Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Attributing the impacts of land-cover changes in temperate regions on surface temperature and heat fluxes to specific causes: Results from the first LUCID set of simulations

Identifieur interne : 004E57 ( PascalFrancis/Curation ); précédent : 004E56; suivant : 004E58

Attributing the impacts of land-cover changes in temperate regions on surface temperature and heat fluxes to specific causes: Results from the first LUCID set of simulations

Auteurs : J. P. Boisier [France] ; N. De Noblet-Ducoudre [France] ; A. J. Pitman [Australie] ; F. T. Cruz [Australie, Philippines] ; C. Delire [France] ; B. J. J. M. Van Den Hurk [Pays-Bas] ; M. K. Van Der Molen [Pays-Bas] ; C. Miiller [Allemagne] ; A. Voldoire [France]

Source :

RBID : Pascal:12-0355061

Descripteurs français

English descriptors

Abstract

[1] Surface cooling in temperate regions is a common biogeophysical response to historical Land-Use induced Land Cover Change (LULCC). The climate models involved in LUCID show, however, significant differences in the magnitude and the seasonal partitioning of the temperature change. The LULCC-induced cooling is directed by decreases in absorbed solar radiation, but its amplitude is 30 to 50% smaller than the one that would be expected from the sole radiative changes. This results from direct impacts on the total turbulent energy flux (related to changes in land-cover properties other than albedo, such as evapotranspiration efficiency or surface roughness) that decreases at all seasons, and thereby induces a relative warming in all models. The magnitude of those processes varies significantly from model to model, resulting on different climate responses to LULCC. To address this uncertainty, we analyzed the LULCC impacts on surface albedo, latent heat and total turbulent energy flux, using a multivariate statistical analysis to mimic the models' responses. The differences are explained by two major 'features' varying from one model to another: the land-cover distribution and the simulated sensitivity to LULCC. The latter explains more than half of the inter-model spread and resides in how the land-surface functioning is parameterized, in particular regarding the evapotranspiration partitioning within the different land-cover types, as well as the role of leaf area index in the flux calculations. This uncertainty has to be narrowed through a more rigorous evaluation of our land-surface models.
pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 117
A06       @2 D12
A08 01  1  ENG  @1 Attributing the impacts of land-cover changes in temperate regions on surface temperature and heat fluxes to specific causes: Results from the first LUCID set of simulations
A11 01  1    @1 BOISIER (J. P.)
A11 02  1    @1 DE NOBLET-DUCOUDRE (N.)
A11 03  1    @1 PITMAN (A. J.)
A11 04  1    @1 CRUZ (F. T.)
A11 05  1    @1 DELIRE (C.)
A11 06  1    @1 VAN DEN HURK (B. J. J. M.)
A11 07  1    @1 VAN DER MOLEN (M. K.)
A11 08  1    @1 MIILLER (C.)
A11 09  1    @1 VOLDOIRE (A.)
A14 01      @1 Laboratoire des Sciences du Climat et de l'Environnement, Unité Mixte CEA-CNRS-UVSQ @2 Gif-sur-Yvette @3 FRA @Z 1 aut. @Z 2 aut.
A14 02      @1 ARC Centre of Excellence for Climate System Science, University of New South Wales @2 Sydney, New South Wales @3 AUS @Z 3 aut.
A14 03      @1 Climate Change Research Centre, University of New South Wales @2 Sydney, New South Wales @3 AUS @Z 4 aut.
A14 04      @1 Manila Observatory @2 Quezon City @3 PHL @Z 4 aut.
A14 05      @1 Groupe d'Étude de l'Atmosphère Météorologique, Unité Associée CNRS/Météo-France @2 Toulouse @3 FRA @Z 5 aut. @Z 9 aut.
A14 06      @1 Royal Netherlands Meteorological Institute @2 De Bilt @3 NLD @Z 6 aut. @Z 7 aut.
A14 07      @1 Meteorology and Air Quality Group, Wageningen University and Research Centre @2 Wageningen @3 NLD @Z 7 aut.
A14 08      @1 Earth System Analysis, Potsdam Institute for Climate Impact Research @2 Potsdam @3 DEU @Z 8 aut.
A20       @2 D12116.1-D12116.16
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000504463930160
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/4
A47 01  1    @0 12-0355061
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 [1] Surface cooling in temperate regions is a common biogeophysical response to historical Land-Use induced Land Cover Change (LULCC). The climate models involved in LUCID show, however, significant differences in the magnitude and the seasonal partitioning of the temperature change. The LULCC-induced cooling is directed by decreases in absorbed solar radiation, but its amplitude is 30 to 50% smaller than the one that would be expected from the sole radiative changes. This results from direct impacts on the total turbulent energy flux (related to changes in land-cover properties other than albedo, such as evapotranspiration efficiency or surface roughness) that decreases at all seasons, and thereby induces a relative warming in all models. The magnitude of those processes varies significantly from model to model, resulting on different climate responses to LULCC. To address this uncertainty, we analyzed the LULCC impacts on surface albedo, latent heat and total turbulent energy flux, using a multivariate statistical analysis to mimic the models' responses. The differences are explained by two major 'features' varying from one model to another: the land-cover distribution and the simulated sensitivity to LULCC. The latter explains more than half of the inter-model spread and resides in how the land-surface functioning is parameterized, in particular regarding the evapotranspiration partitioning within the different land-cover types, as well as the role of leaf area index in the flux calculations. This uncertainty has to be narrowed through a more rigorous evaluation of our land-surface models.
C02 01  3    @0 001E
C02 02  2    @0 001E01
C02 03  2    @0 220
C03 01  2  FRE  @0 Occupation sol @5 01
C03 01  2  ENG  @0 land cover @5 01
C03 02  2  FRE  @0 Zone tempérée @5 02
C03 02  2  ENG  @0 temperate zone @5 02
C03 02  2  SPA  @0 Zona temperada @5 02
C03 03  2  FRE  @0 Température surface @5 03
C03 03  2  ENG  @0 surface temperature @5 03
C03 04  X  FRE  @0 Température superficielle @5 04
C03 04  X  ENG  @0 Surface temperature @5 04
C03 04  X  SPA  @0 Temperatura superficial @5 04
C03 05  2  FRE  @0 Flux chaleur @5 05
C03 05  2  ENG  @0 heat flux @5 05
C03 05  2  SPA  @0 Flujo calor @5 05
C03 06  2  FRE  @0 Transfert chaleur @5 06
C03 06  2  ENG  @0 heat transfer @5 06
C03 06  2  SPA  @0 Transferencia térmica @5 06
C03 07  2  FRE  @0 Simulation @5 07
C03 07  2  ENG  @0 simulation @5 07
C03 07  2  SPA  @0 Simulación @5 07
C03 08  2  FRE  @0 Refroidissement @5 08
C03 08  2  ENG  @0 cooling @5 08
C03 08  2  SPA  @0 Enfriamiento @5 08
C03 09  2  FRE  @0 Utilisation terrain @5 09
C03 09  2  ENG  @0 land use @5 09
C03 09  2  SPA  @0 Utilización terreno @5 09
C03 10  3  FRE  @0 Modèle climat @5 10
C03 10  3  ENG  @0 Climate models @5 10
C03 11  2  FRE  @0 Rayonnement solaire @5 11
C03 11  2  ENG  @0 solar radiation @5 11
C03 12  2  FRE  @0 Amplitude @5 12
C03 12  2  ENG  @0 amplitude @5 12
C03 12  2  SPA  @0 Amplitud @5 12
C03 13  X  FRE  @0 Energie turbulence @5 13
C03 13  X  ENG  @0 Turbulence energy @5 13
C03 13  X  SPA  @0 Energía turbulencia @5 13
C03 14  2  FRE  @0 Transfert énergie @5 14
C03 14  2  ENG  @0 energy transfer @5 14
C03 15  2  FRE  @0 Albedo @5 15
C03 15  2  ENG  @0 albedo @5 15
C03 15  2  SPA  @0 Albedo @5 15
C03 16  2  FRE  @0 Evapotranspiration @5 17
C03 16  2  ENG  @0 evapotranspiration @5 17
C03 16  2  SPA  @0 Evapotranspiración @5 17
C03 17  2  FRE  @0 Efficacité @5 18
C03 17  2  ENG  @0 efficiency @5 18
C03 18  2  FRE  @0 Rugosité @5 19
C03 18  2  ENG  @0 roughness @5 19
C03 18  2  SPA  @0 Rugosidad @5 19
C03 19  2  FRE  @0 Réchauffement @5 20
C03 19  2  ENG  @0 warming @5 20
C03 20  2  FRE  @0 Climat @5 21
C03 20  2  ENG  @0 climate @5 21
C03 20  2  SPA  @0 Clima @5 21
C03 21  2  FRE  @0 Incertitude @5 22
C03 21  2  ENG  @0 uncertainties @5 22
C03 22  2  FRE  @0 Chaleur latente @5 23
C03 22  2  ENG  @0 latent heat @5 23
C03 23  2  FRE  @0 Analyse statistique @5 24
C03 23  2  ENG  @0 statistical analysis @5 24
C03 24  2  FRE  @0 Analyse sensibilité @5 25
C03 24  2  ENG  @0 sensitivity analysis @5 25
C03 25  2  FRE  @0 Narrows @2 NG @5 61
C03 25  2  ENG  @0 Narrows @2 NG @5 61
C07 01  2  FRE  @0 New York @2 NG
C07 01  2  ENG  @0 New York @2 NG
C07 01  2  SPA  @0 Nueva York @2 NG
C07 02  2  FRE  @0 Etats Unis @2 NG
C07 02  2  ENG  @0 United States @2 NG
C07 02  2  SPA  @0 Estados Unidos @2 NG
C07 03  2  FRE  @0 Amérique du Nord
C07 03  2  ENG  @0 North America
C07 03  2  SPA  @0 America del norte
N21       @1 275
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0355061

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Attributing the impacts of land-cover changes in temperate regions on surface temperature and heat fluxes to specific causes: Results from the first LUCID set of simulations</title>
<author>
<name sortKey="Boisier, J P" sort="Boisier, J P" uniqKey="Boisier J" first="J. P." last="Boisier">J. P. Boisier</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire des Sciences du Climat et de l'Environnement, Unité Mixte CEA-CNRS-UVSQ</s1>
<s2>Gif-sur-Yvette</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="De Noblet Ducoudre, N" sort="De Noblet Ducoudre, N" uniqKey="De Noblet Ducoudre N" first="N." last="De Noblet-Ducoudre">N. De Noblet-Ducoudre</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire des Sciences du Climat et de l'Environnement, Unité Mixte CEA-CNRS-UVSQ</s1>
<s2>Gif-sur-Yvette</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Pitman, A J" sort="Pitman, A J" uniqKey="Pitman A" first="A. J." last="Pitman">A. J. Pitman</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>ARC Centre of Excellence for Climate System Science, University of New South Wales</s1>
<s2>Sydney, New South Wales</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Cruz, F T" sort="Cruz, F T" uniqKey="Cruz F" first="F. T." last="Cruz">F. T. Cruz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Climate Change Research Centre, University of New South Wales</s1>
<s2>Sydney, New South Wales</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Manila Observatory</s1>
<s2>Quezon City</s2>
<s3>PHL</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Philippines</country>
</affiliation>
</author>
<author>
<name sortKey="Delire, C" sort="Delire, C" uniqKey="Delire C" first="C." last="Delire">C. Delire</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Groupe d'Étude de l'Atmosphère Météorologique, Unité Associée CNRS/Météo-France</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Van Den Hurk, B J J M" sort="Van Den Hurk, B J J M" uniqKey="Van Den Hurk B" first="B. J. J. M." last="Van Den Hurk">B. J. J. M. Van Den Hurk</name>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>Royal Netherlands Meteorological Institute</s1>
<s2>De Bilt</s2>
<s3>NLD</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
</affiliation>
</author>
<author>
<name sortKey="Van Der Molen, M K" sort="Van Der Molen, M K" uniqKey="Van Der Molen M" first="M. K." last="Van Der Molen">M. K. Van Der Molen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>Royal Netherlands Meteorological Institute</s1>
<s2>De Bilt</s2>
<s3>NLD</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="07">
<s1>Meteorology and Air Quality Group, Wageningen University and Research Centre</s1>
<s2>Wageningen</s2>
<s3>NLD</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
</affiliation>
</author>
<author>
<name sortKey="Miiller, C" sort="Miiller, C" uniqKey="Miiller C" first="C." last="Miiller">C. Miiller</name>
<affiliation wicri:level="1">
<inist:fA14 i1="08">
<s1>Earth System Analysis, Potsdam Institute for Climate Impact Research</s1>
<s2>Potsdam</s2>
<s3>DEU</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
<author>
<name sortKey="Voldoire, A" sort="Voldoire, A" uniqKey="Voldoire A" first="A." last="Voldoire">A. Voldoire</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Groupe d'Étude de l'Atmosphère Météorologique, Unité Associée CNRS/Météo-France</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0355061</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0355061 INIST</idno>
<idno type="RBID">Pascal:12-0355061</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001060</idno>
<idno type="wicri:Area/PascalFrancis/Curation">004E57</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Attributing the impacts of land-cover changes in temperate regions on surface temperature and heat fluxes to specific causes: Results from the first LUCID set of simulations</title>
<author>
<name sortKey="Boisier, J P" sort="Boisier, J P" uniqKey="Boisier J" first="J. P." last="Boisier">J. P. Boisier</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire des Sciences du Climat et de l'Environnement, Unité Mixte CEA-CNRS-UVSQ</s1>
<s2>Gif-sur-Yvette</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="De Noblet Ducoudre, N" sort="De Noblet Ducoudre, N" uniqKey="De Noblet Ducoudre N" first="N." last="De Noblet-Ducoudre">N. De Noblet-Ducoudre</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire des Sciences du Climat et de l'Environnement, Unité Mixte CEA-CNRS-UVSQ</s1>
<s2>Gif-sur-Yvette</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Pitman, A J" sort="Pitman, A J" uniqKey="Pitman A" first="A. J." last="Pitman">A. J. Pitman</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>ARC Centre of Excellence for Climate System Science, University of New South Wales</s1>
<s2>Sydney, New South Wales</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Cruz, F T" sort="Cruz, F T" uniqKey="Cruz F" first="F. T." last="Cruz">F. T. Cruz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Climate Change Research Centre, University of New South Wales</s1>
<s2>Sydney, New South Wales</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Manila Observatory</s1>
<s2>Quezon City</s2>
<s3>PHL</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Philippines</country>
</affiliation>
</author>
<author>
<name sortKey="Delire, C" sort="Delire, C" uniqKey="Delire C" first="C." last="Delire">C. Delire</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Groupe d'Étude de l'Atmosphère Météorologique, Unité Associée CNRS/Météo-France</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Van Den Hurk, B J J M" sort="Van Den Hurk, B J J M" uniqKey="Van Den Hurk B" first="B. J. J. M." last="Van Den Hurk">B. J. J. M. Van Den Hurk</name>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>Royal Netherlands Meteorological Institute</s1>
<s2>De Bilt</s2>
<s3>NLD</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
</affiliation>
</author>
<author>
<name sortKey="Van Der Molen, M K" sort="Van Der Molen, M K" uniqKey="Van Der Molen M" first="M. K." last="Van Der Molen">M. K. Van Der Molen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>Royal Netherlands Meteorological Institute</s1>
<s2>De Bilt</s2>
<s3>NLD</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="07">
<s1>Meteorology and Air Quality Group, Wageningen University and Research Centre</s1>
<s2>Wageningen</s2>
<s3>NLD</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
</affiliation>
</author>
<author>
<name sortKey="Miiller, C" sort="Miiller, C" uniqKey="Miiller C" first="C." last="Miiller">C. Miiller</name>
<affiliation wicri:level="1">
<inist:fA14 i1="08">
<s1>Earth System Analysis, Potsdam Institute for Climate Impact Research</s1>
<s2>Potsdam</s2>
<s3>DEU</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
<author>
<name sortKey="Voldoire, A" sort="Voldoire, A" uniqKey="Voldoire A" first="A." last="Voldoire">A. Voldoire</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Groupe d'Étude de l'Atmosphère Météorologique, Unité Associée CNRS/Météo-France</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Climate models</term>
<term>Narrows</term>
<term>Surface temperature</term>
<term>Turbulence energy</term>
<term>albedo</term>
<term>amplitude</term>
<term>climate</term>
<term>cooling</term>
<term>efficiency</term>
<term>energy transfer</term>
<term>evapotranspiration</term>
<term>heat flux</term>
<term>heat transfer</term>
<term>land cover</term>
<term>land use</term>
<term>latent heat</term>
<term>roughness</term>
<term>sensitivity analysis</term>
<term>simulation</term>
<term>solar radiation</term>
<term>statistical analysis</term>
<term>surface temperature</term>
<term>temperate zone</term>
<term>uncertainties</term>
<term>warming</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Occupation sol</term>
<term>Zone tempérée</term>
<term>Température surface</term>
<term>Température superficielle</term>
<term>Flux chaleur</term>
<term>Transfert chaleur</term>
<term>Simulation</term>
<term>Refroidissement</term>
<term>Utilisation terrain</term>
<term>Modèle climat</term>
<term>Rayonnement solaire</term>
<term>Amplitude</term>
<term>Energie turbulence</term>
<term>Transfert énergie</term>
<term>Albedo</term>
<term>Evapotranspiration</term>
<term>Efficacité</term>
<term>Rugosité</term>
<term>Réchauffement</term>
<term>Climat</term>
<term>Incertitude</term>
<term>Chaleur latente</term>
<term>Analyse statistique</term>
<term>Analyse sensibilité</term>
<term>Narrows</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Zone tempérée</term>
<term>Simulation</term>
<term>Climat</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">[1] Surface cooling in temperate regions is a common biogeophysical response to historical Land-Use induced Land Cover Change (LULCC). The climate models involved in LUCID show, however, significant differences in the magnitude and the seasonal partitioning of the temperature change. The LULCC-induced cooling is directed by decreases in absorbed solar radiation, but its amplitude is 30 to 50% smaller than the one that would be expected from the sole radiative changes. This results from direct impacts on the total turbulent energy flux (related to changes in land-cover properties other than albedo, such as evapotranspiration efficiency or surface roughness) that decreases at all seasons, and thereby induces a relative warming in all models. The magnitude of those processes varies significantly from model to model, resulting on different climate responses to LULCC. To address this uncertainty, we analyzed the LULCC impacts on surface albedo, latent heat and total turbulent energy flux, using a multivariate statistical analysis to mimic the models' responses. The differences are explained by two major 'features' varying from one model to another: the land-cover distribution and the simulated sensitivity to LULCC. The latter explains more than half of the inter-model spread and resides in how the land-surface functioning is parameterized, in particular regarding the evapotranspiration partitioning within the different land-cover types, as well as the role of leaf area index in the flux calculations. This uncertainty has to be narrowed through a more rigorous evaluation of our land-surface models.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>117</s2>
</fA05>
<fA06>
<s2>D12</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Attributing the impacts of land-cover changes in temperate regions on surface temperature and heat fluxes to specific causes: Results from the first LUCID set of simulations</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BOISIER (J. P.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DE NOBLET-DUCOUDRE (N.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PITMAN (A. J.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>CRUZ (F. T.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>DELIRE (C.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>VAN DEN HURK (B. J. J. M.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>VAN DER MOLEN (M. K.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>MIILLER (C.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>VOLDOIRE (A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratoire des Sciences du Climat et de l'Environnement, Unité Mixte CEA-CNRS-UVSQ</s1>
<s2>Gif-sur-Yvette</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>ARC Centre of Excellence for Climate System Science, University of New South Wales</s1>
<s2>Sydney, New South Wales</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Climate Change Research Centre, University of New South Wales</s1>
<s2>Sydney, New South Wales</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Manila Observatory</s1>
<s2>Quezon City</s2>
<s3>PHL</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Groupe d'Étude de l'Atmosphère Météorologique, Unité Associée CNRS/Météo-France</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Royal Netherlands Meteorological Institute</s1>
<s2>De Bilt</s2>
<s3>NLD</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="07">
<s1>Meteorology and Air Quality Group, Wageningen University and Research Centre</s1>
<s2>Wageningen</s2>
<s3>NLD</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="08">
<s1>Earth System Analysis, Potsdam Institute for Climate Impact Research</s1>
<s2>Potsdam</s2>
<s3>DEU</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s2>D12116.1-D12116.16</s2>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000504463930160</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0355061</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>[1] Surface cooling in temperate regions is a common biogeophysical response to historical Land-Use induced Land Cover Change (LULCC). The climate models involved in LUCID show, however, significant differences in the magnitude and the seasonal partitioning of the temperature change. The LULCC-induced cooling is directed by decreases in absorbed solar radiation, but its amplitude is 30 to 50% smaller than the one that would be expected from the sole radiative changes. This results from direct impacts on the total turbulent energy flux (related to changes in land-cover properties other than albedo, such as evapotranspiration efficiency or surface roughness) that decreases at all seasons, and thereby induces a relative warming in all models. The magnitude of those processes varies significantly from model to model, resulting on different climate responses to LULCC. To address this uncertainty, we analyzed the LULCC impacts on surface albedo, latent heat and total turbulent energy flux, using a multivariate statistical analysis to mimic the models' responses. The differences are explained by two major 'features' varying from one model to another: the land-cover distribution and the simulated sensitivity to LULCC. The latter explains more than half of the inter-model spread and resides in how the land-surface functioning is parameterized, in particular regarding the evapotranspiration partitioning within the different land-cover types, as well as the role of leaf area index in the flux calculations. This uncertainty has to be narrowed through a more rigorous evaluation of our land-surface models.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001E</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>001E01</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>220</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Occupation sol</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>land cover</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Zone tempérée</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>temperate zone</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Zona temperada</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Température surface</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>surface temperature</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Température superficielle</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Surface temperature</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Temperatura superficial</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Flux chaleur</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>heat flux</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Flujo calor</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Transfert chaleur</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>heat transfer</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Transferencia térmica</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Simulation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>simulation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Simulación</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Refroidissement</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>cooling</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Enfriamiento</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Utilisation terrain</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>land use</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Utilización terreno</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Modèle climat</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Climate models</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Rayonnement solaire</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>solar radiation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Amplitude</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>amplitude</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="SPA">
<s0>Amplitud</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Energie turbulence</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Turbulence energy</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Energía turbulencia</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Transfert énergie</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>energy transfer</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Albedo</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>albedo</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="SPA">
<s0>Albedo</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Evapotranspiration</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>evapotranspiration</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Evapotranspiración</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Efficacité</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>efficiency</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Rugosité</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>roughness</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="2" l="SPA">
<s0>Rugosidad</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Réchauffement</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>warming</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="2" l="FRE">
<s0>Climat</s0>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="2" l="ENG">
<s0>climate</s0>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="2" l="SPA">
<s0>Clima</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="2" l="FRE">
<s0>Incertitude</s0>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="2" l="ENG">
<s0>uncertainties</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="2" l="FRE">
<s0>Chaleur latente</s0>
<s5>23</s5>
</fC03>
<fC03 i1="22" i2="2" l="ENG">
<s0>latent heat</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="2" l="FRE">
<s0>Analyse statistique</s0>
<s5>24</s5>
</fC03>
<fC03 i1="23" i2="2" l="ENG">
<s0>statistical analysis</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="2" l="FRE">
<s0>Analyse sensibilité</s0>
<s5>25</s5>
</fC03>
<fC03 i1="24" i2="2" l="ENG">
<s0>sensitivity analysis</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="2" l="FRE">
<s0>Narrows</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="25" i2="2" l="ENG">
<s0>Narrows</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC07 i1="01" i2="2" l="FRE">
<s0>New York</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>New York</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="2" l="SPA">
<s0>Nueva York</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="2" l="FRE">
<s0>Etats Unis</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="2" l="ENG">
<s0>United States</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="2" l="SPA">
<s0>Estados Unidos</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="2" l="FRE">
<s0>Amérique du Nord</s0>
</fC07>
<fC07 i1="03" i2="2" l="ENG">
<s0>North America</s0>
</fC07>
<fC07 i1="03" i2="2" l="SPA">
<s0>America del norte</s0>
</fC07>
<fN21>
<s1>275</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004E57 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 004E57 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:12-0355061
   |texte=   Attributing the impacts of land-cover changes in temperate regions on surface temperature and heat fluxes to specific causes: Results from the first LUCID set of simulations
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024