Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Three-dimensional dynamic models of subducting plate-overriding plate-upper mantle interaction

Identifieur interne : 005763 ( PascalFrancis/Curation ); précédent : 005762; suivant : 005764

Three-dimensional dynamic models of subducting plate-overriding plate-upper mantle interaction

Auteurs : C. Meyer [France, Australie] ; W. P. Schellart [Australie]

Source :

RBID : Pascal:13-0352947

Descripteurs français

English descriptors

Abstract

[1] We present fully dynamic generic three-dimensional laboratory models of progressive subduction with an overriding plate and a weak subduction zone interface. Overriding plate thickness (TOP) is varied systematically (in the range 0-2.5 cm scaling to 0-125 km) to investigate its effect on subduction kinematics and overriding plate deformation. The general pattern of subduction is the same for all models with slab draping on the 670 km discontinuity, comparable slab dip angles, trench retreat, trenchward subducting plate motion, and a concave trench curvature. The narrow slab models only show overriding plate extension. Subduction partitioning (νSP⊥/(νSP⊥+νT⊥)) increases with increasing Top, where trenchward subducting plate motion (νSP⊥) increases at the expense of trench retreat (νT⊥). This results from an increase in trench suction force with increasing TOP, which retards trench retreat. An increase in TOP also corresponds to a decrease in overriding plate extension and curvature because a thicker overriding plate provides more resistance to deform. Overriding plate extension is maximum at a scaled distance of ∼200-400 km from the trench, not at the trench, suggesting that basal shear tractions resulting from mantle flow below the overriding plate primarily drive extension rather than deviatoric tensional normal stresses at the subduction zone interface. The force that drives overriding plate extension is 5%-11% of the slab negative buoyancy force. The models show a positive correlation between νT⊥ and overriding plate extension rate, in agreement with observations. The results suggest that slab rollback and associated toroidal mantle flow drive overriding plate extension and backarc basin formation.
pA  
A01 01  2    @0 2169-9313
A05       @2 118
A06       @2 2
A08 01  1  ENG  @1 Three-dimensional dynamic models of subducting plate-overriding plate-upper mantle interaction
A11 01  1    @1 MEYER (C.)
A11 02  1    @1 SCHELLART (W. P.)
A14 01      @1 Ecole Normale Supérieure @2 Paris @3 FRA @Z 1 aut.
A14 02      @1 School of Geosciences, Monash University @2 Melbourne, Victoria @3 AUS @Z 1 aut. @Z 2 aut.
A20       @1 775-790
A21       @1 2013
A23 01      @0 ENG
A43 01      @1 INIST @2 3144B1 @5 354000140721780230
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/2
A47 01  1    @0 13-0352947
A60       @1 P
A61       @0 A
A64 01  2    @0 Journal of geophysical research. Solid earth
A66 01      @0 USA
C01 01    ENG  @0 [1] We present fully dynamic generic three-dimensional laboratory models of progressive subduction with an overriding plate and a weak subduction zone interface. Overriding plate thickness (TOP) is varied systematically (in the range 0-2.5 cm scaling to 0-125 km) to investigate its effect on subduction kinematics and overriding plate deformation. The general pattern of subduction is the same for all models with slab draping on the 670 km discontinuity, comparable slab dip angles, trench retreat, trenchward subducting plate motion, and a concave trench curvature. The narrow slab models only show overriding plate extension. Subduction partitioning (νSP⊥/(νSP⊥+νT⊥)) increases with increasing Top, where trenchward subducting plate motion (νSP⊥) increases at the expense of trench retreat (νT⊥). This results from an increase in trench suction force with increasing TOP, which retards trench retreat. An increase in TOP also corresponds to a decrease in overriding plate extension and curvature because a thicker overriding plate provides more resistance to deform. Overriding plate extension is maximum at a scaled distance of ∼200-400 km from the trench, not at the trench, suggesting that basal shear tractions resulting from mantle flow below the overriding plate primarily drive extension rather than deviatoric tensional normal stresses at the subduction zone interface. The force that drives overriding plate extension is 5%-11% of the slab negative buoyancy force. The models show a positive correlation between νT⊥ and overriding plate extension rate, in agreement with observations. The results suggest that slab rollback and associated toroidal mantle flow drive overriding plate extension and backarc basin formation.
C02 01  2    @0 001E01
C02 02  2    @0 220
C03 01  2  FRE  @0 Modèle 3 dimensions @5 01
C03 01  2  ENG  @0 three-dimensional models @5 01
C03 01  2  SPA  @0 Modelo 3 dimensiones @5 01
C03 02  2  FRE  @0 Dynamique @5 02
C03 02  2  ENG  @0 dynamics @5 02
C03 02  2  SPA  @0 Dinámica @5 02
C03 03  2  FRE  @0 Plaque @5 03
C03 03  2  ENG  @0 plates @5 03
C03 03  2  SPA  @0 Placa @5 03
C03 04  2  FRE  @0 Manteau sup @5 04
C03 04  2  ENG  @0 upper mantle @5 04
C03 04  2  SPA  @0 Manto globo sup @5 04
C03 05  2  FRE  @0 Subduction @5 05
C03 05  2  ENG  @0 subduction @5 05
C03 05  2  SPA  @0 Subducción @5 05
C03 06  2  FRE  @0 Zone subduction @5 06
C03 06  2  ENG  @0 subduction zones @5 06
C03 06  2  SPA  @0 Zona subducto @5 06
C03 07  2  FRE  @0 Interface @5 07
C03 07  2  ENG  @0 interfaces @5 07
C03 07  2  SPA  @0 Interfase @5 07
C03 08  2  FRE  @0 Epaisseur @5 08
C03 08  2  ENG  @0 thickness @5 08
C03 08  2  SPA  @0 Espesor @5 08
C03 09  2  FRE  @0 Cinématique @5 10
C03 09  2  ENG  @0 kinematics @5 10
C03 09  2  SPA  @0 Cinemática @5 10
C03 10  2  FRE  @0 Déformation @5 11
C03 10  2  ENG  @0 deformation @5 11
C03 11  2  FRE  @0 Dalle @5 12
C03 11  2  ENG  @0 slabs @5 12
C03 11  2  SPA  @0 Losa @5 12
C03 12  2  FRE  @0 Discontinuité @5 13
C03 12  2  ENG  @0 discontinuities @5 13
C03 12  2  SPA  @0 Discontinuidad @5 13
C03 13  2  FRE  @0 Pendage @5 14
C03 13  2  ENG  @0 dip @5 14
C03 13  2  SPA  @0 Buzamiento @5 14
C03 14  2  FRE  @0 Fosse abyssale @5 15
C03 14  2  ENG  @0 trenches @5 15
C03 14  2  SPA  @0 Fosa abisal @5 15
C03 15  2  FRE  @0 Mouvement @5 16
C03 15  2  ENG  @0 movement @5 16
C03 16  2  FRE  @0 Extension @5 17
C03 16  2  ENG  @0 extension @5 17
C03 16  2  SPA  @0 Extensión @5 17
C03 17  2  FRE  @0 Succion @5 18
C03 17  2  ENG  @0 suction @5 18
C03 17  2  SPA  @0 Succión @5 18
C03 18  2  FRE  @0 Cisaillement @5 19
C03 18  2  ENG  @0 shear @5 19
C03 18  2  SPA  @0 Cizalladura @5 19
C03 19  2  FRE  @0 Ecoulement @5 20
C03 19  2  ENG  @0 flow @5 20
C03 20  2  FRE  @0 Coulée @5 21
C03 20  2  ENG  @0 flows @5 21
C03 20  2  SPA  @0 Colada @5 21
C03 21  2  FRE  @0 Contrainte @5 22
C03 21  2  ENG  @0 stress @5 22
C03 21  2  SPA  @0 Coacción @5 22
C03 22  2  FRE  @0 Flottabilité @5 23
C03 22  2  ENG  @0 buoyancy @5 23
C03 22  2  SPA  @0 Flotabilidad @5 23
C03 23  2  FRE  @0 Corrélation @5 24
C03 23  2  ENG  @0 correlation @5 24
C03 23  2  SPA  @0 Correlación @5 24
N21       @1 336

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0352947

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Three-dimensional dynamic models of subducting plate-overriding plate-upper mantle interaction</title>
<author>
<name sortKey="Meyer, C" sort="Meyer, C" uniqKey="Meyer C" first="C." last="Meyer">C. Meyer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Ecole Normale Supérieure</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Geosciences, Monash University</s1>
<s2>Melbourne, Victoria</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Schellart, W P" sort="Schellart, W P" uniqKey="Schellart W" first="W. P." last="Schellart">W. P. Schellart</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Geosciences, Monash University</s1>
<s2>Melbourne, Victoria</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0352947</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0352947 INIST</idno>
<idno type="RBID">Pascal:13-0352947</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000727</idno>
<idno type="wicri:Area/PascalFrancis/Curation">005763</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Three-dimensional dynamic models of subducting plate-overriding plate-upper mantle interaction</title>
<author>
<name sortKey="Meyer, C" sort="Meyer, C" uniqKey="Meyer C" first="C." last="Meyer">C. Meyer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Ecole Normale Supérieure</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Geosciences, Monash University</s1>
<s2>Melbourne, Victoria</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Schellart, W P" sort="Schellart, W P" uniqKey="Schellart W" first="W. P." last="Schellart">W. P. Schellart</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Geosciences, Monash University</s1>
<s2>Melbourne, Victoria</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research. Solid earth</title>
<idno type="ISSN">2169-9313</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research. Solid earth</title>
<idno type="ISSN">2169-9313</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>buoyancy</term>
<term>correlation</term>
<term>deformation</term>
<term>dip</term>
<term>discontinuities</term>
<term>dynamics</term>
<term>extension</term>
<term>flow</term>
<term>flows</term>
<term>interfaces</term>
<term>kinematics</term>
<term>movement</term>
<term>plates</term>
<term>shear</term>
<term>slabs</term>
<term>stress</term>
<term>subduction</term>
<term>subduction zones</term>
<term>suction</term>
<term>thickness</term>
<term>three-dimensional models</term>
<term>trenches</term>
<term>upper mantle</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Modèle 3 dimensions</term>
<term>Dynamique</term>
<term>Plaque</term>
<term>Manteau sup</term>
<term>Subduction</term>
<term>Zone subduction</term>
<term>Interface</term>
<term>Epaisseur</term>
<term>Cinématique</term>
<term>Déformation</term>
<term>Dalle</term>
<term>Discontinuité</term>
<term>Pendage</term>
<term>Fosse abyssale</term>
<term>Mouvement</term>
<term>Extension</term>
<term>Succion</term>
<term>Cisaillement</term>
<term>Ecoulement</term>
<term>Coulée</term>
<term>Contrainte</term>
<term>Flottabilité</term>
<term>Corrélation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">[1] We present fully dynamic generic three-dimensional laboratory models of progressive subduction with an overriding plate and a weak subduction zone interface. Overriding plate thickness (T
<sub>OP</sub>
) is varied systematically (in the range 0-2.5 cm scaling to 0-125 km) to investigate its effect on subduction kinematics and overriding plate deformation. The general pattern of subduction is the same for all models with slab draping on the 670 km discontinuity, comparable slab dip angles, trench retreat, trenchward subducting plate motion, and a concave trench curvature. The narrow slab models only show overriding plate extension. Subduction partitioning (ν
<sub>SP</sub>
⊥/(ν
<sub>SP</sub>
⊥+ν
<sub>T</sub>
⊥)) increases with increasing Top, where trenchward subducting plate motion (ν
<sub>SP</sub>
⊥) increases at the expense of trench retreat (ν
<sub>T</sub>
⊥). This results from an increase in trench suction force with increasing T
<sub>OP</sub>
, which retards trench retreat. An increase in T
<sub>OP</sub>
also corresponds to a decrease in overriding plate extension and curvature because a thicker overriding plate provides more resistance to deform. Overriding plate extension is maximum at a scaled distance of ∼200-400 km from the trench, not at the trench, suggesting that basal shear tractions resulting from mantle flow below the overriding plate primarily drive extension rather than deviatoric tensional normal stresses at the subduction zone interface. The force that drives overriding plate extension is 5%-11% of the slab negative buoyancy force. The models show a positive correlation between ν
<sub>T</sub>
⊥ and overriding plate extension rate, in agreement with observations. The results suggest that slab rollback and associated toroidal mantle flow drive overriding plate extension and backarc basin formation.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="2">
<s0>2169-9313</s0>
</fA01>
<fA05>
<s2>118</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Three-dimensional dynamic models of subducting plate-overriding plate-upper mantle interaction</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MEYER (C.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SCHELLART (W. P.)</s1>
</fA11>
<fA14 i1="01">
<s1>Ecole Normale Supérieure</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>School of Geosciences, Monash University</s1>
<s2>Melbourne, Victoria</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>775-790</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144B1</s2>
<s5>354000140721780230</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/2</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0352947</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="2">
<s0>Journal of geophysical research. Solid earth</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>[1] We present fully dynamic generic three-dimensional laboratory models of progressive subduction with an overriding plate and a weak subduction zone interface. Overriding plate thickness (T
<sub>OP</sub>
) is varied systematically (in the range 0-2.5 cm scaling to 0-125 km) to investigate its effect on subduction kinematics and overriding plate deformation. The general pattern of subduction is the same for all models with slab draping on the 670 km discontinuity, comparable slab dip angles, trench retreat, trenchward subducting plate motion, and a concave trench curvature. The narrow slab models only show overriding plate extension. Subduction partitioning (ν
<sub>SP</sub>
⊥/(ν
<sub>SP</sub>
⊥+ν
<sub>T</sub>
⊥)) increases with increasing Top, where trenchward subducting plate motion (ν
<sub>SP</sub>
⊥) increases at the expense of trench retreat (ν
<sub>T</sub>
⊥). This results from an increase in trench suction force with increasing T
<sub>OP</sub>
, which retards trench retreat. An increase in T
<sub>OP</sub>
also corresponds to a decrease in overriding plate extension and curvature because a thicker overriding plate provides more resistance to deform. Overriding plate extension is maximum at a scaled distance of ∼200-400 km from the trench, not at the trench, suggesting that basal shear tractions resulting from mantle flow below the overriding plate primarily drive extension rather than deviatoric tensional normal stresses at the subduction zone interface. The force that drives overriding plate extension is 5%-11% of the slab negative buoyancy force. The models show a positive correlation between ν
<sub>T</sub>
⊥ and overriding plate extension rate, in agreement with observations. The results suggest that slab rollback and associated toroidal mantle flow drive overriding plate extension and backarc basin formation.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>001E01</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>220</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Modèle 3 dimensions</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>three-dimensional models</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Modelo 3 dimensiones</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Dynamique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>dynamics</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Dinámica</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Plaque</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>plates</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="SPA">
<s0>Placa</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Manteau sup</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>upper mantle</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="SPA">
<s0>Manto globo sup</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Subduction</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>subduction</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Subducción</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Zone subduction</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>subduction zones</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Zona subducto</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Interface</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>interfaces</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Interfase</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Epaisseur</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>thickness</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Espesor</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Cinématique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>kinematics</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Cinemática</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Déformation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>deformation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Dalle</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>slabs</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="2" l="SPA">
<s0>Losa</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Discontinuité</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>discontinuities</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="2" l="SPA">
<s0>Discontinuidad</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Pendage</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>dip</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="2" l="SPA">
<s0>Buzamiento</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Fosse abyssale</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>trenches</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Fosa abisal</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Mouvement</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>movement</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Extension</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>extension</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Extensión</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Succion</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>suction</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Succión</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Cisaillement</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>shear</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="2" l="SPA">
<s0>Cizalladura</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Ecoulement</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>flow</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="2" l="FRE">
<s0>Coulée</s0>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="2" l="ENG">
<s0>flows</s0>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="2" l="SPA">
<s0>Colada</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="2" l="FRE">
<s0>Contrainte</s0>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="2" l="ENG">
<s0>stress</s0>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="2" l="SPA">
<s0>Coacción</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="2" l="FRE">
<s0>Flottabilité</s0>
<s5>23</s5>
</fC03>
<fC03 i1="22" i2="2" l="ENG">
<s0>buoyancy</s0>
<s5>23</s5>
</fC03>
<fC03 i1="22" i2="2" l="SPA">
<s0>Flotabilidad</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="2" l="FRE">
<s0>Corrélation</s0>
<s5>24</s5>
</fC03>
<fC03 i1="23" i2="2" l="ENG">
<s0>correlation</s0>
<s5>24</s5>
</fC03>
<fC03 i1="23" i2="2" l="SPA">
<s0>Correlación</s0>
<s5>24</s5>
</fC03>
<fN21>
<s1>336</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005763 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 005763 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:13-0352947
   |texte=   Three-dimensional dynamic models of subducting plate-overriding plate-upper mantle interaction
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024