Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Revealing catastrophic failure of leaf networks under stress

Identifieur interne : 000634 ( Pmc/Checkpoint ); précédent : 000633; suivant : 000635

Revealing catastrophic failure of leaf networks under stress

Auteurs : Timothy J. Brodribb [Australie] ; Diane Bienaimé [France] ; Philippe Marmottant [Australie, France]

Source :

RBID : PMC:4855591

Abstract

Significance

Water sustains photosynthesis and growth of land plants, but it must be transported from the soil to leaves under high tension. Drying soil leads to an increase in water tension, exposing plants to the problem of breakage of the water column, causing embolisms that cut off water supply, leading to tissue death during drought. The ability of leaves to resist embolism formation is a key adaptive axis in plant evolution, and yet the process itself has never been visualized in the leaf venation. We describe a new optical method that allows the evolution and spread of embolism in the entire leaf network to be mapped, thus revealing general rules in the sequence of leaf vein transport failure.


Url:
DOI: 10.1073/pnas.1522569113
PubMed: 27071104
PubMed Central: 4855591


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4855591

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Revealing catastrophic failure of leaf networks under stress</title>
<author>
<name sortKey="Brodribb, Timothy J" sort="Brodribb, Timothy J" uniqKey="Brodribb T" first="Timothy J." last="Brodribb">Timothy J. Brodribb</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">School of Biological Sciences,
<institution>University of Tasmania</institution>
, Hobart, Tasmania 7001,
<country>Australia</country>
;</nlm:aff>
<country xml:lang="fr">Australie</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bienaime, Diane" sort="Bienaime, Diane" uniqKey="Bienaime D" first="Diane" last="Bienaimé">Diane Bienaimé</name>
<affiliation wicri:level="1">
<nlm:aff id="aff2">CNRS/Université Grenoble-Alpes,
<institution>Laboratoire Interdisciplinaire de Physique UMR 5588</institution>
, Grenoble, F-38401,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Marmottant, Philippe" sort="Marmottant, Philippe" uniqKey="Marmottant P" first="Philippe" last="Marmottant">Philippe Marmottant</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">School of Biological Sciences,
<institution>University of Tasmania</institution>
, Hobart, Tasmania 7001,
<country>Australia</country>
;</nlm:aff>
<country xml:lang="fr">Australie</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff2">CNRS/Université Grenoble-Alpes,
<institution>Laboratoire Interdisciplinaire de Physique UMR 5588</institution>
, Grenoble, F-38401,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27071104</idno>
<idno type="pmc">4855591</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4855591</idno>
<idno type="RBID">PMC:4855591</idno>
<idno type="doi">10.1073/pnas.1522569113</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000495</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000495</idno>
<idno type="wicri:Area/Pmc/Curation">000495</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000495</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000634</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Checkpoint">000634</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Revealing catastrophic failure of leaf networks under stress</title>
<author>
<name sortKey="Brodribb, Timothy J" sort="Brodribb, Timothy J" uniqKey="Brodribb T" first="Timothy J." last="Brodribb">Timothy J. Brodribb</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">School of Biological Sciences,
<institution>University of Tasmania</institution>
, Hobart, Tasmania 7001,
<country>Australia</country>
;</nlm:aff>
<country xml:lang="fr">Australie</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bienaime, Diane" sort="Bienaime, Diane" uniqKey="Bienaime D" first="Diane" last="Bienaimé">Diane Bienaimé</name>
<affiliation wicri:level="1">
<nlm:aff id="aff2">CNRS/Université Grenoble-Alpes,
<institution>Laboratoire Interdisciplinaire de Physique UMR 5588</institution>
, Grenoble, F-38401,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Marmottant, Philippe" sort="Marmottant, Philippe" uniqKey="Marmottant P" first="Philippe" last="Marmottant">Philippe Marmottant</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">School of Biological Sciences,
<institution>University of Tasmania</institution>
, Hobart, Tasmania 7001,
<country>Australia</country>
;</nlm:aff>
<country xml:lang="fr">Australie</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff2">CNRS/Université Grenoble-Alpes,
<institution>Laboratoire Interdisciplinaire de Physique UMR 5588</institution>
, Grenoble, F-38401,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="ISSN">0027-8424</idno>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Significance</title>
<p>Water sustains photosynthesis and growth of land plants, but it must be transported from the soil to leaves under high tension. Drying soil leads to an increase in water tension, exposing plants to the problem of breakage of the water column, causing embolisms that cut off water supply, leading to tissue death during drought. The ability of leaves to resist embolism formation is a key adaptive axis in plant evolution, and yet the process itself has never been visualized in the leaf venation. We describe a new optical method that allows the evolution and spread of embolism in the entire leaf network to be mapped, thus revealing general rules in the sequence of leaf vein transport failure.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Proc Natl Acad Sci U S A</journal-id>
<journal-id journal-id-type="iso-abbrev">Proc. Natl. Acad. Sci. U.S.A</journal-id>
<journal-id journal-id-type="hwp">pnas</journal-id>
<journal-id journal-id-type="pmc">pnas</journal-id>
<journal-id journal-id-type="publisher-id">PNAS</journal-id>
<journal-title-group>
<journal-title>Proceedings of the National Academy of Sciences of the United States of America</journal-title>
</journal-title-group>
<issn pub-type="ppub">0027-8424</issn>
<issn pub-type="epub">1091-6490</issn>
<publisher>
<publisher-name>National Academy of Sciences</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27071104</article-id>
<article-id pub-id-type="pmc">4855591</article-id>
<article-id pub-id-type="publisher-id">201522569</article-id>
<article-id pub-id-type="doi">10.1073/pnas.1522569113</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Biological Sciences</subject>
<subj-group>
<subject>Plant Biology</subject>
</subj-group>
</subj-group>
<subj-group subj-group-type="heading">
<subject>Physical Sciences</subject>
<subj-group>
<subject>Environmental Sciences</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Revealing catastrophic failure of leaf networks under stress</article-title>
<alt-title alt-title-type="short">Moving embolisms visualized in droughted leaves</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Brodribb</surname>
<given-names>Timothy J.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>a</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bienaimé</surname>
<given-names>Diane</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>b</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Marmottant</surname>
<given-names>Philippe</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>a</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>b</sup>
</xref>
</contrib>
<aff id="aff1">
<sup>a</sup>
School of Biological Sciences,
<institution>University of Tasmania</institution>
, Hobart, Tasmania 7001,
<country>Australia</country>
;</aff>
<aff id="aff2">
<sup>b</sup>
CNRS/Université Grenoble-Alpes,
<institution>Laboratoire Interdisciplinaire de Physique UMR 5588</institution>
, Grenoble, F-38401,
<country>France</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">
<sup>1</sup>
To whom correspondence should be addressed. Email:
<email>timothyb@utas.edu.au</email>
.</corresp>
<fn fn-type="edited-by">
<p>Edited by Maarten J. Chrispeels, University of California, San Diego, La Jolla, CA, and approved March 9, 2016 (received for review November 15, 2015)</p>
</fn>
<fn fn-type="con">
<p>Author contributions: T.J.B. and P.M. designed research; T.J.B., D.B., and P.M. performed research; T.J.B. and D.B. analyzed data; and T.J.B. and P.M. wrote the paper.</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<day>26</day>
<month>4</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="epub">
<day>11</day>
<month>4</month>
<year>2016</year>
</pub-date>
<volume>113</volume>
<issue>17</issue>
<fpage>4865</fpage>
<lpage>4869</lpage>
<self-uri xlink:title="pdf" xlink:href="pnas.201522569.pdf"></self-uri>
<abstract abstract-type="executive-summary">
<title>Significance</title>
<p>Water sustains photosynthesis and growth of land plants, but it must be transported from the soil to leaves under high tension. Drying soil leads to an increase in water tension, exposing plants to the problem of breakage of the water column, causing embolisms that cut off water supply, leading to tissue death during drought. The ability of leaves to resist embolism formation is a key adaptive axis in plant evolution, and yet the process itself has never been visualized in the leaf venation. We describe a new optical method that allows the evolution and spread of embolism in the entire leaf network to be mapped, thus revealing general rules in the sequence of leaf vein transport failure.</p>
</abstract>
<abstract>
<p>The intricate patterns of veins that adorn the leaves of land plants are among the most important networks in biology. Water flows in these leaf irrigation networks under tension and is vulnerable to embolism-forming cavitations, which cut off water supply, ultimately causing leaf death. Understanding the ways in which plants structure their vein supply network to protect against embolism-induced failure has enormous ecological and evolutionary implications, but until now there has been no way of observing dynamic failure in natural leaf networks. Here we use a new optical method that allows the initiation and spread of embolism bubbles in the leaf network to be visualized. Examining embolism-induced failure of architecturally diverse leaf networks, we found that conservative rules described the progression of hydraulic failure within veins. The most fundamental rule was that within an individual venation network, susceptibility to embolism always increased proportionally with the size of veins, and initial nucleation always occurred in the largest vein. Beyond this general framework, considerable diversity in the pattern of network failure was found between species, related to differences in vein network topology. The highest-risk network was found in a fern species, where single events caused massive disruption to leaf water supply, whereas safer networks in angiosperm leaves contained veins with composite properties, allowing a staged failure of water supply. These results reveal how the size structure of leaf venation is a critical determinant of the spread of embolism damage to leaves during drought.</p>
</abstract>
<kwd-group>
<kwd>embolism</kwd>
<kwd>drought</kwd>
<kwd>xylem</kwd>
<kwd>vein</kwd>
<kwd>leaf</kwd>
</kwd-group>
<counts>
<page-count count="5"></page-count>
</counts>
</article-meta>
</front>
</pmc>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Brodribb, Timothy J" sort="Brodribb, Timothy J" uniqKey="Brodribb T" first="Timothy J." last="Brodribb">Timothy J. Brodribb</name>
</noRegion>
<name sortKey="Marmottant, Philippe" sort="Marmottant, Philippe" uniqKey="Marmottant P" first="Philippe" last="Marmottant">Philippe Marmottant</name>
</country>
<country name="France">
<noRegion>
<name sortKey="Bienaime, Diane" sort="Bienaime, Diane" uniqKey="Bienaime D" first="Diane" last="Bienaimé">Diane Bienaimé</name>
</noRegion>
<name sortKey="Marmottant, Philippe" sort="Marmottant, Philippe" uniqKey="Marmottant P" first="Philippe" last="Marmottant">Philippe Marmottant</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000634 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd -nk 000634 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Checkpoint
   |type=    RBID
   |clé=     PMC:4855591
   |texte=   Revealing catastrophic failure of leaf networks under stress
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/RBID.i   -Sk "pubmed:27071104" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024