Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Charge carrier mobility, bimolecular recombination and trapping in polycarbazole copolymer:fullerene (PCDTBT:PCBM) bulk heterojunction solar cells

Identifieur interne : 005011 ( PascalFrancis/Curation ); précédent : 005010; suivant : 005012

Charge carrier mobility, bimolecular recombination and trapping in polycarbazole copolymer:fullerene (PCDTBT:PCBM) bulk heterojunction solar cells

Auteurs : Tracey M. Clarke [Australie] ; Jeff Peet [États-Unis] ; Andrew Nattestad [Australie] ; Nicolas Drolet [États-Unis] ; Gilles Dennler [France] ; Christoph Lungenschmied [États-Unis] ; Mario Leclerc [Canada] ; Attila J. Mozer [Australie]

Source :

RBID : Pascal:12-0421762

Descripteurs français

English descriptors

Abstract

Organic photovoltaic devices based on the donor:acceptor blend of poly[N-9"-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) have received considerable attention in recent years due to their high power conversion efficiencies and the ability to achieve close to 100% internal quantum efficiency. However, the highest efficiencies were all attained using active layers of less than 100 nm, which is not ideal for either maximised potential performance or commercial viability. Furthermore, more recent reports have documented significant charge carrier trapping in these devices. In this paper two charge extraction techniques (photo-CELIV and time-of-flight) have been used to investigate the mobility and recombination behaviour in a series of PCDTBT:PCBM devices. The results not only confirm significant charge carrier trapping in this system, but also reveal close to Langevin-type bimolecular recombination. The Langevin recombination causes a short charge carrier lifetime that results in a short drift length. The combination of these two characteristics (trapping and fast bimolecular recombination) has a detrimental effect on the charge extraction efficiency when active layers greater than ∼100 nm are used. This accounts for the pronounced decrease in fill factor with increasing active layer thickness that is typically observed in PCDTBT:PCBM devices.
pA  
A01 01  1    @0 1566-1199
A03   1    @0 Org. electron. : (Print)
A05       @2 13
A06       @2 11
A08 01  1  ENG  @1 Charge carrier mobility, bimolecular recombination and trapping in polycarbazole copolymer:fullerene (PCDTBT:PCBM) bulk heterojunction solar cells
A11 01  1    @1 CLARKE (Tracey M.)
A11 02  1    @1 PEET (Jeff)
A11 03  1    @1 NATTESTAD (Andrew)
A11 04  1    @1 DROLET (Nicolas)
A11 05  1    @1 DENNLER (Gilles)
A11 06  1    @1 LUNGENSCHMIED (Christoph)
A11 07  1    @1 LECLERC (Mario)
A11 08  1    @1 MOZER (Attila J.)
A14 01      @1 ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Innovation Campus. Squires Way @2 North Wollongong, NSW 2500 @3 AUS @Z 1 aut. @Z 3 aut. @Z 8 aut.
A14 02      @1 Konarka Technologies, 116 John St., Suite 12 @2 Lowell, MA 01852 @3 USA @Z 2 aut. @Z 4 aut. @Z 6 aut.
A14 03      @1 IMRA Europe, 220, Rue Albert Caquot-BP 213 @2 06904 Sophia-Antipolis @3 FRA @Z 5 aut.
A14 04      @1 Canada Research Chair on Electroactive and Photoactive Polymers, Université Laval @2 Quebec City, Québec @3 CAN @Z 7 aut.
A20       @1 2639-2646
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 27255 @5 354000509579360620
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 32 ref.
A47 01  1    @0 12-0421762
A60       @1 P
A61       @0 A
A64 01  1    @0 Organic electronics : (Print)
A66 01      @0 NLD
C01 01    ENG  @0 Organic photovoltaic devices based on the donor:acceptor blend of poly[N-9"-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) have received considerable attention in recent years due to their high power conversion efficiencies and the ability to achieve close to 100% internal quantum efficiency. However, the highest efficiencies were all attained using active layers of less than 100 nm, which is not ideal for either maximised potential performance or commercial viability. Furthermore, more recent reports have documented significant charge carrier trapping in these devices. In this paper two charge extraction techniques (photo-CELIV and time-of-flight) have been used to investigate the mobility and recombination behaviour in a series of PCDTBT:PCBM devices. The results not only confirm significant charge carrier trapping in this system, but also reveal close to Langevin-type bimolecular recombination. The Langevin recombination causes a short charge carrier lifetime that results in a short drift length. The combination of these two characteristics (trapping and fast bimolecular recombination) has a detrimental effect on the charge extraction efficiency when active layers greater than ∼100 nm are used. This accounts for the pronounced decrease in fill factor with increasing active layer thickness that is typically observed in PCDTBT:PCBM devices.
C02 01  X    @0 001D03F02
C02 02  X    @0 001D03F15
C02 03  X    @0 001D06C02D1
C02 04  3    @0 001B80A05T
C02 05  X    @0 230
C03 01  X  FRE  @0 Mobilité porteur charge @5 01
C03 01  X  ENG  @0 Charge carrier mobility @5 01
C03 01  X  SPA  @0 Movilidad portador carga @5 01
C03 02  X  FRE  @0 Piégeage porteur charge @5 02
C03 02  X  ENG  @0 Charge carrier trapping @5 02
C03 02  X  SPA  @0 Captura portador carga @5 02
C03 03  X  FRE  @0 Hétérojonction @5 03
C03 03  X  ENG  @0 Heterojunction @5 03
C03 03  X  SPA  @0 Heterounión @5 03
C03 04  X  FRE  @0 Cellule solaire @5 04
C03 04  X  ENG  @0 Solar cell @5 04
C03 04  X  SPA  @0 Célula solar @5 04
C03 05  X  FRE  @0 Electronique organique @5 05
C03 05  X  ENG  @0 Organic electronics @5 05
C03 05  X  SPA  @0 Electrónica orgánica @5 05
C03 06  3  FRE  @0 Cellule solaire organique @5 06
C03 06  3  ENG  @0 Organic solar cells @5 06
C03 07  X  FRE  @0 Dispositif photovoltaïque @5 07
C03 07  X  ENG  @0 Photovoltaic cell @5 07
C03 07  X  SPA  @0 Dispositivo fotovoltaico @5 07
C03 08  X  FRE  @0 Centre donneur @5 08
C03 08  X  ENG  @0 Donor center @5 08
C03 08  X  SPA  @0 Centro dador @5 08
C03 09  X  FRE  @0 Centre accepteur @5 09
C03 09  X  ENG  @0 Acceptor center @5 09
C03 09  X  SPA  @0 Centro aceptor @5 09
C03 10  X  FRE  @0 Grande puissance @5 10
C03 10  X  ENG  @0 High power @5 10
C03 10  X  SPA  @0 Gran potencia @5 10
C03 11  X  FRE  @0 Rendement élevé @5 11
C03 11  X  ENG  @0 High efficiency @5 11
C03 11  X  SPA  @0 Rendimiento elevado @5 11
C03 12  X  FRE  @0 Conversion énergie @5 12
C03 12  X  ENG  @0 Energy conversion @5 12
C03 12  X  SPA  @0 Conversión energética @5 12
C03 13  X  FRE  @0 Taux conversion @5 13
C03 13  X  ENG  @0 Conversion rate @5 13
C03 13  X  SPA  @0 Factor conversión @5 13
C03 14  X  FRE  @0 Rendement quantique @5 14
C03 14  X  ENG  @0 Quantum yield @5 14
C03 14  X  SPA  @0 Rendimiento quántico @5 14
C03 15  X  FRE  @0 Evaluation performance @5 15
C03 15  X  ENG  @0 Performance evaluation @5 15
C03 15  X  SPA  @0 Evaluación prestación @5 15
C03 16  X  FRE  @0 Couche active @5 16
C03 16  X  ENG  @0 Active layer @5 16
C03 16  X  SPA  @0 Capa activa @5 16
C03 17  X  FRE  @0 Fiabilité @5 17
C03 17  X  ENG  @0 Reliability @5 17
C03 17  X  SPA  @0 Fiabilidad @5 17
C03 18  X  FRE  @0 Viabilité @5 18
C03 18  X  ENG  @0 Viability @5 18
C03 18  X  SPA  @0 Viabilidad @5 18
C03 19  X  FRE  @0 Méthode temps vol @5 19
C03 19  X  ENG  @0 Time of flight method @5 19
C03 19  X  SPA  @0 Método tiempo vuelo @5 19
C03 20  3  FRE  @0 Durée vie porteur charge @5 20
C03 20  3  ENG  @0 Carrier lifetime @5 20
C03 21  3  FRE  @0 Facteur remplissage @5 21
C03 21  3  ENG  @0 Fill factor @5 21
C03 22  X  FRE  @0 Carbazole polymère @2 NK @5 22
C03 22  X  ENG  @0 Carbazole polymer @2 NK @5 22
C03 22  X  SPA  @0 Carbazol polímero @2 NK @5 22
C03 23  X  FRE  @0 Copolymère @2 NK @5 23
C03 23  X  ENG  @0 Copolymer @2 NK @5 23
C03 23  X  SPA  @0 Copolímero @2 NK @5 23
C03 24  X  FRE  @0 Fullerènes @5 24
C03 24  X  ENG  @0 Fullerenes @5 24
C03 25  X  FRE  @0 Acide butyrique @2 NK @5 25
C03 25  X  ENG  @0 Butyric acid @2 NK @5 25
C03 25  X  SPA  @0 Butírico ácido @2 NK @5 25
C03 26  X  FRE  @0 Ester @5 26
C03 26  X  ENG  @0 Ester @5 26
C03 26  X  SPA  @0 Ester @5 26
C03 27  3  FRE  @0 Composé du fullerène @5 27
C03 27  3  ENG  @0 Fullerene compounds @5 27
C03 28  3  FRE  @0 Hétérostructure @5 28
C03 28  3  ENG  @0 Heterostructures @5 28
C03 29  X  FRE  @0 8105T @4 INC @5 56
C03 30  X  FRE  @0 8460J @4 INC @5 57
C03 31  X  FRE  @0 8535 @4 INC @5 58
C03 32  X  FRE  @0 Recombinaison bimoléculaire @4 CD @5 96
C03 32  X  ENG  @0 Bimolecular recombination @4 CD @5 96
N21       @1 331
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0421762

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Charge carrier mobility, bimolecular recombination and trapping in polycarbazole copolymer:fullerene (PCDTBT:PCBM) bulk heterojunction solar cells</title>
<author>
<name sortKey="Clarke, Tracey M" sort="Clarke, Tracey M" uniqKey="Clarke T" first="Tracey M." last="Clarke">Tracey M. Clarke</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Innovation Campus. Squires Way</s1>
<s2>North Wollongong, NSW 2500</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Peet, Jeff" sort="Peet, Jeff" uniqKey="Peet J" first="Jeff" last="Peet">Jeff Peet</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Konarka Technologies, 116 John St., Suite 12</s1>
<s2>Lowell, MA 01852</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Nattestad, Andrew" sort="Nattestad, Andrew" uniqKey="Nattestad A" first="Andrew" last="Nattestad">Andrew Nattestad</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Innovation Campus. Squires Way</s1>
<s2>North Wollongong, NSW 2500</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Drolet, Nicolas" sort="Drolet, Nicolas" uniqKey="Drolet N" first="Nicolas" last="Drolet">Nicolas Drolet</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Konarka Technologies, 116 John St., Suite 12</s1>
<s2>Lowell, MA 01852</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Dennler, Gilles" sort="Dennler, Gilles" uniqKey="Dennler G" first="Gilles" last="Dennler">Gilles Dennler</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>IMRA Europe, 220, Rue Albert Caquot-BP 213</s1>
<s2>06904 Sophia-Antipolis</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Lungenschmied, Christoph" sort="Lungenschmied, Christoph" uniqKey="Lungenschmied C" first="Christoph" last="Lungenschmied">Christoph Lungenschmied</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Konarka Technologies, 116 John St., Suite 12</s1>
<s2>Lowell, MA 01852</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Leclerc, Mario" sort="Leclerc, Mario" uniqKey="Leclerc M" first="Mario" last="Leclerc">Mario Leclerc</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Canada Research Chair on Electroactive and Photoactive Polymers, Université Laval</s1>
<s2>Quebec City, Québec</s2>
<s3>CAN</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
</author>
<author>
<name sortKey="Mozer, Attila J" sort="Mozer, Attila J" uniqKey="Mozer A" first="Attila J." last="Mozer">Attila J. Mozer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Innovation Campus. Squires Way</s1>
<s2>North Wollongong, NSW 2500</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0421762</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0421762 INIST</idno>
<idno type="RBID">Pascal:12-0421762</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000F10</idno>
<idno type="wicri:Area/PascalFrancis/Curation">005011</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Charge carrier mobility, bimolecular recombination and trapping in polycarbazole copolymer:fullerene (PCDTBT:PCBM) bulk heterojunction solar cells</title>
<author>
<name sortKey="Clarke, Tracey M" sort="Clarke, Tracey M" uniqKey="Clarke T" first="Tracey M." last="Clarke">Tracey M. Clarke</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Innovation Campus. Squires Way</s1>
<s2>North Wollongong, NSW 2500</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Peet, Jeff" sort="Peet, Jeff" uniqKey="Peet J" first="Jeff" last="Peet">Jeff Peet</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Konarka Technologies, 116 John St., Suite 12</s1>
<s2>Lowell, MA 01852</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Nattestad, Andrew" sort="Nattestad, Andrew" uniqKey="Nattestad A" first="Andrew" last="Nattestad">Andrew Nattestad</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Innovation Campus. Squires Way</s1>
<s2>North Wollongong, NSW 2500</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Drolet, Nicolas" sort="Drolet, Nicolas" uniqKey="Drolet N" first="Nicolas" last="Drolet">Nicolas Drolet</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Konarka Technologies, 116 John St., Suite 12</s1>
<s2>Lowell, MA 01852</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Dennler, Gilles" sort="Dennler, Gilles" uniqKey="Dennler G" first="Gilles" last="Dennler">Gilles Dennler</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>IMRA Europe, 220, Rue Albert Caquot-BP 213</s1>
<s2>06904 Sophia-Antipolis</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Lungenschmied, Christoph" sort="Lungenschmied, Christoph" uniqKey="Lungenschmied C" first="Christoph" last="Lungenschmied">Christoph Lungenschmied</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Konarka Technologies, 116 John St., Suite 12</s1>
<s2>Lowell, MA 01852</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Leclerc, Mario" sort="Leclerc, Mario" uniqKey="Leclerc M" first="Mario" last="Leclerc">Mario Leclerc</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Canada Research Chair on Electroactive and Photoactive Polymers, Université Laval</s1>
<s2>Quebec City, Québec</s2>
<s3>CAN</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
</author>
<author>
<name sortKey="Mozer, Attila J" sort="Mozer, Attila J" uniqKey="Mozer A" first="Attila J." last="Mozer">Attila J. Mozer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Innovation Campus. Squires Way</s1>
<s2>North Wollongong, NSW 2500</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Organic electronics : (Print)</title>
<title level="j" type="abbreviated">Org. electron. : (Print)</title>
<idno type="ISSN">1566-1199</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Organic electronics : (Print)</title>
<title level="j" type="abbreviated">Org. electron. : (Print)</title>
<idno type="ISSN">1566-1199</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acceptor center</term>
<term>Active layer</term>
<term>Bimolecular recombination</term>
<term>Butyric acid</term>
<term>Carbazole polymer</term>
<term>Carrier lifetime</term>
<term>Charge carrier mobility</term>
<term>Charge carrier trapping</term>
<term>Conversion rate</term>
<term>Copolymer</term>
<term>Donor center</term>
<term>Energy conversion</term>
<term>Ester</term>
<term>Fill factor</term>
<term>Fullerene compounds</term>
<term>Fullerenes</term>
<term>Heterojunction</term>
<term>Heterostructures</term>
<term>High efficiency</term>
<term>High power</term>
<term>Organic electronics</term>
<term>Organic solar cells</term>
<term>Performance evaluation</term>
<term>Photovoltaic cell</term>
<term>Quantum yield</term>
<term>Reliability</term>
<term>Solar cell</term>
<term>Time of flight method</term>
<term>Viability</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Mobilité porteur charge</term>
<term>Piégeage porteur charge</term>
<term>Hétérojonction</term>
<term>Cellule solaire</term>
<term>Electronique organique</term>
<term>Cellule solaire organique</term>
<term>Dispositif photovoltaïque</term>
<term>Centre donneur</term>
<term>Centre accepteur</term>
<term>Grande puissance</term>
<term>Rendement élevé</term>
<term>Conversion énergie</term>
<term>Taux conversion</term>
<term>Rendement quantique</term>
<term>Evaluation performance</term>
<term>Couche active</term>
<term>Fiabilité</term>
<term>Viabilité</term>
<term>Méthode temps vol</term>
<term>Durée vie porteur charge</term>
<term>Facteur remplissage</term>
<term>Carbazole polymère</term>
<term>Copolymère</term>
<term>Fullerènes</term>
<term>Acide butyrique</term>
<term>Ester</term>
<term>Composé du fullerène</term>
<term>Hétérostructure</term>
<term>8105T</term>
<term>8460J</term>
<term>8535</term>
<term>Recombinaison bimoléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Organic photovoltaic devices based on the donor:acceptor blend of poly[N-9"-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) and [6,6]-phenyl C
<sub>61</sub>
butyric acid methyl ester (PCBM) have received considerable attention in recent years due to their high power conversion efficiencies and the ability to achieve close to 100% internal quantum efficiency. However, the highest efficiencies were all attained using active layers of less than 100 nm, which is not ideal for either maximised potential performance or commercial viability. Furthermore, more recent reports have documented significant charge carrier trapping in these devices. In this paper two charge extraction techniques (photo-CELIV and time-of-flight) have been used to investigate the mobility and recombination behaviour in a series of PCDTBT:PCBM devices. The results not only confirm significant charge carrier trapping in this system, but also reveal close to Langevin-type bimolecular recombination. The Langevin recombination causes a short charge carrier lifetime that results in a short drift length. The combination of these two characteristics (trapping and fast bimolecular recombination) has a detrimental effect on the charge extraction efficiency when active layers greater than ∼100 nm are used. This accounts for the pronounced decrease in fill factor with increasing active layer thickness that is typically observed in PCDTBT:PCBM devices.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1566-1199</s0>
</fA01>
<fA03 i2="1">
<s0>Org. electron. : (Print)</s0>
</fA03>
<fA05>
<s2>13</s2>
</fA05>
<fA06>
<s2>11</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Charge carrier mobility, bimolecular recombination and trapping in polycarbazole copolymer:fullerene (PCDTBT:PCBM) bulk heterojunction solar cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>CLARKE (Tracey M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PEET (Jeff)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>NATTESTAD (Andrew)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>DROLET (Nicolas)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>DENNLER (Gilles)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>LUNGENSCHMIED (Christoph)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>LECLERC (Mario)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>MOZER (Attila J.)</s1>
</fA11>
<fA14 i1="01">
<s1>ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Innovation Campus. Squires Way</s1>
<s2>North Wollongong, NSW 2500</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Konarka Technologies, 116 John St., Suite 12</s1>
<s2>Lowell, MA 01852</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>IMRA Europe, 220, Rue Albert Caquot-BP 213</s1>
<s2>06904 Sophia-Antipolis</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Canada Research Chair on Electroactive and Photoactive Polymers, Université Laval</s1>
<s2>Quebec City, Québec</s2>
<s3>CAN</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>2639-2646</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27255</s2>
<s5>354000509579360620</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>32 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0421762</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Organic electronics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Organic photovoltaic devices based on the donor:acceptor blend of poly[N-9"-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) and [6,6]-phenyl C
<sub>61</sub>
butyric acid methyl ester (PCBM) have received considerable attention in recent years due to their high power conversion efficiencies and the ability to achieve close to 100% internal quantum efficiency. However, the highest efficiencies were all attained using active layers of less than 100 nm, which is not ideal for either maximised potential performance or commercial viability. Furthermore, more recent reports have documented significant charge carrier trapping in these devices. In this paper two charge extraction techniques (photo-CELIV and time-of-flight) have been used to investigate the mobility and recombination behaviour in a series of PCDTBT:PCBM devices. The results not only confirm significant charge carrier trapping in this system, but also reveal close to Langevin-type bimolecular recombination. The Langevin recombination causes a short charge carrier lifetime that results in a short drift length. The combination of these two characteristics (trapping and fast bimolecular recombination) has a detrimental effect on the charge extraction efficiency when active layers greater than ∼100 nm are used. This accounts for the pronounced decrease in fill factor with increasing active layer thickness that is typically observed in PCDTBT:PCBM devices.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F02</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A05T</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Mobilité porteur charge</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Charge carrier mobility</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Movilidad portador carga</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Piégeage porteur charge</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Charge carrier trapping</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Captura portador carga</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Hétérojonction</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Heterojunction</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Heterounión</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Electronique organique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Organic electronics</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Electrónica orgánica</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Cellule solaire organique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Organic solar cells</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Dispositif photovoltaïque</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Photovoltaic cell</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Dispositivo fotovoltaico</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Centre donneur</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Donor center</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Centro dador</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Centre accepteur</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Acceptor center</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Centro aceptor</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Grande puissance</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>High power</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Gran potencia</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Rendement élevé</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>High efficiency</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Rendimiento elevado</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Conversion énergie</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Energy conversion</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Conversión energética</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Taux conversion</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Conversion rate</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Factor conversión</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Rendement quantique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Quantum yield</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Rendimiento quántico</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Couche active</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Active layer</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Capa activa</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Fiabilité</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Reliability</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Fiabilidad</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Viabilité</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Viability</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Viabilidad</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Méthode temps vol</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Time of flight method</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Método tiempo vuelo</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Durée vie porteur charge</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Carrier lifetime</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Facteur remplissage</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Fill factor</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Carbazole polymère</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Carbazole polymer</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Carbazol polímero</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Copolymère</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Copolymer</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Copolímero</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Fullerènes</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Fullerenes</s0>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Acide butyrique</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Butyric acid</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Butírico ácido</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Ester</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Ester</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Ester</s0>
<s5>26</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Composé du fullerène</s0>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="3" l="ENG">
<s0>Fullerene compounds</s0>
<s5>27</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>Hétérostructure</s0>
<s5>28</s5>
</fC03>
<fC03 i1="28" i2="3" l="ENG">
<s0>Heterostructures</s0>
<s5>28</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>8105T</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="31" i2="X" l="FRE">
<s0>8535</s0>
<s4>INC</s4>
<s5>58</s5>
</fC03>
<fC03 i1="32" i2="X" l="FRE">
<s0>Recombinaison bimoléculaire</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="32" i2="X" l="ENG">
<s0>Bimolecular recombination</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>331</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005011 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 005011 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:12-0421762
   |texte=   Charge carrier mobility, bimolecular recombination and trapping in polycarbazole copolymer:fullerene (PCDTBT:PCBM) bulk heterojunction solar cells
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024