Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Internal tide generation by abyssal hills using analytical theory

Identifieur interne : 005896 ( PascalFrancis/Curation ); précédent : 005895; suivant : 005897

Internal tide generation by abyssal hills using analytical theory

Auteurs : Angélique Melet [États-Unis] ; Maxim Nikurashin [Australie] ; Caroline Muller [France] ; S. Falahat [Suède] ; Jonas Nycander [Suède] ; Patrick G. Timko [Royaume-Uni] ; Brian K. Arbic [États-Unis] ; John A. Goff [États-Unis]

Source :

RBID : Pascal:14-0049711

Descripteurs français

English descriptors

Abstract

Internal tide driven mixing plays a key role in sustaining the deep ocean stratification and meridional overturning circulation. Internal tides can be generated by topographic horizontal scales ranging from hundreds of meters to tens of kilometers. State of the art topographic products barely resolve scales smaller than ˜10 km in the deep ocean. On these scales abyssal hills dominate ocean floor roughness. The impact of abyssal hill roughness on internal-tide generation is evaluated in this study. The conversion of M2 barotropic to baroclinic tidal energy is calculated based on linear wave theory both in real and spectral space using the Shuttle Radar Topography Mission SRTM30_PLUS bathymetric product at 1/120° resolution with and without the addition of synthetic abyssal hill roughness. Internal tide generation by abyssal hills integrates to 0.1 TW globally or 0.03 TW when the energy flux is empirically corrected for supercritical slope (i.e., ˜10% of the energy flux due to larger topographic scales resolved in standard products in both cases). The abyssal hill driven energy conversion is dominated by mid-ocean ridges, where abyssal hill roughness is large. Focusing on two regions located over the Mid-Atlantic Ridge and the East Pacific Rise, it is shown that regionally linear theory predicts an increase of the energy flux due to abyssal hills of up to 100% or 60% when an empirical correction for supercritical slopes is attempted. Therefore, abyssal hills, unresolved in state of the art topographic products, can have a strong impact on internal tide generation, especially over mid-ocean ridges.
pA  
A01 01  2    @0 2169-9275
A05       @2 118
A06       @2 11
A08 01  1  ENG  @1 Internal tide generation by abyssal hills using analytical theory
A11 01  1    @1 MELET (Angélique)
A11 02  1    @1 NIKURASHIN (Maxim)
A11 03  1    @1 MULLER (Caroline)
A11 04  1    @1 FALAHAT (S.)
A11 05  1    @1 NYCANDER (Jonas)
A11 06  1    @1 TIMKO (Patrick G.)
A11 07  1    @1 ARBIC (Brian K.)
A11 08  1    @1 GOFF (John A.)
A14 01      @1 Program in Atmospheric and Oceanic Sciences, Princeton University @2 Princeton, New Jersey @3 USA @Z 1 aut.
A14 02      @1 Institute for Marine and Antarctic Studies, University of Tasmania @2 Hobart, Tasmania @3 AUS @Z 2 aut.
A14 03      @1 ARC Centre of Excellence for Climate System Science @3 AUS @Z 2 aut.
A14 04      @1 CNRS/Laboratoire d'Hydrodynamique de l'Ecole Polytechnique @2 Paliseau @3 FRA @Z 3 aut.
A14 05      @1 Department of Meteorology, Stockholm University @2 Stockholm @3 SWE @Z 4 aut. @Z 5 aut.
A14 06      @1 Centre for Applied Marine Sciences, Bangor University @2 Menai Bridge @3 GBR @Z 6 aut.
A14 07      @1 Department of Earth and Environmental Sciences, University of Michian @2 Ann Arbor, Michigan @3 USA @Z 7 aut.
A14 08      @1 Institute for Geophysics, Jackson School of Geosciences, Univerity of Texas at Austin @2 Austin, Texas @3 USA @Z 8 aut.
A20       @1 6303-6318
A21       @1 2013
A23 01      @0 ENG
A43 01      @1 INIST @2 3144C1 @5 354000500747400290
A44       @0 0000 @1 © 2014 INIST-CNRS. All rights reserved.
A45       @0 1 p.
A47 01  1    @0 14-0049711
A60       @1 P
A61       @0 A
A64 01  2    @0 Journal of geophysical research. Oceans
A66 01      @0 USA
C01 01    ENG  @0 Internal tide driven mixing plays a key role in sustaining the deep ocean stratification and meridional overturning circulation. Internal tides can be generated by topographic horizontal scales ranging from hundreds of meters to tens of kilometers. State of the art topographic products barely resolve scales smaller than ˜10 km in the deep ocean. On these scales abyssal hills dominate ocean floor roughness. The impact of abyssal hill roughness on internal-tide generation is evaluated in this study. The conversion of M2 barotropic to baroclinic tidal energy is calculated based on linear wave theory both in real and spectral space using the Shuttle Radar Topography Mission SRTM30_PLUS bathymetric product at 1/120° resolution with and without the addition of synthetic abyssal hill roughness. Internal tide generation by abyssal hills integrates to 0.1 TW globally or 0.03 TW when the energy flux is empirically corrected for supercritical slope (i.e., ˜10% of the energy flux due to larger topographic scales resolved in standard products in both cases). The abyssal hill driven energy conversion is dominated by mid-ocean ridges, where abyssal hill roughness is large. Focusing on two regions located over the Mid-Atlantic Ridge and the East Pacific Rise, it is shown that regionally linear theory predicts an increase of the energy flux due to abyssal hills of up to 100% or 60% when an empirical correction for supercritical slopes is attempted. Therefore, abyssal hills, unresolved in state of the art topographic products, can have a strong impact on internal tide generation, especially over mid-ocean ridges.
C02 01  2    @0 001E02B
C03 01  2  FRE  @0 Onde interne @5 01
C03 01  2  ENG  @0 internal waves @5 01
C03 02  2  FRE  @0 Colline sous marine @5 02
C03 02  2  ENG  @0 abyssal hills @5 02
C03 03  2  FRE  @0 Stratification @5 03
C03 03  2  ENG  @0 stratification @5 03
C03 03  2  SPA  @0 Estratificación @5 03
C03 04  2  FRE  @0 Topographie @5 04
C03 04  2  ENG  @0 topography @5 04
C03 04  2  SPA  @0 Topografía @5 04
C03 05  2  FRE  @0 Fond marin @5 05
C03 05  2  ENG  @0 ocean floors @5 05
C03 05  2  SPA  @0 Fondo marino @5 05
C03 06  2  FRE  @0 Rugosité @5 06
C03 06  2  ENG  @0 roughness @5 06
C03 06  2  SPA  @0 Rugosidad @5 06
C03 07  2  FRE  @0 Energie marémotrice @5 07
C03 07  2  ENG  @0 tidal energy @5 07
C03 07  2  SPA  @0 Energía maremotriz @5 07
C03 08  X  FRE  @0 Théorie linéaire @5 08
C03 08  X  ENG  @0 Linear theory @5 08
C03 08  X  SPA  @0 Teoría lineal @5 08
C03 09  2  FRE  @0 Navette spatiale @5 09
C03 09  2  ENG  @0 space shuttle @5 09
C03 10  X  FRE  @0 Observation radar @5 10
C03 10  X  ENG  @0 Radar observation @5 10
C03 10  X  SPA  @0 Observación radar @5 10
C03 11  2  FRE  @0 Transfert énergie @5 11
C03 11  2  ENG  @0 energy transfer @5 11
C03 12  X  FRE  @0 Conversion énergie @5 12
C03 12  X  ENG  @0 Energy conversion @5 12
C03 12  X  SPA  @0 Conversión energética @5 12
C03 13  2  FRE  @0 Dorsale océanique @5 13
C03 13  2  ENG  @0 mid-ocean ridges @5 13
C03 14  2  FRE  @0 Correction @5 14
C03 14  2  ENG  @0 corrections @5 14
C03 14  2  SPA  @0 Corrección @5 14
C03 15  2  FRE  @0 Dorsale Médio-Atlantique @2 NG @5 21
C03 15  2  ENG  @0 Mid-Atlantic Ridge @2 NG @5 21
C03 16  2  FRE  @0 Dorsale Pacifique Est @2 NG @5 22
C03 16  2  ENG  @0 East Pacific Rise @2 NG @5 22
C03 16  2  SPA  @0 Dorsal Pacífico Este @2 NG @5 22
C03 17  2  FRE  @0 Circulation thermohaline @5 41
C03 17  2  ENG  @0 thermohaline circulation @5 41
C03 17  2  SPA  @0 Circulación termohalina @5 41
C03 18  2  FRE  @0 Circulation océanique @5 42
C03 18  2  ENG  @0 ocean circulation @5 42
C03 18  2  SPA  @0 Circulación oceánica @5 42
C03 19  2  FRE  @0 Circulation méridienne de retournement @4 CD @5 96
C03 19  2  ENG  @0 Meridional overturning circulation @4 CD @5 96
C07 01  2  FRE  @0 Océan Atlantique @2 564
C07 01  2  ENG  @0 Atlantic Ocean @2 564
C07 01  2  SPA  @0 Océano Atlántico @2 564
C07 02  2  FRE  @0 Océan Pacifique @2 564
C07 02  2  ENG  @0 Pacific Ocean @2 564
C07 02  2  SPA  @0 Océano Pacífico @2 564
N21       @1 062
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0049711

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Internal tide generation by abyssal hills using analytical theory</title>
<author>
<name sortKey="Melet, Angelique" sort="Melet, Angelique" uniqKey="Melet A" first="Angélique" last="Melet">Angélique Melet</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Program in Atmospheric and Oceanic Sciences, Princeton University</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Nikurashin, Maxim" sort="Nikurashin, Maxim" uniqKey="Nikurashin M" first="Maxim" last="Nikurashin">Maxim Nikurashin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute for Marine and Antarctic Studies, University of Tasmania</s1>
<s2>Hobart, Tasmania</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>ARC Centre of Excellence for Climate System Science</s1>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Muller, Caroline" sort="Muller, Caroline" uniqKey="Muller C" first="Caroline" last="Muller">Caroline Muller</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>CNRS/Laboratoire d'Hydrodynamique de l'Ecole Polytechnique</s1>
<s2>Paliseau</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Falahat, S" sort="Falahat, S" uniqKey="Falahat S" first="S." last="Falahat">S. Falahat</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Department of Meteorology, Stockholm University</s1>
<s2>Stockholm</s2>
<s3>SWE</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Suède</country>
</affiliation>
</author>
<author>
<name sortKey="Nycander, Jonas" sort="Nycander, Jonas" uniqKey="Nycander J" first="Jonas" last="Nycander">Jonas Nycander</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Department of Meteorology, Stockholm University</s1>
<s2>Stockholm</s2>
<s3>SWE</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Suède</country>
</affiliation>
</author>
<author>
<name sortKey="Timko, Patrick G" sort="Timko, Patrick G" uniqKey="Timko P" first="Patrick G." last="Timko">Patrick G. Timko</name>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>Centre for Applied Marine Sciences, Bangor University</s1>
<s2>Menai Bridge</s2>
<s3>GBR</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
</affiliation>
</author>
<author>
<name sortKey="Arbic, Brian K" sort="Arbic, Brian K" uniqKey="Arbic B" first="Brian K." last="Arbic">Brian K. Arbic</name>
<affiliation wicri:level="1">
<inist:fA14 i1="07">
<s1>Department of Earth and Environmental Sciences, University of Michian</s1>
<s2>Ann Arbor, Michigan</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Goff, John A" sort="Goff, John A" uniqKey="Goff J" first="John A." last="Goff">John A. Goff</name>
<affiliation wicri:level="1">
<inist:fA14 i1="08">
<s1>Institute for Geophysics, Jackson School of Geosciences, Univerity of Texas at Austin</s1>
<s2>Austin, Texas</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">14-0049711</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 14-0049711 INIST</idno>
<idno type="RBID">Pascal:14-0049711</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000561</idno>
<idno type="wicri:Area/PascalFrancis/Curation">005896</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Internal tide generation by abyssal hills using analytical theory</title>
<author>
<name sortKey="Melet, Angelique" sort="Melet, Angelique" uniqKey="Melet A" first="Angélique" last="Melet">Angélique Melet</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Program in Atmospheric and Oceanic Sciences, Princeton University</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Nikurashin, Maxim" sort="Nikurashin, Maxim" uniqKey="Nikurashin M" first="Maxim" last="Nikurashin">Maxim Nikurashin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute for Marine and Antarctic Studies, University of Tasmania</s1>
<s2>Hobart, Tasmania</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>ARC Centre of Excellence for Climate System Science</s1>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Muller, Caroline" sort="Muller, Caroline" uniqKey="Muller C" first="Caroline" last="Muller">Caroline Muller</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>CNRS/Laboratoire d'Hydrodynamique de l'Ecole Polytechnique</s1>
<s2>Paliseau</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Falahat, S" sort="Falahat, S" uniqKey="Falahat S" first="S." last="Falahat">S. Falahat</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Department of Meteorology, Stockholm University</s1>
<s2>Stockholm</s2>
<s3>SWE</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Suède</country>
</affiliation>
</author>
<author>
<name sortKey="Nycander, Jonas" sort="Nycander, Jonas" uniqKey="Nycander J" first="Jonas" last="Nycander">Jonas Nycander</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Department of Meteorology, Stockholm University</s1>
<s2>Stockholm</s2>
<s3>SWE</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Suède</country>
</affiliation>
</author>
<author>
<name sortKey="Timko, Patrick G" sort="Timko, Patrick G" uniqKey="Timko P" first="Patrick G." last="Timko">Patrick G. Timko</name>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>Centre for Applied Marine Sciences, Bangor University</s1>
<s2>Menai Bridge</s2>
<s3>GBR</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
</affiliation>
</author>
<author>
<name sortKey="Arbic, Brian K" sort="Arbic, Brian K" uniqKey="Arbic B" first="Brian K." last="Arbic">Brian K. Arbic</name>
<affiliation wicri:level="1">
<inist:fA14 i1="07">
<s1>Department of Earth and Environmental Sciences, University of Michian</s1>
<s2>Ann Arbor, Michigan</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Goff, John A" sort="Goff, John A" uniqKey="Goff J" first="John A." last="Goff">John A. Goff</name>
<affiliation wicri:level="1">
<inist:fA14 i1="08">
<s1>Institute for Geophysics, Jackson School of Geosciences, Univerity of Texas at Austin</s1>
<s2>Austin, Texas</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research. Oceans</title>
<idno type="ISSN">2169-9275</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research. Oceans</title>
<idno type="ISSN">2169-9275</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>East Pacific Rise</term>
<term>Energy conversion</term>
<term>Linear theory</term>
<term>Meridional overturning circulation</term>
<term>Mid-Atlantic Ridge</term>
<term>Radar observation</term>
<term>abyssal hills</term>
<term>corrections</term>
<term>energy transfer</term>
<term>internal waves</term>
<term>mid-ocean ridges</term>
<term>ocean circulation</term>
<term>ocean floors</term>
<term>roughness</term>
<term>space shuttle</term>
<term>stratification</term>
<term>thermohaline circulation</term>
<term>tidal energy</term>
<term>topography</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Onde interne</term>
<term>Colline sous marine</term>
<term>Stratification</term>
<term>Topographie</term>
<term>Fond marin</term>
<term>Rugosité</term>
<term>Energie marémotrice</term>
<term>Théorie linéaire</term>
<term>Navette spatiale</term>
<term>Observation radar</term>
<term>Transfert énergie</term>
<term>Conversion énergie</term>
<term>Dorsale océanique</term>
<term>Correction</term>
<term>Dorsale Médio-Atlantique</term>
<term>Dorsale Pacifique Est</term>
<term>Circulation thermohaline</term>
<term>Circulation océanique</term>
<term>Circulation méridienne de retournement</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Fond marin</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Internal tide driven mixing plays a key role in sustaining the deep ocean stratification and meridional overturning circulation. Internal tides can be generated by topographic horizontal scales ranging from hundreds of meters to tens of kilometers. State of the art topographic products barely resolve scales smaller than ˜10 km in the deep ocean. On these scales abyssal hills dominate ocean floor roughness. The impact of abyssal hill roughness on internal-tide generation is evaluated in this study. The conversion of M
<sub>2</sub>
barotropic to baroclinic tidal energy is calculated based on linear wave theory both in real and spectral space using the Shuttle Radar Topography Mission SRTM30_PLUS bathymetric product at 1/120° resolution with and without the addition of synthetic abyssal hill roughness. Internal tide generation by abyssal hills integrates to 0.1 TW globally or 0.03 TW when the energy flux is empirically corrected for supercritical slope (i.e., ˜10% of the energy flux due to larger topographic scales resolved in standard products in both cases). The abyssal hill driven energy conversion is dominated by mid-ocean ridges, where abyssal hill roughness is large. Focusing on two regions located over the Mid-Atlantic Ridge and the East Pacific Rise, it is shown that regionally linear theory predicts an increase of the energy flux due to abyssal hills of up to 100% or 60% when an empirical correction for supercritical slopes is attempted. Therefore, abyssal hills, unresolved in state of the art topographic products, can have a strong impact on internal tide generation, especially over mid-ocean ridges.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="2">
<s0>2169-9275</s0>
</fA01>
<fA05>
<s2>118</s2>
</fA05>
<fA06>
<s2>11</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Internal tide generation by abyssal hills using analytical theory</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MELET (Angélique)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>NIKURASHIN (Maxim)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MULLER (Caroline)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>FALAHAT (S.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>NYCANDER (Jonas)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>TIMKO (Patrick G.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>ARBIC (Brian K.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>GOFF (John A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Program in Atmospheric and Oceanic Sciences, Princeton University</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute for Marine and Antarctic Studies, University of Tasmania</s1>
<s2>Hobart, Tasmania</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>ARC Centre of Excellence for Climate System Science</s1>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>CNRS/Laboratoire d'Hydrodynamique de l'Ecole Polytechnique</s1>
<s2>Paliseau</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Department of Meteorology, Stockholm University</s1>
<s2>Stockholm</s2>
<s3>SWE</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Centre for Applied Marine Sciences, Bangor University</s1>
<s2>Menai Bridge</s2>
<s3>GBR</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="07">
<s1>Department of Earth and Environmental Sciences, University of Michian</s1>
<s2>Ann Arbor, Michigan</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="08">
<s1>Institute for Geophysics, Jackson School of Geosciences, Univerity of Texas at Austin</s1>
<s2>Austin, Texas</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>6303-6318</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144C1</s2>
<s5>354000500747400290</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0049711</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="2">
<s0>Journal of geophysical research. Oceans</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Internal tide driven mixing plays a key role in sustaining the deep ocean stratification and meridional overturning circulation. Internal tides can be generated by topographic horizontal scales ranging from hundreds of meters to tens of kilometers. State of the art topographic products barely resolve scales smaller than ˜10 km in the deep ocean. On these scales abyssal hills dominate ocean floor roughness. The impact of abyssal hill roughness on internal-tide generation is evaluated in this study. The conversion of M
<sub>2</sub>
barotropic to baroclinic tidal energy is calculated based on linear wave theory both in real and spectral space using the Shuttle Radar Topography Mission SRTM30_PLUS bathymetric product at 1/120° resolution with and without the addition of synthetic abyssal hill roughness. Internal tide generation by abyssal hills integrates to 0.1 TW globally or 0.03 TW when the energy flux is empirically corrected for supercritical slope (i.e., ˜10% of the energy flux due to larger topographic scales resolved in standard products in both cases). The abyssal hill driven energy conversion is dominated by mid-ocean ridges, where abyssal hill roughness is large. Focusing on two regions located over the Mid-Atlantic Ridge and the East Pacific Rise, it is shown that regionally linear theory predicts an increase of the energy flux due to abyssal hills of up to 100% or 60% when an empirical correction for supercritical slopes is attempted. Therefore, abyssal hills, unresolved in state of the art topographic products, can have a strong impact on internal tide generation, especially over mid-ocean ridges.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>001E02B</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Onde interne</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>internal waves</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Colline sous marine</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>abyssal hills</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Stratification</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>stratification</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="SPA">
<s0>Estratificación</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Topographie</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>topography</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="SPA">
<s0>Topografía</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Fond marin</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>ocean floors</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Fondo marino</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Rugosité</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>roughness</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Rugosidad</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Energie marémotrice</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>tidal energy</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Energía maremotriz</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Théorie linéaire</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Linear theory</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Teoría lineal</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Navette spatiale</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>space shuttle</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Observation radar</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Radar observation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Observación radar</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Transfert énergie</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>energy transfer</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Conversion énergie</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Energy conversion</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Conversión energética</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Dorsale océanique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>mid-ocean ridges</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Correction</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>corrections</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Corrección</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Dorsale Médio-Atlantique</s0>
<s2>NG</s2>
<s5>21</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>Mid-Atlantic Ridge</s0>
<s2>NG</s2>
<s5>21</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Dorsale Pacifique Est</s0>
<s2>NG</s2>
<s5>22</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>East Pacific Rise</s0>
<s2>NG</s2>
<s5>22</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Dorsal Pacífico Este</s0>
<s2>NG</s2>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Circulation thermohaline</s0>
<s5>41</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>thermohaline circulation</s0>
<s5>41</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Circulación termohalina</s0>
<s5>41</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Circulation océanique</s0>
<s5>42</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>ocean circulation</s0>
<s5>42</s5>
</fC03>
<fC03 i1="18" i2="2" l="SPA">
<s0>Circulación oceánica</s0>
<s5>42</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Circulation méridienne de retournement</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>Meridional overturning circulation</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC07 i1="01" i2="2" l="FRE">
<s0>Océan Atlantique</s0>
<s2>564</s2>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>Atlantic Ocean</s0>
<s2>564</s2>
</fC07>
<fC07 i1="01" i2="2" l="SPA">
<s0>Océano Atlántico</s0>
<s2>564</s2>
</fC07>
<fC07 i1="02" i2="2" l="FRE">
<s0>Océan Pacifique</s0>
<s2>564</s2>
</fC07>
<fC07 i1="02" i2="2" l="ENG">
<s0>Pacific Ocean</s0>
<s2>564</s2>
</fC07>
<fC07 i1="02" i2="2" l="SPA">
<s0>Océano Pacífico</s0>
<s2>564</s2>
</fC07>
<fN21>
<s1>062</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005896 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 005896 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:14-0049711
   |texte=   Internal tide generation by abyssal hills using analytical theory
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024