Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000109 ( Pmc/Corpus ); précédent : 0001089; suivant : 0001100 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The
<italic>Brassica oleracea</italic>
genome reveals the asymmetrical evolution of polyploid genomes</title>
<author>
<name sortKey="Liu, Shengyi" sort="Liu, Shengyi" uniqKey="Liu S" first="Shengyi" last="Liu">Shengyi Liu</name>
<affiliation>
<nlm:aff id="a1">
<institution>The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences</institution>
, Wuhan 430062,
<country>China</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a30">These are joint first authors</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Yumei" sort="Liu, Yumei" uniqKey="Liu Y" first="Yumei" last="Liu">Yumei Liu</name>
<affiliation>
<nlm:aff id="a2">
<institution>The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, The Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences</institution>
, Beijing 10081,
<country>China</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a30">These are joint first authors</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Xinhua" sort="Yang, Xinhua" uniqKey="Yang X" first="Xinhua" last="Yang">Xinhua Yang</name>
<affiliation>
<nlm:aff id="a3">
<institution>Beijing Genome Institute-Shenzhen</institution>
, Shenzhen 518083,
<country>China</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a30">These are joint first authors</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tong, Chaobo" sort="Tong, Chaobo" uniqKey="Tong C" first="Chaobo" last="Tong">Chaobo Tong</name>
<affiliation>
<nlm:aff id="a1">
<institution>The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences</institution>
, Wuhan 430062,
<country>China</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a30">These are joint first authors</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Edwards, David" sort="Edwards, David" uniqKey="Edwards D" first="David" last="Edwards">David Edwards</name>
<affiliation>
<nlm:aff id="a4">
<institution>Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland</institution>
, Brisbane, Queensland 4072,
<country>Australia</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a30">These are joint first authors</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Parkin, Isobel A P" sort="Parkin, Isobel A P" uniqKey="Parkin I" first="Isobel A. P." last="Parkin">Isobel A. P. Parkin</name>
<affiliation>
<nlm:aff id="a5">
<institution>Agriculture and Agri-Food Canada</institution>
, Saskatoon, Saskatchewan,
<country>Canada</country>
S7N OX2</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a30">These are joint first authors</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Meixia" sort="Zhao, Meixia" uniqKey="Zhao M" first="Meixia" last="Zhao">Meixia Zhao</name>
<affiliation>
<nlm:aff id="a1">
<institution>The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences</institution>
, Wuhan 430062,
<country>China</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a6">
<institution>Department of Agronomy, Purdue University</institution>
, WSLR Building B018, West Lafayette, Indiana 47907,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ma, Jianxin" sort="Ma, Jianxin" uniqKey="Ma J" first="Jianxin" last="Ma">Jianxin Ma</name>
<affiliation>
<nlm:aff id="a6">
<institution>Department of Agronomy, Purdue University</institution>
, WSLR Building B018, West Lafayette, Indiana 47907,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yu, Jingyin" sort="Yu, Jingyin" uniqKey="Yu J" first="Jingyin" last="Yu">Jingyin Yu</name>
<affiliation>
<nlm:aff id="a1">
<institution>The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences</institution>
, Wuhan 430062,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Huang, Shunmou" sort="Huang, Shunmou" uniqKey="Huang S" first="Shunmou" last="Huang">Shunmou Huang</name>
<affiliation>
<nlm:aff id="a1">
<institution>The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences</institution>
, Wuhan 430062,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xiyin" sort="Wang, Xiyin" uniqKey="Wang X" first="Xiyin" last="Wang">Xiyin Wang</name>
<affiliation>
<nlm:aff id="a7">
<institution>Plant Genome Mapping Laboratory, University of Georgia</institution>
, Athens, Georgia 30605,
<country>USA</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a8">
<institution>Center for Genomics and Computational Biology, School of Life Sciences, and School of Sciences, Hebei United University</institution>
, Tangshan 063000,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Junyi" sort="Wang, Junyi" uniqKey="Wang J" first="Junyi" last="Wang">Junyi Wang</name>
<affiliation>
<nlm:aff id="a3">
<institution>Beijing Genome Institute-Shenzhen</institution>
, Shenzhen 518083,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lu, Kun" sort="Lu, Kun" uniqKey="Lu K" first="Kun" last="Lu">Kun Lu</name>
<affiliation>
<nlm:aff id="a9">
<institution>College of Agronomy and Biotechnology, Southwest University, BeiBei District</institution>
, Chongqing 400715,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fang, Zhiyuan" sort="Fang, Zhiyuan" uniqKey="Fang Z" first="Zhiyuan" last="Fang">Zhiyuan Fang</name>
<affiliation>
<nlm:aff id="a2">
<institution>The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, The Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences</institution>
, Beijing 10081,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bancroft, Ian" sort="Bancroft, Ian" uniqKey="Bancroft I" first="Ian" last="Bancroft">Ian Bancroft</name>
<affiliation>
<nlm:aff id="a10">
<institution>Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Wentworth Way</institution>
, Heslington, York YO10 5DD,
<country>UK</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Tae Jin" sort="Yang, Tae Jin" uniqKey="Yang T" first="Tae-Jin" last="Yang">Tae-Jin Yang</name>
<affiliation>
<nlm:aff id="a11">
<institution>Department of Plant Sciences, Plant Genomics and Breeding Institute and Research Institute for Agriculture and Life Sciences, College of Agriculture & Life Sciences, Seoul National University</institution>
, Seoul 151-921,
<country>Republic of Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hu, Qiong" sort="Hu, Qiong" uniqKey="Hu Q" first="Qiong" last="Hu">Qiong Hu</name>
<affiliation>
<nlm:aff id="a1">
<institution>The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences</institution>
, Wuhan 430062,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xinfa" sort="Wang, Xinfa" uniqKey="Wang X" first="Xinfa" last="Wang">Xinfa Wang</name>
<affiliation>
<nlm:aff id="a1">
<institution>The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences</institution>
, Wuhan 430062,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yue, Zhen" sort="Yue, Zhen" uniqKey="Yue Z" first="Zhen" last="Yue">Zhen Yue</name>
<affiliation>
<nlm:aff id="a3">
<institution>Beijing Genome Institute-Shenzhen</institution>
, Shenzhen 518083,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Haojie" sort="Li, Haojie" uniqKey="Li H" first="Haojie" last="Li">Haojie Li</name>
<affiliation>
<nlm:aff id="a12">
<institution>Sichuan Academy of Agricultural Sciences</institution>
, Chengdu 610066,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Linfeng" sort="Yang, Linfeng" uniqKey="Yang L" first="Linfeng" last="Yang">Linfeng Yang</name>
<affiliation>
<nlm:aff id="a3">
<institution>Beijing Genome Institute-Shenzhen</institution>
, Shenzhen 518083,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wu, Jian" sort="Wu, Jian" uniqKey="Wu J" first="Jian" last="Wu">Jian Wu</name>
<affiliation>
<nlm:aff id="a2">
<institution>The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, The Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences</institution>
, Beijing 10081,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Qing" sort="Zhou, Qing" uniqKey="Zhou Q" first="Qing" last="Zhou">Qing Zhou</name>
<affiliation>
<nlm:aff id="a3">
<institution>Beijing Genome Institute-Shenzhen</institution>
, Shenzhen 518083,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Wanxin" sort="Wang, Wanxin" uniqKey="Wang W" first="Wanxin" last="Wang">Wanxin Wang</name>
<affiliation>
<nlm:aff id="a2">
<institution>The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, The Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences</institution>
, Beijing 10081,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="King, Graham J" sort="King, Graham J" uniqKey="King G" first="Graham J" last="King">Graham J. King</name>
<affiliation>
<nlm:aff id="a13">
<institution>Southern Cross Plant Science, Southern Cross University</institution>
, Lismore, New South Wales 2480,
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pires, J Chris" sort="Pires, J Chris" uniqKey="Pires J" first="J. Chris" last="Pires">J. Chris Pires</name>
<affiliation>
<nlm:aff id="a14">
<institution>Bond Life Sciences Center, University of Missouri</institution>
, Columbia, Missouri 65211-7310,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lu, Changxin" sort="Lu, Changxin" uniqKey="Lu C" first="Changxin" last="Lu">Changxin Lu</name>
<affiliation>
<nlm:aff id="a3">
<institution>Beijing Genome Institute-Shenzhen</institution>
, Shenzhen 518083,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wu, Zhangyan" sort="Wu, Zhangyan" uniqKey="Wu Z" first="Zhangyan" last="Wu">Zhangyan Wu</name>
<affiliation>
<nlm:aff id="a3">
<institution>Beijing Genome Institute-Shenzhen</institution>
, Shenzhen 518083,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sampath, Perumal" sort="Sampath, Perumal" uniqKey="Sampath P" first="Perumal" last="Sampath">Perumal Sampath</name>
<affiliation>
<nlm:aff id="a11">
<institution>Department of Plant Sciences, Plant Genomics and Breeding Institute and Research Institute for Agriculture and Life Sciences, College of Agriculture & Life Sciences, Seoul National University</institution>
, Seoul 151-921,
<country>Republic of Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Zhuo" sort="Wang, Zhuo" uniqKey="Wang Z" first="Zhuo" last="Wang">Zhuo Wang</name>
<affiliation>
<nlm:aff id="a3">
<institution>Beijing Genome Institute-Shenzhen</institution>
, Shenzhen 518083,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Guo, Hui" sort="Guo, Hui" uniqKey="Guo H" first="Hui" last="Guo">Hui Guo</name>
<affiliation>
<nlm:aff id="a7">
<institution>Plant Genome Mapping Laboratory, University of Georgia</institution>
, Athens, Georgia 30605,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pan, Shengkai" sort="Pan, Shengkai" uniqKey="Pan S" first="Shengkai" last="Pan">Shengkai Pan</name>
<affiliation>
<nlm:aff id="a3">
<institution>Beijing Genome Institute-Shenzhen</institution>
, Shenzhen 518083,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Limei" sort="Yang, Limei" uniqKey="Yang L" first="Limei" last="Yang">Limei Yang</name>
<affiliation>
<nlm:aff id="a2">
<institution>The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, The Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences</institution>
, Beijing 10081,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Min, Jiumeng" sort="Min, Jiumeng" uniqKey="Min J" first="Jiumeng" last="Min">Jiumeng Min</name>
<affiliation>
<nlm:aff id="a3">
<institution>Beijing Genome Institute-Shenzhen</institution>
, Shenzhen 518083,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Dong" sort="Zhang, Dong" uniqKey="Zhang D" first="Dong" last="Zhang">Dong Zhang</name>
<affiliation>
<nlm:aff id="a7">
<institution>Plant Genome Mapping Laboratory, University of Georgia</institution>
, Athens, Georgia 30605,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jin, Dianchuan" sort="Jin, Dianchuan" uniqKey="Jin D" first="Dianchuan" last="Jin">Dianchuan Jin</name>
<affiliation>
<nlm:aff id="a8">
<institution>Center for Genomics and Computational Biology, School of Life Sciences, and School of Sciences, Hebei United University</institution>
, Tangshan 063000,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Wanshun" sort="Li, Wanshun" uniqKey="Li W" first="Wanshun" last="Li">Wanshun Li</name>
<affiliation>
<nlm:aff id="a3">
<institution>Beijing Genome Institute-Shenzhen</institution>
, Shenzhen 518083,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Belcram, Harry" sort="Belcram, Harry" uniqKey="Belcram H" first="Harry" last="Belcram">Harry Belcram</name>
<affiliation>
<nlm:aff id="a15">
<institution>Organization and Evolution of Plant Genomes, Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche 1165 (Institut National de Recherche Agronomique, Centre National de la Recherche Scientifique, Université Evry Val d’Essonne)</institution>
, Evry 91057,
<country>France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tu, Jinxing" sort="Tu, Jinxing" uniqKey="Tu J" first="Jinxing" last="Tu">Jinxing Tu</name>
<affiliation>
<nlm:aff id="a16">
<institution>National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University</institution>
, Wuhan 430070,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Guan, Mei" sort="Guan, Mei" uniqKey="Guan M" first="Mei" last="Guan">Mei Guan</name>
<affiliation>
<nlm:aff id="a17">
<institution>College of Agronomy, Hunan Agricultural University</institution>
, Changsha 410128,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Qi, Cunkou" sort="Qi, Cunkou" uniqKey="Qi C" first="Cunkou" last="Qi">Cunkou Qi</name>
<affiliation>
<nlm:aff id="a18">
<institution>Jiangsu Academy of Agricultural Sciences</institution>
, Nanjing 210014,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Du, Dezhi" sort="Du, Dezhi" uniqKey="Du D" first="Dezhi" last="Du">Dezhi Du</name>
<affiliation>
<nlm:aff id="a19">
<institution>Qinghai Academy of Agriculture and Forestry Sciences, National Key Laboratory Breeding Base for Innovation and Utilization of Plateau Crop Germplasm</institution>
, Xining 810016,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Jiana" sort="Li, Jiana" uniqKey="Li J" first="Jiana" last="Li">Jiana Li</name>
<affiliation>
<nlm:aff id="a9">
<institution>College of Agronomy and Biotechnology, Southwest University, BeiBei District</institution>
, Chongqing 400715,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Liangcai" sort="Jiang, Liangcai" uniqKey="Jiang L" first="Liangcai" last="Jiang">Liangcai Jiang</name>
<affiliation>
<nlm:aff id="a12">
<institution>Sichuan Academy of Agricultural Sciences</institution>
, Chengdu 610066,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Batley, Jacqueline" sort="Batley, Jacqueline" uniqKey="Batley J" first="Jacqueline" last="Batley">Jacqueline Batley</name>
<affiliation>
<nlm:aff id="a20">
<institution>Australian Research Council Centre of Excellence for Integrative Legume Research, University of Queensland</institution>
, Brisbane, Queensland 4072,
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sharpe, Andrew G" sort="Sharpe, Andrew G" uniqKey="Sharpe A" first="Andrew G" last="Sharpe">Andrew G. Sharpe</name>
<affiliation>
<nlm:aff id="a21">
<institution>National Research Council Canada</institution>
, Saskatoon, Saskatchewan,
<country>Canada</country>
S7N 0W9</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Park, Beom Seok" sort="Park, Beom Seok" uniqKey="Park B" first="Beom-Seok" last="Park">Beom-Seok Park</name>
<affiliation>
<nlm:aff id="a22">
<institution>The Agricultural Genome Center, National Academy of Agricultural Science, RDA</institution>
, 126 Suin-Ro, Suwon 441-707,
<country>Republic of Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ruperao, Pradeep" sort="Ruperao, Pradeep" uniqKey="Ruperao P" first="Pradeep" last="Ruperao">Pradeep Ruperao</name>
<affiliation>
<nlm:aff id="a4">
<institution>Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland</institution>
, Brisbane, Queensland 4072,
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Feng" sort="Cheng, Feng" uniqKey="Cheng F" first="Feng" last="Cheng">Feng Cheng</name>
<affiliation>
<nlm:aff id="a2">
<institution>The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, The Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences</institution>
, Beijing 10081,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Waminal, Nomar Espinosa" sort="Waminal, Nomar Espinosa" uniqKey="Waminal N" first="Nomar Espinosa" last="Waminal">Nomar Espinosa Waminal</name>
<affiliation>
<nlm:aff id="a11">
<institution>Department of Plant Sciences, Plant Genomics and Breeding Institute and Research Institute for Agriculture and Life Sciences, College of Agriculture & Life Sciences, Seoul National University</institution>
, Seoul 151-921,
<country>Republic of Korea</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a23">
<institution>Department of Life Science, Plant Biotechnology Institute, Sahmyook University</institution>
, Seoul 139-742,
<country>Republic of Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Huang, Yin" sort="Huang, Yin" uniqKey="Huang Y" first="Yin" last="Huang">Yin Huang</name>
<affiliation>
<nlm:aff id="a3">
<institution>Beijing Genome Institute-Shenzhen</institution>
, Shenzhen 518083,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dong, Caihua" sort="Dong, Caihua" uniqKey="Dong C" first="Caihua" last="Dong">Caihua Dong</name>
<affiliation>
<nlm:aff id="a1">
<institution>The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences</institution>
, Wuhan 430062,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Li" sort="Wang, Li" uniqKey="Wang L" first="Li" last="Wang">Li Wang</name>
<affiliation>
<nlm:aff id="a8">
<institution>Center for Genomics and Computational Biology, School of Life Sciences, and School of Sciences, Hebei United University</institution>
, Tangshan 063000,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Jingping" sort="Li, Jingping" uniqKey="Li J" first="Jingping" last="Li">Jingping Li</name>
<affiliation>
<nlm:aff id="a7">
<institution>Plant Genome Mapping Laboratory, University of Georgia</institution>
, Athens, Georgia 30605,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hu, Zhiyong" sort="Hu, Zhiyong" uniqKey="Hu Z" first="Zhiyong" last="Hu">Zhiyong Hu</name>
<affiliation>
<nlm:aff id="a1">
<institution>The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences</institution>
, Wuhan 430062,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhuang, Mu" sort="Zhuang, Mu" uniqKey="Zhuang M" first="Mu" last="Zhuang">Mu Zhuang</name>
<affiliation>
<nlm:aff id="a2">
<institution>The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, The Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences</institution>
, Beijing 10081,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Huang, Yi" sort="Huang, Yi" uniqKey="Huang Y" first="Yi" last="Huang">Yi Huang</name>
<affiliation>
<nlm:aff id="a1">
<institution>The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences</institution>
, Wuhan 430062,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Huang, Junyan" sort="Huang, Junyan" uniqKey="Huang J" first="Junyan" last="Huang">Junyan Huang</name>
<affiliation>
<nlm:aff id="a1">
<institution>The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences</institution>
, Wuhan 430062,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shi, Jiaqin" sort="Shi, Jiaqin" uniqKey="Shi J" first="Jiaqin" last="Shi">Jiaqin Shi</name>
<affiliation>
<nlm:aff id="a1">
<institution>The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences</institution>
, Wuhan 430062,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mei, Desheng" sort="Mei, Desheng" uniqKey="Mei D" first="Desheng" last="Mei">Desheng Mei</name>
<affiliation>
<nlm:aff id="a1">
<institution>The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences</institution>
, Wuhan 430062,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Jing" sort="Liu, Jing" uniqKey="Liu J" first="Jing" last="Liu">Jing Liu</name>
<affiliation>
<nlm:aff id="a1">
<institution>The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences</institution>
, Wuhan 430062,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lee, Tae Ho" sort="Lee, Tae Ho" uniqKey="Lee T" first="Tae-Ho" last="Lee">Tae-Ho Lee</name>
<affiliation>
<nlm:aff id="a7">
<institution>Plant Genome Mapping Laboratory, University of Georgia</institution>
, Athens, Georgia 30605,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jinpeng" sort="Wang, Jinpeng" uniqKey="Wang J" first="Jinpeng" last="Wang">Jinpeng Wang</name>
<affiliation>
<nlm:aff id="a8">
<institution>Center for Genomics and Computational Biology, School of Life Sciences, and School of Sciences, Hebei United University</institution>
, Tangshan 063000,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jin, Huizhe" sort="Jin, Huizhe" uniqKey="Jin H" first="Huizhe" last="Jin">Huizhe Jin</name>
<affiliation>
<nlm:aff id="a7">
<institution>Plant Genome Mapping Laboratory, University of Georgia</institution>
, Athens, Georgia 30605,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Zaiyun" sort="Li, Zaiyun" uniqKey="Li Z" first="Zaiyun" last="Li">Zaiyun Li</name>
<affiliation>
<nlm:aff id="a16">
<institution>National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University</institution>
, Wuhan 430070,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Xun" sort="Li, Xun" uniqKey="Li X" first="Xun" last="Li">Xun Li</name>
<affiliation>
<nlm:aff id="a17">
<institution>College of Agronomy, Hunan Agricultural University</institution>
, Changsha 410128,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jiefu" sort="Zhang, Jiefu" uniqKey="Zhang J" first="Jiefu" last="Zhang">Jiefu Zhang</name>
<affiliation>
<nlm:aff id="a18">
<institution>Jiangsu Academy of Agricultural Sciences</institution>
, Nanjing 210014,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Xiao, Lu" sort="Xiao, Lu" uniqKey="Xiao L" first="Lu" last="Xiao">Lu Xiao</name>
<affiliation>
<nlm:aff id="a19">
<institution>Qinghai Academy of Agriculture and Forestry Sciences, National Key Laboratory Breeding Base for Innovation and Utilization of Plateau Crop Germplasm</institution>
, Xining 810016,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Yongming" sort="Zhou, Yongming" uniqKey="Zhou Y" first="Yongming" last="Zhou">Yongming Zhou</name>
<affiliation>
<nlm:aff id="a16">
<institution>National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University</institution>
, Wuhan 430070,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Zhongsong" sort="Liu, Zhongsong" uniqKey="Liu Z" first="Zhongsong" last="Liu">Zhongsong Liu</name>
<affiliation>
<nlm:aff id="a17">
<institution>College of Agronomy, Hunan Agricultural University</institution>
, Changsha 410128,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Xuequn" sort="Liu, Xuequn" uniqKey="Liu X" first="Xuequn" last="Liu">Xuequn Liu</name>
<affiliation>
<nlm:aff id="a24">
<institution>School of Life Sciences, South-Central University for Nationality</institution>
, Wuhan 430074,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Qin, Rui" sort="Qin, Rui" uniqKey="Qin R" first="Rui" last="Qin">Rui Qin</name>
<affiliation>
<nlm:aff id="a24">
<institution>School of Life Sciences, South-Central University for Nationality</institution>
, Wuhan 430074,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tang, Xu" sort="Tang, Xu" uniqKey="Tang X" first="Xu" last="Tang">Xu Tang</name>
<affiliation>
<nlm:aff id="a7">
<institution>Plant Genome Mapping Laboratory, University of Georgia</institution>
, Athens, Georgia 30605,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Wenbin" sort="Liu, Wenbin" uniqKey="Liu W" first="Wenbin" last="Liu">Wenbin Liu</name>
<affiliation>
<nlm:aff id="a3">
<institution>Beijing Genome Institute-Shenzhen</institution>
, Shenzhen 518083,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yupeng" sort="Wang, Yupeng" uniqKey="Wang Y" first="Yupeng" last="Wang">Yupeng Wang</name>
<affiliation>
<nlm:aff id="a7">
<institution>Plant Genome Mapping Laboratory, University of Georgia</institution>
, Athens, Georgia 30605,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yangyong" sort="Zhang, Yangyong" uniqKey="Zhang Y" first="Yangyong" last="Zhang">Yangyong Zhang</name>
<affiliation>
<nlm:aff id="a2">
<institution>The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, The Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences</institution>
, Beijing 10081,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lee, Jonghoon" sort="Lee, Jonghoon" uniqKey="Lee J" first="Jonghoon" last="Lee">Jonghoon Lee</name>
<affiliation>
<nlm:aff id="a11">
<institution>Department of Plant Sciences, Plant Genomics and Breeding Institute and Research Institute for Agriculture and Life Sciences, College of Agriculture & Life Sciences, Seoul National University</institution>
, Seoul 151-921,
<country>Republic of Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Hyun Hee" sort="Kim, Hyun Hee" uniqKey="Kim H" first="Hyun Hee" last="Kim">Hyun Hee Kim</name>
<affiliation>
<nlm:aff id="a23">
<institution>Department of Life Science, Plant Biotechnology Institute, Sahmyook University</institution>
, Seoul 139-742,
<country>Republic of Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Denoeud, France" sort="Denoeud, France" uniqKey="Denoeud F" first="France" last="Denoeud">France Denoeud</name>
<affiliation>
<nlm:aff id="a25">
<institution>Commissariat à l'Energie Atomique (CEA), Genoscope, Institut de Génomique, BP5706</institution>
Evry 91057,
<country>France</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a26">
<institution>Centre National de Recherche Scientifique (CNRS), Université d'Evry, UMR 8030, CP5706</institution>
, Evry 91057,
<country>France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Xu, Xun" sort="Xu, Xun" uniqKey="Xu X" first="Xun" last="Xu">Xun Xu</name>
<affiliation>
<nlm:aff id="a3">
<institution>Beijing Genome Institute-Shenzhen</institution>
, Shenzhen 518083,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liang, Xinming" sort="Liang, Xinming" uniqKey="Liang X" first="Xinming" last="Liang">Xinming Liang</name>
<affiliation>
<nlm:aff id="a3">
<institution>Beijing Genome Institute-Shenzhen</institution>
, Shenzhen 518083,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hua, Wei" sort="Hua, Wei" uniqKey="Hua W" first="Wei" last="Hua">Wei Hua</name>
<affiliation>
<nlm:aff id="a1">
<institution>The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences</institution>
, Wuhan 430062,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xiaowu" sort="Wang, Xiaowu" uniqKey="Wang X" first="Xiaowu" last="Wang">Xiaowu Wang</name>
<affiliation>
<nlm:aff id="a2">
<institution>The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, The Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences</institution>
, Beijing 10081,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jun" sort="Wang, Jun" uniqKey="Wang J" first="Jun" last="Wang">Jun Wang</name>
<affiliation>
<nlm:aff id="a3">
<institution>Beijing Genome Institute-Shenzhen</institution>
, Shenzhen 518083,
<country>China</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a27">
<institution>Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200</institution>
, Copenhagen,
<country>Denmark</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a28">
<institution>King Abdulaziz University</institution>
, Jeddah, 21589,
<country>Saudi Arabia</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a29">
<institution>Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong</institution>
, 21 Sassoon Road,
<country>Hong Kong</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chalhoub, Boulos" sort="Chalhoub, Boulos" uniqKey="Chalhoub B" first="Boulos" last="Chalhoub">Boulos Chalhoub</name>
<affiliation>
<nlm:aff id="a15">
<institution>Organization and Evolution of Plant Genomes, Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche 1165 (Institut National de Recherche Agronomique, Centre National de la Recherche Scientifique, Université Evry Val d’Essonne)</institution>
, Evry 91057,
<country>France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Paterson, Andrew H" sort="Paterson, Andrew H" uniqKey="Paterson A" first="Andrew H" last="Paterson">Andrew H. Paterson</name>
<affiliation>
<nlm:aff id="a7">
<institution>Plant Genome Mapping Laboratory, University of Georgia</institution>
, Athens, Georgia 30605,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24852848</idno>
<idno type="pmc">4279128</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4279128</idno>
<idno type="RBID">PMC:4279128</idno>
<idno type="doi">10.1038/ncomms4930</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">000109</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000109</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">The
<italic>Brassica oleracea</italic>
genome reveals the asymmetrical evolution of polyploid genomes</title>
<author>
<name sortKey="Liu, Shengyi" sort="Liu, Shengyi" uniqKey="Liu S" first="Shengyi" last="Liu">Shengyi Liu</name>
<affiliation>
<nlm:aff id="a1">
<institution>The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences</institution>
, Wuhan 430062,
<country>China</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a30">These are joint first authors</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Yumei" sort="Liu, Yumei" uniqKey="Liu Y" first="Yumei" last="Liu">Yumei Liu</name>
<affiliation>
<nlm:aff id="a2">
<institution>The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, The Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences</institution>
, Beijing 10081,
<country>China</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a30">These are joint first authors</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Xinhua" sort="Yang, Xinhua" uniqKey="Yang X" first="Xinhua" last="Yang">Xinhua Yang</name>
<affiliation>
<nlm:aff id="a3">
<institution>Beijing Genome Institute-Shenzhen</institution>
, Shenzhen 518083,
<country>China</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a30">These are joint first authors</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tong, Chaobo" sort="Tong, Chaobo" uniqKey="Tong C" first="Chaobo" last="Tong">Chaobo Tong</name>
<affiliation>
<nlm:aff id="a1">
<institution>The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences</institution>
, Wuhan 430062,
<country>China</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a30">These are joint first authors</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Edwards, David" sort="Edwards, David" uniqKey="Edwards D" first="David" last="Edwards">David Edwards</name>
<affiliation>
<nlm:aff id="a4">
<institution>Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland</institution>
, Brisbane, Queensland 4072,
<country>Australia</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a30">These are joint first authors</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Parkin, Isobel A P" sort="Parkin, Isobel A P" uniqKey="Parkin I" first="Isobel A. P." last="Parkin">Isobel A. P. Parkin</name>
<affiliation>
<nlm:aff id="a5">
<institution>Agriculture and Agri-Food Canada</institution>
, Saskatoon, Saskatchewan,
<country>Canada</country>
S7N OX2</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a30">These are joint first authors</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Meixia" sort="Zhao, Meixia" uniqKey="Zhao M" first="Meixia" last="Zhao">Meixia Zhao</name>
<affiliation>
<nlm:aff id="a1">
<institution>The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences</institution>
, Wuhan 430062,
<country>China</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a6">
<institution>Department of Agronomy, Purdue University</institution>
, WSLR Building B018, West Lafayette, Indiana 47907,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ma, Jianxin" sort="Ma, Jianxin" uniqKey="Ma J" first="Jianxin" last="Ma">Jianxin Ma</name>
<affiliation>
<nlm:aff id="a6">
<institution>Department of Agronomy, Purdue University</institution>
, WSLR Building B018, West Lafayette, Indiana 47907,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yu, Jingyin" sort="Yu, Jingyin" uniqKey="Yu J" first="Jingyin" last="Yu">Jingyin Yu</name>
<affiliation>
<nlm:aff id="a1">
<institution>The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences</institution>
, Wuhan 430062,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Huang, Shunmou" sort="Huang, Shunmou" uniqKey="Huang S" first="Shunmou" last="Huang">Shunmou Huang</name>
<affiliation>
<nlm:aff id="a1">
<institution>The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences</institution>
, Wuhan 430062,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xiyin" sort="Wang, Xiyin" uniqKey="Wang X" first="Xiyin" last="Wang">Xiyin Wang</name>
<affiliation>
<nlm:aff id="a7">
<institution>Plant Genome Mapping Laboratory, University of Georgia</institution>
, Athens, Georgia 30605,
<country>USA</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a8">
<institution>Center for Genomics and Computational Biology, School of Life Sciences, and School of Sciences, Hebei United University</institution>
, Tangshan 063000,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Junyi" sort="Wang, Junyi" uniqKey="Wang J" first="Junyi" last="Wang">Junyi Wang</name>
<affiliation>
<nlm:aff id="a3">
<institution>Beijing Genome Institute-Shenzhen</institution>
, Shenzhen 518083,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lu, Kun" sort="Lu, Kun" uniqKey="Lu K" first="Kun" last="Lu">Kun Lu</name>
<affiliation>
<nlm:aff id="a9">
<institution>College of Agronomy and Biotechnology, Southwest University, BeiBei District</institution>
, Chongqing 400715,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fang, Zhiyuan" sort="Fang, Zhiyuan" uniqKey="Fang Z" first="Zhiyuan" last="Fang">Zhiyuan Fang</name>
<affiliation>
<nlm:aff id="a2">
<institution>The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, The Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences</institution>
, Beijing 10081,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bancroft, Ian" sort="Bancroft, Ian" uniqKey="Bancroft I" first="Ian" last="Bancroft">Ian Bancroft</name>
<affiliation>
<nlm:aff id="a10">
<institution>Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Wentworth Way</institution>
, Heslington, York YO10 5DD,
<country>UK</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Tae Jin" sort="Yang, Tae Jin" uniqKey="Yang T" first="Tae-Jin" last="Yang">Tae-Jin Yang</name>
<affiliation>
<nlm:aff id="a11">
<institution>Department of Plant Sciences, Plant Genomics and Breeding Institute and Research Institute for Agriculture and Life Sciences, College of Agriculture & Life Sciences, Seoul National University</institution>
, Seoul 151-921,
<country>Republic of Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hu, Qiong" sort="Hu, Qiong" uniqKey="Hu Q" first="Qiong" last="Hu">Qiong Hu</name>
<affiliation>
<nlm:aff id="a1">
<institution>The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences</institution>
, Wuhan 430062,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xinfa" sort="Wang, Xinfa" uniqKey="Wang X" first="Xinfa" last="Wang">Xinfa Wang</name>
<affiliation>
<nlm:aff id="a1">
<institution>The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences</institution>
, Wuhan 430062,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yue, Zhen" sort="Yue, Zhen" uniqKey="Yue Z" first="Zhen" last="Yue">Zhen Yue</name>
<affiliation>
<nlm:aff id="a3">
<institution>Beijing Genome Institute-Shenzhen</institution>
, Shenzhen 518083,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Haojie" sort="Li, Haojie" uniqKey="Li H" first="Haojie" last="Li">Haojie Li</name>
<affiliation>
<nlm:aff id="a12">
<institution>Sichuan Academy of Agricultural Sciences</institution>
, Chengdu 610066,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Linfeng" sort="Yang, Linfeng" uniqKey="Yang L" first="Linfeng" last="Yang">Linfeng Yang</name>
<affiliation>
<nlm:aff id="a3">
<institution>Beijing Genome Institute-Shenzhen</institution>
, Shenzhen 518083,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wu, Jian" sort="Wu, Jian" uniqKey="Wu J" first="Jian" last="Wu">Jian Wu</name>
<affiliation>
<nlm:aff id="a2">
<institution>The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, The Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences</institution>
, Beijing 10081,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Qing" sort="Zhou, Qing" uniqKey="Zhou Q" first="Qing" last="Zhou">Qing Zhou</name>
<affiliation>
<nlm:aff id="a3">
<institution>Beijing Genome Institute-Shenzhen</institution>
, Shenzhen 518083,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Wanxin" sort="Wang, Wanxin" uniqKey="Wang W" first="Wanxin" last="Wang">Wanxin Wang</name>
<affiliation>
<nlm:aff id="a2">
<institution>The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, The Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences</institution>
, Beijing 10081,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="King, Graham J" sort="King, Graham J" uniqKey="King G" first="Graham J" last="King">Graham J. King</name>
<affiliation>
<nlm:aff id="a13">
<institution>Southern Cross Plant Science, Southern Cross University</institution>
, Lismore, New South Wales 2480,
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pires, J Chris" sort="Pires, J Chris" uniqKey="Pires J" first="J. Chris" last="Pires">J. Chris Pires</name>
<affiliation>
<nlm:aff id="a14">
<institution>Bond Life Sciences Center, University of Missouri</institution>
, Columbia, Missouri 65211-7310,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lu, Changxin" sort="Lu, Changxin" uniqKey="Lu C" first="Changxin" last="Lu">Changxin Lu</name>
<affiliation>
<nlm:aff id="a3">
<institution>Beijing Genome Institute-Shenzhen</institution>
, Shenzhen 518083,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wu, Zhangyan" sort="Wu, Zhangyan" uniqKey="Wu Z" first="Zhangyan" last="Wu">Zhangyan Wu</name>
<affiliation>
<nlm:aff id="a3">
<institution>Beijing Genome Institute-Shenzhen</institution>
, Shenzhen 518083,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sampath, Perumal" sort="Sampath, Perumal" uniqKey="Sampath P" first="Perumal" last="Sampath">Perumal Sampath</name>
<affiliation>
<nlm:aff id="a11">
<institution>Department of Plant Sciences, Plant Genomics and Breeding Institute and Research Institute for Agriculture and Life Sciences, College of Agriculture & Life Sciences, Seoul National University</institution>
, Seoul 151-921,
<country>Republic of Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Zhuo" sort="Wang, Zhuo" uniqKey="Wang Z" first="Zhuo" last="Wang">Zhuo Wang</name>
<affiliation>
<nlm:aff id="a3">
<institution>Beijing Genome Institute-Shenzhen</institution>
, Shenzhen 518083,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Guo, Hui" sort="Guo, Hui" uniqKey="Guo H" first="Hui" last="Guo">Hui Guo</name>
<affiliation>
<nlm:aff id="a7">
<institution>Plant Genome Mapping Laboratory, University of Georgia</institution>
, Athens, Georgia 30605,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pan, Shengkai" sort="Pan, Shengkai" uniqKey="Pan S" first="Shengkai" last="Pan">Shengkai Pan</name>
<affiliation>
<nlm:aff id="a3">
<institution>Beijing Genome Institute-Shenzhen</institution>
, Shenzhen 518083,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Limei" sort="Yang, Limei" uniqKey="Yang L" first="Limei" last="Yang">Limei Yang</name>
<affiliation>
<nlm:aff id="a2">
<institution>The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, The Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences</institution>
, Beijing 10081,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Min, Jiumeng" sort="Min, Jiumeng" uniqKey="Min J" first="Jiumeng" last="Min">Jiumeng Min</name>
<affiliation>
<nlm:aff id="a3">
<institution>Beijing Genome Institute-Shenzhen</institution>
, Shenzhen 518083,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Dong" sort="Zhang, Dong" uniqKey="Zhang D" first="Dong" last="Zhang">Dong Zhang</name>
<affiliation>
<nlm:aff id="a7">
<institution>Plant Genome Mapping Laboratory, University of Georgia</institution>
, Athens, Georgia 30605,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jin, Dianchuan" sort="Jin, Dianchuan" uniqKey="Jin D" first="Dianchuan" last="Jin">Dianchuan Jin</name>
<affiliation>
<nlm:aff id="a8">
<institution>Center for Genomics and Computational Biology, School of Life Sciences, and School of Sciences, Hebei United University</institution>
, Tangshan 063000,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Wanshun" sort="Li, Wanshun" uniqKey="Li W" first="Wanshun" last="Li">Wanshun Li</name>
<affiliation>
<nlm:aff id="a3">
<institution>Beijing Genome Institute-Shenzhen</institution>
, Shenzhen 518083,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Belcram, Harry" sort="Belcram, Harry" uniqKey="Belcram H" first="Harry" last="Belcram">Harry Belcram</name>
<affiliation>
<nlm:aff id="a15">
<institution>Organization and Evolution of Plant Genomes, Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche 1165 (Institut National de Recherche Agronomique, Centre National de la Recherche Scientifique, Université Evry Val d’Essonne)</institution>
, Evry 91057,
<country>France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tu, Jinxing" sort="Tu, Jinxing" uniqKey="Tu J" first="Jinxing" last="Tu">Jinxing Tu</name>
<affiliation>
<nlm:aff id="a16">
<institution>National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University</institution>
, Wuhan 430070,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Guan, Mei" sort="Guan, Mei" uniqKey="Guan M" first="Mei" last="Guan">Mei Guan</name>
<affiliation>
<nlm:aff id="a17">
<institution>College of Agronomy, Hunan Agricultural University</institution>
, Changsha 410128,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Qi, Cunkou" sort="Qi, Cunkou" uniqKey="Qi C" first="Cunkou" last="Qi">Cunkou Qi</name>
<affiliation>
<nlm:aff id="a18">
<institution>Jiangsu Academy of Agricultural Sciences</institution>
, Nanjing 210014,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Du, Dezhi" sort="Du, Dezhi" uniqKey="Du D" first="Dezhi" last="Du">Dezhi Du</name>
<affiliation>
<nlm:aff id="a19">
<institution>Qinghai Academy of Agriculture and Forestry Sciences, National Key Laboratory Breeding Base for Innovation and Utilization of Plateau Crop Germplasm</institution>
, Xining 810016,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Jiana" sort="Li, Jiana" uniqKey="Li J" first="Jiana" last="Li">Jiana Li</name>
<affiliation>
<nlm:aff id="a9">
<institution>College of Agronomy and Biotechnology, Southwest University, BeiBei District</institution>
, Chongqing 400715,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Liangcai" sort="Jiang, Liangcai" uniqKey="Jiang L" first="Liangcai" last="Jiang">Liangcai Jiang</name>
<affiliation>
<nlm:aff id="a12">
<institution>Sichuan Academy of Agricultural Sciences</institution>
, Chengdu 610066,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Batley, Jacqueline" sort="Batley, Jacqueline" uniqKey="Batley J" first="Jacqueline" last="Batley">Jacqueline Batley</name>
<affiliation>
<nlm:aff id="a20">
<institution>Australian Research Council Centre of Excellence for Integrative Legume Research, University of Queensland</institution>
, Brisbane, Queensland 4072,
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sharpe, Andrew G" sort="Sharpe, Andrew G" uniqKey="Sharpe A" first="Andrew G" last="Sharpe">Andrew G. Sharpe</name>
<affiliation>
<nlm:aff id="a21">
<institution>National Research Council Canada</institution>
, Saskatoon, Saskatchewan,
<country>Canada</country>
S7N 0W9</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Park, Beom Seok" sort="Park, Beom Seok" uniqKey="Park B" first="Beom-Seok" last="Park">Beom-Seok Park</name>
<affiliation>
<nlm:aff id="a22">
<institution>The Agricultural Genome Center, National Academy of Agricultural Science, RDA</institution>
, 126 Suin-Ro, Suwon 441-707,
<country>Republic of Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ruperao, Pradeep" sort="Ruperao, Pradeep" uniqKey="Ruperao P" first="Pradeep" last="Ruperao">Pradeep Ruperao</name>
<affiliation>
<nlm:aff id="a4">
<institution>Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland</institution>
, Brisbane, Queensland 4072,
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Feng" sort="Cheng, Feng" uniqKey="Cheng F" first="Feng" last="Cheng">Feng Cheng</name>
<affiliation>
<nlm:aff id="a2">
<institution>The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, The Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences</institution>
, Beijing 10081,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Waminal, Nomar Espinosa" sort="Waminal, Nomar Espinosa" uniqKey="Waminal N" first="Nomar Espinosa" last="Waminal">Nomar Espinosa Waminal</name>
<affiliation>
<nlm:aff id="a11">
<institution>Department of Plant Sciences, Plant Genomics and Breeding Institute and Research Institute for Agriculture and Life Sciences, College of Agriculture & Life Sciences, Seoul National University</institution>
, Seoul 151-921,
<country>Republic of Korea</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a23">
<institution>Department of Life Science, Plant Biotechnology Institute, Sahmyook University</institution>
, Seoul 139-742,
<country>Republic of Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Huang, Yin" sort="Huang, Yin" uniqKey="Huang Y" first="Yin" last="Huang">Yin Huang</name>
<affiliation>
<nlm:aff id="a3">
<institution>Beijing Genome Institute-Shenzhen</institution>
, Shenzhen 518083,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dong, Caihua" sort="Dong, Caihua" uniqKey="Dong C" first="Caihua" last="Dong">Caihua Dong</name>
<affiliation>
<nlm:aff id="a1">
<institution>The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences</institution>
, Wuhan 430062,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Li" sort="Wang, Li" uniqKey="Wang L" first="Li" last="Wang">Li Wang</name>
<affiliation>
<nlm:aff id="a8">
<institution>Center for Genomics and Computational Biology, School of Life Sciences, and School of Sciences, Hebei United University</institution>
, Tangshan 063000,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Jingping" sort="Li, Jingping" uniqKey="Li J" first="Jingping" last="Li">Jingping Li</name>
<affiliation>
<nlm:aff id="a7">
<institution>Plant Genome Mapping Laboratory, University of Georgia</institution>
, Athens, Georgia 30605,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hu, Zhiyong" sort="Hu, Zhiyong" uniqKey="Hu Z" first="Zhiyong" last="Hu">Zhiyong Hu</name>
<affiliation>
<nlm:aff id="a1">
<institution>The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences</institution>
, Wuhan 430062,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhuang, Mu" sort="Zhuang, Mu" uniqKey="Zhuang M" first="Mu" last="Zhuang">Mu Zhuang</name>
<affiliation>
<nlm:aff id="a2">
<institution>The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, The Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences</institution>
, Beijing 10081,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Huang, Yi" sort="Huang, Yi" uniqKey="Huang Y" first="Yi" last="Huang">Yi Huang</name>
<affiliation>
<nlm:aff id="a1">
<institution>The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences</institution>
, Wuhan 430062,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Huang, Junyan" sort="Huang, Junyan" uniqKey="Huang J" first="Junyan" last="Huang">Junyan Huang</name>
<affiliation>
<nlm:aff id="a1">
<institution>The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences</institution>
, Wuhan 430062,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shi, Jiaqin" sort="Shi, Jiaqin" uniqKey="Shi J" first="Jiaqin" last="Shi">Jiaqin Shi</name>
<affiliation>
<nlm:aff id="a1">
<institution>The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences</institution>
, Wuhan 430062,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mei, Desheng" sort="Mei, Desheng" uniqKey="Mei D" first="Desheng" last="Mei">Desheng Mei</name>
<affiliation>
<nlm:aff id="a1">
<institution>The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences</institution>
, Wuhan 430062,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Jing" sort="Liu, Jing" uniqKey="Liu J" first="Jing" last="Liu">Jing Liu</name>
<affiliation>
<nlm:aff id="a1">
<institution>The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences</institution>
, Wuhan 430062,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lee, Tae Ho" sort="Lee, Tae Ho" uniqKey="Lee T" first="Tae-Ho" last="Lee">Tae-Ho Lee</name>
<affiliation>
<nlm:aff id="a7">
<institution>Plant Genome Mapping Laboratory, University of Georgia</institution>
, Athens, Georgia 30605,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jinpeng" sort="Wang, Jinpeng" uniqKey="Wang J" first="Jinpeng" last="Wang">Jinpeng Wang</name>
<affiliation>
<nlm:aff id="a8">
<institution>Center for Genomics and Computational Biology, School of Life Sciences, and School of Sciences, Hebei United University</institution>
, Tangshan 063000,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jin, Huizhe" sort="Jin, Huizhe" uniqKey="Jin H" first="Huizhe" last="Jin">Huizhe Jin</name>
<affiliation>
<nlm:aff id="a7">
<institution>Plant Genome Mapping Laboratory, University of Georgia</institution>
, Athens, Georgia 30605,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Zaiyun" sort="Li, Zaiyun" uniqKey="Li Z" first="Zaiyun" last="Li">Zaiyun Li</name>
<affiliation>
<nlm:aff id="a16">
<institution>National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University</institution>
, Wuhan 430070,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Xun" sort="Li, Xun" uniqKey="Li X" first="Xun" last="Li">Xun Li</name>
<affiliation>
<nlm:aff id="a17">
<institution>College of Agronomy, Hunan Agricultural University</institution>
, Changsha 410128,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jiefu" sort="Zhang, Jiefu" uniqKey="Zhang J" first="Jiefu" last="Zhang">Jiefu Zhang</name>
<affiliation>
<nlm:aff id="a18">
<institution>Jiangsu Academy of Agricultural Sciences</institution>
, Nanjing 210014,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Xiao, Lu" sort="Xiao, Lu" uniqKey="Xiao L" first="Lu" last="Xiao">Lu Xiao</name>
<affiliation>
<nlm:aff id="a19">
<institution>Qinghai Academy of Agriculture and Forestry Sciences, National Key Laboratory Breeding Base for Innovation and Utilization of Plateau Crop Germplasm</institution>
, Xining 810016,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Yongming" sort="Zhou, Yongming" uniqKey="Zhou Y" first="Yongming" last="Zhou">Yongming Zhou</name>
<affiliation>
<nlm:aff id="a16">
<institution>National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University</institution>
, Wuhan 430070,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Zhongsong" sort="Liu, Zhongsong" uniqKey="Liu Z" first="Zhongsong" last="Liu">Zhongsong Liu</name>
<affiliation>
<nlm:aff id="a17">
<institution>College of Agronomy, Hunan Agricultural University</institution>
, Changsha 410128,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Xuequn" sort="Liu, Xuequn" uniqKey="Liu X" first="Xuequn" last="Liu">Xuequn Liu</name>
<affiliation>
<nlm:aff id="a24">
<institution>School of Life Sciences, South-Central University for Nationality</institution>
, Wuhan 430074,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Qin, Rui" sort="Qin, Rui" uniqKey="Qin R" first="Rui" last="Qin">Rui Qin</name>
<affiliation>
<nlm:aff id="a24">
<institution>School of Life Sciences, South-Central University for Nationality</institution>
, Wuhan 430074,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tang, Xu" sort="Tang, Xu" uniqKey="Tang X" first="Xu" last="Tang">Xu Tang</name>
<affiliation>
<nlm:aff id="a7">
<institution>Plant Genome Mapping Laboratory, University of Georgia</institution>
, Athens, Georgia 30605,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Wenbin" sort="Liu, Wenbin" uniqKey="Liu W" first="Wenbin" last="Liu">Wenbin Liu</name>
<affiliation>
<nlm:aff id="a3">
<institution>Beijing Genome Institute-Shenzhen</institution>
, Shenzhen 518083,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yupeng" sort="Wang, Yupeng" uniqKey="Wang Y" first="Yupeng" last="Wang">Yupeng Wang</name>
<affiliation>
<nlm:aff id="a7">
<institution>Plant Genome Mapping Laboratory, University of Georgia</institution>
, Athens, Georgia 30605,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yangyong" sort="Zhang, Yangyong" uniqKey="Zhang Y" first="Yangyong" last="Zhang">Yangyong Zhang</name>
<affiliation>
<nlm:aff id="a2">
<institution>The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, The Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences</institution>
, Beijing 10081,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lee, Jonghoon" sort="Lee, Jonghoon" uniqKey="Lee J" first="Jonghoon" last="Lee">Jonghoon Lee</name>
<affiliation>
<nlm:aff id="a11">
<institution>Department of Plant Sciences, Plant Genomics and Breeding Institute and Research Institute for Agriculture and Life Sciences, College of Agriculture & Life Sciences, Seoul National University</institution>
, Seoul 151-921,
<country>Republic of Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Hyun Hee" sort="Kim, Hyun Hee" uniqKey="Kim H" first="Hyun Hee" last="Kim">Hyun Hee Kim</name>
<affiliation>
<nlm:aff id="a23">
<institution>Department of Life Science, Plant Biotechnology Institute, Sahmyook University</institution>
, Seoul 139-742,
<country>Republic of Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Denoeud, France" sort="Denoeud, France" uniqKey="Denoeud F" first="France" last="Denoeud">France Denoeud</name>
<affiliation>
<nlm:aff id="a25">
<institution>Commissariat à l'Energie Atomique (CEA), Genoscope, Institut de Génomique, BP5706</institution>
Evry 91057,
<country>France</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a26">
<institution>Centre National de Recherche Scientifique (CNRS), Université d'Evry, UMR 8030, CP5706</institution>
, Evry 91057,
<country>France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Xu, Xun" sort="Xu, Xun" uniqKey="Xu X" first="Xun" last="Xu">Xun Xu</name>
<affiliation>
<nlm:aff id="a3">
<institution>Beijing Genome Institute-Shenzhen</institution>
, Shenzhen 518083,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liang, Xinming" sort="Liang, Xinming" uniqKey="Liang X" first="Xinming" last="Liang">Xinming Liang</name>
<affiliation>
<nlm:aff id="a3">
<institution>Beijing Genome Institute-Shenzhen</institution>
, Shenzhen 518083,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hua, Wei" sort="Hua, Wei" uniqKey="Hua W" first="Wei" last="Hua">Wei Hua</name>
<affiliation>
<nlm:aff id="a1">
<institution>The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences</institution>
, Wuhan 430062,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xiaowu" sort="Wang, Xiaowu" uniqKey="Wang X" first="Xiaowu" last="Wang">Xiaowu Wang</name>
<affiliation>
<nlm:aff id="a2">
<institution>The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, The Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences</institution>
, Beijing 10081,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jun" sort="Wang, Jun" uniqKey="Wang J" first="Jun" last="Wang">Jun Wang</name>
<affiliation>
<nlm:aff id="a3">
<institution>Beijing Genome Institute-Shenzhen</institution>
, Shenzhen 518083,
<country>China</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a27">
<institution>Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200</institution>
, Copenhagen,
<country>Denmark</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a28">
<institution>King Abdulaziz University</institution>
, Jeddah, 21589,
<country>Saudi Arabia</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a29">
<institution>Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong</institution>
, 21 Sassoon Road,
<country>Hong Kong</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chalhoub, Boulos" sort="Chalhoub, Boulos" uniqKey="Chalhoub B" first="Boulos" last="Chalhoub">Boulos Chalhoub</name>
<affiliation>
<nlm:aff id="a15">
<institution>Organization and Evolution of Plant Genomes, Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche 1165 (Institut National de Recherche Agronomique, Centre National de la Recherche Scientifique, Université Evry Val d’Essonne)</institution>
, Evry 91057,
<country>France</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Paterson, Andrew H" sort="Paterson, Andrew H" uniqKey="Paterson A" first="Andrew H" last="Paterson">Andrew H. Paterson</name>
<affiliation>
<nlm:aff id="a7">
<institution>Plant Genome Mapping Laboratory, University of Georgia</institution>
, Athens, Georgia 30605,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature Communications</title>
<idno type="eISSN">2041-1723</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear.
<italic>Brassica</italic>
is an ideal model to increase knowledge of polyploid evolution. Here we describe a draft genome sequence of
<italic>Brassica oleracea</italic>
, comparing it with that of its sister species
<italic>B. rapa</italic>
to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks, asymmetrical amplification of transposable elements, differential gene co-retention for specific pathways and variation in gene expression, including alternative splicing, among a large number of paralogous and orthologous genes. Genes related to the production of anticancer phytochemicals and morphological variations illustrate consequences of genome duplication and gene divergence, imparting biochemical and morphological variation to
<italic>B. oleracea</italic>
. This study provides insights into
<italic>Brassica</italic>
genome evolution and will underpin research into the many important crops in this genus.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kopsell, D A" uniqKey="Kopsell D">D. A. Kopsell</name>
</author>
<author>
<name sortKey="Kopsell, D E" uniqKey="Kopsell D">D. E. Kopsell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Halkier, B A" uniqKey="Halkier B">B. A. Halkier</name>
</author>
<author>
<name sortKey="Gershenzon, J" uniqKey="Gershenzon J">J. Gershenzon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khwaja, F S" uniqKey="Khwaja F">F. S. Khwaja</name>
</author>
<author>
<name sortKey="Wynne, S" uniqKey="Wynne S">S. Wynne</name>
</author>
<author>
<name sortKey="Posey, I" uniqKey="Posey I">I. Posey</name>
</author>
<author>
<name sortKey="Djakiew, D" uniqKey="Djakiew D">D. Djakiew</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Higdon, J V" uniqKey="Higdon J">J. V. Higdon</name>
</author>
<author>
<name sortKey="Delage, B" uniqKey="Delage B">B. Delage</name>
</author>
<author>
<name sortKey="Williams, D E" uniqKey="Williams D">D. E. Williams</name>
</author>
<author>
<name sortKey="Dashwood, R X0a H" uniqKey="Dashwood R">R. H. Dashwood</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Warwick, S I" uniqKey="Warwick S">S. I. Warwick</name>
</author>
<author>
<name sortKey="Francis, A" uniqKey="Francis A">A. Francis</name>
</author>
<author>
<name sortKey="Al Shehbaz, I A" uniqKey="Al Shehbaz I">I. A. Al-Shehbaz</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bowers, J E" uniqKey="Bowers J">J. E. Bowers</name>
</author>
<author>
<name sortKey="Chapman, B A" uniqKey="Chapman B">B. A. Chapman</name>
</author>
<author>
<name sortKey="Rong, J" uniqKey="Rong J">J. Rong</name>
</author>
<author>
<name sortKey="Paterson, A H" uniqKey="Paterson A">A. H. Paterson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiao, Y" uniqKey="Jiao Y">Y. Jiao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lysak, M A" uniqKey="Lysak M">M. A. Lysak</name>
</author>
<author>
<name sortKey="Koch, M A" uniqKey="Koch M">M. A. Koch</name>
</author>
<author>
<name sortKey="Pecinka, A" uniqKey="Pecinka A">A. Pecinka</name>
</author>
<author>
<name sortKey="Schubert, I" uniqKey="Schubert I">I. Schubert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheng, F" uniqKey="Cheng F">F. Cheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Town, C D" uniqKey="Town C">C. D. Town</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mun, J H" uniqKey="Mun J">J. H. Mun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bancroft, I" uniqKey="Bancroft I">I. Bancroft</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schranz, M E" uniqKey="Schranz M">M. E. Schranz</name>
</author>
<author>
<name sortKey="Lysak, M A" uniqKey="Lysak M">M. A. Lysak</name>
</author>
<author>
<name sortKey="Mitchell Olds, T" uniqKey="Mitchell Olds T">T. Mitchell-Olds</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Woodhouse, M R" uniqKey="Woodhouse M">M. R. Woodhouse</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Devos, K M" uniqKey="Devos K">K. M. Devos</name>
</author>
<author>
<name sortKey="Brown, J K" uniqKey="Brown J">J. K. Brown</name>
</author>
<author>
<name sortKey="Bennetzen, J X0a L" uniqKey="Bennetzen J">J. L. Bennetzen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lysak, M A" uniqKey="Lysak M">M. A. Lysak</name>
</author>
<author>
<name sortKey="Cheung, K" uniqKey="Cheung K">K. Cheung</name>
</author>
<author>
<name sortKey="Kitschke, M" uniqKey="Kitschke M">M. Kitschke</name>
</author>
<author>
<name sortKey="Bures, P" uniqKey="Bures P">P. Bures</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Panjabi, P" uniqKey="Panjabi P">P. Panjabi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parkin, I A" uniqKey="Parkin I">I. A. Parkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, J" uniqKey="Wu J">J. Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheung, F" uniqKey="Cheung F">F. Cheung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Freeling, M" uniqKey="Freeling M">M. Freeling</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sankoff, D" uniqKey="Sankoff D">D. Sankoff</name>
</author>
<author>
<name sortKey="Zheng, C" uniqKey="Zheng C">C. Zheng</name>
</author>
<author>
<name sortKey="Zhu, Q" uniqKey="Zhu Q">Q. Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Woodhouse, M R" uniqKey="Woodhouse M">M. R. Woodhouse</name>
</author>
<author>
<name sortKey="Tang, H" uniqKey="Tang H">H. Tang</name>
</author>
<author>
<name sortKey="Freeling, M" uniqKey="Freeling M">M. Freeling</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lou, P" uniqKey="Lou P">P. Lou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Doyle, J J" uniqKey="Doyle J">J. J. Doyle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Tang, H" uniqKey="Tang H">H. Tang</name>
</author>
<author>
<name sortKey="Paterson, A X0a H" uniqKey="Paterson A">A. H. Paterson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Syed, N H" uniqKey="Syed N">N. H. Syed</name>
</author>
<author>
<name sortKey="Kalyna, M" uniqKey="Kalyna M">M. Kalyna</name>
</author>
<author>
<name sortKey="Marquez, Y" uniqKey="Marquez Y">Y. Marquez</name>
</author>
<author>
<name sortKey="Barta, A" uniqKey="Barta A">A. Barta</name>
</author>
<author>
<name sortKey="Brown, J W" uniqKey="Brown J">J. W. Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gabut, M" uniqKey="Gabut M">M. Gabut</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, P G" uniqKey="Zhang P">P. G. Zhang</name>
</author>
<author>
<name sortKey="Huang, S Z" uniqKey="Huang S">S. Z. Huang</name>
</author>
<author>
<name sortKey="Pin, A X0a L" uniqKey="Pin A">A. L. Pin</name>
</author>
<author>
<name sortKey="Adams, K L" uniqKey="Adams K">K. L. Adams</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Filichkin, S A" uniqKey="Filichkin S">S. A. Filichkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, B" uniqKey="Yang B">B. Yang</name>
</author>
<author>
<name sortKey="Quiros, C F" uniqKey="Quiros C">C. F. Quiros</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Benderoth, M" uniqKey="Benderoth M">M. Benderoth</name>
</author>
<author>
<name sortKey="Pfalz, M" uniqKey="Pfalz M">M. Pfalz</name>
</author>
<author>
<name sortKey="Kroymann, J" uniqKey="Kroymann J">J. Kroymann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Benderoth, M" uniqKey="Benderoth M">M. Benderoth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Textor, S" uniqKey="Textor S">S. Textor</name>
</author>
<author>
<name sortKey="De X0a Kraker, J W" uniqKey="De X0a Kraker J">J. W. de Kraker</name>
</author>
<author>
<name sortKey="Hause, B" uniqKey="Hause B">B. Hause</name>
</author>
<author>
<name sortKey="Gershenzon, J" uniqKey="Gershenzon J">J. Gershenzon</name>
</author>
<author>
<name sortKey="Tokuhisa, J X0a G" uniqKey="Tokuhisa J">J. G. Tokuhisa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Volden, J" uniqKey="Volden J">J. Volden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Z J" uniqKey="Chen Z">Z. J. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schnable, J C" uniqKey="Schnable J">J. C. Schnable</name>
</author>
<author>
<name sortKey="Springer, N M" uniqKey="Springer N">N. M. Springer</name>
</author>
<author>
<name sortKey="Freeling, M" uniqKey="Freeling M">M. Freeling</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stanke, M" uniqKey="Stanke M">M. Stanke</name>
</author>
<author>
<name sortKey="Steinkamp, R" uniqKey="Steinkamp R">R. Steinkamp</name>
</author>
<author>
<name sortKey="Waack, S" uniqKey="Waack S">S. Waack</name>
</author>
<author>
<name sortKey="Morgenstern, B" uniqKey="Morgenstern B">B. Morgenstern</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Majoros, W H" uniqKey="Majoros W">W. H. Majoros</name>
</author>
<author>
<name sortKey="Pertea, M" uniqKey="Pertea M">M. Pertea</name>
</author>
<author>
<name sortKey="Salzberg, S L" uniqKey="Salzberg S">S. L. Salzberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Birney, E" uniqKey="Birney E">E. Birney</name>
</author>
<author>
<name sortKey="Clamp, M" uniqKey="Clamp M">M. Clamp</name>
</author>
<author>
<name sortKey="Durbin, R" uniqKey="Durbin R">R. Durbin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, Y" uniqKey="Xu Y">Y. Xu</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Yang, J" uniqKey="Yang J">J. Yang</name>
</author>
<author>
<name sortKey="Vaynberg, J" uniqKey="Vaynberg J">J. Vaynberg</name>
</author>
<author>
<name sortKey="Qin, J" uniqKey="Qin J">J. Qin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Elsik, C G" uniqKey="Elsik C">C. G. Elsik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lowe, T M" uniqKey="Lowe T">T. M. Lowe</name>
</author>
<author>
<name sortKey="Eddy, S R" uniqKey="Eddy S">S. R. Eddy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nawrocki, E P" uniqKey="Nawrocki E">E. P. Nawrocki</name>
</author>
<author>
<name sortKey="Kolbe, D L" uniqKey="Kolbe D">D. L. Kolbe</name>
</author>
<author>
<name sortKey="Eddy, S R" uniqKey="Eddy S">S. R. Eddy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mccarthy, E M" uniqKey="Mccarthy E">E. M. McCarthy</name>
</author>
<author>
<name sortKey="Mcdonald, J F" uniqKey="Mcdonald J">J. F. McDonald</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ma, J" uniqKey="Ma J">J. Ma</name>
</author>
<author>
<name sortKey="Devos, K M" uniqKey="Devos K">K. M. Devos</name>
</author>
<author>
<name sortKey="Bennetzen, J X0a L" uniqKey="Bennetzen J">J. L. Bennetzen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Holligan, D" uniqKey="Holligan D">D. Holligan</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
<author>
<name sortKey="Jiang, N" uniqKey="Jiang N">N. Jiang</name>
</author>
<author>
<name sortKey="Pritham, E J" uniqKey="Pritham E">E. J. Pritham</name>
</author>
<author>
<name sortKey="Wessler, S R" uniqKey="Wessler S">S. R. Wessler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, L" uniqKey="Yang L">L. Yang</name>
</author>
<author>
<name sortKey="Bennetzen, J L" uniqKey="Bennetzen J">J. L. Bennetzen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wicker, T" uniqKey="Wicker T">T. Wicker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smit, A" uniqKey="Smit A">A. Smit</name>
</author>
<author>
<name sortKey="Hubley, R" uniqKey="Hubley R">R. Hubley</name>
</author>
<author>
<name sortKey="Green, P" uniqKey="Green P">P. Green</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, L" uniqKey="Li L">L. Li</name>
</author>
<author>
<name sortKey="Stoeckert, C J" uniqKey="Stoeckert C">C. J. Stoeckert</name>
</author>
<author>
<name sortKey="Roos, D X0a S" uniqKey="Roos D">D. S. Roos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Larkin, M A" uniqKey="Larkin M">M. A. Larkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tamura, K" uniqKey="Tamura K">K. Tamura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guindon, S" uniqKey="Guindon S">S. Guindon</name>
</author>
<author>
<name sortKey="Delsuc, F" uniqKey="Delsuc F">F. Delsuc</name>
</author>
<author>
<name sortKey="Dufayard, J X0a F" uniqKey="Dufayard J">J. F. Dufayard</name>
</author>
<author>
<name sortKey="Gascuel, O" uniqKey="Gascuel O">O. Gascuel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Trapnell, C" uniqKey="Trapnell C">C. Trapnell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roulin, A" uniqKey="Roulin A">A. Roulin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gu, K" uniqKey="Gu K">K. Gu</name>
</author>
<author>
<name sortKey="Ng, H X0a K" uniqKey="Ng H">H. K. Ng</name>
</author>
<author>
<name sortKey="Tang, M L" uniqKey="Tang M">M. L. Tang</name>
</author>
<author>
<name sortKey="Schucany, W R" uniqKey="Schucany W">W. R. Schucany</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Benjamini, Y" uniqKey="Benjamini Y">Y. Benjamini</name>
</author>
<author>
<name sortKey="Hochberg, Y" uniqKey="Hochberg Y">Y. Hochberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kimura, M" uniqKey="Kimura M">M. Kimura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tamura, K" uniqKey="Tamura K">K. Tamura</name>
</author>
<author>
<name sortKey="Dudley, J" uniqKey="Dudley J">J. Dudley</name>
</author>
<author>
<name sortKey="Nei, M" uniqKey="Nei M">M. Nei</name>
</author>
<author>
<name sortKey="Kumar, S" uniqKey="Kumar S">S. Kumar</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Nat Commun</journal-id>
<journal-id journal-id-type="iso-abbrev">Nat Commun</journal-id>
<journal-title-group>
<journal-title>Nature Communications</journal-title>
</journal-title-group>
<issn pub-type="epub">2041-1723</issn>
<publisher>
<publisher-name>Nature Pub. Group</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24852848</article-id>
<article-id pub-id-type="pmc">4279128</article-id>
<article-id pub-id-type="pii">ncomms4930</article-id>
<article-id pub-id-type="doi">10.1038/ncomms4930</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>The
<italic>Brassica oleracea</italic>
genome reveals the asymmetrical evolution of polyploid genomes</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Liu</surname>
<given-names>Shengyi</given-names>
</name>
<xref ref-type="corresp" rid="c1">a</xref>
<xref ref-type="aff" rid="a1">1</xref>
<xref ref-type="aff" rid="a30">30</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Liu</surname>
<given-names>Yumei</given-names>
</name>
<xref ref-type="aff" rid="a2">2</xref>
<xref ref-type="aff" rid="a30">30</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yang</surname>
<given-names>Xinhua</given-names>
</name>
<xref ref-type="aff" rid="a3">3</xref>
<xref ref-type="aff" rid="a30">30</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Tong</surname>
<given-names>Chaobo</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
<xref ref-type="aff" rid="a30">30</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Edwards</surname>
<given-names>David</given-names>
</name>
<xref ref-type="aff" rid="a4">4</xref>
<xref ref-type="aff" rid="a30">30</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Parkin</surname>
<given-names>Isobel A. P.</given-names>
</name>
<xref ref-type="aff" rid="a5">5</xref>
<xref ref-type="aff" rid="a30">30</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhao</surname>
<given-names>Meixia</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
<xref ref-type="aff" rid="a6">6</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ma</surname>
<given-names>Jianxin</given-names>
</name>
<xref ref-type="aff" rid="a6">6</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yu</surname>
<given-names>Jingyin</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Huang</surname>
<given-names>Shunmou</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wang</surname>
<given-names>Xiyin</given-names>
</name>
<xref ref-type="aff" rid="a7">7</xref>
<xref ref-type="aff" rid="a8">8</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wang</surname>
<given-names>Junyi</given-names>
</name>
<xref ref-type="aff" rid="a3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lu</surname>
<given-names>Kun</given-names>
</name>
<xref ref-type="aff" rid="a9">9</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Fang</surname>
<given-names>Zhiyuan</given-names>
</name>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bancroft</surname>
<given-names>Ian</given-names>
</name>
<xref ref-type="aff" rid="a10">10</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yang</surname>
<given-names>Tae-Jin</given-names>
</name>
<xref ref-type="aff" rid="a11">11</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hu</surname>
<given-names>Qiong</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wang</surname>
<given-names>Xinfa</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yue</surname>
<given-names>Zhen</given-names>
</name>
<xref ref-type="aff" rid="a3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Li</surname>
<given-names>Haojie</given-names>
</name>
<xref ref-type="aff" rid="a12">12</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yang</surname>
<given-names>Linfeng</given-names>
</name>
<xref ref-type="aff" rid="a3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wu</surname>
<given-names>Jian</given-names>
</name>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhou</surname>
<given-names>Qing</given-names>
</name>
<xref ref-type="aff" rid="a3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wang</surname>
<given-names>Wanxin</given-names>
</name>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>King</surname>
<given-names>Graham J</given-names>
</name>
<xref ref-type="aff" rid="a13">13</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Pires</surname>
<given-names>J. Chris</given-names>
</name>
<xref ref-type="aff" rid="a14">14</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lu</surname>
<given-names>Changxin</given-names>
</name>
<xref ref-type="aff" rid="a3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wu</surname>
<given-names>Zhangyan</given-names>
</name>
<xref ref-type="aff" rid="a3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sampath</surname>
<given-names>Perumal</given-names>
</name>
<xref ref-type="aff" rid="a11">11</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wang</surname>
<given-names>Zhuo</given-names>
</name>
<xref ref-type="aff" rid="a3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Guo</surname>
<given-names>Hui</given-names>
</name>
<xref ref-type="aff" rid="a7">7</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Pan</surname>
<given-names>Shengkai</given-names>
</name>
<xref ref-type="aff" rid="a3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yang</surname>
<given-names>Limei</given-names>
</name>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Min</surname>
<given-names>Jiumeng</given-names>
</name>
<xref ref-type="aff" rid="a3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhang</surname>
<given-names>Dong</given-names>
</name>
<xref ref-type="aff" rid="a7">7</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jin</surname>
<given-names>Dianchuan</given-names>
</name>
<xref ref-type="aff" rid="a8">8</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Li</surname>
<given-names>Wanshun</given-names>
</name>
<xref ref-type="aff" rid="a3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Belcram</surname>
<given-names>Harry</given-names>
</name>
<xref ref-type="aff" rid="a15">15</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Tu</surname>
<given-names>Jinxing</given-names>
</name>
<xref ref-type="aff" rid="a16">16</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Guan</surname>
<given-names>Mei</given-names>
</name>
<xref ref-type="aff" rid="a17">17</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Qi</surname>
<given-names>Cunkou</given-names>
</name>
<xref ref-type="aff" rid="a18">18</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Du</surname>
<given-names>Dezhi</given-names>
</name>
<xref ref-type="aff" rid="a19">19</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Li</surname>
<given-names>Jiana</given-names>
</name>
<xref ref-type="aff" rid="a9">9</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jiang</surname>
<given-names>Liangcai</given-names>
</name>
<xref ref-type="aff" rid="a12">12</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Batley</surname>
<given-names>Jacqueline</given-names>
</name>
<xref ref-type="aff" rid="a20">20</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sharpe</surname>
<given-names>Andrew G</given-names>
</name>
<xref ref-type="aff" rid="a21">21</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Park</surname>
<given-names>Beom-Seok</given-names>
</name>
<xref ref-type="aff" rid="a22">22</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ruperao</surname>
<given-names>Pradeep</given-names>
</name>
<xref ref-type="aff" rid="a4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Cheng</surname>
<given-names>Feng</given-names>
</name>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Waminal</surname>
<given-names>Nomar Espinosa</given-names>
</name>
<xref ref-type="aff" rid="a11">11</xref>
<xref ref-type="aff" rid="a23">23</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Huang</surname>
<given-names>Yin</given-names>
</name>
<xref ref-type="aff" rid="a3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dong</surname>
<given-names>Caihua</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wang</surname>
<given-names>Li</given-names>
</name>
<xref ref-type="aff" rid="a8">8</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Li</surname>
<given-names>Jingping</given-names>
</name>
<xref ref-type="aff" rid="a7">7</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hu</surname>
<given-names>Zhiyong</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhuang</surname>
<given-names>Mu</given-names>
</name>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Huang</surname>
<given-names>Yi</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Huang</surname>
<given-names>Junyan</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Shi</surname>
<given-names>Jiaqin</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mei</surname>
<given-names>Desheng</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Liu</surname>
<given-names>Jing</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lee</surname>
<given-names>Tae-Ho</given-names>
</name>
<xref ref-type="aff" rid="a7">7</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wang</surname>
<given-names>Jinpeng</given-names>
</name>
<xref ref-type="aff" rid="a8">8</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jin</surname>
<given-names>Huizhe</given-names>
</name>
<xref ref-type="aff" rid="a7">7</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Li</surname>
<given-names>Zaiyun</given-names>
</name>
<xref ref-type="aff" rid="a16">16</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Li</surname>
<given-names>Xun</given-names>
</name>
<xref ref-type="aff" rid="a17">17</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhang</surname>
<given-names>Jiefu</given-names>
</name>
<xref ref-type="aff" rid="a18">18</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Xiao</surname>
<given-names>Lu</given-names>
</name>
<xref ref-type="aff" rid="a19">19</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhou</surname>
<given-names>Yongming</given-names>
</name>
<xref ref-type="aff" rid="a16">16</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Liu</surname>
<given-names>Zhongsong</given-names>
</name>
<xref ref-type="aff" rid="a17">17</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Liu</surname>
<given-names>Xuequn</given-names>
</name>
<xref ref-type="aff" rid="a24">24</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Qin</surname>
<given-names>Rui</given-names>
</name>
<xref ref-type="aff" rid="a24">24</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Tang</surname>
<given-names>Xu</given-names>
</name>
<xref ref-type="aff" rid="a7">7</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Liu</surname>
<given-names>Wenbin</given-names>
</name>
<xref ref-type="aff" rid="a3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wang</surname>
<given-names>Yupeng</given-names>
</name>
<xref ref-type="aff" rid="a7">7</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhang</surname>
<given-names>Yangyong</given-names>
</name>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lee</surname>
<given-names>Jonghoon</given-names>
</name>
<xref ref-type="aff" rid="a11">11</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kim</surname>
<given-names>Hyun Hee</given-names>
</name>
<xref ref-type="aff" rid="a23">23</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Denoeud</surname>
<given-names>France</given-names>
</name>
<xref ref-type="aff" rid="a25">25</xref>
<xref ref-type="aff" rid="a26">26</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Xu</surname>
<given-names>Xun</given-names>
</name>
<xref ref-type="aff" rid="a3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Liang</surname>
<given-names>Xinming</given-names>
</name>
<xref ref-type="aff" rid="a3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hua</surname>
<given-names>Wei</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wang</surname>
<given-names>Xiaowu</given-names>
</name>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wang</surname>
<given-names>Jun</given-names>
</name>
<xref ref-type="aff" rid="a3">3</xref>
<xref ref-type="aff" rid="a27">27</xref>
<xref ref-type="aff" rid="a28">28</xref>
<xref ref-type="aff" rid="a29">29</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chalhoub</surname>
<given-names>Boulos</given-names>
</name>
<xref ref-type="aff" rid="a15">15</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Paterson</surname>
<given-names>Andrew H</given-names>
</name>
<xref ref-type="aff" rid="a7">7</xref>
</contrib>
<aff id="a1">
<label>1</label>
<institution>The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences</institution>
, Wuhan 430062,
<country>China</country>
</aff>
<aff id="a2">
<label>2</label>
<institution>The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, The Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences</institution>
, Beijing 10081,
<country>China</country>
</aff>
<aff id="a3">
<label>3</label>
<institution>Beijing Genome Institute-Shenzhen</institution>
, Shenzhen 518083,
<country>China</country>
</aff>
<aff id="a4">
<label>4</label>
<institution>Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland</institution>
, Brisbane, Queensland 4072,
<country>Australia</country>
</aff>
<aff id="a5">
<label>5</label>
<institution>Agriculture and Agri-Food Canada</institution>
, Saskatoon, Saskatchewan,
<country>Canada</country>
S7N OX2</aff>
<aff id="a6">
<label>6</label>
<institution>Department of Agronomy, Purdue University</institution>
, WSLR Building B018, West Lafayette, Indiana 47907,
<country>USA</country>
</aff>
<aff id="a7">
<label>7</label>
<institution>Plant Genome Mapping Laboratory, University of Georgia</institution>
, Athens, Georgia 30605,
<country>USA</country>
</aff>
<aff id="a8">
<label>8</label>
<institution>Center for Genomics and Computational Biology, School of Life Sciences, and School of Sciences, Hebei United University</institution>
, Tangshan 063000,
<country>China</country>
</aff>
<aff id="a9">
<label>9</label>
<institution>College of Agronomy and Biotechnology, Southwest University, BeiBei District</institution>
, Chongqing 400715,
<country>China</country>
</aff>
<aff id="a10">
<label>10</label>
<institution>Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Wentworth Way</institution>
, Heslington, York YO10 5DD,
<country>UK</country>
</aff>
<aff id="a11">
<label>11</label>
<institution>Department of Plant Sciences, Plant Genomics and Breeding Institute and Research Institute for Agriculture and Life Sciences, College of Agriculture & Life Sciences, Seoul National University</institution>
, Seoul 151-921,
<country>Republic of Korea</country>
</aff>
<aff id="a12">
<label>12</label>
<institution>Sichuan Academy of Agricultural Sciences</institution>
, Chengdu 610066,
<country>China</country>
</aff>
<aff id="a13">
<label>13</label>
<institution>Southern Cross Plant Science, Southern Cross University</institution>
, Lismore, New South Wales 2480,
<country>Australia</country>
</aff>
<aff id="a14">
<label>14</label>
<institution>Bond Life Sciences Center, University of Missouri</institution>
, Columbia, Missouri 65211-7310,
<country>USA</country>
</aff>
<aff id="a15">
<label>15</label>
<institution>Organization and Evolution of Plant Genomes, Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche 1165 (Institut National de Recherche Agronomique, Centre National de la Recherche Scientifique, Université Evry Val d’Essonne)</institution>
, Evry 91057,
<country>France</country>
</aff>
<aff id="a16">
<label>16</label>
<institution>National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University</institution>
, Wuhan 430070,
<country>China</country>
</aff>
<aff id="a17">
<label>17</label>
<institution>College of Agronomy, Hunan Agricultural University</institution>
, Changsha 410128,
<country>China</country>
</aff>
<aff id="a18">
<label>18</label>
<institution>Jiangsu Academy of Agricultural Sciences</institution>
, Nanjing 210014,
<country>China</country>
</aff>
<aff id="a19">
<label>19</label>
<institution>Qinghai Academy of Agriculture and Forestry Sciences, National Key Laboratory Breeding Base for Innovation and Utilization of Plateau Crop Germplasm</institution>
, Xining 810016,
<country>China</country>
</aff>
<aff id="a20">
<label>20</label>
<institution>Australian Research Council Centre of Excellence for Integrative Legume Research, University of Queensland</institution>
, Brisbane, Queensland 4072,
<country>Australia</country>
</aff>
<aff id="a21">
<label>21</label>
<institution>National Research Council Canada</institution>
, Saskatoon, Saskatchewan,
<country>Canada</country>
S7N 0W9</aff>
<aff id="a22">
<label>22</label>
<institution>The Agricultural Genome Center, National Academy of Agricultural Science, RDA</institution>
, 126 Suin-Ro, Suwon 441-707,
<country>Republic of Korea</country>
</aff>
<aff id="a23">
<label>23</label>
<institution>Department of Life Science, Plant Biotechnology Institute, Sahmyook University</institution>
, Seoul 139-742,
<country>Republic of Korea</country>
</aff>
<aff id="a24">
<label>24</label>
<institution>School of Life Sciences, South-Central University for Nationality</institution>
, Wuhan 430074,
<country>China</country>
</aff>
<aff id="a25">
<label>25</label>
<institution>Commissariat à l'Energie Atomique (CEA), Genoscope, Institut de Génomique, BP5706</institution>
Evry 91057,
<country>France</country>
</aff>
<aff id="a26">
<label>26</label>
<institution>Centre National de Recherche Scientifique (CNRS), Université d'Evry, UMR 8030, CP5706</institution>
, Evry 91057,
<country>France</country>
</aff>
<aff id="a27">
<label>27</label>
<institution>Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200</institution>
, Copenhagen,
<country>Denmark</country>
</aff>
<aff id="a28">
<label>28</label>
<institution>King Abdulaziz University</institution>
, Jeddah, 21589,
<country>Saudi Arabia</country>
</aff>
<aff id="a29">
<label>29</label>
<institution>Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong</institution>
, 21 Sassoon Road,
<country>Hong Kong</country>
</aff>
<aff id="a30">
<label>30</label>
These are joint first authors</aff>
</contrib-group>
<author-notes>
<corresp id="c1">
<label>a</label>
<email>liusy@oilcrops.cn</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>23</day>
<month>05</month>
<year>2014</year>
</pub-date>
<volume>5</volume>
<elocation-id>3930</elocation-id>
<history>
<date date-type="received">
<day>23</day>
<month>10</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>22</day>
<month>04</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2014, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</copyright-statement>
<copyright-year>2014</copyright-year>
<copyright-holder>Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by-nc-sa/3.0/">
<pmc-comment>author-paid</pmc-comment>
<license-p>This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/</license-p>
</license>
</permissions>
<abstract>
<p>Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear.
<italic>Brassica</italic>
is an ideal model to increase knowledge of polyploid evolution. Here we describe a draft genome sequence of
<italic>Brassica oleracea</italic>
, comparing it with that of its sister species
<italic>B. rapa</italic>
to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks, asymmetrical amplification of transposable elements, differential gene co-retention for specific pathways and variation in gene expression, including alternative splicing, among a large number of paralogous and orthologous genes. Genes related to the production of anticancer phytochemicals and morphological variations illustrate consequences of genome duplication and gene divergence, imparting biochemical and morphological variation to
<italic>B. oleracea</italic>
. This study provides insights into
<italic>Brassica</italic>
genome evolution and will underpin research into the many important crops in this genus.</p>
</abstract>
<abstract abstract-type="web-summary">
<p>
<inline-graphic id="i1" xlink:href="ncomms4930-i1.jpg"></inline-graphic>
<italic>Brassica oleracea</italic>
is plant species comprising economically important vegetable crops. Here, the authors report the draft genome sequence of
<italic>B. oleracea</italic>
and, through a comparative analysis with the closely related
<italic>B. rapa</italic>
, reveal insights into
<italic>Brassica</italic>
evolution and divergence of interspecific genomes and intraspecific subgenomes.</p>
</abstract>
</article-meta>
</front>
<body>
<p>B
<italic>rassica oleracea</italic>
comprises many important vegetable crops including cauliflower, broccoli, cabbages, Brussels sprouts, kohlrabi and kales. The species demonstrates extreme morphological diversity and crop forms, with various members grown for their leaves, flowers and stems. About 76 million tons of
<italic>Brassica</italic>
vegetables were produced in 2010, with a value of 14.85 billion dollars (
<ext-link ext-link-type="uri" xlink:href="http://faostat.fao.org/">http://faostat.fao.org/</ext-link>
). Most
<italic>B. oleracea</italic>
crops are high in protein
<xref ref-type="bibr" rid="b1">1</xref>
and carotenoids
<xref ref-type="bibr" rid="b2">2</xref>
, and contain diverse glucosinolates (GSLs) that function as unique phytochemicals for plant defence against fungal and bacterial pathogens
<xref ref-type="bibr" rid="b3">3</xref>
and on consumption have been shown to have potent anticancer properties
<xref ref-type="bibr" rid="b4">4</xref>
<xref ref-type="bibr" rid="b5">5</xref>
<xref ref-type="bibr" rid="b6">6</xref>
.</p>
<p>
<italic>B. oleracea</italic>
is a member of the family
<italic>Brassicaceae</italic>
(~\n338 genera and 3,709 species)
<xref ref-type="bibr" rid="b7">7</xref>
and one of three diploid
<italic>Brassica</italic>
species in the classical triangle of U
<xref ref-type="bibr" rid="b8">8</xref>
that also includes diploids
<italic>B. rapa</italic>
(AA) and
<italic>B. nigra</italic>
(BB) and allotetraploids
<italic>B. juncea</italic>
(AABB),
<italic>B. napus</italic>
(AACC) and
<italic>B. carinata</italic>
(BBCC). These allotetraploid species are important oilseed crops, accounting for 12% of world edible oil production (
<ext-link ext-link-type="uri" xlink:href="http://faostat.fao.org/">http://faostat.fao.org/</ext-link>
). As the origin and relationship between these species is clear, the timing and nature of the evolutionary events associated with
<italic>Brassica</italic>
divergence and speciation can be revealed by interspecific genome comparison. Each of the
<italic>Brassica</italic>
genomes retains evidence of recursive whole-genome duplication (WGD) events
<xref ref-type="bibr" rid="b9">9</xref>
<xref ref-type="bibr" rid="b10">10</xref>
(
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 1</xref>
) and have undergone a
<italic>Brassiceae</italic>
-lineage-specific whole-genome triplication (WGT)
<xref ref-type="bibr" rid="b11">11</xref>
<xref ref-type="bibr" rid="b12">12</xref>
since their divergence from the
<italic>Arabidopsis</italic>
lineage. These events were followed by diploidization that involved substantial genome reshuffling and gene losses
<xref ref-type="bibr" rid="b11">11</xref>
<xref ref-type="bibr" rid="b12">12</xref>
<xref ref-type="bibr" rid="b13">13</xref>
<xref ref-type="bibr" rid="b14">14</xref>
<xref ref-type="bibr" rid="b15">15</xref>
. Because of this,
<italic>Brassica</italic>
species are a model for the study of polyploid genome evolution (
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 2</xref>
), mechanisms of duplicated gene loss, neo- and sub-functionalization, and associated impact on morphological diversity and species differentiation.</p>
<p>We report a draft genome sequence of
<italic>B. oleracea</italic>
and its comprehensive genomic comparison with the genome of sister species
<italic>B. rapa</italic>
, which diverged from a common ancestor ~\n4 MYA. These data provide insights into the dynamics of
<italic>Brassica</italic>
genome evolution and divergence, and serve as important resources for
<italic>Brassica</italic>
vegetable and oilseed crop breeding. Furthermore, this genome will support studies of the large range of morphological variation found within
<italic>B. oleracea</italic>
, which includes sexually compatible crops such as cabbages, cauliflower and broccoli that are important for their economic, nutritional and potent anticancer value.</p>
<sec disp-level="1" sec-type="results">
<title>Results</title>
<sec disp-level="2">
<title>
<italic>B. oleracea</italic>
genome assembly and annotation</title>
<p>Complementing the sequencing of the smaller
<italic>B. rapa</italic>
genome
<xref ref-type="bibr" rid="b11">11</xref>
, a draft genome assembly of
<italic>B. oleracea</italic>
var.
<italic>capitata</italic>
line 02–12 was produced by interleaving Illumina, Roche 454 and Sanger sequence data. This assembly represents 85% of the estimated 630 Mb genome, and includes >98% of the gene space (
<xref ref-type="supplementary-material" rid="S1">Supplementary Methods</xref>
,
<xref ref-type="supplementary-material" rid="S1">Supplementary Tables 1–3, 7 and 8</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 3</xref>
). The assembly was anchored to a new genetic map
<xref ref-type="bibr" rid="b16">16</xref>
to produce nine pseudo-chromosomes that account for 72% of the assembly, and validated by comparison with a
<italic>B. oleracea</italic>
physical map
<xref ref-type="bibr" rid="b17">17</xref>
, a high-density
<italic>B. napus</italic>
genetic map
<xref ref-type="bibr" rid="b18">18</xref>
and complete BAC sequences (
<xref ref-type="supplementary-material" rid="S1">Supplementary Figs 4–9</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Tables 4 and 5</xref>
). For comparative analyses, identical genome annotation pipelines were used for annotation of protein-coding genes and transposable elements (TEs) for
<italic>B. oleracea</italic>
and
<italic>B. rapa</italic>
.</p>
<p>A total of 45,758 protein-coding genes were predicted, with a mean transcript length of 1,761 bp, a mean coding length of 1,037 bp, and a mean of 4.55 exons per gene (
<xref ref-type="table" rid="t1">Table 1</xref>
,
<xref ref-type="supplementary-material" rid="S1">Supplementary Methods</xref>
,
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 6</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 10</xref>
), similar to
<italic>A. thaliana</italic>
<xref ref-type="bibr" rid="b19">19</xref>
and
<italic>B. rapa</italic>
<xref ref-type="bibr" rid="b11">11</xref>
. Publicly available ESTs, together with RNA sequencing (RNA-seq) data generated in this study, support 94% of predicted gene models (
<xref ref-type="supplementary-material" rid="S1">Supplementary Tables 7 and 8</xref>
), and 91.6% of predicted genes have a match in at least one public protein database (
<xref ref-type="supplementary-material" rid="S1">Supplementary Tables 9 and 10</xref>
, and
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 11</xref>
). Of the 45,758 predicted genes, 13,032 produce alternative splicing (AS) variants with intron retention and exon skipping (
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 11</xref>
). Genome annotation also predicted 3,756 non-coding RNAs (miRNA, tRNA, rRNA and snRNA) (
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 12</xref>
).</p>
<p>A combination of structure-based analyses and homology-based comparisons resulted in the identification of 13,382 TEs with clearly identified terminal boundaries, including 5,107 retrotransposons and 8,275 DNA transposons (
<xref ref-type="supplementary-material" rid="S1">Supplementary Methods</xref>
,
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 12</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 13</xref>
). These elements together with numerous truncated elements or TE remnants make up 38.80% of the assembled portion of the
<italic>B. oleracea</italic>
genome, whereas TEs account for only 21.47% of the
<italic>B. rapa</italic>
genome assembly. Copia (11.64%) and gypsy (7.84%) retroelements are the major constituents of the repetitive fraction, and are unevenly distributed across each chromosome, with retrotransposons predominantly found in pericentromeric or heterochromatic regions (
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 13</xref>
) in
<italic>B. oleracea</italic>
. Tentative physical positions of some of the centromeres were determined based on homologue and phylogenetic analysis of the centromere-specific 76 bp tandem repeats CentBo-1 and CentBo-2 and copia-type retrotransposon (CentCRBo) (
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 14</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Figs 14–17</xref>
). The distribution of 45S and 5S rDNA sequences were also visualized by fluorescent
<italic>in situ</italic>
hybridization (
<xref ref-type="supplementary-material" rid="S1">Supplementary Figs 18 and 19</xref>
), leading to a predicted karyotype ideogram for
<italic>B. oleracea</italic>
(
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 20</xref>
). An extra-centromeric locus with colocalized centromeric satellite repeat CentBo-1 and the centromeric retrotransposon CRBo-1 was observed on the long arm of chromosome 6 (
<xref ref-type="supplementary-material" rid="S1">Supplementary Figs 18–20</xref>
). A comprehensive database for the genome information is accessible at
<ext-link ext-link-type="uri" xlink:href="http://www.ocri-genomics.org/bolbase/index.html">http://www.ocri-genomics.org/bolbase/index.html</ext-link>
.</p>
</sec>
<sec disp-level="2">
<title>Conserved syntenic blocks and genome rearrangement after WGT</title>
<p>The relatively complete triplicated regions in
<italic>B. oleracea</italic>
and
<italic>B. rapa</italic>
were constructed and they relate to the 24 ancestral crucifer blocks (A–X) in
<italic>A. thaliana</italic>
<xref ref-type="bibr" rid="b20">20</xref>
. Further the triplicated blocks resulting from WGT in the two
<italic>Brassica</italic>
species were partitioned into three subgenomes: LF (Least-fractionated), MF1 (Medium-fractionated) and MF2 (Most-fractionated)
<xref ref-type="bibr" rid="b11">11</xref>
(
<xref ref-type="fig" rid="f1">Fig. 1a</xref>
,
<xref ref-type="supplementary-material" rid="S1">Supplementary Methods</xref>
,
<xref ref-type="supplementary-material" rid="S1">Supplementary Tables 15 and 16</xref>
, and
<xref ref-type="supplementary-material" rid="S1">Supplementary Figs 21–26</xref>
). These syntenic blocks occupy the majority of the genome assemblies of
<italic>A. thaliana</italic>
(19,628 genes, 72.24% of 27,169 genes),
<italic>B. oleracea</italic>
(26,485 genes, 57.88%) and
<italic>B. rapa</italic>
(26,698 genes, 64.84%), and provide a foundation for comparative analyses of chromosomal rearrangement, gene loss and divergence of retained paralogues after WGT. Massive gene loss occurred in an asymmetrical and reciprocal fashion in the three subgenomes of each species and was largely completed before the
<italic>B. oleracea–B. rapa</italic>
divergence (
<xref ref-type="fig" rid="f1">Fig. 1c</xref>
,
<xref ref-type="supplementary-material" rid="S1">Supplementary Tables 17–19</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Figs 25–27</xref>
). The timing of this evolutionary process was supported by the estimated timing of WGT ~\n15.9 million years ago (MYA), and species divergence ~\n4.6 MYA, based on synonymous substitution (Ks) rates of genes located in the blocks (
<xref ref-type="fig" rid="f1">Fig. 1b</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 20</xref>
). Gene loss occurred mainly through small deletions that may be caused by illegitimate recombination
<xref ref-type="bibr" rid="b21">21</xref>
<xref ref-type="bibr" rid="b22">22</xref>
(
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 27</xref>
), consistent with observations in other plant genomes.</p>
<p>Abundant genome rearrangement following WGT and subsequent
<italic>Brassica</italic>
species divergence resulted in complex mosaics of triplicated ancestral genomic blocks in the A and C genomes (
<xref ref-type="fig" rid="f1">Fig. 1a</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 28</xref>
). At least 19 major, and numerous fine-scale, chromosome rearrangements occurred, which differentiate the two
<italic>Brassica</italic>
species (
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 29</xref>
). This is in agreement with previous comparative studies based on chromosome painting
<xref ref-type="bibr" rid="b12">12</xref>
<xref ref-type="bibr" rid="b23">23</xref>
and genetic mapping
<xref ref-type="bibr" rid="b24">24</xref>
<xref ref-type="bibr" rid="b25">25</xref>
. The extensive chromosome reshuffling in
<italic>Brassica</italic>
is in contrast to that observed in other taxa, such as the highly syntenic tomato–potato and pear–apple genomes, each with longer divergence times and less genome rearrangement
<xref ref-type="bibr" rid="b26">26</xref>
<xref ref-type="bibr" rid="b27">27</xref>
. This difference may be a consequence of mesopolyploidy in
<italic>Brassica</italic>
.</p>
</sec>
<sec disp-level="2">
<title>Greater TEs accumulation in
<italic>B. oleracea</italic>
than
<italic>B. rapa</italic>
</title>
<p>Both retro- (22.13%) and DNA (16.67%) TEs appear to be greater amplified in
<italic>B. oleracea</italic>
relative to
<italic>B. rapa</italic>
(9.43 and 12.04%) (
<xref ref-type="fig" rid="f2">Fig. 2a</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 13</xref>
). We constructed 1,362 gap-free contig-contig syntenic regions by clustering orthologous
<italic>B. rapa</italic>
<italic>B. oleracea</italic>
genes using MCscan (
<xref ref-type="supplementary-material" rid="S1">Supplementary Figs 29 and 30</xref>
). The
<italic>B. oleracea</italic>
TE length (34.03% of the 259.6M) is 3.4 times greater than that of the syntenic
<italic>B. rapa</italic>
regions (16.73% of the 155.0M) (
<xref ref-type="fig" rid="f2">Fig. 2c</xref>
,
<xref ref-type="supplementary-material" rid="S1">Supplementary Tables 21 and 22</xref>
, and
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 31</xref>
). Phylogenetic analysis revealed that
<italic>B. oleracea</italic>
has both more LTR retrotransposon (LTR-RT) families, and more members in most families than
<italic>B. rapa</italic>
(
<xref ref-type="fig" rid="f2">Fig. 2d</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Figs 12, 32 and 33</xref>
). Furthermore, two new lineages of LTR-RTs,
<italic>Brassica Copia</italic>
Retrotransposon and
<italic>Brassica Gypsy</italic>
Retrotransposon, were defined in both
<italic>Brassica</italic>
species (
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 33</xref>
). Analysis of LTR insertion time revealed that ~\n98% of
<italic>B. oleracea</italic>
intact LTR-RTs amplified continuously over the ~\n4 million years (MY) since the
<italic>B. oleracea</italic>
<italic>B. rapa</italic>
split, whereas ~\n68% of
<italic>B. rapa</italic>
intact LTR-RTs amplified rapidly within the last 1 MY, predominantly in the recent 0.2 MY (
<xref ref-type="fig" rid="f2">Fig. 2b</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 34</xref>
). Hence, LTR-RTs expanded more in the intergenic space of euchromatic regions in
<italic>B. oleracea</italic>
than
<italic>B. rapa</italic>
. This agrees with previous observations based on comparison of BAC sequences between the A and C genomes
<xref ref-type="bibr" rid="b28">28</xref>
. As a consequence of continuous TE amplification over the last 4 MY, the genome size of
<italic>B. oleracea</italic>
is ~\n30% larger than that of
<italic>B. rapa</italic>
although the two genomes share the same ploidy and are largely collinear.</p>
</sec>
<sec disp-level="2">
<title>Species-specific genes and tandemly duplicated genes</title>
<p>While the genomes of
<italic>B. oleracea</italic>
and
<italic>B. rapa</italic>
are highly similar in terms of total gene clusters/sequences and the gene number in each cluster, there are also a large number of species-specific genes in the two species. A total of 66.5% (34,237 genes) of
<italic>B. oleracea</italic>
genes and 74.9% (34,324) of
<italic>B. rapa</italic>
genes were clustered into OrthoMCL groups (
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 23</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 35</xref>
). We identified 9,832
<italic>B. oleracea</italic>
-specific and 5,735
<italic>B. rapa</italic>
-specific genes, of which 77% were supported by gene expression and/or a clear
<italic>Arabidopsis</italic>
homologue (
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 24</xref>
). Of them, >90% of these specific genes were validated for their absence in the counterpart genomes by reciprocal mapping of raw clean reads (
<xref ref-type="supplementary-material" rid="S1">Supplementary Tables 25 and 26</xref>
). Most
<italic>Brassica</italic>
-specific genes are randomly distributed along the chromosomes (
<xref ref-type="supplementary-material" rid="S1">Supplementary Figs 36 and 37</xref>
). More than 80% of the species-specific genes were surrounded by non-specific genes (
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 38</xref>
), suggesting that deletion of individual genes may be the major mechanism underlying gene loss and the difference in gene numbers between
<italic>B. oleracea</italic>
and
<italic>B. rapa</italic>
.</p>
<p>Tandem duplication produces clusters of duplicated genes and contributes to the expansion of gene families
<xref ref-type="bibr" rid="b29">29</xref>
. We identified 1,825, 2,111 and 1,554 gene clusters containing 4,365, 5,181 and 4,170 tandemly duplicated genes in
<italic>B. oleracea</italic>
,
<italic>B. rapa</italic>
and
<italic>A. thaliana</italic>
, respectively (
<xref ref-type="fig" rid="f3">Fig. 3a</xref>
,
<xref ref-type="supplementary-material" rid="S1">Supplementary Tables 27 and 28</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 39</xref>
). The wide range of sequence divergence of tandem gene pairs in each species suggests that tandem gene duplication occurred continuously throughout the evolutionary history of these species, rather than in discrete bursts (
<xref ref-type="supplementary-material" rid="S1">Supplementary Figs 40 and 41</xref>
). Their continuous and asymmetrical occurrence after species divergence resulted in 522, 697 and 815 species-specific tandem clusters in the three genomes. The frequency of tandem duplication is independent of the total gene content, suggesting that genome triplication has not inhibited its occurrence. Tandemly duplicated genes are preferentially enriched for gene ontology (GO) categories related to defence response and pathways related to secondary metabolism such as indole alkaloid biosynthesis and tropane, piperidine and pyridine alkaloid biosynthesis (
<xref ref-type="fig" rid="f3">Fig. 3b</xref>
,
<xref ref-type="supplementary-material" rid="S1">Supplementary Tables 29–32</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 42</xref>
). Over 44.0 and 51.9% of the NBS-encoding resistance genes are tandemly duplicated in
<italic>B. oleracea</italic>
and
<italic>B. rapa</italic>
, respectively (
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 33</xref>
).</p>
</sec>
<sec disp-level="2">
<title>Biased loss and retention of genes after WGT/WGD</title>
<p>Following polyploidization, reversion of gene numbers towards diploid levels through gene loss has been widely observed in plants
<xref ref-type="bibr" rid="b30">30</xref>
. However, in
<italic>Brassica</italic>
this only appears to be true for collinear genes in the conserved syntenic regions, with a loss of ~\n60% of the predicted post-triplication gene set, nearly restoring the pre-triplication gene number. This is reflected in an overall retention rate of 1.2-fold of
<italic>A. thaliana</italic>
orthologous genes in corresponding syntenic regions (
<xref ref-type="fig" rid="f1">Fig. 1c</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 18</xref>
). In contrast, in terms of genes that have no collinear gene in
<italic>A. thaliana</italic>
and either
<italic>Brassica</italic>
species (hereafter called non-collinear genes), gene retention rates is 2.5-fold the
<italic>A. thaliana</italic>
gene number in
<italic>B. oleracea</italic>
and 1.9-fold in
<italic>B. rapa</italic>
, both significantly higher than the expected rates (
<italic>P</italic>
value <2.2e–16;
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 34</xref>
). For these retained genes, the numbers of the genes that are common in the two
<italic>Brassica</italic>
species are 11,746 in
<italic>B. oleracea</italic>
and 10,411 in
<italic>B. rapa</italic>
. Most of these genes are supported by expression and/or the presence of an
<italic>Arabidopsis</italic>
homologue (
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 35</xref>
). More than 61% of these genes have homologues present as collinear genes and 16% also are homologous to other non-collinear genes, indicating gene movement from triplicated syntenic regions and being similar to observations in
<italic>A. thaliana</italic>
, where half of the genes are nonsyntenic within rosids
<xref ref-type="bibr" rid="b31">31</xref>
. This suggests that the breakdown of the triplicated syntenic relationship has not only prevented gene loss and a move towards pre-triplication gene numbers but has also maintained a higher gene density, and thus maintained WGT-derived genes for species evolution.</p>
<p>The presence of a large number of the retained paralogous genes in the syntenic regions led us to examine whether genes in some functional categories have preferentially been over-retained, as observed in other plants
<xref ref-type="bibr" rid="b29">29</xref>
. The results indicate that WGT-produced paralogous genes are over-retained in GO categories associated with regulation of metabolic and biosynthetic processes, RNA metabolism and transcription factors (
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 36</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Figs 43–45</xref>
), and the two
<italic>Brassica</italic>
species exhibit similar patterns of gene category retention. From a study of KEGG pathways, we also found that WGT-produced
<italic>Brassica</italic>
paralogous genes contribute 40–60% of total genes for 90% of KEGG pathways (
<xref ref-type="fig" rid="f3">Fig. 3c</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 43</xref>
), and are functionally enriched in primary or core metabolic processes such as oxidative phosphorylation, carbon fixation, photosynthesis, circadian rhythm
<xref ref-type="bibr" rid="b32">32</xref>
and lipid metabolism (
<xref ref-type="supplementary-material" rid="S1">Supplementary Tables 36 and 37</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Figs 43–45</xref>
). Notably, the pathways associated with energy metabolism have been enhanced in both
<italic>Brassica</italic>
species. For instance, in the oxidative phosphorylation pathway, there are 161 genes in
<italic>A. thaliana</italic>
, but 241 in
<italic>B. oleracea</italic>
and 208 in
<italic>B. rapa</italic>
. The majority (143/241 and 142/208) of these
<italic>Brassica</italic>
genes are multiple paralogues residing in the triplicated syntenic regions, and more than half of these paralogues have been retained as three copies, significantly higher than observed for other genes in the triplication regions (
<xref ref-type="fig" rid="f3">Fig. 3d</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 43</xref>
).</p>
<p>Phylogenetic analyses show that WGT led to an expansion of genes involved in auxin functioning (AUX, IAA, GH3, PIN, SAUR, TAA, TIR, TPL and YUCCA), morphology specification (TCP), and flowering time control (FLC, CO, VRN1, LFY, AP1 and GI) (
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 38</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Figs 46–61</xref>
), and that most
<italic>Arabidopsis</italic>
genes in these families have two or three orthologs in
<italic>Brassica</italic>
species. These WGT-produced duplicated genes may provide important sources of evolutionary innovation
<xref ref-type="bibr" rid="b33">33</xref>
and contribute to the extreme morphological diversity in
<italic>Brassica</italic>
species.</p>
</sec>
<sec disp-level="2">
<title>Divergence of duplicated genes in the
<italic>Brassica</italic>
genomes</title>
<p>The largest genetic foundation for plant genome evolution and new species formation is the differentiation of retained paralogous and orthologous genes. Around 38% (4,302/11,493) of all paralogous gene pairs in
<italic>B. oleracea</italic>
and ~\n36% (4,089/11,448) in
<italic>B. rapa</italic>
have different predicted exon numbers (
<xref ref-type="supplementary-material" rid="S1">Supplementary Data 1</xref>
,
<xref ref-type="supplementary-material" rid="S1">Supplementary Tables 39 and 40</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 62</xref>
). There are 6,571 orthologous gene pairs with different exon numbers, accounting for 27.6% of total gene pairs (23,823). Some paralogous or orthologous pairs have high Ks values and low sequence similarity (
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 63</xref>
), indicating sequence differentiation. Of these paralogous genes, some offer appreciable opportunity for non-reciprocal DNA exchanges (gene conversion). About 8% of the 4,296 homologous quartets in
<italic>B. rapa</italic>
and
<italic>B. oleracea</italic>
have been affected by gene conversion (
<xref ref-type="fig" rid="f4">Fig. 4a</xref>
,
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 41</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 64</xref>
) and about one-sixth (53) of converted genes were inferred to have experienced independent conversion events in both
<italic>Brassica</italic>
species, a parallelism sometimes observed in other plants
<xref ref-type="bibr" rid="b11">11</xref>
<xref ref-type="bibr" rid="b34">34</xref>
. Around 40–44% of conversion events involved paralogues in the less-fractionated subgenomes LF in both species, substantially higher than the other two subgenomes (
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 41</xref>
). This finding suggests that gene conversion is related to homologous gene density, which determines the likelihood of illegitimate recombination.</p>
<p>Analysis of RNA-seq data generated from callus, root, leaf, stem, flower and silique of
<italic>B. oleracea</italic>
and
<italic>B. rapa</italic>
suggests that >40% of WGT paralogous gene pairs are differentially expressed in these species (
<xref ref-type="fig" rid="f4">Fig. 4b</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 65</xref>
), suggesting potential subfunctionalization of these genes. In both species, a general trend of expression differentiation was alpha-WGD paralogous genes (~\n46%) > WGT paralogous genes (~\n42%) > tandemly duplicated genes (~\n35%) (
<xref ref-type="fig" rid="f4">Fig. 4b</xref>
,
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 66</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Tables 42 and 43</xref>
). Different tissues harbour approximately the same number of differentially expressed duplicates, but this number was slightly higher in flower tissue. The expression level of genes in the LF subgenome was significantly higher than corresponding syntenic genes in the more fractionated subgenomes (MF1 and MF2) while no expression dominance relationship was observed between the subgenomes MF1 and MF2 (
<xref ref-type="fig" rid="f4">Fig. 4c</xref>
,
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 44</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 67</xref>
). Duplicated transcription factor gene pairs showed less differentiated expression (~\n38%) than the expected ratio at the genome-wide level (
<xref ref-type="fig" rid="f4">Fig. 4d</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 45</xref>
), while paralogues with GO categories related to membrane, catalytic activity and defence response exhibited a higher ratio of differentiated expression (
<xref ref-type="fig" rid="f4">Fig. 4e</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 46</xref>
). Of
<italic>B. oleracea–B. rapa</italic>
orthologous gene pairs (23,823 in total), ~\n42% were differentially expressed across all tissues (
<xref ref-type="supplementary-material" rid="S1">Supplementary Tables 42 and 43</xref>
).</p>
<p>Furthermore, many paralogues generate different transcripts, resulting in expression differentiation. Analysis of AS variants of paralogous gene pairs that have identical numbers of exons demonstrated that these variants (either different variants or differential expression of the same variants) cause >20% and >44% of such paralogous genes to be differentially expressed in
<italic>B. oleracea</italic>
and
<italic>B. rapa</italic>
, respectively (
<xref ref-type="fig" rid="f4">Fig. 4f</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 47</xref>
). For orthologous gene pairs of
<italic>B. oleracea</italic>
and
<italic>B. rapa</italic>
, 35.5% (8,467) of gene pairs showed differential expression due to AS variation. When only counting intron retention and exon skipping, 9.3% (2,215) of gene pairs differ. Divergence in AS variants of gene pairs presents an important layer of gene regulation, as reported
<xref ref-type="bibr" rid="b35">35</xref>
<xref ref-type="bibr" rid="b36">36</xref>
<xref ref-type="bibr" rid="b37">37</xref>
<xref ref-type="bibr" rid="b38">38</xref>
, and thus provides a genetic basis for species evolution and new species formation.</p>
</sec>
<sec disp-level="2">
<title>Unique GSLs metabolism pathways</title>
<p>GSLs and hydrolysis products have been of long-standing interest due to their role in plant defence and anticancer properties. Compared with
<italic>B. rapa</italic>
and
<italic>B. napus</italic>
,
<italic>B. oleracea</italic>
has the greatest GSL profile diversity, with wide qualitative and quantitative variation
<xref ref-type="bibr" rid="b39">39</xref>
<xref ref-type="bibr" rid="b40">40</xref>
. We identified 101 and 105 GSL biosynthesis genes in
<italic>B. rapa</italic>
and
<italic>B. oleracea</italic>
, respectively, and 22 GSL catabolism genes in each species (
<xref ref-type="fig" rid="f5">Fig. 5a</xref>
,
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 48</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Data 2</xref>
). In the GSL biosynthesis and catabolism pathways, tandem genes (41.4%, 40.7% and 33.9% in
<italic>A. thaliana</italic>
,
<italic>B. oleracea</italic>
and
<italic>B. rapa</italic>
, respectively) were present in a much higher proportion than the genome-wide average (
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 32</xref>
). The observed variation of GSL profiles is mainly attributed to the duplication of two genes,
<italic>methylthioalkylmalate</italic>
(
<italic>MAM</italic>
)
<italic>synthase</italic>
and
<italic>2-oxoglutarate-dependent dioxygenase</italic>
(
<italic>AOP</italic>
).</p>
<p>In
<italic>Arabidopsis</italic>
, the
<italic>MAM</italic>
family contains three tandemly duplicated and functionally diverse members (
<italic>MAM1</italic>
,
<italic>MAM2</italic>
and
<italic>MAM3</italic>
), and functional analysis demonstrated that MAM2 (absent in ecotype Columbia) and MAM1 catalyses the condensation reaction of the first and the first two elongation cycles for the synthesis of dominant 3 and 4 carbon (C) side-chain aliphatic GSLs, respectively
<xref ref-type="bibr" rid="b40">40</xref>
<xref ref-type="bibr" rid="b41">41</xref>
, while MAM3 is assumed to contribute to the production of all GSL chain lengths
<xref ref-type="bibr" rid="b42">42</xref>
. In
<italic>B. rapa</italic>
and
<italic>B. oleracea</italic>
,
<italic>MAM1</italic>
/
<italic>MAM2</italic>
genes experienced independent tandem duplication to produce 6 and 5 orthologs respectively (
<xref ref-type="fig" rid="f5">Fig. 5b,c</xref>
). The main GSLs in
<italic>B. oleracea</italic>
are 4C and 3C GSLs (progoitrin, gluconapin, glucoraphanin and sinigrin)
<xref ref-type="bibr" rid="b43">43</xref>
, while those in
<italic>B. rapa</italic>
are 4C and 5C GSLs (gluconapin and glucobrassicanapin)
<xref ref-type="bibr" rid="b39">39</xref>
(
<xref ref-type="fig" rid="f5">Fig. 5a</xref>
). Based on the results of expression and phylogenetic analyses, we found a pair of genes Bol017070 and Bra013007, which are the only orthologous genes showing high expression in
<italic>B. oleracea</italic>
but silenced in
<italic>B. rapa</italic>
(
<xref ref-type="fig" rid="f5">Fig. 5a</xref>
). This expression difference most likely leads to greater accumulation of the 3C GSL anticancer precursor sinigrin in
<italic>B. oleracea</italic>
. Meanwhile, the expression level of MAM3 in
<italic>B. rapa</italic>
is much higher than in
<italic>B. oleracea</italic>
, explaining the accumulation of 5C GSL glucobrassicanapin in
<italic>B. rapa</italic>
. Other genes affecting specific anticancer GLS products are
<italic>AOPs.</italic>
Previously, research has reported four gene loci involved in the side-chain modifications of aliphatic GSLs in
<italic>Arabidopsis</italic>
. Two tandemly duplicated genes
<italic>AOP2</italic>
and
<italic>AOP3</italic>
catalyse the formation of alkenyl and hydroxyalkyl GSLs, respectively. When both
<italic>AOPs</italic>
are non-functional, the plant accumulates the precursor methylsulfinyl alkyl GSL. We identified three
<italic>AOP2</italic>
genes in
<italic>B. oleracea</italic>
(
<xref ref-type="fig" rid="f5">Fig. 5d</xref>
), but two are non-functional due to the presence of premature stop codons. In contrast, all three
<italic>AOP2</italic>
copies are functional in
<italic>B. rapa</italic>
<xref ref-type="bibr" rid="b44">44</xref>
. No
<italic>AOP3</italic>
homologue has been identified in
<italic>Brassica</italic>
. This analysis supports GSL content surveys and explains why glucoraphanin is abundant in
<italic>B. oleracea</italic>
, but not in
<italic>B. rapa</italic>
.</p>
</sec>
</sec>
<sec disp-level="1" sec-type="discussion">
<title>Discussion</title>
<p>The
<italic>Brassica</italic>
genomes experienced WGT
<xref ref-type="bibr" rid="b11">11</xref>
<xref ref-type="bibr" rid="b12">12</xref>
<xref ref-type="bibr" rid="b25">25</xref>
followed by massive gene loss and frequent reshuffling of triplicated genomic blocks. Analysis of retained or lost genes following triplication identified over-retention of genes for metabolic pathways such as oxidative phosphorylation, carbon fixation, photosynthesis and circadian rhythm
<xref ref-type="bibr" rid="b32">32</xref>
, which may contribute to polyploid vigour
<xref ref-type="bibr" rid="b45">45</xref>
. Fewer lost genes were observed in the less-fractionated subgenome, possibly due to expression dominance as reported in maize
<xref ref-type="bibr" rid="b46">46</xref>
.</p>
<p>Gene expression analysis revealed extensive divergence and AS variants between duplicate genes. This subfunctionalization or neofunctionalization of duplicated genes provides genetic novelty and a basis for species evolution and new species formation. For example, TF genes that are considered to be conserved still have more than 38% of paralogous pairs showing differential expression across tissues although this percentage is lower than the average from all duplicated genes. Gene expression variation may contribute to an increased complexity of regulatory networks after polyploidization.</p>
<p>The multi-layered asymmetrical evolution of the
<italic>Brassica</italic>
genomes revealed in this study suggests mechanisms of polyploid genome evolution underlying speciation. Asymmetrical gene loss between the
<italic>Brassica</italic>
subgenomes, the asymmetrical amplification of TEs and tandem duplications, preferential enrichment of genes for certain pathways or functional categories, and divergence in DNA sequence and expression, including alternative splicing among a large number of paralogous and orthologous genes, together shape a route for genome evolution after polyploidization. A molecular model of polyploid genome evolution through these asymmetrical mechanisms is summarized in
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 2</xref>
. The additional information of accessible large datasets and resource was provided in
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 49</xref>
.</p>
<p>In summary, the
<italic>B. oleracea</italic>
genomic sequence, its features in comparison with its relatives, and the genome evolution mechanisms revealed, provide a fundamental resource for the genetic improvement of important traits, including components of GSLs for anticancer pharmaceuticals. The genome sequence has also laid a foundation for investigation of the tremendous range of morphological variation in
<italic>B. oleracea</italic>
as well as supporting genome analysis of the important allotetraploid crop
<italic>B. napus</italic>
(canola or rapeseed).</p>
</sec>
<sec disp-level="1" sec-type="methods">
<title>Methods</title>
<sec disp-level="2">
<title>Sample preparation and genome sequencing</title>
<p>A
<italic>B. oleracea</italic>
sp.
<italic>capitata</italic>
homozygous line 02–12 with elite agronomic characters and widely used as a parent in hybrid breeding was used for the reference genome sequencing (
<xref ref-type="supplementary-material" rid="S1">Supplementary Methods</xref>
). The seedlings of plants were collected and genomic DNA was extracted from leaves with a standard CTAB extraction method. Illumina Genome Analyser whole-genome shotgun sequencing combined with GS FLX Titanium sequencing technology was used to achieve a
<italic>B. oleracea</italic>
draft genome. We constructed a total of 35 paired-end sequencing libraries with insertion sizes of 180 base pairs (bp), 200 bp, 350 bp, 500 bp, 650 bp, 800 bp, 2 kb, 5 kb, 10 kb and 20 kb following a standard protocol provided by Illumina (
<xref ref-type="supplementary-material" rid="S1">Supplementary Methods</xref>
). Sequencing was performed using Illumina Genome Analyser II according to the manufacturer’s standard protocol.</p>
</sec>
<sec disp-level="2">
<title>Genome assembly and validation</title>
<p>We took a series of checking and filtering measures on reads following the Illumina-Pipeline, and low-quality reads, adaptor sequences and duplicates were removed (
<xref ref-type="supplementary-material" rid="S1">Supplementary Methods</xref>
). The reads after the above filtering and correction steps were used to perform assembly including contig construction, scaffold construction and gap filling using SOAPdenovo1.04 (
<ext-link ext-link-type="uri" xlink:href="http://soap.genomics.org.cn/">http://soap.genomics.org.cn/</ext-link>
) (
<xref ref-type="supplementary-material" rid="S1">Supplementary Methods</xref>
). Finally, we used 20-kb-span paired-end data generated from the 454 platform and 105-kb-span BAC-end data downloaded from NCBI (
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov/nucgss?term=BOT01">http://www.ncbi.nlm.nih.gov/nucgss?term=BOT01</ext-link>
) to extend scaffold length (
<xref ref-type="supplementary-material" rid="S1">Supplementary Methods</xref>
). The
<italic>B. oleracea</italic>
genome size was estimated using the distribution curve of 17-mer frequency (
<xref ref-type="supplementary-material" rid="S1">Supplementary Methods</xref>
).</p>
<p>To anchor the assembled scaffolds onto pseudo-chromosomes, we developed a genetic map using a double haploid population with 165 lines derived from a F1 cross between two homozygous lines 02–12 (sequenced) and 0188 (re-sequenced). The genetic map contains 1,227 simple sequence repeat markers and single nucleotide polymorphism markers in nine linkage groups, which span a total of 1,180.2 cM with an average of 0.96 cM between the adjacent loci
<xref ref-type="bibr" rid="b16">16</xref>
. To position these markers to the scaffolds, marker primers were compared with the scaffold sequences using e-PCR (parameters -n2 -g1 –d 400–800), with the best-scoring match chosen in case of multiple matches.</p>
<p>We validated the
<italic>B. oleracea</italic>
genome assembly by comparing it with the published physical map constructed using 73,728 BAC clones (
<ext-link ext-link-type="uri" xlink:href="http://lulu.pgml.uga.edu/fpc/WebAGCoL/%20brassica/WebFPC/">http://lulu.pgml.uga.edu/fpc/WebAGCoL/brassica/WebFPC/</ext-link>
)
<xref ref-type="bibr" rid="b17">17</xref>
and a genetic map from
<italic>B. napus</italic>
<xref ref-type="bibr" rid="b18">18</xref>
(
<xref ref-type="supplementary-material" rid="S1">Supplementary Methods</xref>
). Eleven Sanger-sequenced
<italic>B. oleracea</italic>
BAC sequences were used to assess the assembled genome using MUMmer-3.22 (
<ext-link ext-link-type="uri" xlink:href="http://mummer.sourceforge.net/">http://mummer.sourceforge.net/</ext-link>
) (
<xref ref-type="supplementary-material" rid="S1">Supplementary Methods</xref>
).</p>
</sec>
<sec disp-level="2">
<title>Gene prediction and annotation</title>
<p>Gene prediction was performed on the genome sequence after pre-masking for TEs (
<xref ref-type="supplementary-material" rid="S1">Supplementary Methods</xref>
). Gene prediction was processed with the following steps: (i)
<italic>De novo</italic>
gene prediction used AUGUSTUS
<xref ref-type="bibr" rid="b47">47</xref>
and GlimmerHMM
<xref ref-type="bibr" rid="b48">48</xref>
with parameters trained from
<italic>A. thaliana</italic>
genes. (ii) For homologue prediction, we mapped the protein sequences from
<italic>A. thaliana</italic>
,
<italic>O. sativa</italic>
,
<italic>C. papaya</italic>
,
<italic>V. vinifera</italic>
and
<italic>P. trichocarpa</italic>
to the
<italic>B. oleracea</italic>
genome using tblastn with an
<italic>E</italic>
-value cutoff of 10
<sup>−5</sup>
, and used GeneWise (Version 2.2.0)
<xref ref-type="bibr" rid="b49">49</xref>
for gene annotation. (iii) For EST-aided annotation, the
<italic>Brassica</italic>
ESTs from NCBI were aligned to the
<italic>B. oleracea</italic>
genome using BLAT (identity ≥0.95, coverage ≥0.90) and further assembled using PASA
<xref ref-type="bibr" rid="b50">50</xref>
. Finally, all the predictions were combined using GLEAN
<xref ref-type="bibr" rid="b51">51</xref>
to produce the consensus gene sets.</p>
<p>Functional annotation of
<italic>B. oleracea</italic>
genes was based on comparison with SwissProt, TrEMBL, Interproscan and KEGG proteins databases. The tRNA genes were identified by tRNAscan-SE using default parameters
<xref ref-type="bibr" rid="b52">52</xref>
. Then rRNAs were compared with the genome using blastn. Other non-coding RNAs, including miRNA, snRNA, were identified using INFERNAL
<xref ref-type="bibr" rid="b53">53</xref>
by comparison with the Rfam database.</p>
</sec>
<sec disp-level="2">
<title>TE annotation</title>
<p>LTR-RTs were initially identified using the LTR_STRUC
<xref ref-type="bibr" rid="b54">54</xref>
programme, and then manually annotated and checked based on structure characteristics and sequence homology. Refined intact elements were then used to identify other intact elements and solo LTRs
<xref ref-type="bibr" rid="b55">55</xref>
. All the LTR-RTs with clear boundaries and insertion sites were classified into superfamilies (
<italic>Copia</italic>
-like,
<italic>Gypsy</italic>
-like and Unclassified retroelements) and families relying on the internal protein sequence, 5′, 3′ LTRs, primer-binding site and polypurine tracts. Non-LTR-RTs (Long interspersed nuclear element, LINE and Short interspersed nuclear element, SINE) and DNA transposons (
<italic>Tc1-Mariner</italic>
,
<italic>hAT</italic>
,
<italic>Mutator</italic>
,
<italic>Pong</italic>
,
<italic>PIF-Harbinger</italic>
, CACTA and miniature inverted repeat TE) were identified using conserved protein domains of reverse transposase or transposase as queries to search against the assembled genome using tblastn. Further upstream and downstream sequences of the candidate matches were compared with each other to define their boundaries and structure
<xref ref-type="bibr" rid="b56">56</xref>
.
<italic>Helitron</italic>
elements were identified by the HelSearch 1.0 programme
<xref ref-type="bibr" rid="b57">57</xref>
and manually inspected. All the TE categories were identified according to the criteria described previously
<xref ref-type="bibr" rid="b58">58</xref>
. Typical elements of each category were selected and mixed together as a database for RepeatMasker
<xref ref-type="bibr" rid="b59">59</xref>
analysis. Around 20 × coverage of shotgun reads randomly sampled from the two
<italic>Brassica</italic>
genomes were masked by the same TE data set to confirm the different accumulation of TEs between the two genomes.</p>
</sec>
<sec disp-level="2">
<title>Syntenic block construction of
<italic>B. oleracea</italic>
and its relatives</title>
<p>We used the same strategy as described in the
<italic>B. rapa</italic>
genome paper
<xref ref-type="bibr" rid="b11">11</xref>
to construct syntenic blocks between species (
<xref ref-type="supplementary-material" rid="S1">Supplementary Methods</xref>
). The all-against-all blastp comparison (
<italic>E</italic>
-value ≤ 1e–5) provided the gene pairs for syntenic clustering determined by MCScan (MATCH_SCORE: 50, MATCH_SIZE: 5, GAP_SCORE: –3, E_VALUE: 1E–05). As applied in
<italic>B. rapa</italic>
<xref ref-type="bibr" rid="b11">11</xref>
, we assigned and partitioned multiple
<italic>B. oleracea</italic>
or
<italic>B. rapa</italic>
chromosomal segments that matched the same
<italic>A. thaliana</italic>
segment (‘A to X’ numbering system in
<italic>A. thaliana</italic>
<xref ref-type="bibr" rid="b22">22</xref>
) into three subgenomes: LF, MF1 and MF2.</p>
</sec>
<sec disp-level="2">
<title>OrthoMCL clustering</title>
<p>To identify and estimate the number of potential orthologous gene families between
<italic>B. oleracea</italic>
,
<italic>B. rapa</italic>
,
<italic>A. thaliana</italic>
,
<italic>C. papaya</italic>
,
<italic>P. trichocarpa</italic>
,
<italic>V. vinifera</italic>
,
<italic>S. bicolor</italic>
and
<italic>O. sativa</italic>
, and also between
<italic>B. oleracea</italic>
and
<italic>B. rapa</italic>
, we applied the OrthoMCL pipeline
<xref ref-type="bibr" rid="b60">60</xref>
using standard settings (blastp
<italic>E</italic>
value <1 × 10
<sup>−5</sup>
and inflation factor =1.5) to compute the all-against-all similarities.</p>
</sec>
<sec disp-level="2">
<title>Phylogenetic analysis of gene families</title>
<p>We performed comparative analysis of trait-related gene families. Genes from grape, papaya and
<italic>Arabidopsis</italic>
were downloaded from the GenoScope database (
<ext-link ext-link-type="uri" xlink:href="http://www.genoscope.cns.fr/externe/GenomeBrowser/Vitis/">http://www.genoscope.cns.fr/externe/GenomeBrowser/Vitis/</ext-link>
), the Hawaii Papaya Genome Project (
<ext-link ext-link-type="uri" xlink:href="http://asgpb.mhpcc.hawaii.edu/papaya/">http://asgpb.mhpcc.hawaii.edu/papaya/</ext-link>
), and the Arabidopsis Information Resource (
<ext-link ext-link-type="uri" xlink:href="http://www.arabidopsis.org/">http://www.arabidopsis.org/</ext-link>
). Previously reported
<italic>Arabidopsis</italic>
and
<italic>Brassica</italic>
gene sequences were downloaded from TAIR (
<ext-link ext-link-type="uri" xlink:href="http://www.arabidopsis.org/">http://www.arabidopsis.org/</ext-link>
) and BRAD (
<ext-link ext-link-type="uri" xlink:href="http://brassicadb.org/brad/">http://brassicadb.org/brad/</ext-link>
). The protein sequences of the genes were used to determine homologues in grape, papaya,
<italic>Arabidopsis</italic>
,
<italic>B. oleracea</italic>
and
<italic>B. rapa</italic>
by performing blast comparisons with an
<italic>E</italic>
-value 1e–10. The Clustal
<xref ref-type="bibr" rid="b61">61</xref>
programs were used for multiple sequence alignment. Alignment of the small family of GI genes was performed using MEGA5
<xref ref-type="bibr" rid="b62">62</xref>
to conduct neighbour-joining analysis with default parameters and subjected to careful manual checks to remove highly divergent sequences from further analysis. While for other genes, often found in families of tens of genes, the phylogenetic analysis were performed by PhyML
<xref ref-type="bibr" rid="b63">63</xref>
, which can accommodate quite divergent sequences by implementing a maximal likelihood approach with initial analysis based on neighbour-joining method. During these analyses, we constructed trees using both CDS and protein sequence, and the protein-derived tree was used to show the phylogeny if not much incongruity was found. Bootstrapping was performed using 100 repetitive samplings for each gene family. All the inferred trees were displayed using MEGA5 (ref.
<xref ref-type="bibr" rid="b62">62</xref>
). The multiple sequence alignment of these families was provided as
<xref ref-type="supplementary-material" rid="S1">Supplementary Data 3</xref>
.</p>
</sec>
<sec disp-level="2">
<title>Differential expression of duplicated genes across tissues</title>
<p>RNA-seq reads were mapped to their respective locations on the reference genome using Tophat
<xref ref-type="bibr" rid="b64">64</xref>
. Uniquely aligned read counts were calculated for each gene for each tissue sample. We performed the exact conditional test of two Poisson rates on read counts of duplicated genes to test the differential expression of duplicated genes, according to the method applied in soybean
<xref ref-type="bibr" rid="b65">65</xref>
<xref ref-type="bibr" rid="b66">66</xref>
. For each duplicated gene pair (for example, genes A and B), read counts and gene length were denoted as Ea and La for gene A, and Eb and Lb for gene B, respectively. The read counts of the genes A and B were assumed to follow the Poisson distributions with rates
<italic>λA</italic>
=Ra × La and
<italic>λB</italic>
=Rb × Lb. Under the null hypothesis of equal expression of the genes A and B, that is, Ra=Rb, the conditional distribution of Ea given Ea+Eb=
<italic>k</italic>
follows a binomial distribution with success probability
<italic>P</italic>
=λa/(λa+λb)=La/(La+Lb). The
<italic>P</italic>
values were computed and further adjusted to maintain the false discovery rate at 0.05 across gene pairs using the Benjamini–Hochberg method
<xref ref-type="bibr" rid="b67">67</xref>
.</p>
</sec>
<sec disp-level="2">
<title>Statistical analysis</title>
<p>The average number of all retained orthologues in the three subgenomes was used to estimate the expected retained gene number in each block, and used together with the observed retained gene number, for the gene retention disparity statistics using the
<italic>χ</italic>
<sup>2</sup>
test. In the GO, IPR (Interproscan) or KEGG enrichment analyses of WGT or tandem genes, the
<italic>χ</italic>
<sup>2</sup>
test (
<italic>N</italic>
>5) or the Fisher’s exact test (
<italic>N</italic>
≤5) was used to detect significant differences between the proportion of (WGT or tandem) genes observed in each child GO, IPR or KEGG categories, and the expected overall proportion of (WGT or tandem) genes in the whole genome. Correlation of the gene numbers of WGT-derived paralogous genes with tandem genes in 938 GO terms was tested by Pearson correlation coefficients (
<xref ref-type="supplementary-material" rid="S1">Supplementary Figure 68</xref>
). The Benjamini–Hochberg false discovery rate was performed to adjust the
<italic>P</italic>
values
<xref ref-type="bibr" rid="b67">67</xref>
.</p>
</sec>
</sec>
<sec disp-level="1">
<title>Author contributions</title>
<p>I.B., B.C., D.E., Q.H., W.H., G.J.K., S.L., Y.L., J. Ma, A.H.P., J.C.P., I.A.P.P., JunW., XiaowuW., XiyinW. and T.-J.Y. are principal investigators (alphabetic order). B.C., W.H., A.H.P., JunW. and XiaowuW. are equally contributing senior authors. S.L., J.W., W.H., X.X. and Z.Y. planned and managed the project. S.L., C.T., A.H.P. and D.E., X.Y. and M.Z. wrote this manuscript and I.B., J. Ma., G.J.K., J.C.P., B.C., T.-J.Y., I.A.P.P., XiyinW., XiaowuW., K.L., Y.L., J.B. and A.G.S. made revision or edits or comments. J.W. (leader), W.H. (co-leader), JunW., L.Y., and Z.Y. performed DNA sequencing. L.Y. (leader), W.H. (co-leader), S.H., J.W., S.L. and J.Y. conducted genomic sequence assembly. S.H. (leader), XiyinW. (co-leader), J.Min, I.B., W.H., J.B., D.E., P.R., S.L., J.S., Y.L. and W.W. conducted scaffold anchoring to linkage maps and assembly validation. X.Y. (leader), J.Y. (co-leader), S.L., Q.Z., S.H. and J. Min performed annotation. C.T. (leader), Wanshun L., W.H., Y.L., C.L., W.W., J. Wu, S.L., C.D. and M.Z. performed transcriptome sequencing. S.L. conceived analysis of comparison and evolution. S.L. (leader), C.T., X.Y., ZhangyanW., C.L., S.H., J. Ma, J.Y., M.Z., Zhuo W., Q.Z., S.P., I.A.P.P., A.G.S., L.Y., I.B., G.J.K., J.C.P., XiaowuW., B.C., F.C., YinH., WenbinL. and X.Liang performed analysis of comparative genomics and evolution. J. Ma (leader), M.Z., Q.Z., C.T., S.L., B.C., S.H., H.B., C.L. and JianaL. conducted TE analysis. XiyinW. (leader), J.Y., T.-J.Y., ZhangyanW., L.W., J. Li, T.-H.L., JinpengW., H.J., X.T., X.L., M.G. and L.J. conducted gene family analysis. K.L. (leader), J.Y., S.L., C.T., H.L., H.G., S.P., D.Z., Z.F., Q.H., Xnfa W., C.Q., D.D., Z.H., Y.H., J.H., D.M., J.L., Z. Li, J.Z., L.X., Y.Zhou., Z.L. and Y.Zhang conducted trait-related gene analysis. A.H.P. (leader), XiyinW., D.J., Y.W. and T.-H.L. conducted gene conversion analysis. T.-J. Y. (leader), M.Z., P.S., B.-S.P., J.Ma, N.E.W., R.Q., X.L., J.Lee and H.H.K. conducted centromere analysis. C.T. (leader), S.L., X.Y., S.H., C.L., Zhangyan W., Q.Z., J.Y., J.T. and J.B. conducted tandemly duplicated gene analysis. ZhangyanW. and J.Y. performed data submission.</p>
</sec>
<sec disp-level="1">
<title>Additional information</title>
<p>
<bold>Accession codes:</bold>
Genome sequence data for
<italic>B. oleracea</italic>
have been deposited in the DDBJ/EMBL/GenBank nucleotide core database under the accession code AOIX00000000. Transcriptome sequence data for
<italic>B. rapa and B. oleracea</italic>
have been deposited in the DDBJ/EMBL/GenBank Sequence Read Archive (SRA) under the accession codes GSE
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="43245">43245</ext-link>
and GSE
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="42891">42891</ext-link>
respectively.</p>
<p>
<bold>How to cite this article:</bold>
Liu, S.
<italic>et al</italic>
. The
<italic>Brassica oleracea</italic>
genome reveals the asymmetrical evolution of polyploid genomes.
<italic>Nat. Commun.</italic>
5:3930 doi: 10.1038/ncomms4930 (2014).</p>
</sec>
<sec sec-type="supplementary-material" id="S1">
<title>Supplementary Material</title>
<supplementary-material id="d33e19" content-type="local-data">
<caption>
<title>Supplementary Figures, Tables, Methods and References</title>
<p>Supplementary Figures 1-68, Supplementary Tables 1-49, Supplementary Methods and Supplementary References</p>
</caption>
<media xlink:href="ncomms4930-s1.pdf"></media>
</supplementary-material>
<supplementary-material id="d33e25" content-type="local-data">
<caption>
<title>Supplementary Data 1</title>
<p>The 23,823
<italic>Brassica oleracea-B. rapa</italic>
orthologous gene pairs and those with different exon numbers</p>
</caption>
<media xlink:href="ncomms4930-s2.xls"></media>
</supplementary-material>
<supplementary-material id="d33e34" content-type="local-data">
<caption>
<title>Supplementary Data 2</title>
<p>The genes for biosynthesis and breakdown of glucosinolates (GSL) in
<italic>B. rapa</italic>
and
<italic>B. oleracea</italic>
.</p>
</caption>
<media xlink:href="ncomms4930-s3.xls"></media>
</supplementary-material>
<supplementary-material id="d33e46" content-type="local-data">
<caption>
<title>Supplementary Data 3</title>
<p>The multiple sequence alignment of gene families corresponding to Figure 5 and Supplementary Figures 46-61.</p>
</caption>
<media xlink:href="ncomms4930-s4.xls"></media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>This work was supported by the National Basic Research Program of China (2011CB109300, 2012CB113906, 2012CB723007 and 2006CB101600), the National Natural Science Foundation of China (3067134, 30671119 and 31301039), the National High Technology Research and Development Program (2013AA102602, 2012AA100105 and 2012AA100104), the China Agriculture Research System (CARS-13 and CARS-25-A), the Core Research Budget of the Non-profit Governmental Research Institution (1610172010005), the Special Fund for Agro-scientific Research in the Public Interest (201103016), China–Australia collaboration project (2010DFA31730), UK Biotechnology and Biological Sciences Research Council (BB/E017363/1), the Australian Research Council (LP0882095, LP0883462, DP0985953 and LP110100200), the Next-Generation BioGreen 21 Program (PJ008944 and PJ008202), and the US National Science Foundation (IOS 0638418, DBI 0849896, MCB 1021718).</p>
</ack>
<ref-list>
<ref id="b1">
<mixed-citation publication-type="other">U.S. Department of Agriculture, Agricultural Research Service.
<article-title>USDA National Nutrient Database for Standard Reference, Release 26-Vegetables and Vegetable Products</article-title>
. (
<year>2013</year>
).</mixed-citation>
</ref>
<ref id="b2">
<mixed-citation publication-type="journal">
<name>
<surname>Kopsell</surname>
<given-names>D. A.</given-names>
</name>
&
<name>
<surname>Kopsell</surname>
<given-names>D. E.</given-names>
</name>
<article-title>Accumulation and bioavailability of dietary carotenoids in vegetable crops</article-title>
.
<source>Trends Plant Sci.</source>
<volume>11</volume>
,
<fpage>499</fpage>
<lpage>507</lpage>
(
<year>2006</year>
).
<pub-id pub-id-type="pmid">16949856</pub-id>
</mixed-citation>
</ref>
<ref id="b3">
<mixed-citation publication-type="journal">
<name>
<surname>Halkier</surname>
<given-names>B. A.</given-names>
</name>
&
<name>
<surname>Gershenzon</surname>
<given-names>J.</given-names>
</name>
<article-title>Biology and biochemistry of glucosinolates</article-title>
.
<source>Annu. Rev. Plant Biol.</source>
<volume>57</volume>
,
<fpage>303</fpage>
<lpage>333</lpage>
(
<year>2006</year>
).
<pub-id pub-id-type="pmid">16669764</pub-id>
</mixed-citation>
</ref>
<ref id="b4">
<mixed-citation publication-type="journal">
<name>
<surname>Khwaja</surname>
<given-names>F. S.</given-names>
</name>
,
<name>
<surname>Wynne</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Posey</surname>
<given-names>I.</given-names>
</name>
&
<name>
<surname>Djakiew</surname>
<given-names>D.</given-names>
</name>
<article-title>3,3'-diindolylmethane induction of p75NTR-dependent cell death via the p38 mitogen-activated protein kinase pathway in prostate cancer cells</article-title>
.
<source>Cancer Prev. Res. (Phila)</source>
<volume>2</volume>
,
<fpage>566</fpage>
<lpage>571</lpage>
(
<year>2009</year>
).
<pub-id pub-id-type="pmid">19470787</pub-id>
</mixed-citation>
</ref>
<ref id="b5">
<mixed-citation publication-type="journal">
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
.
<article-title>Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells</article-title>
.
<source>Clin. Cancer Res.</source>
<volume>16</volume>
,
<fpage>2580</fpage>
<lpage>2590</lpage>
(
<year>2010</year>
).
<pub-id pub-id-type="pmid">20388854</pub-id>
</mixed-citation>
</ref>
<ref id="b6">
<mixed-citation publication-type="journal">
<name>
<surname>Higdon</surname>
<given-names>J. V.</given-names>
</name>
,
<name>
<surname>Delage</surname>
<given-names>B.</given-names>
</name>
,
<name>
<surname>Williams</surname>
<given-names>D. E.</given-names>
</name>
&
<name>
<surname>Dashwood</surname>
<given-names>R. H.</given-names>
</name>
<article-title>Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis</article-title>
.
<source>Pharmacol Res.</source>
<volume>55</volume>
,
<fpage>224</fpage>
<lpage>236</lpage>
(
<year>2007</year>
).
<pub-id pub-id-type="pmid">17317210</pub-id>
</mixed-citation>
</ref>
<ref id="b7">
<mixed-citation publication-type="journal">
<name>
<surname>Warwick</surname>
<given-names>S. I.</given-names>
</name>
,
<name>
<surname>Francis</surname>
<given-names>A.</given-names>
</name>
&
<name>
<surname>Al-Shehbaz</surname>
<given-names>I. A.</given-names>
</name>
<article-title>Brassicaceae: species checklist and database on CD-Rom</article-title>
.
<source>Pl. Syst. Evol.</source>
<volume>259</volume>
,
<fpage>249</fpage>
<lpage>258</lpage>
(
<year>2006</year>
).</mixed-citation>
</ref>
<ref id="b8">
<mixed-citation publication-type="journal">
<article-title>
<ext-link ext-link-type="uri" xlink:href="http://en.wikipedia.org/wiki/woo_jang-choon">Nagaharu, U. Genome analysis in
<italic>Brassica</italic>
with special reference to the experimental formation of
<italic>B. napus</italic>
and peculiar mode of fertilication</ext-link>
</article-title>
.
<source>Jap. J. Bot.</source>
<volume>7</volume>
,
<fpage>389</fpage>
<lpage>452</lpage>
(
<year>1935</year>
).</mixed-citation>
</ref>
<ref id="b9">
<mixed-citation publication-type="journal">
<name>
<surname>Bowers</surname>
<given-names>J. E.</given-names>
</name>
,
<name>
<surname>Chapman</surname>
<given-names>B. A.</given-names>
</name>
,
<name>
<surname>Rong</surname>
<given-names>J.</given-names>
</name>
&
<name>
<surname>Paterson</surname>
<given-names>A. H.</given-names>
</name>
<article-title>Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events</article-title>
.
<source>Nature</source>
<volume>422</volume>
,
<fpage>433</fpage>
<lpage>438</lpage>
(
<year>2003</year>
).
<pub-id pub-id-type="pmid">12660784</pub-id>
</mixed-citation>
</ref>
<ref id="b10">
<mixed-citation publication-type="journal">
<name>
<surname>Jiao</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
.
<article-title>Ancestral polyploidy in seed plants and angiosperms</article-title>
.
<source>Nature</source>
<volume>473</volume>
,
<fpage>97</fpage>
<lpage>100</lpage>
(
<year>2011</year>
).
<pub-id pub-id-type="pmid">21478875</pub-id>
</mixed-citation>
</ref>
<ref id="b11">
<mixed-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<etal></etal>
.
<article-title>The genome of the mesopolyploid crop species
<italic>Brassica rapa</italic>
</article-title>
.
<source>Nat. Genet.</source>
<volume>43</volume>
,
<fpage>1035</fpage>
<lpage>1039</lpage>
(
<year>2011</year>
).
<pub-id pub-id-type="pmid">21873998</pub-id>
</mixed-citation>
</ref>
<ref id="b12">
<mixed-citation publication-type="journal">
<name>
<surname>Lysak</surname>
<given-names>M. A.</given-names>
</name>
,
<name>
<surname>Koch</surname>
<given-names>M. A.</given-names>
</name>
,
<name>
<surname>Pecinka</surname>
<given-names>A.</given-names>
</name>
&
<name>
<surname>Schubert</surname>
<given-names>I.</given-names>
</name>
<article-title>Chromosome triplication found across the tribe Brassiceae</article-title>
.
<source>Genome Res.</source>
<volume>15</volume>
,
<fpage>516</fpage>
<lpage>525</lpage>
(
<year>2005</year>
).
<pub-id pub-id-type="pmid">15781573</pub-id>
</mixed-citation>
</ref>
<ref id="b13">
<mixed-citation publication-type="journal">
<name>
<surname>Cheng</surname>
<given-names>F.</given-names>
</name>
<etal></etal>
.
<article-title>Deciphering the diploid ancestral genome of the Mesohexaploid
<italic>Brassica rapa</italic>
</article-title>
.
<source>Plant Cell</source>
<volume>25</volume>
,
<fpage>1541</fpage>
<lpage>1554</lpage>
(
<year>2013</year>
).
<pub-id pub-id-type="pmid">23653472</pub-id>
</mixed-citation>
</ref>
<ref id="b14">
<mixed-citation publication-type="journal">
<name>
<surname>Town</surname>
<given-names>C. D.</given-names>
</name>
<etal></etal>
.
<article-title>Comparative genomics of
<italic>Brassica oleracea</italic>
and
<italic>Arabidopsis thaliana</italic>
reveal gene loss, fragmentation, and dispersal after polyploidy</article-title>
.
<source>Plant Cell</source>
<volume>18</volume>
,
<fpage>1348</fpage>
<lpage>1359</lpage>
(
<year>2006</year>
).
<pub-id pub-id-type="pmid">16632643</pub-id>
</mixed-citation>
</ref>
<ref id="b15">
<mixed-citation publication-type="journal">
<name>
<surname>Mun</surname>
<given-names>J. H.</given-names>
</name>
<etal></etal>
.
<article-title>Genome-wide comparative analysis of the
<italic>Brassica rapa</italic>
gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication</article-title>
.
<source>Genome Biol.</source>
<volume>10</volume>
,
<fpage>R111</fpage>
(
<year>2009</year>
).
<pub-id pub-id-type="pmid">19821981</pub-id>
</mixed-citation>
</ref>
<ref id="b16">
<mixed-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>W.</given-names>
</name>
<etal></etal>
.
<article-title>Construction and analysis of a high-density genetic linkage map in cabbage (
<italic>Brassica oleracea</italic>
L.
<italic>var. capitata</italic>
)</article-title>
.
<source>BMC Genomics</source>
<volume>13</volume>
,
<fpage>523</fpage>
(
<year>2012</year>
).
<pub-id pub-id-type="pmid">23033896</pub-id>
</mixed-citation>
</ref>
<ref id="b17">
<mixed-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<etal></etal>
.
<article-title>A physical map of
<italic>Brassica oleracea</italic>
shows complexity of chromosomal changes following recursive paleopolyploidizations</article-title>
.
<source>BMC Genomics</source>
<volume>12</volume>
,
<fpage>470</fpage>
(
<year>2011</year>
).
<pub-id pub-id-type="pmid">21955929</pub-id>
</mixed-citation>
</ref>
<ref id="b18">
<mixed-citation publication-type="journal">
<name>
<surname>Bancroft</surname>
<given-names>I.</given-names>
</name>
<etal></etal>
.
<article-title>Dissecting the genome of the polyploid crop oilseed rape by transcriptome sequencing</article-title>
.
<source>Nat. Biotechnol.</source>
<volume>29</volume>
,
<fpage>762</fpage>
<lpage>766</lpage>
(
<year>2011</year>
).
<pub-id pub-id-type="pmid">21804563</pub-id>
</mixed-citation>
</ref>
<ref id="b19">
<mixed-citation publication-type="journal">Arabidopsis Genome and Initiative.
<article-title>Analysis of the genome sequence of the flowering plant
<italic>Arabidopsis thaliana</italic>
</article-title>
.
<source>Nature</source>
<volume>408</volume>
,
<fpage>796</fpage>
<lpage>815</lpage>
(
<year>2000</year>
).
<pub-id pub-id-type="pmid">11130711</pub-id>
</mixed-citation>
</ref>
<ref id="b20">
<mixed-citation publication-type="journal">
<name>
<surname>Schranz</surname>
<given-names>M. E.</given-names>
</name>
,
<name>
<surname>Lysak</surname>
<given-names>M. A.</given-names>
</name>
&
<name>
<surname>Mitchell-Olds</surname>
<given-names>T.</given-names>
</name>
<article-title>The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes</article-title>
.
<source>Trends Plant Sci.</source>
<volume>11</volume>
,
<fpage>535</fpage>
<lpage>542</lpage>
(
<year>2006</year>
).
<pub-id pub-id-type="pmid">17029932</pub-id>
</mixed-citation>
</ref>
<ref id="b21">
<mixed-citation publication-type="journal">
<name>
<surname>Woodhouse</surname>
<given-names>M. R.</given-names>
</name>
<etal></etal>
.
<article-title>Following tetraploidy in maize, a short deletion mechanism removed genes preferentially from one of the two homologs</article-title>
.
<source>PLoS Biol.</source>
<volume>8</volume>
,
<fpage>e1000409</fpage>
(
<year>2010</year>
).
<pub-id pub-id-type="pmid">20613864</pub-id>
</mixed-citation>
</ref>
<ref id="b22">
<mixed-citation publication-type="journal">
<name>
<surname>Devos</surname>
<given-names>K. M.</given-names>
</name>
,
<name>
<surname>Brown</surname>
<given-names>J. K.</given-names>
</name>
&
<name>
<surname>Bennetzen</surname>
<given-names>J. L.</given-names>
</name>
<article-title>Genome size reduction through illegitimate recombination counteracts genome expansion in
<italic>Arabidopsis</italic>
</article-title>
.
<source>Genome Res.</source>
<volume>12</volume>
,
<fpage>1075</fpage>
<lpage>1079</lpage>
(
<year>2002</year>
).
<pub-id pub-id-type="pmid">12097344</pub-id>
</mixed-citation>
</ref>
<ref id="b23">
<mixed-citation publication-type="journal">
<name>
<surname>Lysak</surname>
<given-names>M. A.</given-names>
</name>
,
<name>
<surname>Cheung</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Kitschke</surname>
<given-names>M.</given-names>
</name>
&
<name>
<surname>Bures</surname>
<given-names>P.</given-names>
</name>
<article-title>Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size</article-title>
.
<source>Plant Physiol.</source>
<volume>145</volume>
,
<fpage>402</fpage>
<lpage>410</lpage>
(
<year>2007</year>
).
<pub-id pub-id-type="pmid">17720758</pub-id>
</mixed-citation>
</ref>
<ref id="b24">
<mixed-citation publication-type="journal">
<name>
<surname>Panjabi</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
.
<article-title>Comparative mapping of
<italic>Brassica juncea</italic>
and
<italic>Arabidopsis thaliana</italic>
using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C
<italic>Brassica</italic>
genomes</article-title>
.
<source>BMC Genomics</source>
<volume>9</volume>
,
<fpage>113</fpage>
(
<year>2008</year>
).
<pub-id pub-id-type="pmid">18315867</pub-id>
</mixed-citation>
</ref>
<ref id="b25">
<mixed-citation publication-type="journal">
<name>
<surname>Parkin</surname>
<given-names>I. A.</given-names>
</name>
<etal></etal>
.
<article-title>Segmental structure of the
<italic>Brassica napus</italic>
genome based on comparative analysis with
<italic>Arabidopsis thaliana</italic>
</article-title>
.
<source>Genetics</source>
<volume>171</volume>
,
<fpage>765</fpage>
<lpage>781</lpage>
(
<year>2005</year>
).
<pub-id pub-id-type="pmid">16020789</pub-id>
</mixed-citation>
</ref>
<ref id="b26">
<mixed-citation publication-type="journal">
<name>
<surname>Wu</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
.
<article-title>The genome of the pear (
<italic>Pyrus bretschneideri</italic>
Rehd.)</article-title>
.
<source>Genome Res.</source>
<volume>23</volume>
,
<fpage>396</fpage>
<lpage>408</lpage>
(
<year>2012</year>
).
<pub-id pub-id-type="pmid">23149293</pub-id>
</mixed-citation>
</ref>
<ref id="b27">
<mixed-citation publication-type="journal">The Tomato Genome Consortium.
<article-title>The tomato genome sequence provides insights into fleshy fruit evolution</article-title>
.
<source>Nature</source>
<volume>485</volume>
,
<fpage>635</fpage>
<lpage>641</lpage>
(
<year>2012</year>
).
<pub-id pub-id-type="pmid">22660326</pub-id>
</mixed-citation>
</ref>
<ref id="b28">
<mixed-citation publication-type="journal">
<name>
<surname>Cheung</surname>
<given-names>F.</given-names>
</name>
<etal></etal>
.
<article-title>Comparative analysis between homoeologous genome segments of
<italic>Brassica napus</italic>
and its progenitor species reveals extensive sequence-level divergence</article-title>
.
<source>Plant Cell</source>
<volume>21</volume>
,
<fpage>1912</fpage>
<lpage>1928</lpage>
(
<year>2009</year>
).
<pub-id pub-id-type="pmid">19602626</pub-id>
</mixed-citation>
</ref>
<ref id="b29">
<mixed-citation publication-type="journal">
<name>
<surname>Freeling</surname>
<given-names>M.</given-names>
</name>
<article-title>Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition</article-title>
.
<source>Annu. Rev. Plant Biol.</source>
<volume>60</volume>
,
<fpage>433</fpage>
<lpage>453</lpage>
(
<year>2009</year>
).
<pub-id pub-id-type="pmid">19575588</pub-id>
</mixed-citation>
</ref>
<ref id="b30">
<mixed-citation publication-type="journal">
<name>
<surname>Sankoff</surname>
<given-names>D.</given-names>
</name>
,
<name>
<surname>Zheng</surname>
<given-names>C.</given-names>
</name>
&
<name>
<surname>Zhu</surname>
<given-names>Q.</given-names>
</name>
<article-title>The collapse of gene complement following whole genome duplication</article-title>
.
<source>BMC Genomics</source>
<volume>11</volume>
,
<fpage>313</fpage>
(
<year>2010</year>
).
<pub-id pub-id-type="pmid">20482863</pub-id>
</mixed-citation>
</ref>
<ref id="b31">
<mixed-citation publication-type="journal">
<name>
<surname>Woodhouse</surname>
<given-names>M. R.</given-names>
</name>
,
<name>
<surname>Tang</surname>
<given-names>H.</given-names>
</name>
&
<name>
<surname>Freeling</surname>
<given-names>M.</given-names>
</name>
<article-title>Different gene families in
<italic>Arabidopsis thaliana</italic>
transposed in different epochs and at different frequencies throughout the rosids</article-title>
.
<source>Plant Cell</source>
<volume>23</volume>
,
<fpage>4241</fpage>
<lpage>4253</lpage>
(
<year>2011</year>
).
<pub-id pub-id-type="pmid">22180627</pub-id>
</mixed-citation>
</ref>
<ref id="b32">
<mixed-citation publication-type="journal">
<name>
<surname>Lou</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
.
<article-title>Preferential retention of circadian clock genes during diploidization following whole genome triplication in
<italic>Brassica rapa</italic>
</article-title>
.
<source>Plant Cell</source>
<volume>24</volume>
,
<fpage>2415</fpage>
<lpage>2426</lpage>
(
<year>2012</year>
).
<pub-id pub-id-type="pmid">22685167</pub-id>
</mixed-citation>
</ref>
<ref id="b33">
<mixed-citation publication-type="journal">
<name>
<surname>Doyle</surname>
<given-names>J. J.</given-names>
</name>
<etal></etal>
.
<article-title>Evolutionary genetics of genome merger and doubling in plants</article-title>
.
<source>Annu. Rev. Genet.</source>
<volume>42</volume>
,
<fpage>443</fpage>
<lpage>461</lpage>
(
<year>2008</year>
).
<pub-id pub-id-type="pmid">18983261</pub-id>
</mixed-citation>
</ref>
<ref id="b34">
<mixed-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
,
<name>
<surname>Tang</surname>
<given-names>H.</given-names>
</name>
&
<name>
<surname>Paterson</surname>
<given-names>A. H.</given-names>
</name>
<article-title>Seventy million years of concerted evolution of a homoeologous chromosome pair, in parallel, in major Poaceae lineages</article-title>
.
<source>Plant Cell</source>
<volume>23</volume>
,
<fpage>27</fpage>
<lpage>37</lpage>
(
<year>2011</year>
).
<pub-id pub-id-type="pmid">21266659</pub-id>
</mixed-citation>
</ref>
<ref id="b35">
<mixed-citation publication-type="journal">
<name>
<surname>Syed</surname>
<given-names>N. H.</given-names>
</name>
,
<name>
<surname>Kalyna</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Marquez</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Barta</surname>
<given-names>A.</given-names>
</name>
&
<name>
<surname>Brown</surname>
<given-names>J. W.</given-names>
</name>
<article-title>Alternative splicing in plants--coming of age</article-title>
.
<source>Trends Plant Sci.</source>
<volume>17</volume>
,
<fpage>616</fpage>
<lpage>623</lpage>
(
<year>2012</year>
).
<pub-id pub-id-type="pmid">22743067</pub-id>
</mixed-citation>
</ref>
<ref id="b36">
<mixed-citation publication-type="journal">
<name>
<surname>Gabut</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
.
<article-title>An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming</article-title>
.
<source>Cell</source>
<volume>147</volume>
,
<fpage>132</fpage>
<lpage>146</lpage>
(
<year>2011</year>
).
<pub-id pub-id-type="pmid">21924763</pub-id>
</mixed-citation>
</ref>
<ref id="b37">
<mixed-citation publication-type="journal">
<name>
<surname>Zhang</surname>
<given-names>P. G.</given-names>
</name>
,
<name>
<surname>Huang</surname>
<given-names>S. Z.</given-names>
</name>
,
<name>
<surname>Pin</surname>
<given-names>A. L.</given-names>
</name>
&
<name>
<surname>Adams</surname>
<given-names>K. L.</given-names>
</name>
<article-title>Extensive divergence in alternative splicing patterns after gene and genome duplication during the evolutionary history of
<italic>Arabidopsis</italic>
</article-title>
.
<source>Mol. Biol. Evol.</source>
<volume>27</volume>
,
<fpage>1686</fpage>
<lpage>1697</lpage>
(
<year>2010</year>
).
<pub-id pub-id-type="pmid">20185454</pub-id>
</mixed-citation>
</ref>
<ref id="b38">
<mixed-citation publication-type="journal">
<name>
<surname>Filichkin</surname>
<given-names>S. A.</given-names>
</name>
<etal></etal>
.
<article-title>Genome-wide mapping of alternative splicing in
<italic>Arabidopsis thaliana</italic>
</article-title>
.
<source>Genome Res.</source>
<volume>20</volume>
,
<fpage>45</fpage>
<lpage>58</lpage>
(
<year>2010</year>
).
<pub-id pub-id-type="pmid">19858364</pub-id>
</mixed-citation>
</ref>
<ref id="b39">
<mixed-citation publication-type="journal">
<name>
<surname>Yang</surname>
<given-names>B.</given-names>
</name>
&
<name>
<surname>Quiros</surname>
<given-names>C. F.</given-names>
</name>
<article-title>Survey of glucosinolate variation in leaves of
<italic>Brassica rapa</italic>
crops</article-title>
.
<source>Genet. Res. Crop Evol.</source>
<volume>57</volume>
,
<fpage>1079</fpage>
<lpage>1089</lpage>
(
<year>2010</year>
).</mixed-citation>
</ref>
<ref id="b40">
<mixed-citation publication-type="journal">
<name>
<surname>Benderoth</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Pfalz</surname>
<given-names>M.</given-names>
</name>
&
<name>
<surname>Kroymann</surname>
<given-names>J.</given-names>
</name>
<article-title>Methylthioalkylmalate synthases: genetics, ecology and evolution</article-title>
.
<source>Phytochem. Rev.</source>
<volume>8</volume>
,
<fpage>255</fpage>
<lpage>268</lpage>
(
<year>2009</year>
).</mixed-citation>
</ref>
<ref id="b41">
<mixed-citation publication-type="journal">
<name>
<surname>Benderoth</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
.
<article-title>Positive selection driving diversification in plant secondary metabolism</article-title>
.
<source>Proc. Natl. Acad. Sci. USA</source>
<volume>103</volume>
,
<fpage>9118</fpage>
<lpage>9123</lpage>
(
<year>2006</year>
).
<pub-id pub-id-type="pmid">16754868</pub-id>
</mixed-citation>
</ref>
<ref id="b42">
<mixed-citation publication-type="journal">
<name>
<surname>Textor</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>de Kraker</surname>
<given-names>J. W.</given-names>
</name>
,
<name>
<surname>Hause</surname>
<given-names>B.</given-names>
</name>
,
<name>
<surname>Gershenzon</surname>
<given-names>J.</given-names>
</name>
&
<name>
<surname>Tokuhisa</surname>
<given-names>J. G.</given-names>
</name>
<article-title>MAM3 catalyses the formation of all aliphatic glucosinolate chain lengths in
<italic>Arabidopsis</italic>
</article-title>
.
<source>Plant Physiol.</source>
<volume>144</volume>
,
<fpage>60</fpage>
<lpage>71</lpage>
(
<year>2007</year>
).
<pub-id pub-id-type="pmid">17369439</pub-id>
</mixed-citation>
</ref>
<ref id="b43">
<mixed-citation publication-type="journal">
<name>
<surname>Volden</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
.
<article-title>Processing (blanching, boiling, steaming) effects on the content of glucosinolates and antioxidant related parameters in cauliflower (
<italic>Brassica oleracea</italic>
L.
<italic>ssp. botrytis</italic>
)</article-title>
.
<source>LWT Food Sci. Technol.</source>
<volume>42</volume>
,
<fpage>63</fpage>
<lpage>73</lpage>
(
<year>2009</year>
).</mixed-citation>
</ref>
<ref id="b44">
<mixed-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
.
<article-title>Glucosinolate biosynthetic genes in
<italic>Brassica rapa</italic>
</article-title>
.
<source>Gene</source>
<volume>487</volume>
,
<fpage>135</fpage>
<lpage>142</lpage>
(
<year>2011</year>
).
<pub-id pub-id-type="pmid">21835231</pub-id>
</mixed-citation>
</ref>
<ref id="b45">
<mixed-citation publication-type="journal">
<name>
<surname>Chen</surname>
<given-names>Z. J.</given-names>
</name>
<article-title>Molecular mechanisms of polyploidy and hybrid vigour</article-title>
.
<source>Trends Plant Sci.</source>
<volume>15</volume>
,
<fpage>57</fpage>
<lpage>71</lpage>
(
<year>2010</year>
).
<pub-id pub-id-type="pmid">20080432</pub-id>
</mixed-citation>
</ref>
<ref id="b46">
<mixed-citation publication-type="journal">
<name>
<surname>Schnable</surname>
<given-names>J. C.</given-names>
</name>
,
<name>
<surname>Springer</surname>
<given-names>N. M.</given-names>
</name>
&
<name>
<surname>Freeling</surname>
<given-names>M.</given-names>
</name>
<article-title>Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss</article-title>
.
<source>Proc. Natl. Acad. Sci. USA</source>
<volume>108</volume>
,
<fpage>4069</fpage>
<lpage>4074</lpage>
(
<year>2011</year>
).
<pub-id pub-id-type="pmid">21368132</pub-id>
</mixed-citation>
</ref>
<ref id="b47">
<mixed-citation publication-type="journal">
<name>
<surname>Stanke</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Steinkamp</surname>
<given-names>R.</given-names>
</name>
,
<name>
<surname>Waack</surname>
<given-names>S.</given-names>
</name>
&
<name>
<surname>Morgenstern</surname>
<given-names>B.</given-names>
</name>
<article-title>AUGUSTUS: a web server for gene finding in eukaryotes</article-title>
.
<source>Nucleic Acids Res.</source>
<volume>32</volume>
,
<fpage>W309</fpage>
<lpage>W312</lpage>
(
<year>2004</year>
).
<pub-id pub-id-type="pmid">15215400</pub-id>
</mixed-citation>
</ref>
<ref id="b48">
<mixed-citation publication-type="journal">
<name>
<surname>Majoros</surname>
<given-names>W. H.</given-names>
</name>
,
<name>
<surname>Pertea</surname>
<given-names>M.</given-names>
</name>
&
<name>
<surname>Salzberg</surname>
<given-names>S. L.</given-names>
</name>
<article-title>TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders</article-title>
.
<source>Bioinformatics</source>
<volume>20</volume>
,
<fpage>2878</fpage>
<lpage>2879</lpage>
(
<year>2004</year>
).
<pub-id pub-id-type="pmid">15145805</pub-id>
</mixed-citation>
</ref>
<ref id="b49">
<mixed-citation publication-type="journal">
<name>
<surname>Birney</surname>
<given-names>E.</given-names>
</name>
,
<name>
<surname>Clamp</surname>
<given-names>M.</given-names>
</name>
&
<name>
<surname>Durbin</surname>
<given-names>R.</given-names>
</name>
<article-title>GeneWise and Genomewise</article-title>
.
<source>Genome Res.</source>
<volume>14</volume>
,
<fpage>988</fpage>
<lpage>995</lpage>
(
<year>2004</year>
).
<pub-id pub-id-type="pmid">15123596</pub-id>
</mixed-citation>
</ref>
<ref id="b50">
<mixed-citation publication-type="journal">
<name>
<surname>Xu</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
,
<name>
<surname>Yang</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Vaynberg</surname>
<given-names>J.</given-names>
</name>
&
<name>
<surname>Qin</surname>
<given-names>J.</given-names>
</name>
<article-title>PASA—a program for automated protein NMR backbone signal assignment by pattern-filtering approach</article-title>
.
<source>J. Biomol. NMR</source>
<volume>34</volume>
,
<fpage>41</fpage>
<lpage>56</lpage>
(
<year>2006</year>
).
<pub-id pub-id-type="pmid">16505963</pub-id>
</mixed-citation>
</ref>
<ref id="b51">
<mixed-citation publication-type="journal">
<name>
<surname>Elsik</surname>
<given-names>C. G.</given-names>
</name>
<etal></etal>
.
<article-title>Creating a honey bee consensus gene set</article-title>
.
<source>Genome Biol.</source>
<volume>8</volume>
,
<fpage>R13</fpage>
(
<year>2007</year>
).
<pub-id pub-id-type="pmid">17241472</pub-id>
</mixed-citation>
</ref>
<ref id="b52">
<mixed-citation publication-type="journal">
<name>
<surname>Lowe</surname>
<given-names>T. M.</given-names>
</name>
&
<name>
<surname>Eddy</surname>
<given-names>S. R.</given-names>
</name>
<article-title>tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence</article-title>
.
<source>Nucleic Acids Res.</source>
<volume>25</volume>
,
<fpage>955</fpage>
<lpage>964</lpage>
(
<year>1997</year>
).
<pub-id pub-id-type="pmid">9023104</pub-id>
</mixed-citation>
</ref>
<ref id="b53">
<mixed-citation publication-type="journal">
<name>
<surname>Nawrocki</surname>
<given-names>E. P.</given-names>
</name>
,
<name>
<surname>Kolbe</surname>
<given-names>D. L.</given-names>
</name>
&
<name>
<surname>Eddy</surname>
<given-names>S. R.</given-names>
</name>
<article-title>Infernal 1.0: inference of RNA alignments</article-title>
.
<source>Bioinformatics</source>
<volume>25</volume>
,
<fpage>1335</fpage>
<lpage>1337</lpage>
(
<year>2009</year>
).
<pub-id pub-id-type="pmid">19307242</pub-id>
</mixed-citation>
</ref>
<ref id="b54">
<mixed-citation publication-type="journal">
<name>
<surname>McCarthy</surname>
<given-names>E. M.</given-names>
</name>
&
<name>
<surname>McDonald</surname>
<given-names>J. F.</given-names>
</name>
<article-title>LTR_STRUC: a novel search and identification program for LTR retrotransposons</article-title>
.
<source>Bioinformatics</source>
<volume>19</volume>
,
<fpage>362</fpage>
<lpage>367</lpage>
(
<year>2003</year>
).
<pub-id pub-id-type="pmid">12584121</pub-id>
</mixed-citation>
</ref>
<ref id="b55">
<mixed-citation publication-type="journal">
<name>
<surname>Ma</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Devos</surname>
<given-names>K. M.</given-names>
</name>
&
<name>
<surname>Bennetzen</surname>
<given-names>J. L.</given-names>
</name>
<article-title>Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice</article-title>
.
<source>Genome Res.</source>
<volume>14</volume>
,
<fpage>860</fpage>
<lpage>869</lpage>
(
<year>2004</year>
).
<pub-id pub-id-type="pmid">15078861</pub-id>
</mixed-citation>
</ref>
<ref id="b56">
<mixed-citation publication-type="journal">
<name>
<surname>Holligan</surname>
<given-names>D.</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
,
<name>
<surname>Jiang</surname>
<given-names>N.</given-names>
</name>
,
<name>
<surname>Pritham</surname>
<given-names>E. J.</given-names>
</name>
&
<name>
<surname>Wessler</surname>
<given-names>S. R.</given-names>
</name>
<article-title>The transposable element landscape of the model legume
<italic>Lotus japonicus</italic>
</article-title>
.
<source>Genetics</source>
<volume>174</volume>
,
<fpage>2215</fpage>
<lpage>2228</lpage>
(
<year>2006</year>
).
<pub-id pub-id-type="pmid">17028332</pub-id>
</mixed-citation>
</ref>
<ref id="b57">
<mixed-citation publication-type="journal">
<name>
<surname>Yang</surname>
<given-names>L.</given-names>
</name>
&
<name>
<surname>Bennetzen</surname>
<given-names>J. L.</given-names>
</name>
<article-title>Structure-based discovery and description of plant and animal Helitrons</article-title>
.
<source>Proc. Natl Acad. Sci. USA</source>
<volume>106</volume>
,
<fpage>12832</fpage>
<lpage>12837</lpage>
(
<year>2009</year>
).
<pub-id pub-id-type="pmid">19622734</pub-id>
</mixed-citation>
</ref>
<ref id="b58">
<mixed-citation publication-type="journal">
<name>
<surname>Wicker</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
.
<article-title>A unified classification system for eukaryotic transposable elements</article-title>
.
<source>Nat. Rev. Genet.</source>
<volume>8</volume>
,
<fpage>973</fpage>
<lpage>982</lpage>
(
<year>2007</year>
).
<pub-id pub-id-type="pmid">17984973</pub-id>
</mixed-citation>
</ref>
<ref id="b59">
<mixed-citation publication-type="other">
<name>
<surname>Smit</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Hubley</surname>
<given-names>R.</given-names>
</name>
&
<name>
<surname>Green</surname>
<given-names>P.</given-names>
</name>
RepeatMasker. http://www.repeatmasker.org.</mixed-citation>
</ref>
<ref id="b60">
<mixed-citation publication-type="journal">
<name>
<surname>Li</surname>
<given-names>L.</given-names>
</name>
,
<name>
<surname>Stoeckert</surname>
<given-names>C. J.</given-names>
<suffix>Jr</suffix>
</name>
&
<name>
<surname>Roos</surname>
<given-names>D. S.</given-names>
</name>
<article-title>OrthoMCL: identification of ortholog groups for eukaryotic genomes</article-title>
.
<source>Genome Res.</source>
<volume>13</volume>
,
<fpage>2178</fpage>
<lpage>2189</lpage>
(
<year>2003</year>
).
<pub-id pub-id-type="pmid">12952885</pub-id>
</mixed-citation>
</ref>
<ref id="b61">
<mixed-citation publication-type="journal">
<name>
<surname>Larkin</surname>
<given-names>M. A.</given-names>
</name>
<etal></etal>
.
<article-title>Clustal W and Clustal X version 2.0</article-title>
.
<source>Bioinformatics</source>
<volume>23</volume>
,
<fpage>2947</fpage>
<lpage>2948</lpage>
(
<year>2007</year>
).
<pub-id pub-id-type="pmid">17846036</pub-id>
</mixed-citation>
</ref>
<ref id="b62">
<mixed-citation publication-type="journal">
<name>
<surname>Tamura</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
.
<article-title>MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods</article-title>
.
<source>Mol. Biol. Evol.</source>
<volume>28</volume>
,
<fpage>2731</fpage>
<lpage>2739</lpage>
(
<year>2011</year>
).
<pub-id pub-id-type="pmid">21546353</pub-id>
</mixed-citation>
</ref>
<ref id="b63">
<mixed-citation publication-type="journal">
<name>
<surname>Guindon</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Delsuc</surname>
<given-names>F.</given-names>
</name>
,
<name>
<surname>Dufayard</surname>
<given-names>J. F.</given-names>
</name>
&
<name>
<surname>Gascuel</surname>
<given-names>O.</given-names>
</name>
<article-title>Estimating maximum likelihood phylogenies with PhyML</article-title>
.
<source>Methods Mol. Biol.</source>
<volume>537</volume>
,
<fpage>113</fpage>
<lpage>137</lpage>
(
<year>2009</year>
).
<pub-id pub-id-type="pmid">19378142</pub-id>
</mixed-citation>
</ref>
<ref id="b64">
<mixed-citation publication-type="journal">
<name>
<surname>Trapnell</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
.
<article-title>Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks</article-title>
.
<source>Nat. Protoc.</source>
<volume>7</volume>
,
<fpage>562</fpage>
<lpage>578</lpage>
(
<year>2012</year>
).
<pub-id pub-id-type="pmid">22383036</pub-id>
</mixed-citation>
</ref>
<ref id="b65">
<mixed-citation publication-type="journal">
<name>
<surname>Roulin</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
.
<article-title>The fate of duplicated genes in a polyploid plant genome</article-title>
.
<source>Plant J.</source>
<volume>73</volume>
,
<fpage>143</fpage>
<lpage>153</lpage>
(
<year>2012</year>
).</mixed-citation>
</ref>
<ref id="b66">
<mixed-citation publication-type="journal">
<name>
<surname>Gu</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Ng</surname>
<given-names>H. K.</given-names>
</name>
,
<name>
<surname>Tang</surname>
<given-names>M. L.</given-names>
</name>
&
<name>
<surname>Schucany</surname>
<given-names>W. R.</given-names>
</name>
<article-title>Testing the ratio of two poisson rates</article-title>
.
<source>Biom. J.</source>
<volume>50</volume>
,
<fpage>283</fpage>
<lpage>298</lpage>
(
<year>2008</year>
).
<pub-id pub-id-type="pmid">18311854</pub-id>
</mixed-citation>
</ref>
<ref id="b67">
<mixed-citation publication-type="journal">
<name>
<surname>Benjamini</surname>
<given-names>Y.</given-names>
</name>
&
<name>
<surname>Hochberg</surname>
<given-names>Y.</given-names>
</name>
<article-title>Controlling the false discovery rate: a practical and powerful approach to multiple testing</article-title>
.
<source>J. Roy. Statist. Soc. Ser.</source>
<volume>57</volume>
,
<fpage>289</fpage>
<lpage>300</lpage>
(
<year>1995</year>
).</mixed-citation>
</ref>
<ref id="b68">
<mixed-citation publication-type="journal">
<name>
<surname>Kimura</surname>
<given-names>M.</given-names>
</name>
<article-title>A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences</article-title>
.
<source>J. Mol. Evol.</source>
<volume>16</volume>
,
<fpage>111</fpage>
<lpage>120</lpage>
(
<year>1980</year>
).
<pub-id pub-id-type="pmid">7463489</pub-id>
</mixed-citation>
</ref>
<ref id="b69">
<mixed-citation publication-type="journal">
<name>
<surname>Tamura</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Dudley</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Nei</surname>
<given-names>M.</given-names>
</name>
&
<name>
<surname>Kumar</surname>
<given-names>S.</given-names>
</name>
<article-title>MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0</article-title>
.
<source>Mol. Biol. Evol.</source>
<volume>24</volume>
,
<fpage>1596</fpage>
<lpage>1599</lpage>
(
<year>2007</year>
).
<pub-id pub-id-type="pmid">17488738</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="f1">
<label>Figure 1</label>
<caption>
<title>Genomic structure and gene retention rates in syntenic regions of
<italic>B. oleracea</italic>
and
<italic>B. rapa</italic>
.</title>
<p>(
<bold>a</bold>
) Segmental colinearity of the genomes of
<italic>B. oleracea</italic>
,
<italic>B. rapa</italic>
and
<italic>A. thaliana</italic>
. Syntenic blocks are defined and labelled from A to X (coloured) previously reported in
<italic>A. thaliana</italic>
<xref ref-type="bibr" rid="b20">20</xref>
. (
<bold>b</bold>
) Time estimate of WGD and subsequent two
<italic>Brassica</italic>
species divergence. (
<bold>c</bold>
) Pattern of retention/loss of orthologous genes on each set of three subgenomic (LF, MF1 and MF2) blocks of
<italic>B. oleracea</italic>
and
<italic>B. rapa</italic>
corresponding to
<italic>A. thaliana</italic>
A to X blocks. The
<italic>x</italic>
axis denotes the physical position of each
<italic>A. thaliana</italic>
gene locus. The
<italic>y</italic>
axis denotes the proportion of orthologous genes retained in the
<italic>B. oleracea</italic>
and
<italic>B. rapa</italic>
subgenomic blocks around each
<italic>A. thaliana</italic>
gene, where 500 genes flanking each side of a certain gene locus were analysed, giving a total window size of 1,001 genes.</p>
</caption>
<graphic xlink:href="ncomms4930-f1"></graphic>
</fig>
<fig id="f2">
<label>Figure 2</label>
<caption>
<title>TE comparison analyses in
<italic>B. oleracea</italic>
and
<italic>B. rapa.</italic>
</title>
<p>(
<bold>a</bold>
) TE copy number and total length in each assembly and
<italic>B. oleracea–B. rapa</italic>
syntenic blocks. (
<bold>b</bold>
) The number of intact LTR (
<italic>Copia</italic>
-like and
<italic>Gypsy</italic>
-like) birthed at different times (million years ago, MYA) in the syntenic regions of
<italic>B. oleracea</italic>
and
<italic>B. rapa</italic>
. (
<bold>c</bold>
) The comparison of TE distribution and composition in
<italic>B. oleracea–B. rapa</italic>
syntenic blocks along
<italic>B. oleracea</italic>
chromosomes. We divided
<italic>B. oleracea–B. rapa</italic>
syntenic region into non-overlapping sliding 200 kb windows to compare TE contents. For each window, the ratio log
<sub>10</sub>
(
<italic>B. oleracea/B. rapa</italic>
) was calculated for total syntenic block length (blue line), LTR length (purple line), gene length (yellow point), exons length (red point) and intron length (green point). If
<italic>B. oleracea</italic>
>
<italic>B. rapa</italic>
in absolute length of TE composition in a compared window, the dot or line is above the line
<italic>y</italic>
=0. The corresponding
<italic>B. rapa</italic>
chromosome segments along
<italic>B. oleracea</italic>
C08 were indicated by coloured bars. All other
<italic>B. oleracea</italic>
chromosomes are showed in
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 31</xref>
. (
<bold>d</bold>
) Phylogeny of the Copia-like elements as an example of LTR-RTs of the syntenic regions in
<italic>B. rapa</italic>
and
<italic>B. oleracea</italic>
. The neighbor-joining (
<italic>NJ</italic>
) trees were generated based on the conserved RT domain nucleotide sequences using the Kimura two-parameter method
<xref ref-type="bibr" rid="b68">68</xref>
in MEGA4 (ref.
<xref ref-type="bibr" rid="b69">69</xref>
).</p>
</caption>
<graphic xlink:href="ncomms4930-f2"></graphic>
</fig>
<fig id="f3">
<label>Figure 3</label>
<caption>
<title>The duplicated genes derived from tandem duplication and whole-genome duplications in
<italic>Brassica</italic>
genomes.</title>
<p>(
<bold>a</bold>
) A Venn diagram showing shared and specific tandem duplication events in
<italic>A. thaliana</italic>
,
<italic>B. rapa</italic>
and
<italic>B. oleracea</italic>
. (
<bold>b</bold>
,
<bold>c</bold>
) Distribution of tandem genes and WGT/WGD-derived paralogues in the KEGG pathway maps in
<italic>B. oleracea</italic>
(bol),
<italic>B. rapa</italic>
(bra) and
<italic>A. thaliana</italic>
(ath). For each KEGG pathway map, the proportion of the number of duplicated genes or paralogues to the total genes was calculated (
<italic>x</italic>
axis) and the number of maps whose tandem gene proportion fell in a range was shown on the
<italic>y</italic>
axis. (
<bold>d</bold>
) Oxidative phosphorylation pathway enriched by WGT-derived paralogous genes in the
<italic>Brassica</italic>
genomes. The gene copy number for each KO enzyme in
<italic>B. oleracea</italic>
,
<italic>B. rapa</italic>
and
<italic>A. thaliana</italic>
were shown (dash-connected) under the KO enzyme number.</p>
</caption>
<graphic xlink:href="ncomms4930-f3"></graphic>
</fig>
<fig id="f4">
<label>Figure 4</label>
<caption>
<title>Divergence of
<italic>Brassica</italic>
paralogous and orthologous genes in
<italic>B. oleracea</italic>
and
<italic>B. rapa</italic>
.</title>
<p>(
<bold>a</bold>
) Genome-wide gene conversion in
<italic>B. oleracea</italic>
. The conversion in
<italic>B. rapa</italic>
is showed in
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 64</xref>
. (
<bold>b</bold>
) The ratio of differentially expressed duplicated gene pairs derived from different duplications: alpha whole-genome duplication (α-WGD),
<italic>Brassiceae</italic>
-lineage WGT, tandem duplication (TD). Bol,
<italic>B. oleracea</italic>
; Bra,
<italic>B. rapa</italic>
. C: callus; R: root; St: stem; L: leaf; F: flower; Si: silique. The differentially expressed duplicated gene pairs were defined as fold change >2 and false discovery rate (FDR) <0.05 or gene pair where expression was detected for only one gene within gene pairs (FDR <0.05). (
<bold>c</bold>
) Box and whisker plots for differentiated expression for three subgenomes (LF, MF1 and MF2) in flower tissue of
<italic>B. oleracea</italic>
and
<italic>B. rapa</italic>
. For the other tissues, see
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 67</xref>
. (
<bold>d</bold>
) The duplicated gene pairs belonging to transcription factors (TFs) and its related GO terms contain a significantly lower ratio of differentially expressed duplicated gene pairs than the average at the genome-wide level in leaf (values given) and other tissues (values not presented) (
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 45</xref>
). (
<bold>e</bold>
) The GO terms (left) in which the duplicated gene pairs contain a significantly higher ratio of differentially expressed duplicated gene pairs than the average ratio at the genome-wide level in leaf and other tissues (
<xref ref-type="supplementary-material" rid="S1">Supplementary Table 46</xref>
). Values from one tissue were presented and the other tissues were indicated with abbreviated letters to the right if expression in these tissues is significantly higher. (
<bold>f</bold>
) Expression variation caused by divergence (either different variants or differential expression of the same variants) of alternative splicing (AS) variants in WGT paralogous gene pairs with identical numbers of exons and in Bol–Bra orthologous gene pairs. IRES denotes types of intron retention and exon skipping.</p>
</caption>
<graphic xlink:href="ncomms4930-f4"></graphic>
</fig>
<fig id="f5">
<label>Figure 5</label>
<caption>
<title>Whole-genome-wide comparison of genes involved in glucosinolate metabolism pathways in
<italic>B. oleracea</italic>
and its relatives.</title>
<p>(
<bold>a</bold>
) Aliphatic and indolic GSL biosynthesis and catabolism pathways in
<italic>A. thaliana</italic>
,
<italic>B. oleracea</italic>
and
<italic>B. rapa</italic>
. The copy number of GSL biosynthetic genes in
<italic>A. thaliana</italic>
,
<italic>B. rapa</italic>
and
<italic>B. oleracea</italic>
are listed in square brackets, respectively. Potential anticancer substances/precursors are highlighted in blue bold. Two important amino acid chain elongation and side-chain modification loci
<italic>MAMs</italic>
and
<italic>AOP2</italic>
are highlighted in red bold, within the number in the green bracket representing the number of non-functional genes. (
<bold>b</bold>
,
<bold>c</bold>
) The neighbour-joining (NJ) trees of MAM and AOP genes were generated based on the aligned coding sequences and 100 bootstrap repeats. The silenced genes are indicated by red hollow circle, expressed functional genes are represented by red solid disc and green rectangle. In
<italic>A. thaliana</italic>
ecotype Columbia there are just MAM1 and MAM3. (
<bold>d</bold>
) Three
<italic>B. oleracea AOP2</italic>
loci among which are one functional
<italic>AOP2</italic>
and two mutated
<italic>AOP2</italic>
. 1MOI3M: 1-methoxyindol-3-ylmethyl GSL; 1OHI3M: 1-hydroxyindol-3-ylmethyl GSL; 3MSOP: 3-methylsulfinylpropyl GSL; 3MTP: 3-methylthiopropyl GSL; 3PREY: 2-Propenyl GSL; 4BTEY: 3-butenyl GSL; 4MOI3M: 4-methoxyindol-3-ylmethyl GSL; 4OHB, 4-hydroxybutyl GSL; 4OHI3M: 4-hydroxyindol-3-ylmethyl GSL; 4MSOB: 4-methylsulfinylbutyl GSL; 4MTB, 4-methylthiobutyl GSL; AITC: allyl isothiocyanate; I3C: indole-3-carbinol; I3M: indolyl-3-methyl GSL; DIM: 3,3′-diindolymethane; MAM: methylthioalkylmalate; AOP: 2-oxoglutarate-dependent dioxygenase.</p>
</caption>
<graphic xlink:href="ncomms4930-f5"></graphic>
</fig>
<table-wrap position="float" id="t1">
<label>Table 1</label>
<caption>
<title>Summary of genome assembly and annotation of
<italic>B. oleracea</italic>
.</title>
</caption>
<table frame="hsides" rules="groups" border="1">
<colgroup>
<col align="left"></col>
<col align="center"></col>
<col align="center"></col>
<col align="center"></col>
<col align="center"></col>
</colgroup>
<thead valign="bottom">
<tr>
<th colspan="5" align="left" valign="top" charoff="50">
<italic>
<bold>B. oleracea</bold>
</italic>
<bold>genome assembly</bold>
</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td align="left" valign="top" charoff="50"> 
<hr></hr>
</td>
<td align="center" valign="top" charoff="50">
<bold>N90</bold>
<hr></hr>
</td>
<td align="center" valign="top" charoff="50">
<bold>N50</bold>
<hr></hr>
</td>
<td align="center" valign="top" charoff="50">
<bold>Longest</bold>
<hr></hr>
</td>
<td align="center" valign="top" charoff="50">
<bold>Total size</bold>
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Contig size (bp)</td>
<td align="center" valign="top" charoff="50">3,527</td>
<td align="center" valign="top" charoff="50">26,828</td>
<td align="center" valign="top" charoff="50">199,461</td>
<td align="center" valign="top" charoff="50">502,114,421</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Contig number</td>
<td align="center" valign="top" charoff="50">22,669</td>
<td align="center" valign="top" charoff="50">5,425</td>
<td align="center" valign="top" charoff="50"> </td>
<td align="center" valign="top" charoff="50"> </td>
</tr>
<tr>
<td align="left" valign="top" charoff="50"> </td>
<td colspan="4" align="center" valign="top" charoff="50">Total number(>2 kb): 27,351</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Scaffold size (bp)</td>
<td align="center" valign="top" charoff="50">258,906</td>
<td align="center" valign="top" charoff="50">1,457,055</td>
<td align="center" valign="top" charoff="50">8,788,225</td>
<td align="center" valign="top" charoff="50">539,907,250</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Scaffold number</td>
<td align="center" valign="top" charoff="50">388</td>
<td align="center" valign="top" charoff="50">224</td>
<td align="center" valign="top" charoff="50">Anchored to chr. 72%</td>
<td align="center" valign="top" charoff="50"> </td>
</tr>
<tr>
<td align="left" valign="top" charoff="50"> </td>
<td colspan="4" align="center" valign="top" charoff="50">Total number(>2 kb): 1,809</td>
</tr>
</tbody>
</table>
<table frame="hsides" rules="groups" border="1">
<colgroup>
<col align="left"></col>
<col align="center"></col>
<col align="center"></col>
<col align="char" char="."></col>
<col align="char" char="."></col>
</colgroup>
<thead valign="bottom">
<tr>
<th colspan="5" align="left" valign="top" charoff="50">
<italic>
<bold>B. oleracea</bold>
</italic>
<bold>genome annotation</bold>
<hr></hr>
</th>
</tr>
<tr>
<th align="left" valign="top" charoff="50"> </th>
<th colspan="4" align="center" valign="top" charoff="50">
<italic>
<bold>B. oleracea</bold>
</italic>
<hr></hr>
</th>
</tr>
<tr>
<th align="left" valign="top" charoff="50"> </th>
<th colspan="3" align="center" valign="top" charoff="50">
<bold>In the assembly</bold>
<hr></hr>
</th>
<th align="center" valign="top" char="." charoff="50">
<bold>In WG short reads</bold>
<xref ref-type="fn" rid="t1-fn1">*</xref>
</th>
</tr>
<tr>
<th align="left" valign="top" charoff="50"> </th>
<th align="center" valign="top" charoff="50">
<bold>Size (bp)</bold>
</th>
<th align="center" valign="top" charoff="50">
<bold>Copy number
<xref ref-type="fn" rid="t1-fn2"></xref>
</bold>
</th>
<th align="center" valign="top" char="." charoff="50">
<bold>% assembly</bold>
<xref ref-type="fn" rid="t1-fn3"></xref>
</th>
<th align="char" valign="top" char="." charoff="50"> </th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td align="left" valign="top" charoff="50">Retrotransposon</td>
<td align="center" valign="top" charoff="50">105,755,173</td>
<td align="center" valign="top" charoff="50">108,948</td>
<td align="char" valign="top" char="." charoff="50">22.13</td>
<td align="char" valign="top" char="." charoff="50">23.60</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">DNA transposon</td>
<td align="center" valign="top" charoff="50">79,675,583</td>
<td align="center" valign="top" charoff="50">170,500</td>
<td align="char" valign="top" char="." charoff="50">16.67</td>
<td align="char" valign="top" char="." charoff="50">12.71</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Total
<hr></hr>
</td>
<td align="center" valign="top" charoff="50">185,430,756
<hr></hr>
</td>
<td align="center" valign="top" charoff="50">279,448
<hr></hr>
</td>
<td align="char" valign="top" char="." charoff="50">38.80
<hr></hr>
</td>
<td align="char" valign="top" char="." charoff="50">36.31
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50"> 
<hr></hr>
</td>
<td align="center" valign="top" charoff="50">
<bold>Gene models</bold>
<hr></hr>
</td>
<td align="center" valign="top" charoff="50">
<bold>Gene space covered
<xref ref-type="fn" rid="t1-fn4">§</xref>
</bold>
<hr></hr>
</td>
<td align="center" valign="top" char="." charoff="50">
<bold>Annotated</bold>
<hr></hr>
</td>
<td align="center" valign="top" char="." charoff="50">
<bold>Supported by ESTs</bold>
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Protein-coding genes
<hr></hr>
</td>
<td align="center" valign="top" charoff="50">45,758
<hr></hr>
</td>
<td align="center" valign="top" charoff="50">98%
<hr></hr>
</td>
<td align="center" valign="top" char="." charoff="50">91.6%
<hr></hr>
</td>
<td align="center" valign="top" char="." charoff="50">99.0%
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50"> 
<hr></hr>
</td>
<td align="center" valign="top" charoff="50">
<bold>Average transcript length</bold>
<hr></hr>
</td>
<td align="center" valign="top" charoff="50">
<bold>Average coding length</bold>
<hr></hr>
</td>
<td align="center" valign="top" char="." charoff="50">
<bold>No. of average exons</bold>
<hr></hr>
</td>
<td align="center" valign="top" char="." charoff="50">
<bold>No. of alternative splicing variants</bold>
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50"> 
<hr></hr>
</td>
<td align="center" valign="top" charoff="50">1,762 bp
<hr></hr>
</td>
<td align="center" valign="top" charoff="50">1,037 bp
<hr></hr>
</td>
<td align="center" valign="top" char="." charoff="50">4.6
<hr></hr>
</td>
<td align="center" valign="top" char="." charoff="50">30,932
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">
<bold>Non-coding RNA</bold>
<hr></hr>
</td>
<td align="center" valign="top" charoff="50">
<bold>miRNA</bold>
<hr></hr>
</td>
<td align="center" valign="top" charoff="50">
<bold>tRNA</bold>
<hr></hr>
</td>
<td align="center" valign="top" char="." charoff="50">
<bold>rRNA</bold>
<hr></hr>
</td>
<td align="center" valign="top" char="." charoff="50">
<bold>snRNA</bold>
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Copy number</td>
<td align="center" valign="top" charoff="50">336</td>
<td align="center" valign="top" charoff="50">1,425</td>
<td align="center" valign="top" char="." charoff="50">553</td>
<td align="center" valign="top" char="." charoff="50">1,442</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Average length (bp)</td>
<td align="center" valign="top" charoff="50">119</td>
<td align="center" valign="top" charoff="50">75</td>
<td align="center" valign="top" char="." charoff="50">166</td>
<td align="center" valign="top" char="." charoff="50">110</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="t1-fn1">
<p>
<sup>*</sup>
WG, whole genome, 20 × coverage reads were randomly sampled from all the genomic short reads libraries.</p>
</fn>
<fn id="t1-fn2">
<p>
<sup></sup>
The copy number of TEs was from the RepeatMasker results.</p>
</fn>
<fn id="t1-fn3">
<p>
<sup></sup>
The ungapped regions were used to detect the percentage of TEs in the assembly. TE sizes are from the ungapped regions of B. oleracea 477,847,347 bp.</p>
</fn>
<fn id="t1-fn4">
<p>
<sup>§</sup>
Estimated by public
<italic>Brassica</italic>
ESTs and RNA-seq data.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000109  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000109  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024