Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

On the variability of sea drag in finite water depth : Surface Waves and Wave-Coupled Effects in Lower Atmosphere and Upper Ocean

Identifieur interne : 005245 ( PascalFrancis/Curation ); précédent : 005244; suivant : 005246

On the variability of sea drag in finite water depth : Surface Waves and Wave-Coupled Effects in Lower Atmosphere and Upper Ocean

Auteurs : A. Toffoli [Australie] ; L. Loffredo [Belgique] ; P. Le Roy [Australie, France] ; J.-M. Lefevre [France] ; A. V. Babanin [Australie]

Source :

RBID : Pascal:13-0084645

Descripteurs français

English descriptors

Abstract

[1] The coupling between the atmospheric boundary layer and the ocean surface in large-scale models is usually parameterized in terms of the sea drag coefficient, which is routinely estimated as a function of mean wind speed. The scatter of data around such parametric dependencies, however, is very significant and imposes a serious limitation on the forecasts and predictions that make use of sea surface drag parameterizations. The analysis of an atmospheric and wave data set collected in finite water depth at the Lake George measurement site (Australia) suggests that this variability relates to a number of parameters at the air-sea interface other than wind speed alone. In particular, results indicate that the sea drag depends on water depth and wave steepness, which make the wave profile more vertically asymmetric, and the concentration of water vapor in the air, which modifies air density and friction velocity. These dependencies are used to derive parametric functions based on the combined contribution of wind, waves and relative humidity. A standard statistical analysis confirms a substantial improvement in the prediction of the drag coefficient and sea surface roughness when additional parameters are taken into account.
pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 117
A06       @2 C11
A08 01  1  ENG  @1 On the variability of sea drag in finite water depth : Surface Waves and Wave-Coupled Effects in Lower Atmosphere and Upper Ocean
A11 01  1    @1 TOFFOLI (A.)
A11 02  1    @1 LOFFREDO (L.)
A11 03  1    @1 LE ROY (P.)
A11 04  1    @1 LEFEVRE (J.-M.)
A11 05  1    @1 BABANIN (A. V.)
A14 01      @1 Faculty of Engineering and Industrial Sciences, Swinburne University of Technology @2 Hawthorn, Victoria @3 AUS @Z 1 aut. @Z 3 aut. @Z 5 aut.
A14 02      @1 Hydraulics Laboratory, Katholieke Universiteit Leuven @2 Heverlee @3 BEL @Z 2 aut.
A14 03      @1 Meteo France @2 Toulouse @3 FRA @Z 3 aut. @Z 4 aut.
A20       @2 C00J25.1-C00J25.10
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000509061490530
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 13-0084645
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 [1] The coupling between the atmospheric boundary layer and the ocean surface in large-scale models is usually parameterized in terms of the sea drag coefficient, which is routinely estimated as a function of mean wind speed. The scatter of data around such parametric dependencies, however, is very significant and imposes a serious limitation on the forecasts and predictions that make use of sea surface drag parameterizations. The analysis of an atmospheric and wave data set collected in finite water depth at the Lake George measurement site (Australia) suggests that this variability relates to a number of parameters at the air-sea interface other than wind speed alone. In particular, results indicate that the sea drag depends on water depth and wave steepness, which make the wave profile more vertically asymmetric, and the concentration of water vapor in the air, which modifies air density and friction velocity. These dependencies are used to derive parametric functions based on the combined contribution of wind, waves and relative humidity. A standard statistical analysis confirms a substantial improvement in the prediction of the drag coefficient and sea surface roughness when additional parameters are taken into account.
C02 01  3    @0 001E
C02 02  2    @0 001E01
C02 03  2    @0 220
C03 01  X  FRE  @0 Traînée @5 01
C03 01  X  ENG  @0 Drag @5 01
C03 01  X  SPA  @0 Resistencia avance @5 01
C03 02  2  FRE  @0 Couplage @5 02
C03 02  2  ENG  @0 coupling @5 02
C03 03  X  FRE  @0 Couche limite atmosphérique @5 03
C03 03  X  ENG  @0 Atmospheric boundary layer @5 03
C03 03  X  SPA  @0 Capa límite atmosférico @5 03
C03 04  X  FRE  @0 Surface marine @5 04
C03 04  X  ENG  @0 Sea surface @5 04
C03 04  X  SPA  @0 Superficie marina @5 04
C03 05  2  FRE  @0 Modèle @5 05
C03 05  2  ENG  @0 models @5 05
C03 05  2  SPA  @0 Modelo @5 05
C03 06  X  FRE  @0 Coefficient traînée @5 06
C03 06  X  ENG  @0 Drag coefficient @5 06
C03 06  X  SPA  @0 Coeficiente resistencia aerodinámica @5 06
C03 07  X  FRE  @0 Vitesse vent @5 07
C03 07  X  ENG  @0 Wind velocity @5 07
C03 07  X  SPA  @0 Velocidad viento @5 07
C03 08  2  FRE  @0 Paramétrisation @5 08
C03 08  2  ENG  @0 parametrization @5 08
C03 09  X  FRE  @0 Onde atmosphérique @5 09
C03 09  X  ENG  @0 Atmospheric wave @5 09
C03 09  X  SPA  @0 Onda atmosférica @5 09
C03 10  2  FRE  @0 Lac @5 10
C03 10  2  ENG  @0 lakes @5 10
C03 10  2  SPA  @0 Lago @5 10
C03 11  2  FRE  @0 Interface air mer @5 11
C03 11  2  ENG  @0 air-sea interface @5 11
C03 11  2  SPA  @0 Interfase aire mar @5 11
C03 12  2  FRE  @0 Vapeur eau @5 12
C03 12  2  ENG  @0 water vapor @5 12
C03 12  2  SPA  @0 Vapor agua @5 12
C03 13  2  FRE  @0 Densité @5 13
C03 13  2  ENG  @0 density @5 13
C03 13  2  SPA  @0 Densidad @5 13
C03 14  X  FRE  @0 Vitesse frottement @5 14
C03 14  X  ENG  @0 Friction velocity @5 14
C03 14  X  SPA  @0 Velocidad rozamiento @5 14
C03 15  X  FRE  @0 Vague vent @5 15
C03 15  X  ENG  @0 Wind wave @5 15
C03 15  X  SPA  @0 Ola viento @5 15
C03 16  X  FRE  @0 Humidité relative @5 16
C03 16  X  ENG  @0 Relative humidity @5 16
C03 16  X  SPA  @0 Humedad relativa @5 16
C03 17  2  FRE  @0 Analyse statistique @5 17
C03 17  2  ENG  @0 statistical analysis @5 17
C03 18  2  FRE  @0 Rugosité @5 18
C03 18  2  ENG  @0 roughness @5 18
C03 18  2  SPA  @0 Rugosidad @5 18
C03 19  2  FRE  @0 Australie @2 NG @5 21
C03 19  2  ENG  @0 Australia @2 NG @5 21
C03 19  2  SPA  @0 Australia @2 NG @5 21
C07 01  2  FRE  @0 Australasie
C07 01  2  ENG  @0 Australasia
C07 01  2  SPA  @0 Australasia
N21       @1 056
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0084645

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">On the variability of sea drag in finite water depth : Surface Waves and Wave-Coupled Effects in Lower Atmosphere and Upper Ocean</title>
<author>
<name sortKey="Toffoli, A" sort="Toffoli, A" uniqKey="Toffoli A" first="A." last="Toffoli">A. Toffoli</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Faculty of Engineering and Industrial Sciences, Swinburne University of Technology</s1>
<s2>Hawthorn, Victoria</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Loffredo, L" sort="Loffredo, L" uniqKey="Loffredo L" first="L." last="Loffredo">L. Loffredo</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Hydraulics Laboratory, Katholieke Universiteit Leuven</s1>
<s2>Heverlee</s2>
<s3>BEL</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Belgique</country>
</affiliation>
</author>
<author>
<name sortKey="Le Roy, P" sort="Le Roy, P" uniqKey="Le Roy P" first="P." last="Le Roy">P. Le Roy</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Faculty of Engineering and Industrial Sciences, Swinburne University of Technology</s1>
<s2>Hawthorn, Victoria</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Meteo France</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Lefevre, J M" sort="Lefevre, J M" uniqKey="Lefevre J" first="J.-M." last="Lefevre">J.-M. Lefevre</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Meteo France</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Babanin, A V" sort="Babanin, A V" uniqKey="Babanin A" first="A. V." last="Babanin">A. V. Babanin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Faculty of Engineering and Industrial Sciences, Swinburne University of Technology</s1>
<s2>Hawthorn, Victoria</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0084645</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 13-0084645 INIST</idno>
<idno type="RBID">Pascal:13-0084645</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000C20</idno>
<idno type="wicri:Area/PascalFrancis/Curation">005245</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">On the variability of sea drag in finite water depth : Surface Waves and Wave-Coupled Effects in Lower Atmosphere and Upper Ocean</title>
<author>
<name sortKey="Toffoli, A" sort="Toffoli, A" uniqKey="Toffoli A" first="A." last="Toffoli">A. Toffoli</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Faculty of Engineering and Industrial Sciences, Swinburne University of Technology</s1>
<s2>Hawthorn, Victoria</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Loffredo, L" sort="Loffredo, L" uniqKey="Loffredo L" first="L." last="Loffredo">L. Loffredo</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Hydraulics Laboratory, Katholieke Universiteit Leuven</s1>
<s2>Heverlee</s2>
<s3>BEL</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Belgique</country>
</affiliation>
</author>
<author>
<name sortKey="Le Roy, P" sort="Le Roy, P" uniqKey="Le Roy P" first="P." last="Le Roy">P. Le Roy</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Faculty of Engineering and Industrial Sciences, Swinburne University of Technology</s1>
<s2>Hawthorn, Victoria</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Meteo France</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Lefevre, J M" sort="Lefevre, J M" uniqKey="Lefevre J" first="J.-M." last="Lefevre">J.-M. Lefevre</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Meteo France</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Babanin, A V" sort="Babanin, A V" uniqKey="Babanin A" first="A. V." last="Babanin">A. V. Babanin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Faculty of Engineering and Industrial Sciences, Swinburne University of Technology</s1>
<s2>Hawthorn, Victoria</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atmospheric boundary layer</term>
<term>Atmospheric wave</term>
<term>Australia</term>
<term>Drag</term>
<term>Drag coefficient</term>
<term>Friction velocity</term>
<term>Relative humidity</term>
<term>Sea surface</term>
<term>Wind velocity</term>
<term>Wind wave</term>
<term>air-sea interface</term>
<term>coupling</term>
<term>density</term>
<term>lakes</term>
<term>models</term>
<term>parametrization</term>
<term>roughness</term>
<term>statistical analysis</term>
<term>water vapor</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Traînée</term>
<term>Couplage</term>
<term>Couche limite atmosphérique</term>
<term>Surface marine</term>
<term>Modèle</term>
<term>Coefficient traînée</term>
<term>Vitesse vent</term>
<term>Paramétrisation</term>
<term>Onde atmosphérique</term>
<term>Lac</term>
<term>Interface air mer</term>
<term>Vapeur eau</term>
<term>Densité</term>
<term>Vitesse frottement</term>
<term>Vague vent</term>
<term>Humidité relative</term>
<term>Analyse statistique</term>
<term>Rugosité</term>
<term>Australie</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>Australie</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Lac</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">[1] The coupling between the atmospheric boundary layer and the ocean surface in large-scale models is usually parameterized in terms of the sea drag coefficient, which is routinely estimated as a function of mean wind speed. The scatter of data around such parametric dependencies, however, is very significant and imposes a serious limitation on the forecasts and predictions that make use of sea surface drag parameterizations. The analysis of an atmospheric and wave data set collected in finite water depth at the Lake George measurement site (Australia) suggests that this variability relates to a number of parameters at the air-sea interface other than wind speed alone. In particular, results indicate that the sea drag depends on water depth and wave steepness, which make the wave profile more vertically asymmetric, and the concentration of water vapor in the air, which modifies air density and friction velocity. These dependencies are used to derive parametric functions based on the combined contribution of wind, waves and relative humidity. A standard statistical analysis confirms a substantial improvement in the prediction of the drag coefficient and sea surface roughness when additional parameters are taken into account.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>117</s2>
</fA05>
<fA06>
<s2>C11</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>On the variability of sea drag in finite water depth : Surface Waves and Wave-Coupled Effects in Lower Atmosphere and Upper Ocean</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>TOFFOLI (A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LOFFREDO (L.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LE ROY (P.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LEFEVRE (J.-M.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BABANIN (A. V.)</s1>
</fA11>
<fA14 i1="01">
<s1>Faculty of Engineering and Industrial Sciences, Swinburne University of Technology</s1>
<s2>Hawthorn, Victoria</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Hydraulics Laboratory, Katholieke Universiteit Leuven</s1>
<s2>Heverlee</s2>
<s3>BEL</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Meteo France</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s2>C00J25.1-C00J25.10</s2>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000509061490530</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0084645</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>[1] The coupling between the atmospheric boundary layer and the ocean surface in large-scale models is usually parameterized in terms of the sea drag coefficient, which is routinely estimated as a function of mean wind speed. The scatter of data around such parametric dependencies, however, is very significant and imposes a serious limitation on the forecasts and predictions that make use of sea surface drag parameterizations. The analysis of an atmospheric and wave data set collected in finite water depth at the Lake George measurement site (Australia) suggests that this variability relates to a number of parameters at the air-sea interface other than wind speed alone. In particular, results indicate that the sea drag depends on water depth and wave steepness, which make the wave profile more vertically asymmetric, and the concentration of water vapor in the air, which modifies air density and friction velocity. These dependencies are used to derive parametric functions based on the combined contribution of wind, waves and relative humidity. A standard statistical analysis confirms a substantial improvement in the prediction of the drag coefficient and sea surface roughness when additional parameters are taken into account.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001E</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>001E01</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>220</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Traînée</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Drag</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Resistencia avance</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Couplage</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>coupling</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Couche limite atmosphérique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Atmospheric boundary layer</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Capa límite atmosférico</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Surface marine</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Sea surface</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Superficie marina</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Modèle</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>models</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Modelo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Coefficient traînée</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Drag coefficient</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Coeficiente resistencia aerodinámica</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Vitesse vent</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Wind velocity</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Velocidad viento</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Paramétrisation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>parametrization</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Onde atmosphérique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Atmospheric wave</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Onda atmosférica</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Lac</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>lakes</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="SPA">
<s0>Lago</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Interface air mer</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>air-sea interface</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="SPA">
<s0>Interfase aire mar</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Vapeur eau</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>water vapor</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="SPA">
<s0>Vapor agua</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Densité</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>density</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="SPA">
<s0>Densidad</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Vitesse frottement</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Friction velocity</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Velocidad rozamiento</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Vague vent</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Wind wave</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Ola viento</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Humidité relative</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Relative humidity</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Humedad relativa</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Analyse statistique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>statistical analysis</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Rugosité</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>roughness</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="SPA">
<s0>Rugosidad</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Australie</s0>
<s2>NG</s2>
<s5>21</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>Australia</s0>
<s2>NG</s2>
<s5>21</s5>
</fC03>
<fC03 i1="19" i2="2" l="SPA">
<s0>Australia</s0>
<s2>NG</s2>
<s5>21</s5>
</fC03>
<fC07 i1="01" i2="2" l="FRE">
<s0>Australasie</s0>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>Australasia</s0>
</fC07>
<fC07 i1="01" i2="2" l="SPA">
<s0>Australasia</s0>
</fC07>
<fN21>
<s1>056</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005245 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 005245 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:13-0084645
   |texte=   On the variability of sea drag in finite water depth : Surface Waves and Wave-Coupled Effects in Lower Atmosphere and Upper Ocean
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024