Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A generalization of Yaglom's equation which accounts for the large-scale forcing in heated decaying turbulence

Identifieur interne : 006D44 ( PascalFrancis/Curation ); précédent : 006D43; suivant : 006D45

A generalization of Yaglom's equation which accounts for the large-scale forcing in heated decaying turbulence

Auteurs : L. Danaila [France] ; F. Anselmet [France] ; T. Zhou [Australie] ; R. A. Antonia [Australie]

Source :

RBID : Pascal:99-0367961

Descripteurs français

English descriptors

Abstract

In most real or numerically simulated turbulent flows, the energy dissipated at small scales is equal to that injected at very large scales, which are anisotropic. Despite this injection-scale anisotropy, one generally expects the inertial-range scales to be locally isotropic. For moderate Reynolds numbers, the isotropic relations between second-order and third-order moments for temperature (Yaglom's equation) or velocity increments (Kolmogorov's equation) are not respected, reflecting a non-negligible correlation between the scales responsible for the injection, the transfer and the dissipation of energy. In order to shed some light on the influence of the large scales on inertial-range properties, a generalization of Yaglom's equation is deduced and tested, in heated grid turbulence (Rλ = 66). In this case, the main phenomenon responsible for the non-universal inertial-range behaviour is the non-stationarity of the second-order moments, acting as a negative production term
pA  
A01 01  1    @0 0022-1120
A02 01      @0 JFLSA7
A03   1    @0 J. Fluid Mech.
A05       @2 391
A08 01  1  ENG  @1 A generalization of Yaglom's equation which accounts for the large-scale forcing in heated decaying turbulence
A11 01  1    @1 DANAILA (L.)
A11 02  1    @1 ANSELMET (F.)
A11 03  1    @1 ZHOU (T.)
A11 04  1    @1 ANTONIA (R. A.)
A14 01      @1 IRPHE, 12 Avenue Général Leclerc @2 13003 Marseille @3 FRA @Z 1 aut. @Z 2 aut.
A14 02      @1 Department of Mechanical Engineering, University of Newcastle @2 NSW, 2308 @3 AUS @Z 3 aut. @Z 4 aut.
A20       @1 359-372
A21       @1 1999
A23 01      @0 ENG
A43 01      @1 INIST @2 5180 @5 354000086030790140
A44       @0 0000 @1 © 1999 INIST-CNRS. All rights reserved.
A45       @0 30 ref.
A47 01  1    @0 99-0367961
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of Fluid Mechanics
A66 01      @0 GBR
C01 01    ENG  @0 In most real or numerically simulated turbulent flows, the energy dissipated at small scales is equal to that injected at very large scales, which are anisotropic. Despite this injection-scale anisotropy, one generally expects the inertial-range scales to be locally isotropic. For moderate Reynolds numbers, the isotropic relations between second-order and third-order moments for temperature (Yaglom's equation) or velocity increments (Kolmogorov's equation) are not respected, reflecting a non-negligible correlation between the scales responsible for the injection, the transfer and the dissipation of energy. In order to shed some light on the influence of the large scales on inertial-range properties, a generalization of Yaglom's equation is deduced and tested, in heated grid turbulence (Rλ = 66). In this case, the main phenomenon responsible for the non-universal inertial-range behaviour is the non-stationarity of the second-order moments, acting as a negative production term
C02 01  3    @0 001B40G27G
C02 02  3    @0 001B40G27E
C03 01  X  FRE  @0 Turbulence grille @5 01
C03 01  X  ENG  @0 Grid generated turbulence @5 01
C03 01  X  SPA  @0 Turbulencia rejilla @5 01
C03 02  X  FRE  @0 Déclin @5 02
C03 02  X  ENG  @0 Decay @5 02
C03 02  X  SPA  @0 Decadencia @5 02
C03 03  X  FRE  @0 Echelle grande @5 03
C03 03  X  ENG  @0 Large scale @5 03
C03 03  X  SPA  @0 Escala grande @5 03
C03 04  X  FRE  @0 Forçage @5 04
C03 04  X  ENG  @0 Forcing @5 04
C03 04  X  SPA  @0 Forzamiento @5 04
C03 05  3  FRE  @0 Ecoulement turbulent @5 05
C03 05  3  ENG  @0 Turbulent flow @5 05
C03 06  X  FRE  @0 Turbulence isotrope @5 06
C03 06  X  ENG  @0 Isotropic turbulence @5 06
C03 06  X  SPA  @0 Turbulencia isótropa @5 06
C03 07  3  FRE  @0 Etude expérimentale @5 07
C03 07  3  ENG  @0 Experimental study @5 07
C03 08  3  FRE  @0 Simulation numérique @5 08
C03 08  3  ENG  @0 Digital simulation @5 08
C03 09  X  FRE  @0 Turbulence homogène @5 09
C03 09  X  ENG  @0 Homogeneous turbulence @5 09
C03 09  X  SPA  @0 Turbulencia homogénea @5 09
C03 10  3  FRE  @0 4727G @2 PAC @4 INC @5 56
C03 11  3  FRE  @0 4727E @2 PAC @4 INC @5 57
N21       @1 235

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:99-0367961

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">A generalization of Yaglom's equation which accounts for the large-scale forcing in heated decaying turbulence</title>
<author>
<name sortKey="Danaila, L" sort="Danaila, L" uniqKey="Danaila L" first="L." last="Danaila">L. Danaila</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IRPHE, 12 Avenue Général Leclerc</s1>
<s2>13003 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Anselmet, F" sort="Anselmet, F" uniqKey="Anselmet F" first="F." last="Anselmet">F. Anselmet</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IRPHE, 12 Avenue Général Leclerc</s1>
<s2>13003 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Zhou, T" sort="Zhou, T" uniqKey="Zhou T" first="T." last="Zhou">T. Zhou</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Mechanical Engineering, University of Newcastle</s1>
<s2>NSW, 2308</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Antonia, R A" sort="Antonia, R A" uniqKey="Antonia R" first="R. A." last="Antonia">R. A. Antonia</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Mechanical Engineering, University of Newcastle</s1>
<s2>NSW, 2308</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">99-0367961</idno>
<date when="1999">1999</date>
<idno type="stanalyst">PASCAL 99-0367961 INIST</idno>
<idno type="RBID">Pascal:99-0367961</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">006310</idno>
<idno type="wicri:Area/PascalFrancis/Curation">006D44</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">A generalization of Yaglom's equation which accounts for the large-scale forcing in heated decaying turbulence</title>
<author>
<name sortKey="Danaila, L" sort="Danaila, L" uniqKey="Danaila L" first="L." last="Danaila">L. Danaila</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IRPHE, 12 Avenue Général Leclerc</s1>
<s2>13003 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Anselmet, F" sort="Anselmet, F" uniqKey="Anselmet F" first="F." last="Anselmet">F. Anselmet</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IRPHE, 12 Avenue Général Leclerc</s1>
<s2>13003 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Zhou, T" sort="Zhou, T" uniqKey="Zhou T" first="T." last="Zhou">T. Zhou</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Mechanical Engineering, University of Newcastle</s1>
<s2>NSW, 2308</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Antonia, R A" sort="Antonia, R A" uniqKey="Antonia R" first="R. A." last="Antonia">R. A. Antonia</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Mechanical Engineering, University of Newcastle</s1>
<s2>NSW, 2308</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of Fluid Mechanics</title>
<title level="j" type="abbreviated">J. Fluid Mech.</title>
<idno type="ISSN">0022-1120</idno>
<imprint>
<date when="1999">1999</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of Fluid Mechanics</title>
<title level="j" type="abbreviated">J. Fluid Mech.</title>
<idno type="ISSN">0022-1120</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Decay</term>
<term>Digital simulation</term>
<term>Experimental study</term>
<term>Forcing</term>
<term>Grid generated turbulence</term>
<term>Homogeneous turbulence</term>
<term>Isotropic turbulence</term>
<term>Large scale</term>
<term>Turbulent flow</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Turbulence grille</term>
<term>Déclin</term>
<term>Echelle grande</term>
<term>Forçage</term>
<term>Ecoulement turbulent</term>
<term>Turbulence isotrope</term>
<term>Etude expérimentale</term>
<term>Simulation numérique</term>
<term>Turbulence homogène</term>
<term>4727G</term>
<term>4727E</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In most real or numerically simulated turbulent flows, the energy dissipated at small scales is equal to that injected at very large scales, which are anisotropic. Despite this injection-scale anisotropy, one generally expects the inertial-range scales to be locally isotropic. For moderate Reynolds numbers, the isotropic relations between second-order and third-order moments for temperature (Yaglom's equation) or velocity increments (Kolmogorov's equation) are not respected, reflecting a non-negligible correlation between the scales responsible for the injection, the transfer and the dissipation of energy. In order to shed some light on the influence of the large scales on inertial-range properties, a generalization of Yaglom's equation is deduced and tested, in heated grid turbulence (R
<sub>λ</sub>
= 66). In this case, the main phenomenon responsible for the non-universal inertial-range behaviour is the non-stationarity of the second-order moments, acting as a negative production term</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-1120</s0>
</fA01>
<fA02 i1="01">
<s0>JFLSA7</s0>
</fA02>
<fA03 i2="1">
<s0>J. Fluid Mech.</s0>
</fA03>
<fA05>
<s2>391</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>A generalization of Yaglom's equation which accounts for the large-scale forcing in heated decaying turbulence</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>DANAILA (L.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ANSELMET (F.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ZHOU (T.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ANTONIA (R. A.)</s1>
</fA11>
<fA14 i1="01">
<s1>IRPHE, 12 Avenue Général Leclerc</s1>
<s2>13003 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Mechanical Engineering, University of Newcastle</s1>
<s2>NSW, 2308</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>359-372</s1>
</fA20>
<fA21>
<s1>1999</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>5180</s2>
<s5>354000086030790140</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 1999 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>30 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>99-0367961</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of Fluid Mechanics</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In most real or numerically simulated turbulent flows, the energy dissipated at small scales is equal to that injected at very large scales, which are anisotropic. Despite this injection-scale anisotropy, one generally expects the inertial-range scales to be locally isotropic. For moderate Reynolds numbers, the isotropic relations between second-order and third-order moments for temperature (Yaglom's equation) or velocity increments (Kolmogorov's equation) are not respected, reflecting a non-negligible correlation between the scales responsible for the injection, the transfer and the dissipation of energy. In order to shed some light on the influence of the large scales on inertial-range properties, a generalization of Yaglom's equation is deduced and tested, in heated grid turbulence (R
<sub>λ</sub>
= 66). In this case, the main phenomenon responsible for the non-universal inertial-range behaviour is the non-stationarity of the second-order moments, acting as a negative production term</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40G27G</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40G27E</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Turbulence grille</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Grid generated turbulence</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Turbulencia rejilla</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Déclin</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Decay</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Decadencia</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Echelle grande</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Large scale</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Escala grande</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Forçage</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Forcing</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Forzamiento</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Ecoulement turbulent</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Turbulent flow</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Turbulence isotrope</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Isotropic turbulence</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Turbulencia isótropa</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Simulation numérique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Digital simulation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Turbulence homogène</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Homogeneous turbulence</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Turbulencia homogénea</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>4727G</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>4727E</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fN21>
<s1>235</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 006D44 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 006D44 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:99-0367961
   |texte=   A generalization of Yaglom's equation which accounts for the large-scale forcing in heated decaying turbulence
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024