>et al</italic>
. (
<xref rid="b247" ref-type="bibr">2008</xref>
) and Thothong
<italic>et al</italic>
. (
<xref rid="b238" ref-type="bibr">2011</xref>
);
<sup>27</sup>
Sheik
<italic>et al</italic>
. (
<xref rid="b218" ref-type="bibr">2011</xref>
), Yuste
<italic>et al</italic>
. (
<xref rid="b400" ref-type="bibr">2011</xref>
) and, Fuchslueger
<italic>et al</italic>
. (
<xref rid="b72" ref-type="bibr">2014</xref>
);
<sup>28</sup>
Sowerby
<italic>et al</italic>
. (
<xref rid="b227" ref-type="bibr">2008</xref>
).</p>
</caption>
<graphic xlink:href="gcb0021-2861-f4"></graphic>
</fig>
</sec>
<sec>
<title>Direct impacts</title>
<p>Temperature extremes can directly and concurrently impact photosynthesis and respiration (cf. Fig.
<xref ref-type="fig" rid="fig03">3a</xref>
and b). Effects differ between species, ecosystem types and biomes, and may change seasonally and even diurnally through hardening responses (Larcher,
<xref rid="b133" ref-type="bibr">2003</xref>
). Concurrent direct impacts of extremely high temperatures range from disruptions in enzyme activity affecting photosynthesis and respiration, to changes in growth and development (Larcher,
<xref rid="b133" ref-type="bibr">2003</xref>
; Schulze
<italic>et al</italic>
.,
<xref rid="b211" ref-type="bibr">2005</xref>
; Lobell
<italic>et al</italic>
.,
<xref rid="b140" ref-type="bibr">2012</xref>
; Niu
<italic>et al</italic>
.,
<xref rid="b173" ref-type="bibr">2014</xref>
). Likewise, extremely low temperatures impact physiological functions and developmental processes. Frost damage is perhaps the most important direct concurrent impact of cold climate extremes. In this context, timing is a crucial factor: in temperate ecosystems risk of plant damage is particularly high in spring when temperatures drop below freezing after an early warming event (Bokhorst
<italic>et al</italic>
.,
<xref rid="b26" ref-type="bibr">2009</xref>
; Migliavacca
<italic>et al</italic>
.,
<xref rid="b156" ref-type="bibr">2009</xref>
), or during cold outbreaks when autumn hardening is insufficient, or when a protective snow cover is absent during extreme frost. In addition to frost damage of needles, xylem embolism in response to freeze-thaw cycles frequently adds to the factors decreasing plant vitality (Fig.
<xref ref-type="fig" rid="fig03">3a</xref>
) (Sperry & Sullivan,
<xref rid="b232" ref-type="bibr">1992</xref>
; Mayr
<italic>et al</italic>
.,
<xref rid="b146" ref-type="bibr">2003</xref>
,
<xref rid="b147" ref-type="bibr">2007</xref>
).</p>
<p>Unusual warming events at the end of the winter season in temperate and boreal climates can induce plant activity too early, a phenomenon that has been called ‘false spring’ (e.g. Marino
<italic>et al</italic>
.,
<xref rid="b145" ref-type="bibr">2011</xref>
). Extreme warm late winters together with the general trend of average warming may lead to earlier onset of the seasonal plant development, unfulfilled chilling requirements, that is the exposure to cool temperatures that is required before dormancy can be broken. A general trend of earlier onset of greening has been observed at local scales, from phenological gardens across Europe and globally from remote sensing NDVI data (Myneni
<italic>et al</italic>
.,
<xref rid="b166" ref-type="bibr">1997</xref>
; Menzel
<italic>et al</italic>
.,
<xref rid="b154" ref-type="bibr">2006</xref>
; Pilegaard
<italic>et al</italic>
.,
<xref rid="b186" ref-type="bibr">2011</xref>
). If plants switch from dormancy to physiological activity earlier, they may become more susceptible to frost events with strong negative consequences, such as tissue mortality (Polle
<italic>et al</italic>
.,
<xref rid="b187" ref-type="bibr">1996</xref>
), increased tree crown transparency (Dittmar & Elling,
<xref rid="b56" ref-type="bibr">2007</xref>
), and reduced tree growth (Dittmar
<italic>et al</italic>
.,
<xref rid="b57" ref-type="bibr">2006</xref>
) and plant performance (Kreyling,
<xref rid="b125" ref-type="bibr">2010</xref>
).</p>
<p>Drought extremes may have manifold impacts on the carbon cycle
<italic>via</italic>
direct concurrent impacts (e.g. on plant physiology and soil microbial activity), direct lagged impacts (e.g. on the phenology of plants, reduced growth in the following year due to lower carbohydrate storage in the year of the drought, altered composition of plant species, soil microbial community structure and activity), as well as indirect lagged impacts, for example by drought-facilitated pest and pathogen outbreaks or fire ignition and spread (see Figs
<xref ref-type="fig" rid="fig03">3</xref>
and
<xref ref-type="fig" rid="fig04">4</xref>
). Effects of drought on gross ecosystem productivity are typically larger than for ecosystem respiration (Schwalm
<italic>et al</italic>
.,
<xref rid="b212" ref-type="bibr">2010</xref>
; cf. Fig.
<xref ref-type="fig" rid="fig03">3b</xref>
).</p>
<p>Drought stress occurs whether the water potential of an organism/tissue drops below a critical threshold. For example, in temperate and Mediterranean forest ecosystems, decreased transpiration, gross photosynthesis and respiration were observed when relative root extractable soil water dropped below 40% (Granier
<italic>et al</italic>
.,
<xref rid="b83" ref-type="bibr">2007</xref>
). High temperatures and low relative humidity (often expressed at the vapour pressure deficit) serve to increase evaporative demand, and drought stress of plants occurs when soil water supply can no longer meet the plant evaporative demand (e.g. Sperry,
<xref rid="b228" ref-type="bibr">2000</xref>
). Plant available water is influenced by soil type and local surface and subsurface characteristics, such as the depth to the groundwater level or bedrock. The amount of water actually available to a plant depends strongly on the distribution of soil water across the profile in relation to root depth and type (Schachtschabel
<italic>et al</italic>
.,
<xref rid="b204" ref-type="bibr">1992</xref>
; Tolk,
<xref rid="b240" ref-type="bibr">2003</xref>
; White,
<xref rid="b266" ref-type="bibr">2006</xref>
; Vicca
<italic>et al</italic>
.,
<xref rid="b255" ref-type="bibr">2012</xref>
).</p>
<p>Droughts and extreme high temperatures (heat waves), both to be considered climate extremes in their own right, cannot be seen as independent phenomena as in many (transitional climate) regions droughts additionally are connected with high temperature extremes (Mueller & Seneviratne,
<xref rid="b164" ref-type="bibr">2012</xref>
) (Fig.
<xref ref-type="fig" rid="fig03">3b</xref>
). The combination of high temperatures and droughts initiate a positive regional feedback mechanism (e.g. Durre
<italic>et al</italic>
.,
<xref rid="b61" ref-type="bibr">2000</xref>
; Seneviratne
<italic>et al</italic>
.,
<xref rid="b215" ref-type="bibr">2006</xref>
; Fischer
<italic>et al</italic>
.,
<xref rid="b64" ref-type="bibr">2007</xref>
; Vautard
<italic>et al</italic>
.,
<xref rid="b250" ref-type="bibr">2007</xref>
; Zampieri
<italic>et al</italic>
.,
<xref rid="b271" ref-type="bibr">2009</xref>
; Diffenbaugh & Ashfaq,
<xref rid="b54" ref-type="bibr">2010</xref>
; Hirschi
<italic>et al</italic>
.,
<xref rid="b93" ref-type="bibr">2011</xref>
): the precipitation deficits and enhanced evaporative demand generally associated with warm spells (e.g. atmospheric blockings) triggers soil moisture deficit, thus suppressing evaporative cooling (Teuling
<italic>et al</italic>
.,
<xref rid="b237" ref-type="bibr">2010</xref>
) and leading to hotter and drier conditions if soil moisture becomes limiting for evapotranspiration (Seneviratne
<italic>et al</italic>
.,
<xref rid="b216" ref-type="bibr">2010</xref>
). Warmer temperatures additionally increase vapour pressure deficit, even without a concurrent reduction in rainfall, and this process alone causes extra drought stress (Williams
<italic>et al</italic>
.,
<xref rid="b268" ref-type="bibr">2012</xref>
). In addition, there are likely also nonlocal feedbacks between drought conditions and heat waves, for instance through the advection of dry air or the modification of regional-scale circulation patterns (e.g. Vautard
<italic>et al</italic>
.,
<xref rid="b250" ref-type="bibr">2007</xref>
; Haarsma
<italic>et al</italic>
.,
<xref rid="b87" ref-type="bibr">2009</xref>
).</p>
<p>Plants may respond to drought stress by structural or physiological adjustments such as decreased leaf area index, changes in the root–shoot ratio, or changes in osmolyte concentration (Larcher,
<xref rid="b133" ref-type="bibr">2003</xref>
; Bréda
<italic>et al</italic>
.,
<xref rid="b33" ref-type="bibr">2006</xref>
). The ability of plants to extract water from deeper layers under soil moisture stress, up to some limit, has been reported (e.g. Nepstad
<italic>et al</italic>
.,
<xref rid="b170" ref-type="bibr">1994</xref>
; Canadell
<italic>et al</italic>
.,
<xref rid="b37" ref-type="bibr">1996</xref>
; Wan
<italic>et al</italic>
.,
<xref rid="b261" ref-type="bibr">2002</xref>
; Teuling
<italic>et al</italic>
.,
<xref rid="b236" ref-type="bibr">2006</xref>
). Drought decreases CO
<sub>2</sub>
assimilation rates (according to our definitions, a direct concurrent impact) by reducing stomatal and mesophyll conductance, the activity and concentrations of photosynthetic enzymes (Lawlor,
<xref rid="b134" ref-type="bibr">1995</xref>
; Chaves
<italic>et al</italic>
.,
<xref rid="b41" ref-type="bibr">2009</xref>
; Keenan
<italic>et al</italic>
.,
<xref rid="b113" ref-type="bibr">2010</xref>
) and reducing sink strength (Palacio
<italic>et al</italic>
.,
<xref rid="b178" ref-type="bibr">2014</xref>
). Generally, direct concurrent drought impacts are larger for plant photosynthesis than for respiration of plants (Atkin & Macherel,
<xref rid="b9" ref-type="bibr">2009</xref>
) and ecosystems (Schwalm
<italic>et al</italic>
.,
<xref rid="b212" ref-type="bibr">2010</xref>
; Shi
<italic>et al</italic>
.,
<xref rid="b219" ref-type="bibr">2014</xref>
) (Fig.
<xref ref-type="fig" rid="fig03">3b</xref>
).</p>
<p>In addition to direct concurrent drought impacts like decreased carbon (and nutrient) assimilation (Fig.
<xref ref-type="fig" rid="fig03">3b</xref>
), drought may have lagged impacts on the carbon cycle
<italic>via</italic>
the re-allocation of existing stored reserves for repair, maintenance (including that of hydraulic integrity), growth and defence, as well as indirect lagged impacts (Fig.
<xref ref-type="fig" rid="fig04">4</xref>
) by increasing the ecosystems’ vulnerability to additional stressors such as pests and pathogens, or subsequent drought events (Bréda
<italic>et al</italic>
.,
<xref rid="b33" ref-type="bibr">2006</xref>
; Desprez-Loustau
<italic>et al</italic>
.,
<xref rid="b52" ref-type="bibr">2006</xref>
; McDowell
<italic>et al</italic>
.,
<xref rid="b150" ref-type="bibr">2011</xref>
; Sala
<italic>et al</italic>
.,
<xref rid="b202" ref-type="bibr">2012</xref>
; Keith
<italic>et al</italic>
.,
<xref rid="b114" ref-type="bibr">2012</xref>
).</p>
<p>Water stress has a direct, concurrent impact on microbial activity, which depends on the presence of water films for substrate diffusion and exo-enzyme activity (Davidson & Janssens,
<xref rid="b50" ref-type="bibr">2006</xref>
), whereas indirect and lagged drought impacts on microbial activity may be initiated by various mechanisms such as a decreased input of labile carbon into the soil due to reduced plant productivity (Araus
<italic>et al</italic>
.,
<xref rid="b7" ref-type="bibr">2002</xref>
; Reddy
<italic>et al</italic>
.,
<xref rid="b195" ref-type="bibr">2004</xref>
), and altered soil nutrient retention and availability (Muhr
<italic>et al</italic>
.,
<xref rid="b165" ref-type="bibr">2010</xref>
; Bloor & Bardgett,
<xref rid="b24" ref-type="bibr">2012</xref>
). Drought may also alter microbial community structure (Sheik
<italic>et al</italic>
.,
<xref rid="b218" ref-type="bibr">2011</xref>
) with consequences for carbon cycling (Fig.
<xref ref-type="fig" rid="fig04">4</xref>
; direct concurrent and (in-)direct lagged impact via changes in species composition) (Fuchslueger
<italic>et al</italic>
.,
<xref rid="b72" ref-type="bibr">2014</xref>
). In Mediterranean ecosystems, for example, fungi were less affected by drought than bacteria and controlled soil organic matter decomposition (Curiel-Yuste
<italic>et al</italic>
.,
<xref rid="b48" ref-type="bibr">2011</xref>
). While soil and ecosystem respiration are reduced by drought, rewetting by rainfall following drought can strongly stimulate soil CO
<sub>2</sub>
emissions to levels substantially exceeding predrought (or control) rates, with immediate consequences for the carbon cycle (Fig.
<xref ref-type="fig" rid="fig02">2</xref>
, Jarvis
<italic>et al</italic>
.,
<xref rid="b102" ref-type="bibr">2007</xref>
; see also reviews by Borken & Matzner,
<xref rid="b28" ref-type="bibr">2009</xref>
; Kim
<italic>et al</italic>
.,
<xref rid="b115" ref-type="bibr">2012</xref>
; Vicca
<italic>et al</italic>
.,
<xref rid="b256" ref-type="bibr">2014</xref>
). Different mechanisms act when drying–rewetting cycles become more pronounced. Among others, physical disruption of aggregates (Borken & Matzner,
<xref rid="b28" ref-type="bibr">2009</xref>
), increased soil water repellency (Goebel
<italic>et al</italic>
.,
<xref rid="b78" ref-type="bibr">2011</xref>
) and altered nutrient retention (Borken & Matzner,
<xref rid="b28" ref-type="bibr">2009</xref>
; Bloor & Bardgett,
<xref rid="b24" ref-type="bibr">2012</xref>
) can be responsible for legacy effects on microbial activity and respiration, by modifying substrate and nutrient availability (indirect and lagged impact).</p>
<p>The magnitude of the impact on key ecosystem processes from an altered quantity, frequency or intensity of precipitation critically depends on the ecosystems’ (seasonally varying) baseline water limitation (Gerten
<italic>et al</italic>
.,
<xref rid="b76" ref-type="bibr">2008</xref>
). In addition to intensity and duration, the timing of droughts is a crucial factor due to the pronounced seasonal cycle of many ecosystems and land uses (Allard
<italic>et al</italic>
.,
<xref rid="b4" ref-type="bibr">2008</xref>
; Unger
<italic>et al</italic>
.,
<xref rid="b246" ref-type="bibr">2009</xref>
; Misson
<italic>et al</italic>
.,
<xref rid="b157" ref-type="bibr">2010</xref>
,
<xref rid="b158" ref-type="bibr">2011</xref>
; De Boeck
<italic>et al</italic>
.,
<xref rid="b51" ref-type="bibr">2011</xref>
).</p>
<p>Extreme precipitation events may alter soil CO
<sub>2</sub>
fluxes and CO
<sub>2</sub>
uptake by plants during water logging phases (direct concurrent impacts on the carbon cycle), may lead to flooding-related tree mortality (Kramer
<italic>et al</italic>
.,
<xref rid="b122" ref-type="bibr">2007</xref>
) and may cause topsoil erosion (Fig.
<xref ref-type="fig" rid="fig03">3c</xref>
; see also below and Fig.
<xref ref-type="fig" rid="fig04">4</xref>
) with losses of particulate and dissolved organic carbon from terrestrial to riverine ecosystems (Hilton
<italic>et al</italic>
.,
<xref rid="b92" ref-type="bibr">2008</xref>
; Dinsmore
<italic>et al</italic>
.,
<xref rid="b55" ref-type="bibr">2013</xref>
). In more water-limited systems, longer intervals between rainfall events may increase the duration and severity of soil drought stress. In contrast, longer intervals between heavy rainfall events may reduce periods of anoxia and be favourable to plant growth in more hydric ecosystems (see also Knapp
<italic>et al</italic>
.,
<xref rid="b116" ref-type="bibr">2008</xref>
). The impacts of extreme precipitation events are often exacerbated by their association, in most climatic regions, with extreme wind storms/cyclones.</p>
<p>Ice storms are a form of extreme precipitation that occurs when liquid precipitation (often in a supercooled state) freezes shortly after contact with the terrestrial surface. The growing layer of ice can add substantial weight to vegetation and therefore result in the loss of branches, limbs, or uproot entire trees (Bragg
<italic>et al</italic>
.,
<xref rid="b30" ref-type="bibr">2003</xref>
; McCarthy
<italic>et al</italic>
.,
<xref rid="b148" ref-type="bibr">2006</xref>
; Sun
<italic>et al</italic>
.,
<xref rid="b233" ref-type="bibr">2012</xref>
).</p>
<p>Extreme wind storms and tropical cyclones are often associated with extreme precipitation events, but have the additional potential to cause, depending upon their intensity severe damage and direct concurrent impacts on the carbon cycle (Fig.
<xref ref-type="fig" rid="fig03">3d</xref>
)
<italic>via</italic>
defoliation, damage to branches, and windthrow or flooding by (e.g. saltwater) storm surges related tree mortality (Conner & Inabinette,
<xref rid="b43" ref-type="bibr">2003</xref>
; MCPFE,
<xref rid="b152" ref-type="bibr">2007</xref>
; Chambers
<italic>et al</italic>
.,
<xref rid="b39" ref-type="bibr">2007</xref>
; Imbert & Portecop,
<xref rid="b97" ref-type="bibr">2008</xref>
; Zeng
<italic>et al</italic>
.,
<xref rid="b273" ref-type="bibr">2009</xref>
; Negrón-Juárez
<italic>et al</italic>
.,
<xref rid="b168" ref-type="bibr">2010a</xref>
) and lodging in agroecosystems (when crop stems are broken and crops are flattened). In addition, in forests, windthrow can cause long-term indirect lagged impacts on the carbon balance via tree mortality and dry dead wood accumulation that may facilitate lagged insect outbreaks or massive fires (Fig.
<xref ref-type="fig" rid="fig03">3d</xref>
; see also below). Individual extreme storms and cyclones can severely impact the regional carbon balance (e.g. Lindroth
<italic>et al</italic>
. (
<xref rid="b139" ref-type="bibr">2009</xref>
) for Europe or Chambers
<italic>et al</italic>
. (
<xref rid="b39" ref-type="bibr">2007</xref>
) for the U.S.). For example, in October 2005, Hurricane Wilma made landfall over the Yucatán peninsula with particularly intense winds. Immediate reductions in leaf area and productivity were observed, while in the year following the hurricane, increased carbon emissions from soils were observed that were attributable to the addition of nitrogen-rich organic matter (Vargas,
<xref rid="b249" ref-type="bibr">2012</xref>
). Depending on the spatial and tempora l scale considered, the frequency and intensity of the storm/cyclone, the characteristics of the impact and the recovery processes involved, the overall carbon balance can vary between a source and a sink (Fig.
<xref ref-type="fig" rid="fig02">2</xref>
; see e.g. Fisk
<italic>et al</italic>
.,
<xref rid="b67" ref-type="bibr">2013</xref>
).</p>
<p>Soil erosion can be caused by the extreme precipitation events and extreme wind storms (or a combination of both) and is codetermined by topography, soil characteristics, vegetation cover and human activities (e.g. Lal
<italic>et al</italic>
.,
<xref rid="b132" ref-type="bibr">2013</xref>
) with significant on- and off-site impacts. Extreme weather events can result in direct, rapid and substantial local soil carbon losses (Hilton
<italic>et al</italic>
.,
<xref rid="b92" ref-type="bibr">2008</xref>
; Jung
<italic>et al</italic>
.,
<xref rid="b108" ref-type="bibr">2012</xref>
), and subsequent transport/redistribution and deposition (Goldsmith
<italic>et al</italic>
.,
<xref rid="b79" ref-type="bibr">2008</xref>
). Soils are especially susceptible to erosion if vegetation cover is low, for example crop ecosystems at fallow stages or grasslands after drought periods. Soil carbon loss due to erosion can therefore be a direct concurrent as well as an indirect lagged climate extreme impact (see Fig.
<xref ref-type="fig" rid="fig04">4</xref>
). In addition, soil erosion leads to losses of soil nutrient and water retention capacity, and to a generally lower productivity on eroded soils (Lal & Pimentel,
<xref rid="b131" ref-type="bibr">2008</xref>
), inducing further (indirect) lagged impacts on the ecosystems carbon cycle. Eroded soil and mobilized soil organic matter are often redeposited within the same ecosystem at short-timescales, but soil organic carbon can also be laterally exported from a particular ecosystem (VandenBygaart
<italic>et al</italic>
.,
<xref rid="b248" ref-type="bibr">2012</xref>
; Berhe & Kleber,
<xref rid="b22" ref-type="bibr">2013</xref>
). The deposition and subsequent residence time of carbon removed with eroded soil determines the contribution of soil organic carbon erosion to CO
<sub>2</sub>
fluxes (van Oost
<italic>et al</italic>
.,
<xref rid="b175" ref-type="bibr">2007</xref>
; Lal & Pimentel,
<xref rid="b131" ref-type="bibr">2008</xref>
). Soil erosion processes can also increase the terrestrial carbon sink if eroded carbon is not transformed to CO
<sub>2</sub>
, but trapped in deposits with longer residence times than the original soil (van Oost
<italic>et al</italic>
.,
<xref rid="b175" ref-type="bibr">2007</xref>
; Hilton
<italic>et al</italic>
.,
<xref rid="b92" ref-type="bibr">2008</xref>
). Hence, erosion and subsequent sedimentation affects the overall land carbon budget, but the net effect of erosion on the carbon cycle remains controversial (Lal,
<xref rid="b130" ref-type="bibr">2009</xref>
) and improved, scientifically rigorous terminology may be needed to describe landscape soil carbon turnover (Berhe & Kleber,
<xref rid="b22" ref-type="bibr">2013</xref>
).</p>
</sec>
<sec>
<title>Indirect impacts</title>
<p>While extreme droughts, heat waves, frosts, precipitation and wind storms are climate extremes, soil erosion can be a direct concurrent impact of extreme precipitation and/or wind storms and, additionally, may be amplified by indirect lagged climate extreme impacts (cf. Fig.
<xref ref-type="fig" rid="fig04">4</xref>
); fires and pest and pathogen outbreaks are impacts facilitated by climate extremes (cf. Fig.
<xref ref-type="fig" rid="fig04">4</xref>
), but initiated by another trigger (not necessarily an extreme event
<italic>per se</italic>
) (cf. Fig.
<xref ref-type="fig" rid="fig01">1b</xref>
and d).</p>
<p>Fire-related losses of biomass or soil organic matter generally occur as an indirect, and often lagged, impact of climate extremes (cf. Figs
<xref ref-type="fig" rid="fig03">3b</xref>
, d and 4) and are caused by the interaction between biotic (e.g. fuel load) and abiotic factors (e.g. dry weather, wind velocity, fuel continuity, slope of terrain and landscape fragmentation) and human ignition (Moriondo
<italic>et al</italic>
.,
<xref rid="b162" ref-type="bibr">2006</xref>
; Bowman
<italic>et al</italic>
.,
<xref rid="b29" ref-type="bibr">2009</xref>
; Aldersley
<italic>et al</italic>
.,
<xref rid="b3" ref-type="bibr">2011</xref>
; Pausas & Paula,
<xref rid="b181" ref-type="bibr">2012</xref>
). Fire frequency and intensity are highly sensitive to climate extremes because fire behaviour responds immediately to fuel moisture, which is affected by the combination of precipitation, relative humidity, air temperature and wind speed (Moriondo
<italic>et al</italic>
.,
<xref rid="b162" ref-type="bibr">2006</xref>
). Fires release carbon stored in biomass and organic soils to the atmosphere in form of CO
<sub>2,</sub>
CO, CH
<sub>4</sub>
and other climate relevant trace gases and aerosols, but can also serve to prevent land–atmosphere CO
<sub>2</sub>
fluxes when burned organic matter (i.e. charcoal) is formed during the combustion process. Charcoal is typically more resistant to decomposition and is thought to contribute to long-term carbon sequestration in soils (Preston & Schmidt,
<xref rid="b191" ref-type="bibr">2006</xref>
; Schmidt
<italic>et al</italic>
.,
<xref rid="b210" ref-type="bibr">2011</xref>
), although recent advances point to a much faster decomposition rate which depends on thermal conditions during formation and soil conditions afterwards, than previously thought (Major
<italic>et al</italic>
.,
<xref rid="b143" ref-type="bibr">2010</xref>
; Singh
<italic>et al</italic>
.,
<xref rid="b222" ref-type="bibr">2012</xref>
; Kasin & Ohlson,
<xref rid="b110" ref-type="bibr">2013</xref>
).</p>
<p>Extreme fire events release large quantities of carbon to the atmosphere (Page
<italic>et al</italic>
.,
<xref rid="b177" ref-type="bibr">2002</xref>
) and may have long-lasting consequences on vegetation composition (Bond
<italic>et al</italic>
.,
<xref rid="b27" ref-type="bibr">2005</xref>
), soil structure, hydrophobicity and nutrient availability (Certini,
<xref rid="b38" ref-type="bibr">2005</xref>
) with presumable multiple indirect and lagged impacts on the terrestrial carbon cycle (cf. Figs
<xref ref-type="fig" rid="fig03">3b</xref>
and
<xref ref-type="fig" rid="fig04">4</xref>
). Carbon stored in litter, and organic soils such as peat, is burned during high-intensity but slow-spreading fires, and can be irreversibly destroyed, particularly during peat fires where carbon accumulated over very long timescales is immediately released, but can be additionally accelerated by another trigger (Page
<italic>et al</italic>
.,
<xref rid="b177" ref-type="bibr">2002</xref>
; Turetsky
<italic>et al</italic>
.,
<xref rid="b244" ref-type="bibr">2011a</xref>
). Note, however, that not all climate-induced fires are carbon cycle extremes, but are within the range of the particular disturbance regime. For instance, frequent and low-intensity savannah fires (Archibald
<italic>et al</italic>
.,
<xref rid="b8" ref-type="bibr">2012</xref>
) may release over a year as much CO
<sub>2</sub>
as would have been decomposed otherwise by microbes (Li
<italic>et al</italic>
.,
<xref rid="b138" ref-type="bibr">2013</xref>
).</p>
<p>The occurrence, frequency and magnitude of insect and pathogen outbreaks are often related to natural cycles in population size, driven by predator-prey type dynamics (Jepsen
<italic>et al</italic>
.,
<xref rid="b104" ref-type="bibr">2009</xref>
; Kausrud
<italic>et al</italic>
.,
<xref rid="b112" ref-type="bibr">2012</xref>
). But there is consensus – despite many uncertainties – that climate conditions influence strength and timing of insect/pathogen outbreaks
<italic>via</italic>
changes in dispersal, reproduction, development of host plants, and mortality and distributional range changes of insect herbivores (Netherer & Schopf,
<xref rid="b171" ref-type="bibr">2010</xref>
; Cornelissen,
<xref rid="b45" ref-type="bibr">2011</xref>
). Different types of climate extremes may therefore catalyse insect and pathogen outbreaks leading as we hypothesize towards indirect lagged impacts on the carbon cycle (see Figs
<xref ref-type="fig" rid="fig03">3</xref>
and
<xref ref-type="fig" rid="fig04">4</xref>
). Warm temperatures appear to favour radical increases in insect populations as a result of reduced mortality during the cold season, accelerated insect development rates and earlier flight periods (Virtanen
<italic>et al</italic>
.,
<xref rid="b257" ref-type="bibr">1998</xref>
; Stahl
<italic>et al</italic>
.,
<xref rid="b229" ref-type="bibr">2006</xref>
; Robinet & Roques,
<xref rid="b199" ref-type="bibr">2010</xref>
; Johnson
<italic>et al</italic>
.,
<xref rid="b106" ref-type="bibr">2010</xref>
). We regard these patterns as an indirect lagged impact of fewer cold temperature extremes (cf. Figs
<xref ref-type="fig" rid="fig03">3a</xref>
and
<xref ref-type="fig" rid="fig04">4</xref>
). Mechanisms, associated with indirect lagged impacts of extreme heat and drought (cf. Figs
<xref ref-type="fig" rid="fig03">3b</xref>
and
<xref ref-type="fig" rid="fig04">4</xref>
), were observed during the European 2003 heat wave. Soil water deficits appeared to lower tree resistance to pest attacks, that is a positive drought – disease association, and defoliators additionally benefitted from increased nitrogen in plant tissues linked to moderate or intermittent drought stress (Desprez-Loustau
<italic>et al</italic>
.,
<xref rid="b52" ref-type="bibr">2006</xref>
; Rouault
<italic>et al</italic>
.,
<xref rid="b201" ref-type="bibr">2006</xref>
). Multiple examples of how primary productivity and carbon stocks are reduced by insects and pathogens, and changes in carbon sink strength, are given in Hicke
<italic>et al</italic>
. (
<xref rid="b91" ref-type="bibr">2012</xref>
).</p>
</sec>
<sec>
<title>Impacts of extreme events on different ecosystem types</title>
<p>Ecosystems react differently to climate extremes: therefore, we deduce that a climate extreme of a given magnitude will not have the same impact in a forest, grassland, peatland or cropland. With both large aboveground carbon stocks (standing biomass) and carbon uptake being affected by climate extremes, we expect the largest net effects on the terrestrial carbon balance in forests compared to other ecosystems. Forest carbon stocks may be lost or reduced as CO
<sub>2</sub>
rapidly by fire (as an indirect concurrent or lagged effect due to drought and heat extremes; Fig.
<xref ref-type="fig" rid="fig04">4</xref>
), or more slowly during the decomposition of dead wood after extreme wind and ice storms or forest dieback after an extreme drought, which lead to lagged carbon emissions for a presumable long period after the climate extreme has occurred.</p>
<p>There are notable differences in how individual tree species respond to intra-annual climatic extremes including the timing of maximum sensitivity (Babst
<italic>et al</italic>
.,
<xref rid="b10" ref-type="bibr">2012</xref>
), and the complexity of forest ecosystem dynamics makes prediction of the impacts of extreme events on carbon cycling challenging (Rammig
<italic>et al</italic>
.,
<xref rid="b194" ref-type="bibr">2014</xref>
). At the same time, we hypothesize the complexity of forest ecosystems contributes to their resilience to climate extreme related impacts as, for example heterogeneous forests are known to be less susceptible to windthrow (Lindroth
<italic>et al</italic>
.,
<xref rid="b139" ref-type="bibr">2009</xref>
), insect outbreaks (Drever
<italic>et al</italic>
.,
<xref rid="b60" ref-type="bibr">2006</xref>
) and mass movements (Bebi
<italic>et al</italic>
.,
<xref rid="b20" ref-type="bibr">2009</xref>
) (see Appendix S1, section A. for biome-specific extremes and related impacts). Forests generally have better access to deeper ground water than grasslands and are reported to be likely less strongly affected by drought and heat waves (Teuling
<italic>et al</italic>
.,
<xref rid="b237" ref-type="bibr">2010</xref>
). However, once their mortality thresholds are passed, we suppose forests to be less resilient to extreme events than grasslands, which have evolved to recover rapidly from disturbances. Natural grasslands prevail in regions where climatic constraints limit the occurrence of woody life forms (Suttie
<italic>et al</italic>
.,
<xref rid="b234" ref-type="bibr">2005</xref>
). Grasslands are typically characterized by comparatively higher turnover rates compared to woody vegetation, and we therefore assume grasslands to be more resilient to climate extremes than forests (see Appendix S1, section B, for more details). In this context, amongst the climate extremes, drought is expected to have the largest effect on the carbon cycle of grasslands (Zavalloni
<italic>et al</italic>
.,
<xref rid="b272" ref-type="bibr">2008</xref>
; Gilgen & Buchmann,
<xref rid="b77" ref-type="bibr">2009</xref>
; van der Molen
<italic>et al</italic>
.,
<xref rid="b159" ref-type="bibr">2011</xref>
), while other extremes (e.g. wind storms) play a smaller if not negligible role (Reichstein
<italic>et al</italic>
.,
<xref rid="b197" ref-type="bibr">2013</xref>
). However, degradation feedbacks, as triggered by, for example grazing pressure (Albertson
<italic>et al</italic>
.,
<xref rid="b2" ref-type="bibr">1957</xref>
), erosion (Breshears
<italic>et al</italic>
.,
<xref rid="b35" ref-type="bibr">2003</xref>
) or fire combined with extreme precipitation events, may amplify effects of extreme drought and lead to substantial soil carbon losses. In comparison with forests, when normalizing for the per cent of bare soil, potential postfire erosion tends to be lower in grassland (Johansen
<italic>et al</italic>
.,
<xref rid="b105" ref-type="bibr">2001</xref>
).</p>
<p>Peatlands have characteristics in common with both forests and grasslands, namely large organic carbon stocks and a clear dominance of belowground carbon stocks, respectively. The large carbon stocks stored in peatlands are mainly protected by decomposition-limiting low temperatures and/or high water levels (Freeman
<italic>et al</italic>
.,
<xref rid="b70" ref-type="bibr">2001</xref>
). Peatland carbon stocks are highly susceptible to immediate oxidation by fire (van der Werf
<italic>et al</italic>
.,
<xref rid="b264" ref-type="bibr">2008</xref>
,
<xref rid="b265" ref-type="bibr">2010</xref>
; Turetsky
<italic>et al</italic>
.,
<xref rid="b244" ref-type="bibr">2011a</xref>
,
<xref rid="b245" ref-type="bibr">b</xref>
) and drought- or drainage-induced processes of microbial decomposition of organic carbon (Jungkunst & Fiedler,
<xref rid="b109" ref-type="bibr">2007</xref>
; Couwenberg
<italic>et al</italic>
.,
<xref rid="b47" ref-type="bibr">2010</xref>
; Frolking
<italic>et al</italic>
.,
<xref rid="b71" ref-type="bibr">2011</xref>
). Therefore, we hypothesize peatlands to be highly susceptibility to drought extremes and fire events caused by climate extremes (see Appendix S1, section C for more details).</p>
<p>Croplands are distinct from forests, grasslands and peatlands, in that most crops are planted and harvested on an annual basis. The response of croplands is strongly coupled to the timing of the climate extreme, that is the sensitivity of the growth stage of the impacted crop (e.g. van der Velde
<italic>et al</italic>
.,
<xref rid="b252" ref-type="bibr">2012</xref>
) and the management actions taken (e.g. Porter & Semenov,
<xref rid="b188" ref-type="bibr">2005</xref>
; Ramankutty
<italic>et al</italic>
.,
<xref rid="b193" ref-type="bibr">2008</xref>
; van der Velde
<italic>et al</italic>
.,
<xref rid="b251" ref-type="bibr">2010</xref>
; Lobell
<italic>et al</italic>
.,
<xref rid="b140" ref-type="bibr">2012</xref>
). In croplands, many climate extreme impacts can (theoretically) be mitigated through management, either within the same year (e.g. irrigation, replanting of a failed crop), or through longer term adaptation (e.g. changed rotations, drought- and/or heat-resistant cultivars). Lagged impacts of more than one year are of minor importance in croplands compared with the other ecosystem types.</p>
<p>A quantitative and systematic assessment of the impacts from different types of extreme events is currently limited by the number of observed case studies, a general lack of systematic data, and a lack of common metrics across experimental and impact studies (see Introduction). It is therefore currently only possible to provide a detailed literature survey about how drought, wind storms, temperature and precipitation extremes, may possibly act on carbon cycle processes in forests, grasslands, peatlands and croplands (see Appendix S1).</p>
</sec>
<sec>
<title>Future climate extremes and their impact on the carbon cycle</title>
<p>There are inherently few data available to make robust assessments regarding changes in the frequency or intensity of carbon cycle extremes. First of all, climate extremes are hard to predict, as many predictions of climate extremes are either not sufficiently well resolved (e.g. heavy precipitation) or associated with high uncertainties (e.g. drought) in current climate models (Seneviratne
<italic>et al</italic>
.,
<xref rid="b217" ref-type="bibr">2012</xref>
). Even in leading sectorial (e.g. agriculture) models, the effects of high temperatures, increased climate variability and several other growth-limiting factors such as soil nutrients, pests and weeds are not yet fully understood, and thus not implemented (Soussana
<italic>et al</italic>
.,
<xref rid="b226" ref-type="bibr">2010</xref>
). Hence, it is very difficult to anticipate future impacts of climate extremes on the global carbon cycle. Thus, we here only hypothesize the most important current and future risks of the terrestrial carbon cycle in the face of climate extremes given the available literature.</p>
<p>In those parts of the boreal zone where litter and soil moisture will likely decrease, for example
<italic>via</italic>
rising temperatures and decreasing precipitation (Seneviratne
<italic>et al</italic>
.,
<xref rid="b217" ref-type="bibr">2012</xref>
) and earlier snowmelt (Grippa
<italic>et al</italic>
.,
<xref rid="b85" ref-type="bibr">2005</xref>
), we hypothesize an increased risk that extreme dryness and tree mortality will increase the susceptibility to triggers such as lightning and human ignition, causing fires as an indirect concurrent or lagged effect (c.f. Figs
<xref ref-type="fig" rid="fig01">1d</xref>
and
<xref ref-type="fig" rid="fig04">4</xref>
; Michaelian
<italic>et al</italic>
.,
<xref rid="b155" ref-type="bibr">2011</xref>
).</p>
<p>On the other hand, according to current climate projections, large areas in the boreal zone will likely become wetter (IPCC,
<xref rid="b99" ref-type="bibr">2013</xref>
). More extreme snow fall has the potential to lead to stronger insulation of the soil in the winter. The higher soil temperatures may favour the thawing of permafrost (Zhang
<italic>et al</italic>
.,
<xref rid="b274" ref-type="bibr">2001</xref>
; Gouttevin
<italic>et al</italic>
.,
<xref rid="b81" ref-type="bibr">2012</xref>
), but also increase mineralization and growing season productivity (Monson
<italic>et al</italic>
.,
<xref rid="b160" ref-type="bibr">2006</xref>
). Assessment of the magnitude and timing of these two opposing effects will require further research. As host–pathogen interactions are strongly influenced by weather and climate, we further hypothesize that decreased frost occurrence and fewer cold extremes will facilitate pest and pathogen outbreaks (e.g. Virtanen
<italic>et al</italic>
.,
<xref rid="b257" ref-type="bibr">1998</xref>
; Hicke
<italic>et al</italic>
.,
<xref rid="b91" ref-type="bibr">2012</xref>
; Sambaraju
<italic>et al</italic>
.,
<xref rid="b203" ref-type="bibr">2012</xref>
; Price
<italic>et al</italic>
.,
<xref rid="b192" ref-type="bibr">2013</xref>
) with supposed important indirect and lagged impacts on the carbon cycle.</p>
<p>Temperate regions, being situated between cold boreal and warm, summer-dry Mediterranean regions are susceptible to temperature and precipitation extremes, droughts and storms, and impacts facilitated by them. Storms are considered to be the most important natural disturbance agent in temperate European forests, and even a small increase in storm frequency could potentially lead to a long-term reduction of the carbon stock (Fuhrer
<italic>et al</italic>
.,
<xref rid="b73" ref-type="bibr">2006</xref>
; Lindroth
<italic>et al</italic>
.,
<xref rid="b139" ref-type="bibr">2009</xref>
). Yet, current predictions of changes in storm intensity and frequency are not very robust (IPCC,
<xref rid="b99" ref-type="bibr">2013</xref>
), such that no speculation on future impacts of storms on ecosystem is possible.</p>
<p>In contrast, we conjecture that in dry temperate regions, there will be a sizeable negative effect on the carbon cycle through drought extremes, because towards the drier border of temperate regions, there is consensus among climate models that, for example, the number of consecutive dry days will increase (Seneviratne
<italic>et al</italic>
.,
<xref rid="b217" ref-type="bibr">2012</xref>
). Droughts, often occurring in concert with heat waves, can extend spatially across subcontinental domains and have a pronounced effect on forests, grasslands and croplands (Reichstein
<italic>et al</italic>
.,
<xref rid="b196" ref-type="bibr">2007</xref>
; Schwalm
<italic>et al</italic>
.,
<xref rid="b212" ref-type="bibr">2010</xref>
). Yet, the potentially mitigating effect of increased plant water use efficiency through increased CO
<sub>2</sub>
concentrations needs to be scrutinized in future research (e.g. Morgan
<italic>et al</italic>
.,
<xref rid="b161" ref-type="bibr">2011</xref>
; Zscheischler
<italic>et al</italic>
.,
<xref rid="b278" ref-type="bibr">2014c</xref>
).</p>
<p>Mediterranean and subtropical ecosystems are already shaped by strong seasonality of water availability. Changes in precipitation patterns with longer dry spells and more intense precipitation events are very likely (Seneviratne
<italic>et al</italic>
.,
<xref rid="b217" ref-type="bibr">2012</xref>
). We suggest that in forests these changing patterns will contribute to higher tree mortality rates, increased fire activity in forests, and thus more sparse vegetation, and therefore as an indirect lagged effect (cf. Figs
<xref ref-type="fig" rid="fig01">1d</xref>
and
<xref ref-type="fig" rid="fig04">4</xref>
) enhanced soil erosion, with expected negative consequences for ecosystem productivity (e.g. Allen
<italic>et al</italic>
.,
<xref rid="b5" ref-type="bibr">2010</xref>
; Williams
<italic>et al</italic>
.,
<xref rid="b268" ref-type="bibr">2012</xref>
). We further hypothesize that such positive feedback loops within the ecosystem triggered and enforced by alternating dry spells and subsequent heavy precipitation are even more likely and rapidly to occur in grasslands and cropland (e.g. with lower thresholds) because the nonwoody vegetation with shorter turnover is likely to respond faster.</p>
<p>In the tropics, susceptibility of the carbon cycle to climate extremes will strongly depend on the interaction with human drivers. For example, fire risk is low in undisturbed Amazonian rainforests, and almost all fires are a consequence of land-use-related burning activities (Aragão & Shimabukuro,
<xref rid="b6" ref-type="bibr">2010</xref>
). Once burnt, forests are more susceptible to repeated burning, creating a positive feedback, which has the potential to transform large parts of rainforests into degraded forests or even savannah (Barlow & Peres,
<xref rid="b16" ref-type="bibr">2008</xref>
; Brando
<italic>et al</italic>
.,
<xref rid="b31" ref-type="bibr">2012</xref>
,
<xref rid="b32" ref-type="bibr">2014</xref>
; Morton
<italic>et al</italic>
.,
<xref rid="b163" ref-type="bibr">2013</xref>
). Changes in precipitation patterns with longer dry spells might additionally increase fire risk with decreasing canopy closure. While tropical forests and cropping systems are susceptible to long-term droughts, heavy precipitation and wind storms, future projections of these climatic extremes are particularly uncertain. The effect of high temperatures on photosynthesis is the second crucial mechanism that can directly impact tropical forests, where the most intensive CO
<sub>2</sub>
-emission scenarios yield temperatures sufficient to damage photosynthesis and growth (Doughty & Goulden,
<xref rid="b58" ref-type="bibr">2008</xref>
). But the long-term acclimation and adaptation potential of tropical forest ecosystems (e.g. shift to heat-tolerant species) is not well known (Corlett,
<xref rid="b44" ref-type="bibr">2011</xref>
; Smith & Dukes,
<xref rid="b224" ref-type="bibr">2013</xref>
). We expect also the susceptibility of tropical peatlands to climate extremes to be strongly dependent on the interaction with human drivers, as peatland carbon stocks are highly susceptible to fires and drought- or drainage-induced microbial decomposition processes of their organic carbon stocks (see section above). Thus, we hypothesize that climate extremes will affect the tropical rainforest and peatland carbon cycle substantially, but the magnitude will strongly depend on the local human influence on these carbon stocks.</p>
</sec>
<sec>
<title>Outlook: On improving detection and prediction of global carbon cycle extremes</title>
<p>From a mechanistic and process perspective, it is clear that climate extremes can have a profound impact on the carbon cycle, and case studies have reported such impacts (Fig.
<xref ref-type="fig" rid="fig05">5</xref>
). However, great challenges remain for both a rigorous global quantification of carbon cycle extremes and estimation of the future impacts on terrestrial-atmosphere CO
<sub>2</sub>
fluxes, and hence carbon cycle climate feedbacks.</p>
<fig id="fig05" position="float">
<label>Figure 5</label>
<caption>
<p>Global distribution of extreme events in the terrestrial carbon cycle, and approximate geographical locations of published climate extremes with impacts on the carbon cycle. Extreme events in the carbon cycle are defined as contiguous regions of extreme anomalies of GPP during the period 1982–2011 (modified after Zscheischler
<italic>et al</italic>
.,
<xref rid="b277" ref-type="bibr">2014b</xref>
). Colour scale indicates the average reduction in gross carbon uptake compared to a normal year due to negative extremes in GPP. Units are gram carbon per square metre per year. The map highlights the IPCC regions with the following references to the published climate extremes. References: 1 
<italic>pest outbreaks Canada/North America</italic>
(Soja
<italic>et al</italic>
.,
<xref rid="b225" ref-type="bibr">2007</xref>
; Kurz
<italic>et al</italic>
.,
<xref rid="b129" ref-type="bibr">2008b</xref>
), 2 
<italic>ice storm North America</italic>
(Irland,
<xref rid="b100" ref-type="bibr">2000</xref>
), 3 
<italic>drought US</italic>
(Breshears
<italic>et al</italic>
.,
<xref rid="b36" ref-type="bibr">2005</xref>
; Schwalm
<italic>et al</italic>
.,
<xref rid="b213" ref-type="bibr">2012</xref>
), 4 
<italic>heavy storm Southern US</italic>
(Chambers
<italic>et al</italic>
.,
<xref rid="b39" ref-type="bibr">2007</xref>
; Zeng
<italic>et al</italic>
.,
<xref rid="b273" ref-type="bibr">2009</xref>
; Negrón-Juárez
<italic>et al</italic>
.,
<xref rid="b168" ref-type="bibr">2010a</xref>
), 5 
<italic>heavy storm Amazon</italic>
(Negrón-Juárez
<italic>et al</italic>
.,
<xref rid="b169" ref-type="bibr">2010b</xref>
), 6 
<italic>drought Amazon</italic>
(Tian
<italic>et al</italic>
.,
<xref rid="b239" ref-type="bibr">1998</xref>
; Phillips
<italic>et al</italic>
.,
<xref rid="b185" ref-type="bibr">2009</xref>
; Lewis
<italic>et al</italic>
.,
<xref rid="b137" ref-type="bibr">2011</xref>
), 7 
<italic>heavy storm Europe</italic>
(Fuhrer
<italic>et al</italic>
.,
<xref rid="b73" ref-type="bibr">2006</xref>
; Lindroth
<italic>et al</italic>
.,
<xref rid="b139" ref-type="bibr">2009</xref>
), 8 
<italic>drought and heat extreme Europe</italic>
(Ciais
<italic>et al</italic>
.,
<xref rid="b42" ref-type="bibr">2005</xref>
; Reichstein
<italic>et al</italic>
.,
<xref rid="b196" ref-type="bibr">2007</xref>
), 9 
<italic>extreme drought, heat and fire in Russia</italic>
(Barriopedro
<italic>et al</italic>
.,
<xref rid="b17" ref-type="bibr">2011</xref>
; Konovalov
<italic>et al</italic>
.,
<xref rid="b118" ref-type="bibr">2011</xref>
; Coumou & Rahmstorf,
<xref rid="b46" ref-type="bibr">2012</xref>
; Bastos
<italic>et al</italic>
.,
<xref rid="b18" ref-type="bibr">2013a</xref>
), 10 
<italic>ice storm China</italic>
(Stone,
<xref rid="b230" ref-type="bibr">2008</xref>
; Sun
<italic>et al</italic>
.,
<xref rid="b233" ref-type="bibr">2012</xref>
)), 11 
<italic>fire, drought SE Asia</italic>
(Page
<italic>et al</italic>
.,
<xref rid="b177" ref-type="bibr">2002</xref>
; Schimel & Baker,
<xref rid="b208" ref-type="bibr">2002</xref>
), 12 
<italic>drought Australia</italic>
(Haverd
<italic>et al</italic>
.,
<xref rid="b90" ref-type="bibr">2013</xref>
), 13 
<italic>heavy precipitation Australia</italic>
(Bastos
<italic>et al</italic>
.,
<xref rid="b19" ref-type="bibr">2013b</xref>
; Haverd
<italic>et al</italic>
.,
<xref rid="b90" ref-type="bibr">2013</xref>
), 14 
<italic>heavy precipitation Southern Africa</italic>
(Bastos
<italic>et al</italic>
.,
<xref rid="b19" ref-type="bibr">2013b</xref>
).</p>
</caption>
<graphic xlink:href="gcb0021-2861-f5"></graphic>
</fig>
<p>Remote sensing of the biosphere from space with a short return interval to identical locations and nearly global coverage offers promising perspectives to detect extreme anomalies in the biosphere in a consistent way (but see below). Land surface states can be estimated by analysing the interaction of electromagnetic radiation (from visible to microwave) with the vegetation or upper centimetres of the soil
<italic>via</italic>
relatively well-evaluated radiation transfer models and their inversion. Thus, vegetation states (e.g. leaf area index, biomass) and radiative properties (e.g. fractions of absorbed radiation) can be monitored, albeit they require improvements to correct retrieved signals affected by noise and biases related to atmospheric conditions. Direct methods exist for use on the ground (Pan
<italic>et al</italic>
.,
<xref rid="b179" ref-type="bibr">2011</xref>
; Baldocchi
<italic>et al</italic>
.,
<xref rid="b14" ref-type="bibr">2012</xref>
; Babst
<italic>et al</italic>
.,
<xref rid="b11" ref-type="bibr">2014</xref>
) and can be combined with remote sensing and modelling approaches to infer carbon cycling at the global scale (Jung
<italic>et al</italic>
.,
<xref rid="b107" ref-type="bibr">2011</xref>
).</p>
<p>Zscheischler
<italic>et al</italic>
. (
<xref rid="b275" ref-type="bibr">2013</xref>
) have taken a first approach to detect extreme changes in fAPAR (fraction of absorbed photosynthetically active radiation) and GPP (Zscheischler
<italic>et al</italic>
.,
<xref rid="b276" ref-type="bibr">2014a</xref>
) associated with climate anomalies that occurred during the last three decades and their association with climate anomalies. They presented four major findings: (1) the total effect of negative carbon cycle GPP extremes is of a similar magnitude as the mean terrestrial carbon sink, (2) the spatial distribution of extremes is highly uneven with ‘hotspot’ regions in many semiarid monsoon-affected regions, (3) the distribution of extreme carbon impacts follows a power law and (4) the detected carbon cycle extremes are statistically mostly strongly associated with droughts. The background map in Fig.
<xref ref-type="fig" rid="fig05">5</xref>
shows the spatial distribution of carbon cycle extremes detected in the Zscheischler
<italic>et al</italic>
. studies. Many regions, where case studies have reported carbon cycle extremes, are also detected by the global remote sensing-based approach, but not all. In particular, Amazonian extreme anomalies in the carbon cycle suggested by Phillips
<italic>et al</italic>
. (
<xref rid="b185" ref-type="bibr">2009</xref>
) or Negrón-Juárez
<italic>et al</italic>
. (
<xref rid="b169" ref-type="bibr">2010b</xref>
) are not evident in the remote sensing-supported analysis of Zscheischler
<italic>et al</italic>
. (
<xref rid="b275" ref-type="bibr">2013</xref>
) and are only seen in one model in the analysis of negative extremes in four different data-driven and modelled GPP estimates (Zscheischler
<italic>et al</italic>
.,
<xref rid="b276" ref-type="bibr">2014a</xref>
). One reason for this might be the lack of sensitivity of fAPAR in dense evergreen vegetation (data-driven estimates of GPP often rely strongly on fAPAR). Evergreen vegetation often changes its physiology without strong alterations in the leaf or canopy reflective properties. This effect has also been observed outside tropical regions, for instance, during the extreme heat and drought in Europe 2003 (Reichstein
<italic>et al</italic>
.,
<xref rid="b196" ref-type="bibr">2007</xref>
). Currently, more direct observations of photosynthetic processes
<italic>via</italic>
fluorescence offer the potential to overcome this problem (Frankenberg
<italic>et al</italic>
.,
<xref rid="b69" ref-type="bibr">2011</xref>
; Guanter
<italic>et al</italic>
.,
<xref rid="b86" ref-type="bibr">2014</xref>
), as well as combined observations of greenness indices and land surface temperature (Mildrexler
<italic>et al</italic>
.,
<xref rid="b353" ref-type="bibr">2009</xref>
). However, one striking feature of Fig.
<xref ref-type="fig" rid="fig05">5</xref>
is the lack of presumably reported extreme impacts on the carbon cycle in some hotspot areas seen by the satellite data analysis. These include North East Brazil, the Indian subcontinent, East Asia, and particularly sub-Saharan Africa. To our understanding, without observations and experiments in those tropical hotspot areas, it will be hard to fully understand climate–carbon cycle feedbacks and the role of carbon cycle extremes therein at a global scale.</p>
<p>According to our understanding, not all climate extremes cause extreme impacts in ecosystems, but they can have in-/direct and/or immediate/lagged effects. Lagged effects can either slow down the carbon cycle, when reduced vegetation productivity and/or wide-spread mortality after an extreme drought are not compensated by regeneration, but they can also accelerate the carbon cycle, when, for example productive tree and shrub seedlings cause rapid regrowth after windthrow or fire. Likewise, not all terrestrial carbon cycle extremes are propagated immediately into the atmosphere. For example, an extreme mortality event increases coarse woody debris, which is then slowly decomposed during the following years. Terrestrial carbon cycle extremes leading to structural changes without immediate fluxes to the atmosphere are currently globally undetectable due to lack of observation capabilities. LiDAR or Radar satellite missions with sufficient spatial and temporal resolution should be encouraged to increase such capabilities in the future. Detection systems need to resolve processes that cause immediate or lagged effects at different spatial and temporal scales, as the resilience of the respective ecosystem differ by ecosystem type.</p>
<p>This review also showed the lack of quantitative and consistent experimental data on the impact of climate extremes on the terrestrial carbon cycle, such that our conclusions are largely based on expert knowledge, scattered case studies and logical reasoning. Future experimental and observational designs should have a clear definition of the extreme conditions at the onset (e.g. by return interval), a consistent classification of resulting (extreme) impacts and should consider testing hypotheses around the conceptual framework presented in Fig.
<xref ref-type="fig" rid="fig01">1</xref>
. In particular, indirect effects (Fig.
<xref ref-type="fig" rid="fig01">1b</xref>
and d) need to receive increased attention in our opinion, given the complexity of the mechanisms involved and the paucity of current studies.</p>
<p>Future experiments should not only strive towards increasing comparability of treatments across case studies, as suggested above; they should also account for increasing severity of future climate extremes and test more explicitly for threshold effects and mortality and recovery responses after extreme events, including those related to changing shifts of ecosystem states (Smith,
<xref rid="b223" ref-type="bibr">2011</xref>
, Beier
<italic>et al</italic>
.,
<xref rid="b21" ref-type="bibr">2012</xref>
; Bahn
<italic>et al</italic>
.,
<xref rid="b13" ref-type="bibr">2014</xref>
). Gradient studies that contain at least one very extreme (and possibly unrealistic) treatment would be particularly useful for this (Kreyling
<italic>et al</italic>
.,
<xref rid="b127" ref-type="bibr">2014</xref>
). Future experiments should address lagged and legacy effects more consistently, as well as ecosystem responses to multiple subsequent climate extremes, with the aim of elaborating mechanisms, as, for example related to stress physiology, mortality and community assembly, as well as plant–soil interactions and soil processes at large (Backhaus
<italic>et al</italic>
.,
<xref rid="b12" ref-type="bibr">2014</xref>
; Kopittke
<italic>et al</italic>
.,
<xref rid="b119" ref-type="bibr">2014</xref>
; Vicca
<italic>et al</italic>
.,
<xref rid="b256" ref-type="bibr">2014</xref>
). Only through holistic approaches will we be able to fully understand the impacts of climate extremes on ecosystem carbon cycling; information needed to obtain realistic predictions of future carbon cycling and climate feedbacks. For more details and best-practice guidance in climate change experiments that aim to improve our understanding of the impacts of climate extremes, we refer to Beier
<italic>et al</italic>
.,
<xref rid="b21" ref-type="bibr">2012</xref>
; Vicca
<italic>et al</italic>
.,
<xref rid="b255" ref-type="bibr">2012</xref>
,
<xref rid="b256" ref-type="bibr">2014</xref>
; Kreyling
<italic>et al</italic>
.,
<xref rid="b127" ref-type="bibr">2014</xref>
.</p>
<p>For ecosystems dominated by long-lived species such as forests, a better integration of experimental and modelling studies is needed, with experiments targeting critical hypotheses underlying model assumptions or specific mechanisms (e.g. processes linked to ecosystem transitions). State-of-the-art coupled climate–carbon cycle models (CMIP5) indicate a stronger negative effect of carbon cycle extremes than the above-mentioned observation driven estimates (Reichstein
<italic>et al</italic>
.,
<xref rid="b197" ref-type="bibr">2013</xref>
), and an increasing absolute effect in the future. However, a reliable projection of the future impact of climate extremes on the terrestrial carbon cycle must rely on improved earth-system modelling, as well as improved description of the biospheric responses. Higher spatial (both horizontal and vertical) resolution and better representation of convective processes and clouds are prerequisites for the simulation of climate extremes, and particularly hydrometeorological extremes. On the biosphere modelling side, all processes leading to direct/indirect, as well as concurrent/lagged impacts (Fig.
<xref ref-type="fig" rid="fig04">4</xref>
), need to receive attention. In particular, vegetation mortality in response to climate extremes (e.g. drought) and its mechanisms are increasingly well documented. Effort needs to be taken now to include this knowledge into global biosphere models. Including pest and pathogens, their reaction to climate extremes such as cold extremes and their effect on the carbon cycle within an integrated modelling system at global scale is likely still too ambitious and needs landscape-modelling approaches, where lateral interactions are considered. Promising local- to regional-scale approaches do exist here and need to be further developed (Seidl
<italic>et al</italic>
.,
<xref rid="b214" ref-type="bibr">2011</xref>
). Representation of these impacts into carbon cycle models will likely increase projected effects of climate extremes on the carbon cycle. On the other hand, we have to note that fundamental adaptive processes, such as acclimation, plasticity, migration, selection and evolution have the potential to mitigate effects of climate extremes. Modelling approaches accounting for these adaptations urgently need to be underpinned with more observational data and further developed (Scheiter
<italic>et al</italic>
.,
<xref rid="b207" ref-type="bibr">2013</xref>
).</p>
<p>This study underlines the demand for better structured impacts studies of climate extremes on terrestrial ecosystems and the carbon cycle which follow a standardized protocol and definitions and allow for intercomparison studies. It has also shown the varying depth of analysis for different types of climate extremes, as well as identifying critically understudied regions. The findings underline the importance of biospheric processes in modulating impacts of climate extremes to assess the feedback to the global carbon cycle. In other words, biospheric processes are likely to determine the reaction of the global carbon cycle to climate extremes under global change.</p>
</sec>
</body>
<back>
<ack>
<p>This work emerged from the CARBO-Extreme project, funded by the European Community’s 7th framework programme under grant agreement (FP7-ENV-2008-1-226701). We are grateful to the Reviewers and the Subject Editor for helpful guidance. We thank to Silvana Schott for graphic support. Mirco Miglivacca provided helpful comments on the manuscript. Michael Bahn acknowledges support from the Austrian Science Fund (FWF; P22214-B17). Sara Vicca is a postdoctoral research associate of the Fund for Scientific Research – Flanders. Wolfgang Cramer contributes to the Labex OT-Med (no. ANR-11-LABX-0061) funded by the French Government through the A*MIDEX project (no. ANR-11-IDEX-0001-02). Flurin Babst acknowledges support from the Swiss National Science Foundation (P300P2_154543).</p>
</ack>
<ref-list>
<title>References</title>
<ref id="b1">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Adams</surname>
<given-names>HD</given-names>
</name>
<name>
<surname>Guardiola-Claramonte</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Barron-Gafford</surname>
<given-names>GA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought</article-title>
<source>Proceedings of the National Academy of Sciences of the United States of America</source>
<year>2009</year>
<volume>106</volume>
<fpage>7063</fpage>
<lpage>7066</lpage>
<pub-id pub-id-type="pmid">19365070</pub-id>
</element-citation>
</ref>
<ref id="b2">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Albertson</surname>
<given-names>FW</given-names>
</name>
<name>
<surname>Tomanek</surname>
<given-names>GW</given-names>
</name>
<name>
<surname>Andrew Riegel</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Ecology of drought cycles and grazing intensity on grasslands of central great plains</article-title>
<source>Ecological Monographs</source>
<year>1957</year>
<volume>27</volume>
<fpage>27</fpage>
<lpage>44</lpage>
</element-citation>
</ref>
<ref id="b3">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aldersley</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Murray</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Cornell</surname>
<given-names>SE</given-names>
</name>
</person-group>
<article-title>Global and regional analysis of climate and human drivers of wildfire</article-title>
<source>Science of the Total Environment</source>
<year>2011</year>
<volume>409</volume>
<fpage>3472</fpage>
<lpage>3481</lpage>
<pub-id pub-id-type="pmid">21689843</pub-id>
</element-citation>
</ref>
<ref id="b4">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Allard</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Ourcival</surname>
<given-names>J-M</given-names>
</name>
<name>
<surname>Rambal</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Joffre</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Rocheteau</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Seasonal and annual variation of carbon exchange in an evergreen Mediterranean forest in southern France</article-title>
<source>Global Change Biology</source>
<year>2008</year>
<volume>14</volume>
<fpage>714</fpage>
<lpage>725</lpage>
</element-citation>
</ref>
<ref id="b5">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Allen</surname>
<given-names>CD</given-names>
</name>
<name>
<surname>Macalady</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Chenchouni</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests</article-title>
<source>Forest Ecology and Management</source>
<year>2010</year>
<volume>259</volume>
<fpage>660</fpage>
<lpage>684</lpage>
</element-citation>
</ref>
<ref id="b6">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aragão</surname>
<given-names>LEOC</given-names>
</name>
<name>
<surname>Shimabukuro</surname>
<given-names>YE</given-names>
</name>
</person-group>
<article-title>The incidence of fire in Amazonian forests with implications for REDD</article-title>
<source>Science</source>
<year>2010</year>
<volume>328</volume>
<fpage>1275</fpage>
<lpage>1278</lpage>
<pub-id pub-id-type="pmid">20522775</pub-id>
</element-citation>
</ref>
<ref id="b7">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Araus</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Slafer</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Reynolds</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Royo</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Plant breeding and drought in C
<sub>3</sub>
cereals: what should we breed for?</article-title>
<source>Annals of Botany</source>
<year>2002</year>
<volume>89</volume>
<fpage>925</fpage>
<lpage>940</lpage>
<pub-id pub-id-type="pmid">12102518</pub-id>
</element-citation>
</ref>
<ref id="b8">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Archibald</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lehman</surname>
<given-names>CER</given-names>
</name>
<name>
<surname>Gomez-Dans</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Bradstock</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>Defining pyromes and global syndromes of fire regimes</article-title>
<source>Proceedings of the National Academy of Sciences of the United States of America</source>
<year>2012</year>
<volume>110</volume>
<fpage>6442</fpage>
<lpage>6447</lpage>
<pub-id pub-id-type="pmid">23559374</pub-id>
</element-citation>
</ref>
<ref id="b9">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Atkin</surname>
<given-names>OK</given-names>
</name>
<name>
<surname>Macherel</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>The crucial role of plant mitochondria in orchestrating drought tolerance</article-title>
<source>Annals of Botany</source>
<year>2009</year>
<volume>103</volume>
<fpage>581</fpage>
<lpage>597</lpage>
<pub-id pub-id-type="pmid">18552366</pub-id>
</element-citation>
</ref>
<ref id="b10">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Babst</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Carrer</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Poulter</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Urbinati</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Neuwirth</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Frank</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>500 years of regional forest growth variability and links to climatic extreme events in Europe</article-title>
<source>Environmental Research Letters</source>
<year>2012</year>
<volume>7</volume>
<fpage>045705</fpage>
<comment>(045711 pp.)</comment>
</element-citation>
</ref>
<ref id="b11">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Babst</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Bouriaud</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Papale</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Aboveground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy covariance sites</article-title>
<source>New Phytologist</source>
<year>2014</year>
<volume>201</volume>
<fpage>1289</fpage>
<lpage>1303</lpage>
<pub-id pub-id-type="pmid">24206564</pub-id>
</element-citation>
</ref>
<ref id="b12">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Backhaus</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kreyling</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Grant</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Beierkuhnlein</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Walter</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jentsch</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Recurrent mild drought events increase resistance toward extreme drought stress</article-title>
<source>Ecosystems</source>
<year>2014</year>
<volume>17</volume>
<fpage>1068</fpage>
<lpage>1081</lpage>
</element-citation>
</ref>
<ref id="b13">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bahn</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Reichstein</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Dukes</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>McDowell</surname>
<given-names>NG</given-names>
</name>
</person-group>
<article-title>Climate-biosphere interactions in a more extreme world</article-title>
<source>New Phytologist</source>
<year>2014</year>
<volume>202</volume>
<fpage>356</fpage>
<lpage>359</lpage>
<pub-id pub-id-type="pmid">24383455</pub-id>
</element-citation>
</ref>
<ref id="b14">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baldocchi</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Reichstein</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Papale</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Koteen</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Vargas</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Agarwal</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Cook</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>The role of trace gas flux networks in the biogeosciences</article-title>
<source>Eos, Transactions American Geophysical Union</source>
<year>2012</year>
<volume>93</volume>
<fpage>217</fpage>
<lpage>224</lpage>
</element-citation>
</ref>
<ref id="b15">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barber</surname>
<given-names>VA</given-names>
</name>
<name>
<surname>Juday</surname>
<given-names>GP</given-names>
</name>
<name>
<surname>Finney</surname>
<given-names>BP</given-names>
</name>
</person-group>
<article-title>Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress</article-title>
<source>Nature</source>
<year>2000</year>
<volume>405</volume>
<fpage>668</fpage>
<lpage>673</lpage>
<pub-id pub-id-type="pmid">10864320</pub-id>
</element-citation>
</ref>
<ref id="b16">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barlow</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Peres</surname>
<given-names>CA</given-names>
</name>
</person-group>
<article-title>Fire-mediated dieback and compositional cascade in an Amazonian forest</article-title>
<source>Philosophical Transactions of the Royal Society B: Biological Sciences</source>
<year>2008</year>
<volume>363</volume>
<fpage>1787</fpage>
<lpage>1794</lpage>
</element-citation>
</ref>
<ref id="b17">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barriopedro</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Fischer</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Luterbacher</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Trigo</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>García-Herrera</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>The hot summer of 2010: redrawing the temperature record map of Europe</article-title>
<source>Science</source>
<year>2011</year>
<volume>332</volume>
<fpage>220</fpage>
<lpage>224</lpage>
<pub-id pub-id-type="pmid">21415316</pub-id>
</element-citation>
</ref>
<ref id="b18">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bastos</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gouveia</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Trigo</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Running</surname>
<given-names>SW</given-names>
</name>
</person-group>
<article-title>Comparing the impacts of 2003 and 2010 heatwaves in NPP over Europe</article-title>
<source>Biogeosciences Discussions</source>
<year>2013a</year>
<volume>10</volume>
<fpage>15879</fpage>
<lpage>15911</lpage>
</element-citation>
</ref>
<ref id="b19">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bastos</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Running</surname>
<given-names>SW</given-names>
</name>
<name>
<surname>Gouveia</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The global NPP dependence on ENSO: La Nina and the extraordinary year of 2011</article-title>
<source>Journal of Geophysical Research: Biogeosciences</source>
<year>2013b</year>
<volume>118</volume>
<fpage>1247</fpage>
<lpage>1255</lpage>
</element-citation>
</ref>
<ref id="b20">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bebi</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Kulakowski</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Rixen</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Snow avalanche disturbances in forest ecosystems - state of research and implications for management</article-title>
<source>Forest Ecology and Management</source>
<year>2009</year>
<volume>257</volume>
<fpage>1883</fpage>
<lpage>1892</lpage>
</element-citation>
</ref>
<ref id="b21">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Beier</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Beierkuhnlein</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Wohlgemuth</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Precipitation manipulation experiments–challenges and recommendations for the future</article-title>
<source>Ecology Letters</source>
<year>2012</year>
<volume>15</volume>
<fpage>899</fpage>
<lpage>911</lpage>
<pub-id pub-id-type="pmid">22553898</pub-id>
</element-citation>
</ref>
<ref id="b22">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Berhe</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Kleber</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Erosion, deposition, and the persistence of soil organic matter: mechanistic considerations and problems with terminology</article-title>
<source>Earth Surface Processes and Landforms</source>
<year>2013</year>
<volume>38</volume>
<fpage>908</fpage>
<lpage>912</lpage>
</element-citation>
</ref>
<ref id="b23">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Berry</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Sterling</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Baker</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Spink</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Sparkes</surname>
<given-names>DL</given-names>
</name>
</person-group>
<article-title>A calibrated model of wheat lodging compared with field measurements</article-title>
<source>Agricultural and Forest Meteorology</source>
<year>2003</year>
<volume>119</volume>
<fpage>167</fpage>
<lpage>180</lpage>
</element-citation>
</ref>
<ref id="b24">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bloor</surname>
<given-names>JMG</given-names>
</name>
<name>
<surname>Bardgett</surname>
<given-names>RD</given-names>
</name>
</person-group>
<article-title>Stability of above-ground and below-ground processes to extreme drought in model grassland ecosystems: interactions with plant species diversity and soil nitrogen availability</article-title>
<source>Perspectives in Plant Ecology Evolution and Systematics</source>
<year>2012</year>
<volume>14</volume>
<fpage>193</fpage>
<lpage>204</lpage>
</element-citation>
</ref>
<ref id="b25">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boening</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Willis</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Landerer</surname>
<given-names>FW</given-names>
</name>
<name>
<surname>Nerem</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Fasullo</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>The 2011 La Niña: so strong, the oceans fell</article-title>
<source>Geophysical Research Letters</source>
<year>2012</year>
<volume>39</volume>
<fpage>L19602</fpage>
</element-citation>
</ref>
<ref id="b26">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bokhorst</surname>
<given-names>SF</given-names>
</name>
<name>
<surname>Bjerke</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Tømmervik</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Callaghan</surname>
<given-names>TV</given-names>
</name>
<name>
<surname>Phoenix</surname>
<given-names>GK</given-names>
</name>
</person-group>
<article-title>Winter warming events damage sub-Arctic vegetation: consistent evidence from an experimental manipulation and a natural event</article-title>
<source>Journal of Ecology</source>
<year>2009</year>
<volume>97</volume>
<fpage>1408</fpage>
<lpage>1415</lpage>
</element-citation>
</ref>
<ref id="b27">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bond</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Woodward</surname>
<given-names>FI</given-names>
</name>
<name>
<surname>Midgley</surname>
<given-names>GF</given-names>
</name>
</person-group>
<article-title>The global distribution of ecosystems in a world without fire</article-title>
<source>New Phytologist</source>
<year>2005</year>
<volume>165</volume>
<fpage>525</fpage>
<lpage>538</lpage>
<pub-id pub-id-type="pmid">15720663</pub-id>
</element-citation>
</ref>
<ref id="b28">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Borken</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Matzner</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils</article-title>
<source>Global Change Biology</source>
<year>2009</year>
<volume>15</volume>
<fpage>808</fpage>
<lpage>824</lpage>
</element-citation>
</ref>
<ref id="b29">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bowman</surname>
<given-names>DMJS</given-names>
</name>
<name>
<surname>Balch</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Artaxo</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Fire in the Earth system</article-title>
<source>Sciene</source>
<year>2009</year>
<volume>324</volume>
<fpage>481</fpage>
<lpage>484</lpage>
</element-citation>
</ref>
<ref id="b30">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bragg</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Shelton</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Zeide</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Impacts and management implications of ice storms on forests in the southern United States</article-title>
<source>Forest Ecology and Management</source>
<year>2003</year>
<volume>186</volume>
<fpage>99</fpage>
<lpage>123</lpage>
</element-citation>
</ref>
<ref id="b31">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brando</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Nepstad</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Balch</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Bolker</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Christman</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Coe</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Putz</surname>
<given-names>FE</given-names>
</name>
</person-group>
<article-title>Fire-induced tree mortality in a neotropical forest: the roles of bark traits, tree size, wood density and fire behavior</article-title>
<source>Global Change Biology</source>
<year>2012</year>
<volume>18</volume>
<fpage>630</fpage>
<lpage>641</lpage>
</element-citation>
</ref>
<ref id="b32">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brando</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Balch</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Nepstad</surname>
<given-names>DC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Abrupt increases in Amazonian tree mortality due to drought-fire interactions</article-title>
<source>Proceedings of the National Academy of Sciences of the United States of America</source>
<year>2014</year>
<volume>111</volume>
<fpage>6347</fpage>
<lpage>6352</lpage>
<pub-id pub-id-type="pmid">24733937</pub-id>
</element-citation>
</ref>
<ref id="b33">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bréda</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Huc</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Granier</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Dreyer</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences</article-title>
<source>Annals of Forest Science</source>
<year>2006</year>
<volume>63</volume>
<fpage>625</fpage>
<lpage>644</lpage>
</element-citation>
</ref>
<ref id="b35">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Breshears</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Whicker</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Johansen</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Pinder</surname>
<given-names>JE</given-names>
</name>
</person-group>
<article-title>Wind and water erosion and transport in semi-arid shrubland, grassland and forest ecosystems: quantifying dominance of horizontal wind-driven transport</article-title>
<source>Earth Surface Processes and Landforms</source>
<year>2003</year>
<volume>28</volume>
<fpage>1189</fpage>
<lpage>1209</lpage>
</element-citation>
</ref>
<ref id="b36">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Breshears</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Cobb</surname>
<given-names>NS</given-names>
</name>
<name>
<surname>Rich</surname>
<given-names>PM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Regional vegetation die-off in response to global-change-type drought</article-title>
<source>Proceedings of the National Academy of Sciences of the United States of America</source>
<year>2005</year>
<volume>102</volume>
<fpage>15144</fpage>
<lpage>15148</lpage>
<pub-id pub-id-type="pmid">16217022</pub-id>
</element-citation>
</ref>
<ref id="b37">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Canadell</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jackson</surname>
<given-names>RB</given-names>
</name>
<name>
<surname>Ehleringer</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Mooney</surname>
<given-names>HA</given-names>
</name>
<name>
<surname>Sala</surname>
<given-names>OE</given-names>
</name>
<name>
<surname>Schulze</surname>
<given-names>ED</given-names>
</name>
</person-group>
<article-title>Maximum rooting depth of vegetation types at the global scale</article-title>
<source>Oecologia</source>
<year>1996</year>
<volume>108</volume>
<fpage>583</fpage>
<lpage>595</lpage>
</element-citation>
</ref>
<ref id="b38">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Certini</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Effects of fire on properties of forest soils: a review</article-title>
<source>Oecologia</source>
<year>2005</year>
<volume>143</volume>
<fpage>1</fpage>
<lpage>10</lpage>
<pub-id pub-id-type="pmid">15688212</pub-id>
</element-citation>
</ref>
<ref id="b39">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chambers</surname>
<given-names>JQ</given-names>
</name>
<name>
<surname>Fisher</surname>
<given-names>JI</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>HC</given-names>
</name>
<name>
<surname>Chapman</surname>
<given-names>EL</given-names>
</name>
<name>
<surname>Baker</surname>
<given-names>DB</given-names>
</name>
<name>
<surname>Hurtt</surname>
<given-names>GC</given-names>
</name>
</person-group>
<article-title>Hurricane Katrina’s carbon footprint on U.S. Gulf Coast forests</article-title>
<source>Science</source>
<year>2007</year>
<volume>318</volume>
<fpage>1107</fpage>
<pub-id pub-id-type="pmid">18006740</pub-id>
</element-citation>
</ref>
<ref id="b40">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Changnon</surname>
<given-names>SA</given-names>
</name>
</person-group>
<article-title>Characteristics of ice storms in the United States</article-title>
<source>Journal of Applied Meteorology</source>
<year>2003</year>
<volume>42</volume>
<fpage>630</fpage>
<lpage>639</lpage>
</element-citation>
</ref>
<ref id="b41">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chaves</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Flexas</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Pinheiro</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell</article-title>
<source>Annals of Botany</source>
<year>2009</year>
<volume>103</volume>
<fpage>551</fpage>
<lpage>560</lpage>
<pub-id pub-id-type="pmid">18662937</pub-id>
</element-citation>
</ref>
<ref id="b42">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ciais</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Reichstein</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Viovy</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Europe-wide reduction in primary productivity caused by the heat and drought in 2003</article-title>
<source>Nature</source>
<year>2005</year>
<volume>437</volume>
<fpage>529</fpage>
<lpage>533</lpage>
<pub-id pub-id-type="pmid">16177786</pub-id>
</element-citation>
</ref>
<ref id="b43">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Conner</surname>
<given-names>WH</given-names>
</name>
<name>
<surname>Inabinette</surname>
<given-names>LW</given-names>
</name>
</person-group>
<article-title>Tree growth in three South Carolina (USA) swamps after Hurricane Hugo: 1991–2001</article-title>
<source>Forest Ecology and Management</source>
<year>2003</year>
<volume>182</volume>
<fpage>371</fpage>
<lpage>380</lpage>
</element-citation>
</ref>
<ref id="b44">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Corlett</surname>
<given-names>RT</given-names>
</name>
</person-group>
<article-title>Impacts of warming on tropical lowland rainforests</article-title>
<source>Trends in Ecology and Evolution</source>
<year>2011</year>
<volume>26</volume>
<fpage>606</fpage>
<lpage>613</lpage>
<pub-id pub-id-type="pmid">21803440</pub-id>
</element-citation>
</ref>
<ref id="b45">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cornelissen</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Climate change and its effects on terrestrial insects and herbivory patterns</article-title>
<source>Neotropical Entomology</source>
<year>2011</year>
<volume>40</volume>
<fpage>155</fpage>
<lpage>163</lpage>
<pub-id pub-id-type="pmid">21584394</pub-id>
</element-citation>
</ref>
<ref id="b46">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Coumou</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Rahmstorf</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>A decade of weather extremes</article-title>
<source>Nature Climate Change</source>
<year>2012</year>
<volume>2</volume>
<fpage>491</fpage>
<lpage>496</lpage>
</element-citation>
</ref>
<ref id="b47">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Couwenberg</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Dommain</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Joosten</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Greenhouse gas fluxes from tropical peatlands in south-east Asia</article-title>
<source>Global Change Biology</source>
<year>2010</year>
<volume>16</volume>
<fpage>1715</fpage>
<lpage>1732</lpage>
</element-citation>
</ref>
<ref id="b48">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Curiel-Yuste</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Peñuelas</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Estiarte</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Garcia-Mas</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ogaya</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Pujol</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sardans</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Drought-resistant fungi control soil organic matter decomposition and its response to temperature</article-title>
<source>Global Change Biology</source>
<year>2011</year>
<volume>17</volume>
<fpage>1475</fpage>
<lpage>1486</lpage>
</element-citation>
</ref>
<ref id="b50">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Davidson</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Janssens</surname>
<given-names>IA</given-names>
</name>
</person-group>
<article-title>Temperature sensitivity of soil carbon decomposition and feedbacks to climate change</article-title>
<source>Nature</source>
<year>2006</year>
<volume>440</volume>
<fpage>165</fpage>
<lpage>173</lpage>
<pub-id pub-id-type="pmid">16525463</pub-id>
</element-citation>
</ref>
<ref id="b51">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Boeck</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Dreesen</surname>
<given-names>FE</given-names>
</name>
<name>
<surname>Janssens</surname>
<given-names>IA</given-names>
</name>
<name>
<surname>Nijs</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Whole-system responses of experimental plant communities to climate extremes imposed in different seasons</article-title>
<source>New Phytologist</source>
<year>2011</year>
<volume>189</volume>
<fpage>806</fpage>
<lpage>817</lpage>
<pub-id pub-id-type="pmid">21054412</pub-id>
</element-citation>
</ref>
<ref id="b52">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Desprez-Loustau</surname>
<given-names>M-L</given-names>
</name>
<name>
<surname>Marçais</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Nageleisen</surname>
<given-names>L-M</given-names>
</name>
<name>
<surname>Piou</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Vannini</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Interactive effects of drought and pathogens in forest trees</article-title>
<source>Annals of Forest Science</source>
<year>2006</year>
<volume>63</volume>
<fpage>597</fpage>
<lpage>612</lpage>
</element-citation>
</ref>
<ref id="b53">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Diez</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>D’antonio</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Dukes</surname>
<given-names>JS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Will extreme climatic events facilitate biological invasions?</article-title>
<source>Frontiers in Ecology and the Environment</source>
<year>2012</year>
<volume>10</volume>
<fpage>249</fpage>
<lpage>257</lpage>
</element-citation>
</ref>
<ref id="b54">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Diffenbaugh</surname>
<given-names>NS</given-names>
</name>
<name>
<surname>Ashfaq</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Intensification of hot extremes in the United States</article-title>
<source>Geophysical Research Letters</source>
<year>2010</year>
<volume>37</volume>
<fpage>L15701</fpage>
</element-citation>
</ref>
<ref id="b55">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dinsmore</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Billett</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Dyson</surname>
<given-names>KE</given-names>
</name>
</person-group>
<article-title>Temperature and precipitation drive temporal variability in aquatic carbon and GHG concentrations and fluxes in a peatland catchment</article-title>
<source>Global Change Biology</source>
<year>2013</year>
<volume>19</volume>
<fpage>2133</fpage>
<lpage>2148</lpage>
<pub-id pub-id-type="pmid">23568485</pub-id>
</element-citation>
</ref>
<ref id="b56">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dittmar</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Elling</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Dendroecological investigation of the vitality of Common Beech (
<italic>Fagus sylvatica</italic>
L.) in mixed mountain forests of the Northern Alps (South Bavaria)</article-title>
<source>Dendrochronologia</source>
<year>2007</year>
<volume>25</volume>
<fpage>37</fpage>
<lpage>56</lpage>
</element-citation>
</ref>
<ref id="b57">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dittmar</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Fricke</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Elling</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Impact of late frost events on radial growth of common beech (
<italic>Fagus sylvatica</italic>
L.) in Southern Germany</article-title>
<source>European Journal of Forest Research</source>
<year>2006</year>
<volume>125</volume>
<fpage>249</fpage>
<lpage>259</lpage>
</element-citation>
</ref>
<ref id="b58">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Doughty</surname>
<given-names>CE</given-names>
</name>
<name>
<surname>Goulden</surname>
<given-names>ML</given-names>
</name>
</person-group>
<article-title>Are tropical forests near a high temperature threshold?</article-title>
<source>Journal of Geophysical Research: Biogeosciences</source>
<year>2008</year>
<volume>113</volume>
<fpage>G00B07</fpage>
</element-citation>
</ref>
<ref id="b60">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Drever</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Messier</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Bergeron</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Flannigan</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Can forest management based on natural disturbances maintain ecological resilience?</article-title>
<source>Canadian Journal of Forest Research</source>
<year>2006</year>
<volume>36</volume>
<fpage>2285</fpage>
<lpage>2299</lpage>
</element-citation>
</ref>
<ref id="b61">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Durre</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Wallace</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Lettenmaier</surname>
<given-names>DP</given-names>
</name>
</person-group>
<article-title>Dependence of extreme daily maximum temperatures on antecedent soil moisture in the contiguous United States during summer</article-title>
<source>Journal of Climate</source>
<year>2000</year>
<volume>13</volume>
<fpage>2641</fpage>
<lpage>2651</lpage>
</element-citation>
</ref>
<ref id="b62">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eamus</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Boulain</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Cleverly</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Breshears</surname>
<given-names>DD</given-names>
</name>
</person-group>
<article-title>Global change-type drought-induced tree mortality: vapor pressure deficit is more important than temperature per se in causing decline in tree health</article-title>
<source>Ecology and Evolution</source>
<year>2013</year>
<volume>3</volume>
<fpage>2711</fpage>
<lpage>2729</lpage>
<pub-id pub-id-type="pmid">24567834</pub-id>
</element-citation>
</ref>
<ref id="b63">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eilmann</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Zweifel</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Buchmann</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Pannatier</surname>
<given-names>EG</given-names>
</name>
<name>
<surname>Rigling</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Drought alters timing, quantity, and quality of wood formation in Scots pine</article-title>
<source>Journal of Experimental Botany</source>
<year>2011</year>
<volume>62</volume>
<fpage>2763</fpage>
<lpage>2771</lpage>
<pub-id pub-id-type="pmid">21273335</pub-id>
</element-citation>
</ref>
<ref id="b64">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fischer</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Seneviratne</surname>
<given-names>SI</given-names>
</name>
<name>
<surname>Lüthi</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Schär</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Contribution of land-atmosphere coupling to recent European summer heat waves</article-title>
<source>Geophysical Research Letters</source>
<year>2007</year>
<volume>34</volume>
<fpage>L06707</fpage>
</element-citation>
</ref>
<ref id="b65">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Fischlin</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Midgley</surname>
<given-names>GF</given-names>
</name>
<name>
<surname>Price</surname>
<given-names>JT</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Parry</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Canziani</surname>
<given-names>OF</given-names>
</name>
<name>
<surname>Palutikof</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>van der Linden</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Hanson</surname>
<given-names>CE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ecosystems, their properties, goods, and services</article-title>
<source>Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change</source>
<year>2007</year>
<publisher-loc>Cambridge</publisher-loc>
<publisher-name>Cambridge University Press</publisher-name>
<fpage>211</fpage>
<lpage>272</lpage>
</element-citation>
</ref>
<ref id="b66">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fisher</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Knutti</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Detection of spatially aggregated changes in temperature and precipitation extremes,
<italic>Geophys</italic>
</article-title>
<source>Geophysical Research Letters</source>
<year>2014</year>
<volume>41</volume>
<fpage>547</fpage>
<lpage>554</lpage>
</element-citation>
</ref>
<ref id="b67">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fisk</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Hurtt</surname>
<given-names>GC</given-names>
</name>
<name>
<surname>Chambers</surname>
<given-names>JQ</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Dolan</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Negrón-Juárez</surname>
<given-names>RI</given-names>
</name>
</person-group>
<article-title>The impacts of tropical cyclones on the net carbon balance of eastern US forests (1851–2000)</article-title>
<source>Environmental Research Letters</source>
<year>2013</year>
<volume>8</volume>
<fpage>045017</fpage>
<comment>(6 pp)</comment>
</element-citation>
</ref>
<ref id="b68">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Founda</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Giannakopoulos</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>The exceptionally hot summer of 2007 in Athens, Greece — A typical summer in the future climate?</article-title>
<source>Global and Planetary Change</source>
<year>2009</year>
<volume>67</volume>
<fpage>227</fpage>
<lpage>236</lpage>
</element-citation>
</ref>
<ref id="b69">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Frankenberg</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Fisher</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Worden</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity</article-title>
<source>Geophysical Research Letters</source>
<year>2011</year>
<volume>38</volume>
<fpage>L17706</fpage>
</element-citation>
</ref>
<ref id="b350">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Frank</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Esper</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Raible</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Buntgen</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Trouet</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Stocker</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Joos</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate</article-title>
<source>Nature</source>
<year>2010</year>
<volume>463</volume>
<fpage>527</fpage>
<lpage>530</lpage>
<pub-id pub-id-type="pmid">20110999</pub-id>
</element-citation>
</ref>
<ref id="b70">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Freeman</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Ostle</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>An enzymic ‘latch’ on a global carbon store</article-title>
<source>Nature</source>
<year>2001</year>
<volume>409</volume>
<fpage>149</fpage>
<lpage>150</lpage>
<pub-id pub-id-type="pmid">11196627</pub-id>
</element-citation>
</ref>
<ref id="b351">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Friedlingstein</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Cox</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Betts</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Climate-carbon cycle feedback analysis: Results from the (CMIP)-M-4 model intercomparison</article-title>
<source>Journal of Climate</source>
<year>2006</year>
<volume>19</volume>
<fpage>3337</fpage>
<lpage>3353</lpage>
</element-citation>
</ref>
<ref id="b71">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Frolking</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Talbot</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Treat</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Kauffman</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Tuittila</surname>
<given-names>ES</given-names>
</name>
<name>
<surname>Roulet</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Peatlands in the Earth’s 21st century climate system</article-title>
<source>Environmental Reviews</source>
<year>2011</year>
<volume>19</volume>
<fpage>371</fpage>
<lpage>396</lpage>
</element-citation>
</ref>
<ref id="b72">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fuchslueger</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Bahn</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fritz</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hasibeder</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Richter</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow</article-title>
<source>New Phytologist</source>
<year>2014</year>
<volume>201</volume>
<fpage>916</fpage>
<lpage>927</lpage>
<pub-id pub-id-type="pmid">24171922</pub-id>
</element-citation>
</ref>
<ref id="b73">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fuhrer</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Beniston</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fischlin</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Frei</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Goyette</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Jasper</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Pfister</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Climate risks and their impact on agriculture and forests in Switzerland</article-title>
<source>Climatic Change</source>
<year>2006</year>
<volume>79</volume>
<fpage>79</fpage>
<lpage>102</lpage>
</element-citation>
</ref>
<ref id="b74">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ganteaume</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Camia</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Jappiot</surname>
<given-names>M</given-names>
</name>
<name>
<surname>San-Miguel-Ayanz</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Long-Fournel</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lampin</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>A review of the main driving factors of forest fire ignition over Europe</article-title>
<source>Environmental Management</source>
<year>2013</year>
<volume>51</volume>
<fpage>651</fpage>
<lpage>662</lpage>
<pub-id pub-id-type="pmid">23086400</pub-id>
</element-citation>
</ref>
<ref id="b75">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>García-Ruiz</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Nadal-Romero</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Lana-Renault</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Beguería</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Erosion in Mediterranean landscapes: changes and future challenges</article-title>
<source>Geomorphology</source>
<year>2013</year>
<volume>198</volume>
<fpage>20</fpage>
<lpage>36</lpage>
</element-citation>
</ref>
<ref id="b76">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gerten</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Le Maire</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Modelled effects of precipitation on ecosystem carbon and water dynamics in different climatic zones</article-title>
<source>Global Change Biology</source>
<year>2008</year>
<volume>14</volume>
<fpage>2365</fpage>
<lpage>2379</lpage>
</element-citation>
</ref>
<ref id="b77">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gilgen</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Buchmann</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Response of temperate grasslands at different altitudes to simulated summer drought differed but scaled with annual precipitation</article-title>
<source>Biogeosciences</source>
<year>2009</year>
<volume>6</volume>
<fpage>2525</fpage>
<lpage>2539</lpage>
</element-citation>
</ref>
<ref id="b78">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goebel</surname>
<given-names>M-O</given-names>
</name>
<name>
<surname>Bachmann</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Reichstein</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Janssens</surname>
<given-names>IA</given-names>
</name>
<name>
<surname>Guggenberger</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Review: soil water repellency and its implications for organic matter decomposition – is there a link to extreme climatic events?</article-title>
<source>Global Change Biology</source>
<year>2011</year>
<volume>17</volume>
<fpage>2640</fpage>
<lpage>2656</lpage>
</element-citation>
</ref>
<ref id="b79">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goldsmith</surname>
<given-names>ST</given-names>
</name>
<name>
<surname>Carey</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Lyons</surname>
<given-names>BW</given-names>
</name>
<name>
<surname>Kao</surname>
<given-names>S-J</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>T-Y</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Extreme storm events, landscape denudation, and carbon sequestration: Typhoon Mindulle, Choshui River, Taiwan</article-title>
<source>Geology</source>
<year>2008</year>
<volume>36</volume>
<fpage>483</fpage>
<lpage>486</lpage>
</element-citation>
</ref>
<ref id="b81">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gouttevin</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Menegoz</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Domine</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>How the insulating properties of snow affect soil carbon distribution in the continental pan-Arctic area</article-title>
<source>Journal of Geophysical Research: Biogeosciences</source>
<year>2012</year>
<volume>117</volume>
<fpage>G02020</fpage>
</element-citation>
</ref>
<ref id="b82">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Granda</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Camarero</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Gimeno</surname>
<given-names>TE</given-names>
</name>
<name>
<surname>Martínez-Fernández</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Valladares</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Intensity and timing of warming and drought differentially affect growth patterns of co-occurring Mediterranean tree species</article-title>
<source>European Journal of Forest Research</source>
<year>2013</year>
<volume>132</volume>
<fpage>469</fpage>
<lpage>480</lpage>
</element-citation>
</ref>
<ref id="b83">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Granier</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Reichstein</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bréda</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003</article-title>
<source>Agricultural and Forest Meteorology</source>
<year>2007</year>
<volume>143</volume>
<fpage>123</fpage>
<lpage>145</lpage>
</element-citation>
</ref>
<ref id="b85">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grippa</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kergoat</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Toan</surname>
<given-names>TL</given-names>
</name>
<name>
<surname>Mognard</surname>
<given-names>NM</given-names>
</name>
<name>
<surname>Delbart</surname>
<given-names>N</given-names>
</name>
<name>
<surname>L′Hermitte</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Vicente-Settano</surname>
<given-names>SM</given-names>
</name>
</person-group>
<article-title>The impact of snow depth and snowmelt on the vegetation variability over central Siberia</article-title>
<source>Geophysical Research Letters</source>
<year>2005</year>
<volume>32</volume>
<fpage>L21412</fpage>
</element-citation>
</ref>
<ref id="b86">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guanter</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence</article-title>
<source>Proceedings of the National Academy of Sciences of the United States of America</source>
<year>2014</year>
<volume>111</volume>
<fpage>E1327</fpage>
<lpage>E1333</lpage>
<pub-id pub-id-type="pmid">24706867</pub-id>
</element-citation>
</ref>
<ref id="b87">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haarsma</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Selten</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Hurk</surname>
<given-names>BV</given-names>
</name>
<name>
<surname>Hazeleger</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>XL</given-names>
</name>
</person-group>
<article-title>Drier Mediterranean soils due to greenhouse warming bring easterly winds over summertime central Europe</article-title>
<source>Geophysical Research Letters</source>
<year>2009</year>
<volume>36</volume>
<fpage>L04705</fpage>
</element-citation>
</ref>
<ref id="b88">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hanson</surname>
<given-names>CE</given-names>
</name>
<name>
<surname>Palutikof</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Dlugolecki</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Giannakopoulos</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Bridging the gap between science and the stakeholder: the case of climate change research</article-title>
<source>Climate Research</source>
<year>2006</year>
<volume>31</volume>
<fpage>121</fpage>
<lpage>133</lpage>
</element-citation>
</ref>
<ref id="b89">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hao</surname>
<given-names>ZX</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Ge</surname>
<given-names>QS</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>W-C</given-names>
</name>
</person-group>
<article-title>Historical analogues of the 2008 extreme snow event over Central and Southern China</article-title>
<source>Climate Research</source>
<year>2011</year>
<volume>50</volume>
<fpage>161</fpage>
<lpage>170</lpage>
</element-citation>
</ref>
<ref id="b90">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haverd</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Raupach</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Briggs</surname>
<given-names>PR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The Australian terrestrial carbon budget</article-title>
<source>Biogeosciences</source>
<year>2013</year>
<volume>10</volume>
<fpage>851</fpage>
<lpage>869</lpage>
</element-citation>
</ref>
<ref id="b91">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hicke</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Allen</surname>
<given-names>CD</given-names>
</name>
<name>
<surname>Desai</surname>
<given-names>AR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effects of biotic disturbances on forest carbon cycling in the United States and Canada</article-title>
<source>Global Change Biology</source>
<year>2012</year>
<volume>18</volume>
<fpage>7</fpage>
<lpage>34</lpage>
</element-citation>
</ref>
<ref id="b92">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hilton</surname>
<given-names>RG</given-names>
</name>
<name>
<surname>Galy</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hovius</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>M-C</given-names>
</name>
<name>
<surname>Horng</surname>
<given-names>M-J</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Tropical-cyclone-driven erosion of the terrestrial biosphere from mountains</article-title>
<source>Nature Geoscience</source>
<year>2008</year>
<volume>1</volume>
<fpage>759</fpage>
<lpage>762</lpage>
</element-citation>
</ref>
<ref id="b93">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hirschi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Seneviratne</surname>
<given-names>SI</given-names>
</name>
<name>
<surname>Alexandrov</surname>
<given-names>V</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Observational evidence for soil-moisture impact on hot extremes in southeastern Europe</article-title>
<source>Nature Geoscience</source>
<year>2011</year>
<volume>4</volume>
<fpage>17</fpage>
<lpage>21</lpage>
</element-citation>
</ref>
<ref id="b95">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hong</surname>
<given-names>C-C</given-names>
</name>
<name>
<surname>Hsu</surname>
<given-names>H-H</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>N-H</given-names>
</name>
<name>
<surname>Chiu</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Roles of European blocking and tropical - extratropical interaction in the 2010 Pakistan flooding</article-title>
<source>Geophysical Research Letters</source>
<year>2011</year>
<volume>38</volume>
<fpage>L13806</fpage>
</element-citation>
</ref>
<ref id="b96">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Houze</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Rasmussen</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Medina</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Brodzik</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Romatschke</surname>
<given-names>U</given-names>
</name>
</person-group>
<article-title>Anomalous Atmospheric Events Leading to the Summer 2010 Floods in Pakistan</article-title>
<source>Bulletin of the American Meteorological Society</source>
<year>2011</year>
<volume>92</volume>
<fpage>291</fpage>
<lpage>298</lpage>
</element-citation>
</ref>
<ref id="b97">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Imbert</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Portecop</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Hurricane disturbance and forest resilience: assessing structural vs. functional changes in a Caribbean dry forest</article-title>
<source>Forest Ecology and Management</source>
<year>2008</year>
<volume>255</volume>
<fpage>3494</fpage>
<lpage>3501</lpage>
</element-citation>
</ref>
<ref id="b98">
<element-citation publication-type="book">
<collab>IPCC</collab>
<person-group person-group-type="editor">
<name>
<surname>Field</surname>
<given-names>CB</given-names>
</name>
<name>
<surname>Barros</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Stocker</surname>
<given-names>TF</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Summary for policymakers</article-title>
<source>Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change</source>
<year>2012</year>
<publisher-loc>Cambridge, UK and New York, NY</publisher-loc>
<publisher-name>Cambridge University Press</publisher-name>
<fpage>1</fpage>
<lpage>19</lpage>
</element-citation>
</ref>
<ref id="b99">
<element-citation publication-type="book">
<collab>IPCC</collab>
<person-group person-group-type="author">
<name>
<surname>Stocker</surname>
<given-names>TF</given-names>
</name>
<name>
<surname>Qin</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Plattner</surname>
<given-names>G-K</given-names>
</name>
<name>
<surname>Tignor</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Allen</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Boschung</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Nauels</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Bex</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Midgley</surname>
<given-names>PM</given-names>
</name>
</person-group>
<article-title>Summary for policymakers</article-title>
<source>Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change</source>
<year>2013</year>
<publisher-loc>Cambridge, UK and New York, NY, USA</publisher-loc>
<publisher-name>Cambridge University Press</publisher-name>
<fpage>3</fpage>
<lpage>29</lpage>
<comment>In: (eds )</comment>
</element-citation>
</ref>
<ref id="b100">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Irland</surname>
<given-names>LC</given-names>
</name>
</person-group>
<article-title>Ice storms and forest impacts</article-title>
<source>Science of the Total Environment</source>
<year>2000</year>
<volume>262</volume>
<fpage>231</fpage>
<lpage>242</lpage>
<pub-id pub-id-type="pmid">11087029</pub-id>
</element-citation>
</ref>
<ref id="b101">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jactel</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Petit</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Desprez-Loustau</surname>
<given-names>M-L</given-names>
</name>
<name>
<surname>Delzon</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Piou</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Battisti</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Koricheva</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Drought effects on damage by forest insects and pathogens: a meta-analysis</article-title>
<source>Global Change Biology</source>
<year>2012</year>
<volume>18</volume>
<fpage>267</fpage>
<lpage>276</lpage>
</element-citation>
</ref>
<ref id="b102">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jarvis</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Rey</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Petsikos</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Drying and wetting of Mediterranean soils stimulates decomposition and carbon dioxide emission: the “Birch effect”</article-title>
<source>Tree Physiology</source>
<year>2007</year>
<volume>27</volume>
<fpage>929</fpage>
<lpage>940</lpage>
<pub-id pub-id-type="pmid">17403645</pub-id>
</element-citation>
</ref>
<ref id="b103">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jentsch</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kreyling</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Boettcher-Treschkow</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Beierkuhnlein</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Beyond gradual warming: extreme weather events alter flower phenology of European grassland and heath species</article-title>
<source>Global Change Biology</source>
<year>2009</year>
<volume>15</volume>
<fpage>837</fpage>
<lpage>849</lpage>
</element-citation>
</ref>
<ref id="b352">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jentsch</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kreyling</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Elmer</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Climate extremes initiate ecosystem-regulating functions while maintaining productivity</article-title>
<source>Journal of Ecology</source>
<year>2011</year>
<volume>99</volume>
<fpage>689</fpage>
<lpage>702</lpage>
</element-citation>
</ref>
<ref id="b104">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jepsen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hagen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hogda</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ims</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Karlsen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Tommervik</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Yoccoz</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Monitoring the spatio-temporal dynamics of geometrid moth outbreaks in birch forest using MODIS-NDVI data</article-title>
<source>Remote Sensing of Environment</source>
<year>2009</year>
<volume>113</volume>
<fpage>1939</fpage>
<lpage>1947</lpage>
</element-citation>
</ref>
<ref id="b105">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Johansen</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Hakonson</surname>
<given-names>TE</given-names>
</name>
<name>
<surname>Breshears</surname>
<given-names>DD</given-names>
</name>
</person-group>
<article-title>Post-fire runoff and erosion from rainfall simulation: contrasting forests with shrublands and grasslands</article-title>
<source>Hydrological Processes</source>
<year>2001</year>
<volume>15</volume>
<fpage>2953</fpage>
<lpage>2965</lpage>
</element-citation>
</ref>
<ref id="b106">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Johnson</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Büntgen</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Frank</surname>
<given-names>DC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Climatic warming disrupts recurrent Alpine insect outbreaks</article-title>
<source>Proceedings of the National Academy of Sciences of the United States of America</source>
<year>2010</year>
<volume>107</volume>
<fpage>20576</fpage>
<lpage>20581</lpage>
<pub-id pub-id-type="pmid">21059922</pub-id>
</element-citation>
</ref>
<ref id="b107">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jung</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Reichstein</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Margolis</surname>
<given-names>HA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations</article-title>
<source>Journal of Geophysical Research: Biogeosciences</source>
<year>2011</year>
<volume>116</volume>
<fpage>G00J07</fpage>
</element-citation>
</ref>
<ref id="b108">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jung</surname>
<given-names>B-J</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>H-J</given-names>
</name>
<name>
<surname>Jeong</surname>
<given-names>J-J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Storm pulses and varying sources of hydrologic carbon export from a mountainous watershed</article-title>
<source>Journal of Hydrology</source>
<year>2012</year>
<volume>440–441</volume>
<fpage>90</fpage>
<lpage>101</lpage>
</element-citation>
</ref>
<ref id="b109">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jungkunst</surname>
<given-names>HF</given-names>
</name>
<name>
<surname>Fiedler</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Latitudinal differentiated water table control of carbon dioxide, methane and nitrous oxide fluxes from hydromorphic soils: feedbacks to climate change</article-title>
<source>Global Change Biology</source>
<year>2007</year>
<volume>13</volume>
<fpage>2668</fpage>
<lpage>2683</lpage>
</element-citation>
</ref>
<ref id="b110">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kasin</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Ohlson</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>An experimental study of charcoal degradation in a boreal forest</article-title>
<source>Soil Biology & Biochemistry</source>
<year>2013</year>
<volume>65</volume>
<fpage>39</fpage>
<lpage>49</lpage>
</element-citation>
</ref>
<ref id="b111">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Katz</surname>
<given-names>RW</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>BG</given-names>
</name>
</person-group>
<article-title>Extreme events in a changing climate: variability is more important than averages</article-title>
<source>Climatic Change</source>
<year>1992</year>
<volume>21</volume>
<fpage>289</fpage>
<lpage>302</lpage>
</element-citation>
</ref>
<ref id="b112">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kausrud</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Okland</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Skarpaas</surname>
<given-names>O</given-names>
</name>
</person-group>
<article-title>Population dynamics in changing environments: the case of an eruptive forest pest species</article-title>
<source>Biological Reviews</source>
<year>2012</year>
<volume>87</volume>
<fpage>34</fpage>
<lpage>51</lpage>
<pub-id pub-id-type="pmid">21557798</pub-id>
</element-citation>
</ref>
<ref id="b113">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Keenan</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Sabate</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gracia</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>The importance of mesophyll conductance in regulating forest ecosystem productivity during drought periods</article-title>
<source>Global Change Biology</source>
<year>2010</year>
<volume>16</volume>
<fpage>1019</fpage>
<lpage>1034</lpage>
</element-citation>
</ref>
<ref id="b114">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Keith</surname>
<given-names>H</given-names>
</name>
<name>
<surname>van Gorsel</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Jacobsen</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Cleugh</surname>
<given-names>HA</given-names>
</name>
</person-group>
<article-title>Dynamics of carbon exchange in a
<italic>Eucalyptus</italic>
forest in response to interacting disturbance factors</article-title>
<source>Agricultural and Forest Meteorology</source>
<year>2012</year>
<volume>153</volume>
<fpage>67</fpage>
<lpage>81</lpage>
</element-citation>
</ref>
<ref id="b115">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>D-G</given-names>
</name>
<name>
<surname>Vargas</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Bond-Lamberty</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Turetsky</surname>
<given-names>MR</given-names>
</name>
</person-group>
<article-title>Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research</article-title>
<source>Biogeosciences</source>
<year>2012</year>
<volume>9</volume>
<fpage>2459</fpage>
<lpage>2483</lpage>
</element-citation>
</ref>
<ref id="b116">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Knapp</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Beier</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Briske</surname>
<given-names>DD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Consequences of more extreme precipitation regimes for terrestrial ecosystems</article-title>
<source>BioScience</source>
<year>2008</year>
<volume>58</volume>
<fpage>811</fpage>
<lpage>821</lpage>
</element-citation>
</ref>
<ref id="b117">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Komonen</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Schroeder</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Weslien</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Ips typographus population development after a severe storm in a nature reserve in southern Sweden</article-title>
<source>Journal of Applied Entomology</source>
<year>2011</year>
<volume>135</volume>
<fpage>132</fpage>
<lpage>141</lpage>
</element-citation>
</ref>
<ref id="b118">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Konovalov</surname>
<given-names>IB</given-names>
</name>
<name>
<surname>Beekmann</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kuznetsova</surname>
<given-names>IN</given-names>
</name>
<name>
<surname>Yurova</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Zvyagintsev</surname>
<given-names>AM</given-names>
</name>
</person-group>
<article-title>Atmospheric impacts of the 2010 Russian wildfires: integrating modelling and measurements of an extreme air pollution episode in the Moscow region</article-title>
<source>Atmospheric Chemistry and Physics</source>
<year>2011</year>
<volume>11</volume>
<fpage>10031</fpage>
<lpage>10056</lpage>
</element-citation>
</ref>
<ref id="b119">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kopittke</surname>
<given-names>GR</given-names>
</name>
<name>
<surname>Tietema</surname>
<given-names>A</given-names>
</name>
<name>
<surname>van Loon</surname>
<given-names>EE</given-names>
</name>
<name>
<surname>Assheman</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Fourteen annually repeated droughts suppressed autotrophic soil respiration and resulted in an ecosystem change</article-title>
<source>Ecosystems</source>
<year>2014</year>
<volume>17</volume>
<fpage>242</fpage>
<lpage>257</lpage>
</element-citation>
</ref>
<ref id="b122">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kramer</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Vreugdenhil</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>van der Werf</surname>
<given-names>DC</given-names>
</name>
</person-group>
<article-title>Effects of flooding on the recruitment, damage and mortality of riparian tree species: a field and simulation study on the Rhine floodplain</article-title>
<source>Forest Ecology and Management</source>
<year>2007</year>
<volume>255</volume>
<fpage>3893</fpage>
<lpage>3903</lpage>
</element-citation>
</ref>
<ref id="b124">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kreuzwieser</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Papadopoulou</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Rennenberg</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Interaction of flooding with carbon metabolism of forest trees</article-title>
<source>Plant Biology</source>
<year>2004</year>
<volume>6</volume>
<fpage>299</fpage>
<lpage>306</lpage>
<pub-id pub-id-type="pmid">15143438</pub-id>
</element-citation>
</ref>
<ref id="b125">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kreyling</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Winter climate change: a critical factor for temperate vegetation performance</article-title>
<source>Ecology</source>
<year>2010</year>
<volume>91</volume>
<fpage>1939</fpage>
<lpage>1948</lpage>
<pub-id pub-id-type="pmid">20715613</pub-id>
</element-citation>
</ref>
<ref id="b126">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kreyling</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jentsch</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Beierkuhnlein</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Stochastic trajectories of succession initiated by extreme climatic events</article-title>
<source>Ecology Letters</source>
<year>2011</year>
<volume>14</volume>
<fpage>758</fpage>
<lpage>764</lpage>
<pub-id pub-id-type="pmid">21624029</pub-id>
</element-citation>
</ref>
<ref id="b127">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kreyling</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jentsch</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Beier</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Beyond realism in climate change experiments: gradient approaches identify thresholds and tipping points</article-title>
<source>Ecology Letters</source>
<year>2014</year>
<volume>17</volume>
<fpage>125</fpage>
<lpage>e1</lpage>
<pub-id pub-id-type="pmid">24341985</pub-id>
</element-citation>
</ref>
<ref id="b128">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kurz</surname>
<given-names>WA</given-names>
</name>
<name>
<surname>Stinson</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Rampley</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Could increased boreal forest ecosystem productivity offset carbon losses from increased disturbances?</article-title>
<source>Philosophical Transactions of the Royal Society B: Biological Sciences</source>
<year>2008a</year>
<volume>363</volume>
<fpage>2261</fpage>
<lpage>2269</lpage>
</element-citation>
</ref>
<ref id="b129">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kurz</surname>
<given-names>WA</given-names>
</name>
<name>
<surname>Dymond</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Stinson</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mountain pine beetle and forest carbon feedback to climate change</article-title>
<source>Nature</source>
<year>2008b</year>
<volume>452</volume>
<fpage>987</fpage>
<lpage>990</lpage>
<pub-id pub-id-type="pmid">18432244</pub-id>
</element-citation>
</ref>
<ref id="b130">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lal</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Challenges and opportunities in soil organic matter research</article-title>
<source>European Journal of Soil Science</source>
<year>2009</year>
<volume>60</volume>
<fpage>158</fpage>
<lpage>169</lpage>
</element-citation>
</ref>
<ref id="b131">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lal</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Pimentel</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Soil erosion: a carbon sink or source?</article-title>
<source>Science</source>
<year>2008</year>
<volume>319</volume>
<fpage>1040</fpage>
<lpage>1042</lpage>
<pub-id pub-id-type="pmid">18292324</pub-id>
</element-citation>
</ref>
<ref id="b132">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Lal</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Lorenz</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hüttl</surname>
<given-names>RF</given-names>
</name>
<name>
<surname>Schneider</surname>
<given-names>BU</given-names>
</name>
<name>
<surname>von Braun</surname>
<given-names>J</given-names>
</name>
</person-group>
<source>Ecosystem Services and Carbon Sequestration in the Biosphere</source>
<year>2013</year>
<publisher-loc>Dodrecht, Heidelberg, New York, London</publisher-loc>
<publisher-name>Springer</publisher-name>
</element-citation>
</ref>
<ref id="b133">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Larcher</surname>
<given-names>W</given-names>
</name>
</person-group>
<source>Physiological Plant Ecology</source>
<year>2003</year>
<publisher-loc>Berlin</publisher-loc>
<publisher-name>Springer</publisher-name>
</element-citation>
</ref>
<ref id="b134">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Lawlor</surname>
<given-names>DW</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Smirnoff</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>The effects of water deficit on photosynthesis</article-title>
<source>Environment and Plant Metabolism – Flexibilty and Acclimation</source>
<year>1995</year>
<publisher-loc>Oxford</publisher-loc>
<publisher-name>Bios Scientific Publishers</publisher-name>
<fpage>129</fpage>
<lpage>160</lpage>
</element-citation>
</ref>
<ref id="b137">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lewis</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Brando</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Phillips</surname>
<given-names>OL</given-names>
</name>
<name>
<surname>Van Der Heijden</surname>
<given-names>GMF</given-names>
</name>
<name>
<surname>Nepstad</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>The 2010 Amazon drought</article-title>
<source>Science</source>
<year>2011</year>
<volume>331</volume>
<fpage>554</fpage>
<pub-id pub-id-type="pmid">21292971</pub-id>
</element-citation>
</ref>
<ref id="b138">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Bond-Lamberty</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Levis</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Quantifying the role of fire in the Earth system – Part 2: impact on the net carbon balance of global terrestrial ecosystems for the 20
<sup>th</sup>
century</article-title>
<source>Biogeosciences Discussions</source>
<year>2013</year>
<volume>10</volume>
<fpage>17309</fpage>
<lpage>17350</lpage>
</element-citation>
</ref>
<ref id="b139">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lindroth</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Lagergren</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Grelle</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Klemedtsson</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Langvall</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Weslien</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Tuulik</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Storms can cause Europe-wide reduction in forest carbon sink</article-title>
<source>Global Change Biology</source>
<year>2009</year>
<volume>15</volume>
<fpage>346</fpage>
<lpage>355</lpage>
</element-citation>
</ref>
<ref id="b140">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lobell</surname>
<given-names>DB</given-names>
</name>
<name>
<surname>Sibley</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ortiz-Monasterio</surname>
<given-names>JI</given-names>
</name>
</person-group>
<article-title>Extreme heat effects on wheat senescence in India</article-title>
<source>Nature Climate Change</source>
<year>2012</year>
<volume>2</volume>
<fpage>1</fpage>
<lpage>4</lpage>
</element-citation>
</ref>
<ref id="b143">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Major</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lehmann</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Rondon</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Goodale</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Fate of soil-applied black carbon: downward migration, leaching and soil respiration</article-title>
<source>Global Change Biology</source>
<year>2010</year>
<volume>16</volume>
<fpage>1366</fpage>
<lpage>1379</lpage>
</element-citation>
</ref>
<ref id="b145">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marino</surname>
<given-names>GP</given-names>
</name>
<name>
<surname>Kaiser</surname>
<given-names>DP</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ricciuto</surname>
<given-names>DM</given-names>
</name>
</person-group>
<article-title>Reconstruction of false spring occurrences over the southeastern United States, 1901–2007: an increasing risk of spring freeze damage?</article-title>
<source>Environmental Research Letters</source>
<year>2011</year>
<volume>6</volume>
<fpage>024015</fpage>
<comment>Art.</comment>
</element-citation>
</ref>
<ref id="b146">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mayr</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gruber</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bauer</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Repeated freeze-thaw cycles induce embolism in drought stressed conifers (Norway spruce, stone pine)</article-title>
<source>Planta</source>
<year>2003</year>
<volume>217</volume>
<fpage>436</fpage>
<lpage>441</lpage>
<pub-id pub-id-type="pmid">14520570</pub-id>
</element-citation>
</ref>
<ref id="b147">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mayr</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Cochard</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Améglio</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kikuta</surname>
<given-names>SB</given-names>
</name>
</person-group>
<article-title>Embolism formation during freezing in the wood of
<italic>Picea abies</italic>
</article-title>
<source>Plant Physiology</source>
<year>2007</year>
<volume>143</volume>
<fpage>60</fpage>
<lpage>67</lpage>
<pub-id pub-id-type="pmid">17041033</pub-id>
</element-citation>
</ref>
<ref id="b148">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McCarthy</surname>
<given-names>HR</given-names>
</name>
<name>
<surname>Oren</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Johnsen</surname>
<given-names>KH</given-names>
</name>
<name>
<surname>Maier</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Pritchard</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>Interaction of ice storms and management practices on current carbon sequestration in forests with potential mitigation under future CO2 atmosphere</article-title>
<source>Journal of Geophysical Research: Atmospheres</source>
<year>2006</year>
<volume>111</volume>
<fpage>D15103</fpage>
</element-citation>
</ref>
<ref id="b149">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McDowell</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Pockman</surname>
<given-names>WT</given-names>
</name>
<name>
<surname>Allen</surname>
<given-names>CD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?</article-title>
<source>New Phytologist</source>
<year>2008</year>
<volume>178</volume>
<fpage>719</fpage>
<lpage>739</lpage>
<pub-id pub-id-type="pmid">18422905</pub-id>
</element-citation>
</ref>
<ref id="b150">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McDowell</surname>
<given-names>NG</given-names>
</name>
<name>
<surname>Beerling</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Breshears</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Fisher</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Raffa</surname>
<given-names>KF</given-names>
</name>
<name>
<surname>Stitt</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>The interdependence of mechanisms underlying climate-driven vegetation mortality</article-title>
<source>Trends in Ecology and Evolution</source>
<year>2011</year>
<volume>26</volume>
<fpage>523</fpage>
<lpage>532</lpage>
<pub-id pub-id-type="pmid">21802765</pub-id>
</element-citation>
</ref>
<ref id="b151">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McDowell</surname>
<given-names>NG</given-names>
</name>
<name>
<surname>Fisher</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Evaluating theories of drought-induced vegetation mortality using a multimodel-experiment framework</article-title>
<source>New Phytologist</source>
<year>2013</year>
<volume>200</volume>
<fpage>304</fpage>
<lpage>321</lpage>
<pub-id pub-id-type="pmid">24004027</pub-id>
</element-citation>
</ref>
<ref id="b152">
<element-citation publication-type="other">
<collab>MCPFE</collab>
<year>2007</year>
<fpage>247</fpage>
<comment>State of Europe’s Forests 2007. The MCPFE Report on Sustainable Forest Management in Europe. Ministerial Conference on the Protection of Forests in Europe (MCPFE) Liaison Unit Warsaw. pp. MCPFE, United Nations Economic Commission for Europe (UNECE), Food and Agricultural Organization of the United Nations (FAO)</comment>
</element-citation>
</ref>
<ref id="b154">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Menzel</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sparks</surname>
<given-names>TH</given-names>
</name>
<name>
<surname>Estrella</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>European phenological response to climate change matches the warming pattern</article-title>
<source>Global Change Biology</source>
<year>2006</year>
<volume>12</volume>
<fpage>1969</fpage>
<lpage>1976</lpage>
</element-citation>
</ref>
<ref id="b155">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Michaelian</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hogg</surname>
<given-names>EH</given-names>
</name>
<name>
<surname>Hall</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Arsenault</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Massive mortality of aspen following severe drought along the southern edge of the Canadian boreal forest</article-title>
<source>Global Change Biology</source>
<year>2011</year>
<volume>17</volume>
<fpage>2084</fpage>
<lpage>2094</lpage>
</element-citation>
</ref>
<ref id="b156">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Migliavacca</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Meroni</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Manca</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Seasonal and interannual patterns of carbon and water fluxes of a poplar plantation under peculiar eco-climatic conditions</article-title>
<source>Agricultural and Forest Meteorology</source>
<year>2009</year>
<volume>149</volume>
<fpage>1460</fpage>
<lpage>1476</lpage>
</element-citation>
</ref>
<ref id="b353">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mildrexler</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Running</surname>
<given-names>SW</given-names>
</name>
</person-group>
<article-title>Testing a MODIS Global Disturbance Index across North America</article-title>
<source>Remote Sensing of Environment</source>
<year>2009</year>
<volume>113</volume>
<fpage>2103</fpage>
<lpage>2117</lpage>
</element-citation>
</ref>
<ref id="b157">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Misson</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Limousin</surname>
<given-names>J-M</given-names>
</name>
<name>
<surname>Rodriguez</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Letts</surname>
<given-names>MG</given-names>
</name>
</person-group>
<article-title>Leaf physiological responses to extreme droughts in Mediterranean
<italic>Quercus ilex</italic>
forest</article-title>
<source>Plant, Cell and Environment</source>
<year>2010</year>
<volume>33</volume>
<fpage>1898</fpage>
<lpage>1910</lpage>
</element-citation>
</ref>
<ref id="b158">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Misson</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Degueldre</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Collin</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Rodriguez</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Rocheteau</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ourcival</surname>
<given-names>J-M</given-names>
</name>
<name>
<surname>Rambal</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Phenological responses to extreme droughts in a Mediterranean forest</article-title>
<source>Global Change Biology</source>
<year>2011</year>
<volume>17</volume>
<fpage>1036</fpage>
<lpage>1048</lpage>
</element-citation>
</ref>
<ref id="b159">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van der Molen</surname>
<given-names>MK</given-names>
</name>
<name>
<surname>Dolman</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Ciais</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Drought and ecosystem carbon cycling</article-title>
<source>Agricultural and Forest Meteorology</source>
<year>2011</year>
<volume>151</volume>
<fpage>765</fpage>
<lpage>773</lpage>
</element-citation>
</ref>
<ref id="b160">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Monson</surname>
<given-names>RK</given-names>
</name>
<name>
<surname>Lipson</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Burns</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Turnipseed</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Delany</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>MW</given-names>
</name>
<name>
<surname>Schmidt</surname>
<given-names>SK</given-names>
</name>
</person-group>
<article-title>Winter forest soil respiration controlled by climate and microbial community composition</article-title>
<source>Nature</source>
<year>2006</year>
<volume>439</volume>
<fpage>711</fpage>
<lpage>714</lpage>
<pub-id pub-id-type="pmid">16467835</pub-id>
</element-citation>
</ref>
<ref id="b161">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morgan</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>LeCain</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Pendall</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland</article-title>
<source>Nature</source>
<year>2011</year>
<volume>476</volume>
<fpage>202</fpage>
<lpage>205</lpage>
<pub-id pub-id-type="pmid">21814202</pub-id>
</element-citation>
</ref>
<ref id="b162">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moriondo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Good</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Durao</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Bindi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Giannakopoulos</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Corte-Real</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Potential impact of climate change on fire risk in the Mediterranean area</article-title>
<source>Climate Research</source>
<year>2006</year>
<volume>31</volume>
<fpage>85</fpage>
<lpage>95</lpage>
</element-citation>
</ref>
<ref id="b163">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morton</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Le Page</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>DeFries</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Collatz</surname>
<given-names>GJ</given-names>
</name>
<name>
<surname>Hurtt</surname>
<given-names>GC</given-names>
</name>
</person-group>
<article-title>Understorey fire frequency and the fate of burned forests in southern Amazonia</article-title>
<source>Philosophical Transactions of the Royal Society B: Biological Sciences</source>
<year>2013</year>
<volume>368</volume>
<fpage>20120163</fpage>
</element-citation>
</ref>
<ref id="b164">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mueller</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Seneviratne</surname>
<given-names>SI</given-names>
</name>
</person-group>
<article-title>Hot days induced by precipitation deficits at the global scale</article-title>
<source>Proceedings of the National Academy of Sciences of the United States of America</source>
<year>2012</year>
<volume>109</volume>
<fpage>12398</fpage>
<lpage>12403</lpage>
<pub-id pub-id-type="pmid">22802672</pub-id>
</element-citation>
</ref>
<ref id="b165">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Muhr</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Franke</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Borken</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Drying-rewetting events reduce C and N losses from a Norway spruce forest floor</article-title>
<source>Soil Biology & Biochemistry</source>
<year>2010</year>
<volume>42</volume>
<fpage>1303</fpage>
<lpage>1312</lpage>
</element-citation>
</ref>
<ref id="b166">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Myneni</surname>
<given-names>RB</given-names>
</name>
<name>
<surname>Keeling</surname>
<given-names>CD</given-names>
</name>
<name>
<surname>Tucker</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Asrar</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Nemani</surname>
<given-names>RR</given-names>
</name>
</person-group>
<article-title>Increased plant growth in the northern high latitudes from 1981 to 1991</article-title>
<source>Nature</source>
<year>1997</year>
<volume>386</volume>
<fpage>698</fpage>
<lpage>702</lpage>
</element-citation>
</ref>
<ref id="b167">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nagy</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Kreyling</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gellesch</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Beierkuhnlein</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Jentsch</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Recurring weather extremes alter the flowering phenology of two common temperate shrubs</article-title>
<source>International Journal of Biometeorology</source>
<year>2013</year>
<volume>57</volume>
<fpage>579</fpage>
<lpage>588</lpage>
<pub-id pub-id-type="pmid">22895652</pub-id>
</element-citation>
</ref>
<ref id="b168">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Negrón-Juárez</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Baker</surname>
<given-names>DB</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Henkel</surname>
<given-names>TK</given-names>
</name>
<name>
<surname>Chambers</surname>
<given-names>JQ</given-names>
</name>
</person-group>
<article-title>Assessing hurricane-induced tree mortality in U.S. Gulf Coast forest ecosystems</article-title>
<source>Journal of Geophysical Research: Biogeosciences</source>
<year>2010a</year>
<volume>115</volume>
<fpage>G04030</fpage>
</element-citation>
</ref>
<ref id="b169">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Negrón-Juárez</surname>
<given-names>RI</given-names>
</name>
<name>
<surname>Chambers</surname>
<given-names>JQ</given-names>
</name>
<name>
<surname>Guimaraes</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Widespread Amazon forest tree mortality from a single cross-basin squall line event</article-title>
<source>Geophysical Research Letters</source>
<year>2010b</year>
<volume>37</volume>
<fpage>L16701</fpage>
</element-citation>
</ref>
<ref id="b170">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nepstad</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Decarvalho</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Davidson</surname>
<given-names>EA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures</article-title>
<source>Nature</source>
<year>1994</year>
<volume>372</volume>
<fpage>666</fpage>
<lpage>669</lpage>
</element-citation>
</ref>
<ref id="b171">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Netherer</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Schopf</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Potential effects of climate change on insect herbivores in European forests - General aspects and the pine processionary moth as specific example</article-title>
<source>Forest Ecology and Management</source>
<year>2010</year>
<volume>259</volume>
<fpage>831</fpage>
<lpage>838</lpage>
</element-citation>
</ref>
<ref id="b172">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nicholls</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Alexander</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Has the climate become more variable or extreme? Progress 1992-2006</article-title>
<source>Progress in Physical Geography</source>
<year>2007</year>
<volume>31</volume>
<fpage>77</fpage>
<lpage>87</lpage>
</element-citation>
</ref>
<ref id="b173">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Niu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>MD</given-names>
</name>
</person-group>
<article-title>Plant growth and mortality under climatic extremes: an overview</article-title>
<source>Environment and Experimental Botany</source>
<year>2014</year>
<volume>98</volume>
<fpage>13</fpage>
<lpage>19</lpage>
</element-citation>
</ref>
<ref id="b174">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nykänen</surname>
<given-names>M-L</given-names>
</name>
<name>
<surname>Peltola</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Quine</surname>
<given-names>CP</given-names>
</name>
<name>
<surname>Kellomäki</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Broadgate</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Factors affecting snow damage of trees with particular reference to European conditions</article-title>
<source>Silva Fennica</source>
<year>1997</year>
<volume>31</volume>
<fpage>193</fpage>
<lpage>213</lpage>
</element-citation>
</ref>
<ref id="b175">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van Oost</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Quine</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Govers</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The impact of agricultural soil erosion on the global carbon cycle</article-title>
<source>Science</source>
<year>2007</year>
<volume>318</volume>
<fpage>626</fpage>
<lpage>629</lpage>
<pub-id pub-id-type="pmid">17962559</pub-id>
</element-citation>
</ref>
<ref id="b176">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Øygarden</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Rill and gully development during an extreme winter runoff event in Norway</article-title>
<source>Catena</source>
<year>2003</year>
<volume>50</volume>
<fpage>217</fpage>
<lpage>242</lpage>
</element-citation>
</ref>
<ref id="b177">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Page</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Siegert</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Rieley</surname>
<given-names>JO</given-names>
</name>
<name>
<surname>Boehm</surname>
<given-names>HDV</given-names>
</name>
<name>
<surname>Jaya</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Limin</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>The amount of carbon released from peat and forest fires in Indonesia during 1997</article-title>
<source>Nature</source>
<year>2002</year>
<volume>420</volume>
<fpage>61</fpage>
<lpage>65</lpage>
<pub-id pub-id-type="pmid">12422213</pub-id>
</element-citation>
</ref>
<ref id="b178">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Palacio</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hoch</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Sala</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Körner</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Millard</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Does carbon storage limit tree growth?</article-title>
<source>New Phytologist</source>
<year>2014</year>
<volume>201</volume>
<fpage>1096</fpage>
<lpage>1100</lpage>
<pub-id pub-id-type="pmid">24172023</pub-id>
</element-citation>
</ref>
<ref id="b179">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pan</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Birdsey</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A large and persistent carbon sink in the world’s forests</article-title>
<source>Science</source>
<year>2011</year>
<volume>333</volume>
<fpage>988</fpage>
<lpage>993</lpage>
<pub-id pub-id-type="pmid">21764754</pub-id>
</element-citation>
</ref>
<ref id="b180">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Parry</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Canziani</surname>
<given-names>OF</given-names>
</name>
<name>
<surname>Palutikof</surname>
<given-names>JP</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Parry</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Canziani</surname>
<given-names>OF</given-names>
</name>
<name>
<surname>Palutikof</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>der van Linden</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Hanson</surname>
<given-names>CE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Technical summary</article-title>
<source>Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change</source>
<year>2007</year>
<publisher-loc>Cambridge, UK</publisher-loc>
<publisher-name>Cambridge University Press</publisher-name>
<fpage>23</fpage>
<lpage>78</lpage>
</element-citation>
</ref>
<ref id="b181">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pausas</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>Paula</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Fuel shapes the fire-climate relationship: evidence from Mediterranean ecosystems</article-title>
<source>Global Ecology and Biogeography</source>
<year>2012</year>
<volume>21</volume>
<fpage>1074</fpage>
<lpage>1082</lpage>
</element-citation>
</ref>
<ref id="b182">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peng</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Piao</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Afforestation in China cools local land surface temperature</article-title>
<source>Proceedings of the National Academy of Sciences of the United States of America</source>
<year>2014</year>
<volume>111</volume>
<fpage>2915</fpage>
<lpage>2919</lpage>
<pub-id pub-id-type="pmid">24516135</pub-id>
</element-citation>
</ref>
<ref id="b183">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peñuelas</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Sardans</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Estiarte</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Evidence of current impact of climate change on life: a walk from genes to the biosphere</article-title>
<source>Global Change Biology</source>
<year>2013</year>
<volume>19</volume>
<fpage>2303</fpage>
<lpage>2338</lpage>
<pub-id pub-id-type="pmid">23505157</pub-id>
</element-citation>
</ref>
<ref id="b185">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Phillips</surname>
<given-names>OL</given-names>
</name>
<name>
<surname>Aragão</surname>
<given-names>LEOC</given-names>
</name>
<name>
<surname>Lewis</surname>
<given-names>SL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Drought sensitivity of the Amazon rainforest</article-title>
<source>Science</source>
<year>2009</year>
<volume>323</volume>
<fpage>1344</fpage>
<lpage>1347</lpage>
<pub-id pub-id-type="pmid">19265020</pub-id>
</element-citation>
</ref>
<ref id="b186">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pilegaard</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ibrom</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Courtney</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Hummelshøj</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Jensen</surname>
<given-names>NO</given-names>
</name>
</person-group>
<article-title>Increasing net CO
<sub>2</sub>
uptake by a Danish beech forest during the period from 1996 to 2009</article-title>
<source>Agricultural and Forest Meteorology</source>
<year>2011</year>
<volume>151</volume>
<fpage>934</fpage>
<lpage>946</lpage>
</element-citation>
</ref>
<ref id="b187">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Polle</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kröniger</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Rennenberg</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Seasonal fluctuations of ascorbate-related enzymes: acute and delayed effects of late frost in spring on antioxidative systems in needles of Norway spruce (
<italic>Picea abies</italic>
L.)</article-title>
<source>Plant and Cell Physiology</source>
<year>1996</year>
<volume>37</volume>
<fpage>717</fpage>
<lpage>725</lpage>
</element-citation>
</ref>
<ref id="b188">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Porter</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Semenov</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>Crop responses to climatic variation</article-title>
<source>Philosophical Transactions of the Royal Society B: Biological Sciences</source>
<year>2005</year>
<volume>360</volume>
<fpage>2021</fpage>
<lpage>2035</lpage>
</element-citation>
</ref>
<ref id="b189">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Posthumus</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Morris</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hess</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Neville</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Phillips</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Baylis</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Impacts of the summer 2007 floods on agriculture in England</article-title>
<source>Journal of Flood Risk Management</source>
<year>2009</year>
<volume>2</volume>
<fpage>182</fpage>
<lpage>189</lpage>
</element-citation>
</ref>
<ref id="b190">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Poulter</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Frank</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Ciais</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle</article-title>
<source>Nature</source>
<year>2014</year>
<volume>509</volume>
<fpage>600</fpage>
<lpage>603</lpage>
<pub-id pub-id-type="pmid">24847888</pub-id>
</element-citation>
</ref>
<ref id="b191">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Preston</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Schmidt</surname>
<given-names>MWI</given-names>
</name>
</person-group>
<article-title>Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions</article-title>
<source>Biogeosciences</source>
<year>2006</year>
<volume>3</volume>
<fpage>397</fpage>
<lpage>420</lpage>
</element-citation>
</ref>
<ref id="b192">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Price</surname>
<given-names>DT</given-names>
</name>
<name>
<surname>Alfaro</surname>
<given-names>RI</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Flannigan</surname>
<given-names>MD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Anticipating the consequences of climate change for Canada’s boreal forest ecosystems</article-title>
<source>Environmental Reviews</source>
<year>2013</year>
<volume>21</volume>
<fpage>322</fpage>
<lpage>365</lpage>
</element-citation>
</ref>
<ref id="b193">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ramankutty</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Evan</surname>
<given-names>AT</given-names>
</name>
<name>
<surname>Monfreda</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Foley</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000</article-title>
<source>Global Biogeochemical Cycles</source>
<year>2008</year>
<volume>22</volume>
<fpage>GB1003</fpage>
</element-citation>
</ref>
<ref id="b194">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rammig</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Wiedermann</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Donges</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Babst</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tree-ring responses to extreme climate events as benchmarks for terrestrial dynamic vegetation models</article-title>
<source>Biogeosciences Discussions</source>
<year>2014</year>
<volume>11</volume>
<fpage>2537</fpage>
<lpage>2568</lpage>
</element-citation>
</ref>
<ref id="b195">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reddy</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Chaitanya</surname>
<given-names>KV</given-names>
</name>
<name>
<surname>Vivekanandan</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants</article-title>
<source>Journal of Plant Physiology</source>
<year>2004</year>
<volume>161</volume>
<fpage>1189</fpage>
<lpage>1202</lpage>
<pub-id pub-id-type="pmid">15602811</pub-id>
</element-citation>
</ref>
<ref id="b196">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reichstein</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ciais</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Papale</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis</article-title>
<source>Global Change Biology</source>
<year>2007</year>
<volume>13</volume>
<fpage>634</fpage>
<lpage>651</lpage>
</element-citation>
</ref>
<ref id="b197">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reichstein</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bahn</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ciais</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Climate extremes and the carbon cycle</article-title>
<source>Nature</source>
<year>2013</year>
<volume>500</volume>
<fpage>287</fpage>
<lpage>295</lpage>
<pub-id pub-id-type="pmid">23955228</pub-id>
</element-citation>
</ref>
<ref id="b199">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Robinet</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Roques</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Direct impacts of recent climate warming on insect populations</article-title>
<source>Integrative Zoology</source>
<year>2010</year>
<volume>5</volume>
<fpage>132</fpage>
<lpage>142</lpage>
<pub-id pub-id-type="pmid">21392331</pub-id>
</element-citation>
</ref>
<ref id="b200">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rosenzweig</surname>
<given-names>CE</given-names>
</name>
<name>
<surname>Tubiello</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Goldberg</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Mills</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Bloomfield</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Increased crop damage in the U.S. from excess precipitation under climate change</article-title>
<source>Global Environmental Change</source>
<year>2002</year>
<volume>12</volume>
<fpage>197</fpage>
<lpage>202</lpage>
</element-citation>
</ref>
<ref id="b201">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rouault</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Candau</surname>
<given-names>J-N</given-names>
</name>
<name>
<surname>Lieutier</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Nageleisen</surname>
<given-names>L-M</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>J-C</given-names>
</name>
<name>
<surname>Warzee</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Effects of drought and heat on forest insect populations in relation to the 2003 drought in Western Europe</article-title>
<source>Annals of Forest Science</source>
<year>2006</year>
<volume>63</volume>
<fpage>613</fpage>
<lpage>624</lpage>
</element-citation>
</ref>
<ref id="b202">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sala</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Woodruff</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Meinzer</surname>
<given-names>FC</given-names>
</name>
</person-group>
<article-title>Carbon dynamics in trees: feast or famine?</article-title>
<source>Tree Physiology</source>
<year>2012</year>
<volume>32</volume>
<fpage>764</fpage>
<lpage>775</lpage>
<pub-id pub-id-type="pmid">22302370</pub-id>
</element-citation>
</ref>
<ref id="b203">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sambaraju</surname>
<given-names>KR</given-names>
</name>
<name>
<surname>Carroll</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Jhu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Stahl</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Moore</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Aukema</surname>
<given-names>BH</given-names>
</name>
</person-group>
<article-title>Climate change could alter the distribution of mountain pine beetle outbreaks in western Canada</article-title>
<source>Ecography</source>
<year>2012</year>
<volume>35</volume>
<fpage>211</fpage>
<lpage>223</lpage>
</element-citation>
</ref>
<ref id="b204">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Schachtschabel</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Blume</surname>
<given-names>H-P</given-names>
</name>
<name>
<surname>Brümmer</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Hartge</surname>
<given-names>K-H</given-names>
</name>
<name>
<surname>Schwertmann</surname>
<given-names>U</given-names>
</name>
</person-group>
<source>Lehrbuch der Bodenkunde</source>
<year>1992</year>
<publisher-loc>Stuttgart</publisher-loc>
<publisher-name>Enke</publisher-name>
</element-citation>
</ref>
<ref id="b205">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schär</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Vidale</surname>
<given-names>PL</given-names>
</name>
<name>
<surname>Lüthi</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Frei</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Häberli</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Liniger</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Appenzeller</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>The role of increasing temperature variability in European summer heatwaves</article-title>
<source>Nature</source>
<year>2004</year>
<volume>427</volume>
<fpage>332</fpage>
<lpage>336</lpage>
<pub-id pub-id-type="pmid">14716318</pub-id>
</element-citation>
</ref>
<ref id="b207">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Scheiter</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Langgan</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Higgins</surname>
<given-names>SI</given-names>
</name>
</person-group>
<article-title>Next-generation dynamic global vegetation models: learning from community ecology</article-title>
<source>New Phytologist</source>
<year>2013</year>
<volume>198</volume>
<fpage>957</fpage>
<lpage>969</lpage>
<pub-id pub-id-type="pmid">23496172</pub-id>
</element-citation>
</ref>
<ref id="b208">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schimel</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Baker</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>The wildfire factor</article-title>
<source>Nature</source>
<year>2002</year>
<volume>420</volume>
<fpage>29</fpage>
<lpage>30</lpage>
<pub-id pub-id-type="pmid">12422198</pub-id>
</element-citation>
</ref>
<ref id="b209">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schlyter</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Stjernquist</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Bärring</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Jönsson</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Nilsson</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Assessment of the impacts of climate change and weather extremes on boreal forests in northern Europe, focusing on Norway spruce</article-title>
<source>Climate Research</source>
<year>2006</year>
<volume>31</volume>
<fpage>75</fpage>
<lpage>84</lpage>
</element-citation>
</ref>
<ref id="b210">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schmidt</surname>
<given-names>MWI</given-names>
</name>
<name>
<surname>Torn</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Abiven</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Persistence of soil organic matter as an ecosystem property</article-title>
<source>Nature</source>
<year>2011</year>
<volume>478</volume>
<fpage>49</fpage>
<lpage>56</lpage>
<pub-id pub-id-type="pmid">21979045</pub-id>
</element-citation>
</ref>
<ref id="b211">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Schulze</surname>
<given-names>E-D</given-names>
</name>
<name>
<surname>Beck</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Müller-Hohenstein</surname>
<given-names>K</given-names>
</name>
</person-group>
<source>Plant Ecology</source>
<year>2005</year>
<publisher-loc>Heidelberg</publisher-loc>
<publisher-name>Springer Verlag</publisher-name>
</element-citation>
</ref>
<ref id="b212">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schwalm</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Schaefer</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Assimilation exceeds respiration sensitivity to drought: A FLUXNET synthesis</article-title>
<source>Global Change Biology</source>
<year>2010</year>
<volume>16</volume>
<fpage>657</fpage>
<lpage>670</lpage>
</element-citation>
</ref>
<ref id="b213">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schwalm</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Schaefer</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Reduction in carbon uptake during turn of the century drought in western North America</article-title>
<source>Nature Geoscience</source>
<year>2012</year>
<volume>5</volume>
<fpage>551</fpage>
<lpage>556</lpage>
</element-citation>
</ref>
<ref id="b214">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Seidl</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Fernandes</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Fonseca</surname>
<given-names>TF</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Modelling natural disturbances in forest ecosystems: a review</article-title>
<source>Ecological Modelling</source>
<year>2011</year>
<volume>222</volume>
<fpage>903</fpage>
<lpage>924</lpage>
</element-citation>
</ref>
<ref id="b215">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Seneviratne</surname>
<given-names>SI</given-names>
</name>
<name>
<surname>Lüthi</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Litschi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Schär</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Land-atmosphere coupling and climate change in Europe</article-title>
<source>Nature</source>
<year>2006</year>
<volume>443</volume>
<fpage>205</fpage>
<lpage>209</lpage>
<pub-id pub-id-type="pmid">16971947</pub-id>
</element-citation>
</ref>
<ref id="b216">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Seneviratne</surname>
<given-names>SI</given-names>
</name>
<name>
<surname>Corti</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Davin</surname>
<given-names>EL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Investigating soil moisture-climate interactions in a changing climate: a review</article-title>
<source>Earth-Science Reviews</source>
<year>2010</year>
<volume>99</volume>
<fpage>125</fpage>
<lpage>161</lpage>
</element-citation>
</ref>
<ref id="b217">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Seneviratne</surname>
<given-names>SI</given-names>
</name>
<name>
<surname>Nicholls</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Easterling</surname>
<given-names>D</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Field</surname>
<given-names>CB</given-names>
</name>
<name>
<surname>Barros</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Stocker</surname>
<given-names>TF</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Changes in climate extremes and their impacts on the natural physical environment</article-title>
<source>Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change</source>
<year>2012</year>
<publisher-loc>Cambridge, UK and New York, NY</publisher-loc>
<publisher-name>Cambridge University Press</publisher-name>
<fpage>109</fpage>
<lpage>230</lpage>
<comment>(IPCC SREX Report). (. In:.)</comment>
</element-citation>
</ref>
<ref id="b218">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sheik</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>Beasley</surname>
<given-names>WH</given-names>
</name>
<name>
<surname>Elshahed</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Krumholz</surname>
<given-names>LR</given-names>
</name>
</person-group>
<article-title>Effect of warming and drought on grassland microbial communities</article-title>
<source>The ISME Journal</source>
<year>2011</year>
<volume>5</volume>
<fpage>1692</fpage>
<lpage>1700</lpage>
<pub-id pub-id-type="pmid">21451582</pub-id>
</element-citation>
</ref>
<ref id="b219">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shi</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Thomey</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Mowll</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Differential effects of extreme drought on production and respiration: synthesis and modeling analysis</article-title>
<source>Biogeosciences</source>
<year>2014</year>
<volume>11</volume>
<fpage>621</fpage>
<lpage>633</lpage>
</element-citation>
</ref>
<ref id="b220">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shinoda</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gillies</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Mikami</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Shao</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Temperate grasslands as a dust source: knowledge, uncertainties, and challenges</article-title>
<source>Aeolian Research</source>
<year>2011</year>
<volume>3</volume>
<fpage>271</fpage>
<lpage>293</lpage>
</element-citation>
</ref>
<ref id="b221">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Simpson</surname>
<given-names>IJ</given-names>
</name>
<name>
<surname>Rowland</surname>
<given-names>FS</given-names>
</name>
<name>
<surname>Meinardi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Blake</surname>
<given-names>DR</given-names>
</name>
</person-group>
<article-title>Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane</article-title>
<source>Geophysical Research Letters</source>
<year>2006</year>
<volume>33</volume>
<fpage>L22808</fpage>
</element-citation>
</ref>
<ref id="b222">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Singh</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Abiven</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Torn</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Schmidt</surname>
<given-names>MWI</given-names>
</name>
</person-group>
<article-title>Fire-derived organic carbon in soil turns over on a centennial scale</article-title>
<source>Biogeosciences</source>
<year>2012</year>
<volume>9</volume>
<fpage>2847</fpage>
<lpage>2857</lpage>
</element-citation>
</ref>
<ref id="b223">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Smith</surname>
<given-names>MD</given-names>
</name>
</person-group>
<article-title>An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research</article-title>
<source>Journal of Ecology</source>
<year>2011</year>
<volume>99</volume>
<fpage>656</fpage>
<lpage>663</lpage>
</element-citation>
</ref>
<ref id="b224">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Smith</surname>
<given-names>NG</given-names>
</name>
<name>
<surname>Dukes</surname>
<given-names>JS</given-names>
</name>
</person-group>
<article-title>Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO
<sub>2</sub>
</article-title>
<source>Global Change Biology</source>
<year>2013</year>
<volume>19</volume>
<fpage>45</fpage>
<lpage>63</lpage>
<pub-id pub-id-type="pmid">23504720</pub-id>
</element-citation>
</ref>
<ref id="b225">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Soja</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Tchebakova</surname>
<given-names>NM</given-names>
</name>
<name>
<surname>French</surname>
<given-names>NHF</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Climate-induced boreal forest change: predictions versus current observations</article-title>
<source>Global and Planetary Change</source>
<year>2007</year>
<volume>56</volume>
<fpage>274</fpage>
<lpage>296</lpage>
</element-citation>
</ref>
<ref id="b226">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Soussana</surname>
<given-names>J-F</given-names>
</name>
<name>
<surname>Graux</surname>
<given-names>AI</given-names>
</name>
<name>
<surname>Tubiello</surname>
<given-names>F-N</given-names>
</name>
</person-group>
<article-title>Improving the use of modelling for projections of climate change impacts on crops and pastures</article-title>
<source>Journal of Experimental Botany</source>
<year>2010</year>
<volume>61</volume>
<fpage>2217</fpage>
<lpage>2228</lpage>
<pub-id pub-id-type="pmid">20410317</pub-id>
</element-citation>
</ref>
<ref id="b227">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sowerby</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Emmett</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Tietema</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Beier</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Contrasting effects of repeated summer drought on soil carbon efflux in hydric and mesic heathland soils</article-title>
<source>Global Change Biology</source>
<year>2008</year>
<volume>14</volume>
<fpage>2388</fpage>
<lpage>2404</lpage>
</element-citation>
</ref>
<ref id="b228">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sperry</surname>
<given-names>JS</given-names>
</name>
</person-group>
<article-title>Hydraulic constraints on plant gas exchange</article-title>
<source>Agricultural and Forest Meteorology</source>
<year>2000</year>
<volume>104</volume>
<fpage>13</fpage>
<lpage>23</lpage>
</element-citation>
</ref>
<ref id="b229">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stahl</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Moore</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Mckendry</surname>
<given-names>IG</given-names>
</name>
</person-group>
<article-title>Climatology of winter cold spells in relation to mountain pine beetle mortality in British Columbia, Canada</article-title>
<source>Climate Research</source>
<year>2006</year>
<volume>32</volume>
<fpage>13</fpage>
<lpage>23</lpage>
</element-citation>
</ref>
<ref id="b230">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stone</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Ecologists report huge storm losses in China’s forests</article-title>
<source>Science</source>
<year>2008</year>
<volume>319</volume>
<fpage>1318</fpage>
<lpage>1319</lpage>
<pub-id pub-id-type="pmid">18323420</pub-id>
</element-citation>
</ref>
<ref id="b231">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Suarez</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Kitzberger</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Recruitment patterns following a severe drought: long-term compositional shifts in Patagonian forests</article-title>
<source>Canadian Journal of Forest Research</source>
<year>2008</year>
<volume>38</volume>
<fpage>3002</fpage>
<lpage>3010</lpage>
</element-citation>
</ref>
<ref id="b232">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sullivan</surname>
<given-names>JEM</given-names>
</name>
</person-group>
<article-title>Xylem embolism in response to freeze-thaw cycles and water-stress in ring-porous, diffuse-porous, and conifer species</article-title>
<source>Plant Physiology</source>
<year>1992</year>
<volume>100</volume>
<fpage>605</fpage>
<lpage>613</lpage>
<pub-id pub-id-type="pmid">16653035</pub-id>
</element-citation>
</ref>
<ref id="b233">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>LH</given-names>
</name>
<name>
<surname>Dickinson</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>BZ</given-names>
</name>
</person-group>
<article-title>Forest greenness after the massive 2008 Chinese ice storm: integrated effects of natural processes and human intervention</article-title>
<source>Environmental Research Letters</source>
<year>2012</year>
<volume>7</volume>
<fpage>035702</fpage>
<comment>Art.</comment>
</element-citation>
</ref>
<ref id="b234">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Suttie</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Reynolds</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>Batello</surname>
<given-names>C</given-names>
</name>
</person-group>
<source>Grasslands of the World. Plant Production and Protection Series, 34</source>
<year>2005</year>
<publisher-loc>Rome</publisher-loc>
<publisher-name>FAO</publisher-name>
</element-citation>
</ref>
<ref id="b236">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Teuling</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Uijlenhoet</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Hupet</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Troch</surname>
<given-names>PA</given-names>
</name>
</person-group>
<article-title>Impact of plant water uptake strategy on soil moisture and evapotranspiration dynamics during drydown</article-title>
<source>Geophysical Research Letters</source>
<year>2006</year>
<volume>33</volume>
<fpage>L03401</fpage>
</element-citation>
</ref>
<ref id="b237">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Teuling</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Seneviratne</surname>
<given-names>SI</given-names>
</name>
<name>
<surname>Stöckli</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Contrasting response of European forest and grassland energy exchange to heatwaves</article-title>
<source>Nature Geoscience</source>
<year>2010</year>
<volume>3</volume>
<fpage>722</fpage>
<lpage>727</lpage>
</element-citation>
</ref>
<ref id="b238">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thothong</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Huon</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Janeau</surname>
<given-names>JL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Impact of land use change and rainfall on sediment and carbon accumulation in a water reservoir of North Thailand</article-title>
<source>Agriculture, Ecosystems & Environment</source>
<year>2011</year>
<volume>140</volume>
<fpage>521</fpage>
<lpage>533</lpage>
</element-citation>
</ref>
<ref id="b239">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tian</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Melillo</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Kicklighter</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>McGiure</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Helfrich</surname>
<given-names>J</given-names>
<suffix>III</suffix>
</name>
<name>
<surname>Moore</surname>
<given-names>B</given-names>
<suffix>III</suffix>
</name>
<name>
<surname>Vörösmarty</surname>
<given-names>CJ</given-names>
</name>
</person-group>
<article-title>Effect of interannual climate variability on carbon storage in Amazonian ecosystems</article-title>
<source>Nature</source>
<year>1998</year>
<volume>396</volume>
<fpage>664</fpage>
<lpage>667</lpage>
</element-citation>
</ref>
<ref id="b240">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Tolk</surname>
<given-names>JA</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Stewart</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Howell</surname>
<given-names>TA</given-names>
</name>
</person-group>
<article-title>Plant available soil water</article-title>
<source>Encyclopedia of Water Science</source>
<year>2003</year>
<publisher-loc>New York, NY</publisher-loc>
<publisher-name>Marcel-Dekker Inc</publisher-name>
<fpage>669</fpage>
<lpage>672</lpage>
</element-citation>
</ref>
<ref id="b241">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Trenberth</surname>
<given-names>KE</given-names>
</name>
<name>
<surname>Fasullo</surname>
<given-names>JT</given-names>
</name>
</person-group>
<article-title>Climate extremes and climate change: the Russian heat wave and other climate extremes of 2010</article-title>
<source>Journal of Geophysical Research</source>
<year>2012</year>
<volume>117</volume>
<fpage>D17103</fpage>
</element-citation>
</ref>
<ref id="b242">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Trigo</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Pereira</surname>
<given-names>JMC</given-names>
</name>
<name>
<surname>Pereira</surname>
<given-names>MRG</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Atmospheric conditions associated with the exceptional fire season of 2003 in Portugal</article-title>
<source>International Journal of Climatology</source>
<year>2006</year>
<volume>26</volume>
<fpage>1741</fpage>
<lpage>1757</lpage>
</element-citation>
</ref>
<ref id="b244">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Turetsky</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Donahue</surname>
<given-names>WF</given-names>
</name>
<name>
<surname>Benscoter</surname>
<given-names>BW</given-names>
</name>
</person-group>
<article-title>Experimental drying intensifies burning and carbon losses in a northern peatland</article-title>
<source>Nature Communications</source>
<year>2011a</year>
<volume>2</volume>
<fpage>514</fpage>
<comment>Art.</comment>
</element-citation>
</ref>
<ref id="b245">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Turetsky</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Kane</surname>
<given-names>ES</given-names>
</name>
<name>
<surname>Harden</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Ottmar</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Manies</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Hoy</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Kasischke</surname>
<given-names>ES</given-names>
</name>
</person-group>
<article-title>Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands</article-title>
<source>Nature Geoscience</source>
<year>2011b</year>
<volume>4</volume>
<fpage>27</fpage>
<lpage>31</lpage>
</element-citation>
</ref>
<ref id="b246">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Unger</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Máguas</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Pereira</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Aires</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>David</surname>
<given-names>TS</given-names>
</name>
<name>
<surname>Werner</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Partitioning carbon fluxes in a Mediterranean oak forest to disentangle changes in ecosystem sink strength during drought</article-title>
<source>Agricultural and Forest Meteorology</source>
<year>2009</year>
<volume>149</volume>
<fpage>949</fpage>
<lpage>961</lpage>
</element-citation>
</ref>
<ref id="b247">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Valentin</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Agus</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Alamban</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Runoff and sediment losses from 27 upland catchments in Southeast Asia: impact of rapid land use changes and conservation practices</article-title>
<source>Agriculture, Ecosystems & Environment</source>
<year>2008</year>
<volume>128</volume>
<fpage>225</fpage>
<lpage>238</lpage>
</element-citation>
</ref>
<ref id="b248">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>VandenBygaart</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Kroetsch</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Gregorich</surname>
<given-names>EG</given-names>
</name>
<name>
<surname>Lobb</surname>
<given-names>DA</given-names>
</name>
</person-group>
<article-title>Soil C erosion and burial in cropland</article-title>
<source>Global Change Biology</source>
<year>2012</year>
<volume>18</volume>
<fpage>1441</fpage>
<lpage>1452</lpage>
</element-citation>
</ref>
<ref id="b249">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vargas</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>How a hurricane disturbance influences extreme CO2 fluxes and variance in a tropical forest</article-title>
<source>Environmental Research Letters</source>
<year>2012</year>
<volume>7</volume>
<fpage>035704</fpage>
</element-citation>
</ref>
<ref id="b250">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vautard</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Yiou</surname>
<given-names>P</given-names>
</name>
<name>
<surname>D’andrea</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit</article-title>
<source>Geophysical Research Letters</source>
<year>2007</year>
<volume>34</volume>
<fpage>L07711</fpage>
</element-citation>
</ref>
<ref id="b251">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van der Velde</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wriedt</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Bouraoui</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Estimating irrigation use and effects on maize yield during the 2003 heatwave in France</article-title>
<source>Agriculture, Ecosystems & Environment</source>
<year>2010</year>
<volume>135</volume>
<fpage>90</fpage>
<lpage>97</lpage>
</element-citation>
</ref>
<ref id="b252">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van der Velde</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Tubiello</surname>
<given-names>FN</given-names>
</name>
<name>
<surname>Vrieling</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bouraoui</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Impacts of extreme weather on wheat and maize in France: evaluating regional crop simulations against observed data</article-title>
<source>Climatic Change</source>
<year>2012</year>
<volume>113</volume>
<fpage>751</fpage>
<lpage>765</lpage>
</element-citation>
</ref>
<ref id="b253">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vervuren</surname>
<given-names>PJA</given-names>
</name>
<name>
<surname>Blom</surname>
<given-names>CWPM</given-names>
</name>
<name>
<surname>De Kroon</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Extreme flooding events on the Rhine and the survival and distribution of riparian plant species</article-title>
<source>Journal of Ecology</source>
<year>2003</year>
<volume>91</volume>
<fpage>135</fpage>
<lpage>146</lpage>
</element-citation>
</ref>
<ref id="b254">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vetter</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Churkina</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Analyzing the causes and spatial pattern of the European 2003 carbon flux anomaly using seven models</article-title>
<source>Biogeosciences</source>
<year>2008</year>
<volume>5</volume>
<fpage>561</fpage>
<lpage>583</lpage>
</element-citation>
</ref>
<ref id="b255">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vicca</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gilgen</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Camino Serrano</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Dreesen</surname>
<given-names>FE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Urgent need for a common metric to make precipitation manipulation experiments comparable</article-title>
<source>New Phytologist</source>
<year>2012</year>
<volume>195</volume>
<fpage>518</fpage>
<lpage>522</lpage>
<pub-id pub-id-type="pmid">22734795</pub-id>
</element-citation>
</ref>
<ref id="b256">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vicca</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bahn</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Estiarte</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Can current moisture responses predict soil CO
<sub>2</sub>
efflux under altered precipitation regimes? A synthesis of manipulation experiments</article-title>
<source>Biogeosciences</source>
<year>2014</year>
<volume>11</volume>
<fpage>2991</fpage>
<lpage>3013</lpage>
</element-citation>
</ref>
<ref id="b257">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Virtanen</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Neuvonen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nikula</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Modelling topoclimatic patterns of egg mortality of Epirrita autumnata (Lepidoptera: Geometridae) with a Geographical Information System: predictions for current climate and warmer climate scenarios</article-title>
<source>Journal of Applied Ecology</source>
<year>1998</year>
<volume>35</volume>
<fpage>311</fpage>
<lpage>322</lpage>
</element-citation>
</ref>
<ref id="b259">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Walter</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hein</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Auge</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>How do extreme drought and plant community composition affect host plant metabolites and herbivore performance?</article-title>
<source>Arthropod-Plant Interactions</source>
<year>2012</year>
<volume>6</volume>
<fpage>15</fpage>
<lpage>25</lpage>
</element-citation>
</ref>
<ref id="b260">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Walter</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jentsch</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Beierkuhnlein</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Kreyling</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Ecological stress memory and cross stress tolerance in plants in the face of climate extremes</article-title>
<source>Environmental and Experimental Botany</source>
<year>2013</year>
<volume>94</volume>
<fpage>3</fpage>
<lpage>8</lpage>
</element-citation>
</ref>
<ref id="b261">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wan</surname>
<given-names>CG</given-names>
</name>
<name>
<surname>Yilmaz</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Sosebee</surname>
<given-names>RE</given-names>
</name>
</person-group>
<article-title>Seasonal soil-water availability influences snakeweed root dynamics</article-title>
<source>Journal of Arid Environments</source>
<year>2002</year>
<volume>51</volume>
<fpage>255</fpage>
<lpage>264</lpage>
</element-citation>
</ref>
<ref id="b262">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>XB</given-names>
</name>
<name>
<surname>Enema</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Hoogmed</surname>
<given-names>WB</given-names>
</name>
<name>
<surname>Perdok</surname>
<given-names>UD</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>DX</given-names>
</name>
</person-group>
<article-title>Dust storm erosion and its impact on soil carbon and nitrogen losses in northern China</article-title>
<source>Catena</source>
<year>2006</year>
<volume>66</volume>
<fpage>221</fpage>
<lpage>227</lpage>
</element-citation>
</ref>
<ref id="b263">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wendler</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Conner</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Moor</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Shulski</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Stuefer</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Climatology of Alaskan wildfires with special emphasis on the extreme year of 2004</article-title>
<source>Theoretical and Applied Climatology</source>
<year>2011</year>
<volume>104</volume>
<fpage>459</fpage>
<lpage>472</lpage>
</element-citation>
</ref>
<ref id="b264">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van der Werf</surname>
<given-names>GR</given-names>
</name>
<name>
<surname>Dempewolf</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Trigg</surname>
<given-names>SN</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Climate regulation of fire emissions and deforestation in equatorial Asia</article-title>
<source>Proceedings of the National Academy of Sciences of the United States of America</source>
<year>2008</year>
<volume>105</volume>
<fpage>20350</fpage>
<lpage>20355</lpage>
<pub-id pub-id-type="pmid">19075224</pub-id>
</element-citation>
</ref>
<ref id="b265">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van der Werf</surname>
<given-names>GR</given-names>
</name>
<name>
<surname>Randerson</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Giglio</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009)</article-title>
<source>Atmospheric Chemistry and Physics</source>
<year>2010</year>
<volume>10</volume>
<fpage>11707</fpage>
<lpage>11735</lpage>
</element-citation>
</ref>
<ref id="b266">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>White</surname>
<given-names>RE</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>White</surname>
<given-names>RE</given-names>
</name>
</person-group>
<article-title>Hydrology, soil water and temperature</article-title>
<source>Principles and Practice of Soil Science</source>
<year>2006</year>
<edition>4th edn</edition>
<publisher-loc>Malden, MA, USA, Oxford, UK, Victoria, Australia</publisher-loc>
<publisher-name>Blackwell Publishing</publisher-name>
<fpage>103</fpage>
<lpage>132</lpage>
</element-citation>
</ref>
<ref id="b267">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>White</surname>
<given-names>PS</given-names>
</name>
<name>
<surname>Jentsch</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>The search for generality in studies of disturbance and ecosystem dynamics</article-title>
<source>Progress in Botany</source>
<year>2001</year>
<volume>62</volume>
<fpage>399</fpage>
<lpage>450</lpage>
</element-citation>
</ref>
<ref id="b268">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Williams</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>Allen</surname>
<given-names>CD</given-names>
</name>
<name>
<surname>Macalady</surname>
<given-names>AK</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Temperature as a potent driver of regional forest drought stress and tree mortality</article-title>
<source>Nature Climate Change</source>
<year>2012</year>
<volume>3</volume>
<fpage>292</fpage>
<lpage>297</lpage>
</element-citation>
</ref>
<ref id="b400">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yuste</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Penuelas</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Estiarte</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Drought-resistant fungi control soil organic matter decomposition and its response to temperature</article-title>
<source>Global Change Biology</source>
<year>2011</year>
<volume>17</volume>
<fpage>1475</fpage>
<lpage>1486</lpage>
</element-citation>
</ref>
<ref id="b271">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zampieri</surname>
<given-names>M</given-names>
</name>
<name>
<surname>D’Andrea</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Vautard</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Ciais</surname>
<given-names>P</given-names>
</name>
<name>
<surname>de Noblet-Ducoudre</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Yiou</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Hot European summers and the role of soil moisture in the propagationof Mediterranean</article-title>
<source>Journal of Climate</source>
<year>2009</year>
<volume>22</volume>
<fpage>4747</fpage>
<lpage>4758</lpage>
</element-citation>
</ref>
<ref id="b272">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zavalloni</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Gielen</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Lemmens</surname>
<given-names>CMHM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Does a warmer climate with frequent mild water shortages protect grassland communities against a prolonged drought?</article-title>
<source>Plant and Soil</source>
<year>2008</year>
<volume>308</volume>
<fpage>119</fpage>
<lpage>130</lpage>
</element-citation>
</ref>
<ref id="b273">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zeng</surname>
<given-names>HC</given-names>
</name>
<name>
<surname>Chambers</surname>
<given-names>JQ</given-names>
</name>
<name>
<surname>Negrón-Juárez</surname>
<given-names>RI</given-names>
</name>
<name>
<surname>Hurtt</surname>
<given-names>GC</given-names>
</name>
<name>
<surname>Baker</surname>
<given-names>DB</given-names>
</name>
<name>
<surname>Powell</surname>
<given-names>MD</given-names>
</name>
</person-group>
<article-title>Impacts of tropical cyclones on U.S. forest tree mortality and carbon flux from 1851 to 2000</article-title>
<source>Proceedings of the National Academy of Sciences of the United States of America</source>
<year>2009</year>
<volume>106</volume>
<fpage>7888</fpage>
<lpage>7892</lpage>
<pub-id pub-id-type="pmid">19416842</pub-id>
</element-citation>
</ref>
<ref id="b274">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Barry</surname>
<given-names>RG</given-names>
</name>
<name>
<surname>Haeberli</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Numerical simulations of the influence of the seasonal snow cover on the occurrence of permafrost at high latitudes</article-title>
<source>Norsk Geografisk Tidsskrift</source>
<year>2001</year>
<volume>55</volume>
<fpage>261</fpage>
<lpage>266</lpage>
</element-citation>
</ref>
<ref id="b275">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zscheischler</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mahecha</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Harmeling</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Reichstein</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Detection and attribution of large spatiotemporal extreme events in Earth observation data</article-title>
<source>Ecological Informatics</source>
<year>2013</year>
<volume>15</volume>
<fpage>66</fpage>
<lpage>73</lpage>
</element-citation>
</ref>
<ref id="b276">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zscheischler</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mahecha</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>von Buttlar</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A few extreme events dominate interannual variability in gross primary production</article-title>
<source>Environmental Research Letters</source>
<year>2014a</year>
<volume>9</volume>
<fpage>035001</fpage>
</element-citation>
</ref>
<ref id="b277">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zscheischler</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Reichstein</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Harmeling</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rammig</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Tomelleri</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Mahecha</surname>
<given-names>MD</given-names>
</name>
</person-group>
<article-title>Extreme events in gross primary production: a characterization across continents</article-title>
<source>Biogeosciences</source>
<year>2014b</year>
<volume>11</volume>
<fpage>2909</fpage>
<lpage>2924</lpage>
</element-citation>
</ref>
<ref id="b278">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zscheischler</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Reichstein</surname>
<given-names>M</given-names>
</name>
<name>
<surname>von Buttlar</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Randerson</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Mahecha</surname>
<given-names>MD</given-names>
</name>
</person-group>
<article-title>Carbon cycle extremes during the 21st century in CMIP5 models: future evolution and attribution to climatic drivers</article-title>
<source>Geophysical Research Letters</source>
<year>2014c</year>
<volume>41</volume>
<fpage>8853</fpage>
<lpage>8861</lpage>
</element-citation>
</ref>
</ref-list>
<sec sec-type="supplementary-material">
<title>Supporting Information</title>
<supplementary-material content-type="local-data" id="sd1">
<p>
<bold>Appendix S1.</bold>
Provides a detailed literature survey about how climate extremes act on forests, grasslands, peatlands and croplands.</p>
<media mimetype="docx" mime-subtype="docx" xlink:href="gcb0021-2861-sd1.docx" xlink:type="simple" id="d36e12244" position="anchor"></media>
</supplementary-material>
</sec>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000274 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000274 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4676934
   |texte=   Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:25752680" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024