Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Route optimisation and solving Zermelo's navigation problem during long distance migration in cross flows

Identifieur interne : 005D31 ( PascalFrancis/Curation ); précédent : 005D30; suivant : 005D32

Route optimisation and solving Zermelo's navigation problem during long distance migration in cross flows

Auteurs : Graeme C. Hays [Australie, Royaume-Uni] ; Asbj Rn Christensen [Danemark] ; Sabrina Fossette [Royaume-Uni, États-Unis] ; Gail Schofield [Australie, Royaume-Uni] ; Julian Talbot [France] ; Patrizio Mariani [Danemark]

Source :

RBID : Pascal:15-0016135

Descripteurs français

English descriptors

Abstract

The optimum path to follow when subjected to cross flows was first considered over 80 years ago by the German mathematician Ernst Zermelo, in the context of a boat being displaced by ocean currents, and has become known as the 'Zermelo navigation problem'. However, the ability of migrating animals to solve this problem has received limited consideration, even though wind and ocean currents cause the lateral displacement of flyers and swimmers, respectively, particularly during long-distance journeys of 1000s of kilometres. Here, we examine this problem by combining long-distance, open-ocean marine turtle movements (obtained via long-term GPS tracking of sea turtles moving 1000s of km), with a high resolution basin-wide physical ocean model to estimate ocean currents. We provide a robust mathematical framework to demonstrate that, while turtles eventually arrive at their target site, they do not follow the optimum (Zermelo's) route. Even though adult marine turtles regularly complete incredible long-distance migrations, these vertebrates primarily rely on course corrections when entering neritic waters during the final stages of migration. Our work introduces a new perspective in the analysis of wildlife tracking datasets, with different animal groups potentially exhibiting different levels of complexity in goal attainment during migration.
pA  
A01 01  1    @0 1461-023X
A03   1    @0 Ecol. lett. : (Print)
A05       @2 17
A06       @2 2
A08 01  1  ENG  @1 Route optimisation and solving Zermelo's navigation problem during long distance migration in cross flows
A11 01  1    @1 HAYS (Graeme C.)
A11 02  1    @1 CHRISTENSEN (Asbjørn)
A11 03  1    @1 FOSSETTE (Sabrina)
A11 04  1    @1 SCHOFIELD (Gail)
A11 05  1    @1 TALBOT (Julian)
A11 06  1    @1 MARIANI (Patrizio)
A14 01      @1 Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University @2 Warrnambool, Vic, 3280 @3 AUS @Z 1 aut. @Z 4 aut.
A14 02      @1 Department of Biosciences, Swansea University @2 Swansea, SA2 8PP @3 GBR @Z 1 aut. @Z 3 aut. @Z 4 aut.
A14 03      @1 Centre for Ocean Life, National Institute of Aquatic Resources, Technical University of Denmark, Jægersborg Alle 1 @2 2920, Charlottenlund @3 DNK @Z 2 aut. @Z 6 aut.
A14 04      @1 Environmental Research Division, SWFSC, NOAA @2 Pacific Grove, CA, 93950 @3 USA @Z 3 aut.
A14 05      @1 Laboratoire de Physique Théorique de la Matière Condensée, UPMC, CNRS UMR 7600, 4, place Jussieu @2 75252 Paris @3 FRA @Z 5 aut.
A20       @1 137-143
A21       @1 2014
A23 01      @0 ENG
A43 01      @1 INIST @2 27879 @5 354000506146440020
A44       @0 0000 @1 © 2015 INIST-CNRS. All rights reserved.
A45       @0 1/2 p.
A47 01  1    @0 15-0016135
A60       @1 P
A61       @0 A
A64 01  1    @0 Ecology letters : (Print)
A66 01      @0 GBR
C01 01    ENG  @0 The optimum path to follow when subjected to cross flows was first considered over 80 years ago by the German mathematician Ernst Zermelo, in the context of a boat being displaced by ocean currents, and has become known as the 'Zermelo navigation problem'. However, the ability of migrating animals to solve this problem has received limited consideration, even though wind and ocean currents cause the lateral displacement of flyers and swimmers, respectively, particularly during long-distance journeys of 1000s of kilometres. Here, we examine this problem by combining long-distance, open-ocean marine turtle movements (obtained via long-term GPS tracking of sea turtles moving 1000s of km), with a high resolution basin-wide physical ocean model to estimate ocean currents. We provide a robust mathematical framework to demonstrate that, while turtles eventually arrive at their target site, they do not follow the optimum (Zermelo's) route. Even though adult marine turtles regularly complete incredible long-distance migrations, these vertebrates primarily rely on course corrections when entering neritic waters during the final stages of migration. Our work introduces a new perspective in the analysis of wildlife tracking datasets, with different animal groups potentially exhibiting different levels of complexity in goal attainment during migration.
C02 01  X    @0 002A14B01
C03 01  X  FRE  @0 Optimisation @5 01
C03 01  X  ENG  @0 Optimization @5 01
C03 01  X  SPA  @0 Optimización @5 01
C03 02  X  FRE  @0 Résolution (math) @5 02
C03 02  X  ENG  @0 Solving @5 02
C03 02  X  SPA  @0 Resolución (matemática) @5 02
C03 03  X  FRE  @0 Navigation @5 03
C03 03  X  ENG  @0 Navigation @5 03
C03 03  X  SPA  @0 Navegación @5 03
C03 04  X  FRE  @0 Longue distance @5 04
C03 04  X  ENG  @0 Long distance @5 04
C03 04  X  SPA  @0 Larga distancia @5 04
C03 05  X  FRE  @0 Migration @5 05
C03 05  X  ENG  @0 Migration @5 05
C03 05  X  SPA  @0 Migración @5 05
C03 06  X  FRE  @0 Télémétrie @5 06
C03 06  X  ENG  @0 Range finding @5 06
C03 06  X  SPA  @0 Telemetría @5 06
N21       @1 019
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:15-0016135

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Route optimisation and solving Zermelo's navigation problem during long distance migration in cross flows</title>
<author>
<name sortKey="Hays, Graeme C" sort="Hays, Graeme C" uniqKey="Hays G" first="Graeme C." last="Hays">Graeme C. Hays</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University</s1>
<s2>Warrnambool, Vic, 3280</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Biosciences, Swansea University</s1>
<s2>Swansea, SA2 8PP</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
</affiliation>
</author>
<author>
<name sortKey="Christensen, Asbj Rn" sort="Christensen, Asbj Rn" uniqKey="Christensen A" first="Asbj Rn" last="Christensen">Asbj Rn Christensen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Centre for Ocean Life, National Institute of Aquatic Resources, Technical University of Denmark, Jægersborg Alle 1</s1>
<s2>2920, Charlottenlund</s2>
<s3>DNK</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Danemark</country>
</affiliation>
</author>
<author>
<name sortKey="Fossette, Sabrina" sort="Fossette, Sabrina" uniqKey="Fossette S" first="Sabrina" last="Fossette">Sabrina Fossette</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Biosciences, Swansea University</s1>
<s2>Swansea, SA2 8PP</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Environmental Research Division, SWFSC, NOAA</s1>
<s2>Pacific Grove, CA, 93950</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Schofield, Gail" sort="Schofield, Gail" uniqKey="Schofield G" first="Gail" last="Schofield">Gail Schofield</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University</s1>
<s2>Warrnambool, Vic, 3280</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Biosciences, Swansea University</s1>
<s2>Swansea, SA2 8PP</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
</affiliation>
</author>
<author>
<name sortKey="Talbot, Julian" sort="Talbot, Julian" uniqKey="Talbot J" first="Julian" last="Talbot">Julian Talbot</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Laboratoire de Physique Théorique de la Matière Condensée, UPMC, CNRS UMR 7600, 4, place Jussieu</s1>
<s2>75252 Paris</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Mariani, Patrizio" sort="Mariani, Patrizio" uniqKey="Mariani P" first="Patrizio" last="Mariani">Patrizio Mariani</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Centre for Ocean Life, National Institute of Aquatic Resources, Technical University of Denmark, Jægersborg Alle 1</s1>
<s2>2920, Charlottenlund</s2>
<s3>DNK</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Danemark</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">15-0016135</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 15-0016135 INIST</idno>
<idno type="RBID">Pascal:15-0016135</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000122</idno>
<idno type="wicri:Area/PascalFrancis/Curation">005D31</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Route optimisation and solving Zermelo's navigation problem during long distance migration in cross flows</title>
<author>
<name sortKey="Hays, Graeme C" sort="Hays, Graeme C" uniqKey="Hays G" first="Graeme C." last="Hays">Graeme C. Hays</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University</s1>
<s2>Warrnambool, Vic, 3280</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Biosciences, Swansea University</s1>
<s2>Swansea, SA2 8PP</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
</affiliation>
</author>
<author>
<name sortKey="Christensen, Asbj Rn" sort="Christensen, Asbj Rn" uniqKey="Christensen A" first="Asbj Rn" last="Christensen">Asbj Rn Christensen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Centre for Ocean Life, National Institute of Aquatic Resources, Technical University of Denmark, Jægersborg Alle 1</s1>
<s2>2920, Charlottenlund</s2>
<s3>DNK</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Danemark</country>
</affiliation>
</author>
<author>
<name sortKey="Fossette, Sabrina" sort="Fossette, Sabrina" uniqKey="Fossette S" first="Sabrina" last="Fossette">Sabrina Fossette</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Biosciences, Swansea University</s1>
<s2>Swansea, SA2 8PP</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Environmental Research Division, SWFSC, NOAA</s1>
<s2>Pacific Grove, CA, 93950</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Schofield, Gail" sort="Schofield, Gail" uniqKey="Schofield G" first="Gail" last="Schofield">Gail Schofield</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University</s1>
<s2>Warrnambool, Vic, 3280</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Biosciences, Swansea University</s1>
<s2>Swansea, SA2 8PP</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
</affiliation>
</author>
<author>
<name sortKey="Talbot, Julian" sort="Talbot, Julian" uniqKey="Talbot J" first="Julian" last="Talbot">Julian Talbot</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Laboratoire de Physique Théorique de la Matière Condensée, UPMC, CNRS UMR 7600, 4, place Jussieu</s1>
<s2>75252 Paris</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Mariani, Patrizio" sort="Mariani, Patrizio" uniqKey="Mariani P" first="Patrizio" last="Mariani">Patrizio Mariani</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Centre for Ocean Life, National Institute of Aquatic Resources, Technical University of Denmark, Jægersborg Alle 1</s1>
<s2>2920, Charlottenlund</s2>
<s3>DNK</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Danemark</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Ecology letters : (Print)</title>
<title level="j" type="abbreviated">Ecol. lett. : (Print)</title>
<idno type="ISSN">1461-023X</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Ecology letters : (Print)</title>
<title level="j" type="abbreviated">Ecol. lett. : (Print)</title>
<idno type="ISSN">1461-023X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Long distance</term>
<term>Migration</term>
<term>Navigation</term>
<term>Optimization</term>
<term>Range finding</term>
<term>Solving</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Optimisation</term>
<term>Résolution (math)</term>
<term>Navigation</term>
<term>Longue distance</term>
<term>Migration</term>
<term>Télémétrie</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Migration</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The optimum path to follow when subjected to cross flows was first considered over 80 years ago by the German mathematician Ernst Zermelo, in the context of a boat being displaced by ocean currents, and has become known as the 'Zermelo navigation problem'. However, the ability of migrating animals to solve this problem has received limited consideration, even though wind and ocean currents cause the lateral displacement of flyers and swimmers, respectively, particularly during long-distance journeys of 1000s of kilometres. Here, we examine this problem by combining long-distance, open-ocean marine turtle movements (obtained via long-term GPS tracking of sea turtles moving 1000s of km), with a high resolution basin-wide physical ocean model to estimate ocean currents. We provide a robust mathematical framework to demonstrate that, while turtles eventually arrive at their target site, they do not follow the optimum (Zermelo's) route. Even though adult marine turtles regularly complete incredible long-distance migrations, these vertebrates primarily rely on course corrections when entering neritic waters during the final stages of migration. Our work introduces a new perspective in the analysis of wildlife tracking datasets, with different animal groups potentially exhibiting different levels of complexity in goal attainment during migration.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1461-023X</s0>
</fA01>
<fA03 i2="1">
<s0>Ecol. lett. : (Print)</s0>
</fA03>
<fA05>
<s2>17</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Route optimisation and solving Zermelo's navigation problem during long distance migration in cross flows</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HAYS (Graeme C.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CHRISTENSEN (Asbjørn)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>FOSSETTE (Sabrina)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SCHOFIELD (Gail)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>TALBOT (Julian)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>MARIANI (Patrizio)</s1>
</fA11>
<fA14 i1="01">
<s1>Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University</s1>
<s2>Warrnambool, Vic, 3280</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Biosciences, Swansea University</s1>
<s2>Swansea, SA2 8PP</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Centre for Ocean Life, National Institute of Aquatic Resources, Technical University of Denmark, Jægersborg Alle 1</s1>
<s2>2920, Charlottenlund</s2>
<s3>DNK</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Environmental Research Division, SWFSC, NOAA</s1>
<s2>Pacific Grove, CA, 93950</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Laboratoire de Physique Théorique de la Matière Condensée, UPMC, CNRS UMR 7600, 4, place Jussieu</s1>
<s2>75252 Paris</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>137-143</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27879</s2>
<s5>354000506146440020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2015 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1/2 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>15-0016135</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Ecology letters : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The optimum path to follow when subjected to cross flows was first considered over 80 years ago by the German mathematician Ernst Zermelo, in the context of a boat being displaced by ocean currents, and has become known as the 'Zermelo navigation problem'. However, the ability of migrating animals to solve this problem has received limited consideration, even though wind and ocean currents cause the lateral displacement of flyers and swimmers, respectively, particularly during long-distance journeys of 1000s of kilometres. Here, we examine this problem by combining long-distance, open-ocean marine turtle movements (obtained via long-term GPS tracking of sea turtles moving 1000s of km), with a high resolution basin-wide physical ocean model to estimate ocean currents. We provide a robust mathematical framework to demonstrate that, while turtles eventually arrive at their target site, they do not follow the optimum (Zermelo's) route. Even though adult marine turtles regularly complete incredible long-distance migrations, these vertebrates primarily rely on course corrections when entering neritic waters during the final stages of migration. Our work introduces a new perspective in the analysis of wildlife tracking datasets, with different animal groups potentially exhibiting different levels of complexity in goal attainment during migration.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A14B01</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Optimisation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Optimization</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Optimización</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Résolution (math)</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Solving</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Resolución (matemática)</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Navigation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Navigation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Navegación</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Longue distance</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Long distance</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Larga distancia</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Migration</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Migration</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Migración</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Télémétrie</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Range finding</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Telemetría</s0>
<s5>06</s5>
</fC03>
<fN21>
<s1>019</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005D31 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 005D31 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:15-0016135
   |texte=   Route optimisation and solving Zermelo's navigation problem during long distance migration in cross flows
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024