Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Hydrogenases as catalysts for fuel cells: Strategies for efficient immobilization at electrode interfaces

Identifieur interne : 004D54 ( PascalFrancis/Curation ); précédent : 004D53; suivant : 004D55

Hydrogenases as catalysts for fuel cells: Strategies for efficient immobilization at electrode interfaces

Auteurs : Elisabeth Lojou [France]

Source :

RBID : Pascal:12-0325089

Descripteurs français

English descriptors

Abstract

Hydrogenases are the key enzymes for hydrogen metabolism in many microorganisms. Due to the high efficiency they develop for H2 oxidation, research in the last five years has aimed towards their use as biocatalysts for H2/O2 biofuel cells to replace platinum-based chemical catalysts. We report in this review the major issues that have been addressed in view of the future development of such a novel biotechnological device. This includes enhancing the stability of either the enzyme itself or its immobilization onto conductive supports, increasing the amount of electrically connected enzymes and, finally, controlling hydrogenase orientation at the electrode surface, and hence the electron transfer process. We specifically focus on a particular [NiFe] membrane-bound hydrogenase purified from the hyperthermophilic and microaerophilic bacterium Aquifex aeolicus. This enzyme resists to O2, CO, and high temperatures making it potentially efficient as a biocatalyst. Recent progress in these domains strengthens the credibility of a viable H2/O2 biofuel cell and opens new avenues for biofuel cell design.
pA  
A01 01  1    @0 0013-4686
A02 01      @0 ELCAAV
A03   1    @0 Electrochim. acta
A05       @2 56
A06       @2 28
A08 01  1  ENG  @1 Hydrogenases as catalysts for fuel cells: Strategies for efficient immobilization at electrode interfaces
A09 01  1  ENG  @1 Electrochemistry from Biology to Physics
A11 01  1    @1 LOJOU (Elisabeth)
A12 01  1    @1 BERGEL (A.) @9 ed.
A12 02  1    @1 BOND (A. M.) @9 ed.
A12 03  1    @1 BRANKOVIC (S.) @9 ed.
A12 04  1    @1 BULTEL (Y.) @9 ed.
A12 05  1    @1 DI QUARTO (F.) @9 ed.
A12 06  1    @1 GORTON (L.) @9 ed.
A12 07  1    @1 INZELT (G.) @9 ed.
A12 08  1    @1 LAPICQUE (F.) @9 ed.
A12 09  1    @1 LISDAT (F.) @9 ed.
A12 10  1    @1 OPALLO (M.) @9 ed.
A12 11  1    @1 SAVINOVA (E. R.) @9 ed.
A12 12  1    @1 TOH (C.S.) @9 ed.
A12 13  1    @1 TSIRLINA (G. A.) @9 ed.
A12 14  1    @1 VIVIER (V.) @9 ed.
A12 15  1    @1 WINTER (M.) @9 ed.
A14 01      @1 Unite de Bioénergétique et Ingénierie des Protéines, UPR 9036, Institut de Microbiologie de la Méditerranée - CNRS, 31 Chemin Joseph Aiguier @2 13402 Marseille @3 FRA @Z 1 aut.
A15 01      @1 CNRS @2 Toulouse @3 FRA @Z 1 aut.
A15 02      @1 Monash University @2 Clayton, Vic. @3 AUS @Z 2 aut.
A15 03      @1 University of Houston @2 Houston, TX @3 USA @Z 3 aut.
A15 04      @1 LEPMI @2 Grenoble @3 FRA @Z 4 aut.
A15 05      @1 University of Palermo @3 ITA @Z 5 aut.
A15 06      @1 Lund University @3 SWE @Z 6 aut.
A15 07      @1 Eotvos Lorand University @2 Budapest @3 HUN @Z 7 aut.
A15 08      @1 CNRS @2 Nancy @3 FRA @Z 8 aut.
A15 09      @1 Wildau University @3 DEU @Z 9 aut.
A15 10      @1 Polish Academy of Sciences @2 Warsaw @3 POL @Z 10 aut.
A15 11      @1 Université de Strasbourg @3 FRA @Z 11 aut.
A15 12      @1 Nanyang Technological University @3 SGP @Z 12 aut.
A15 13      @1 Moscow State University @3 RUS @Z 13 aut.
A15 14      @1 Université Pierre et Marie Curie @2 Paris @3 FRA @Z 14 aut.
A15 15      @1 University of Münster @3 DEU @Z 15 aut.
A18 01  1    @1 International Society of Electrochemistry (ISE) @2 1004 Lausanne @3 CHE @9 org-cong.
A20       @1 10385-10397
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 1516 @5 354000505919820130
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 95 ref.
A47 01  1    @0 12-0325089
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Electrochimica acta
A66 01      @0 GBR
C01 01    ENG  @0 Hydrogenases are the key enzymes for hydrogen metabolism in many microorganisms. Due to the high efficiency they develop for H2 oxidation, research in the last five years has aimed towards their use as biocatalysts for H2/O2 biofuel cells to replace platinum-based chemical catalysts. We report in this review the major issues that have been addressed in view of the future development of such a novel biotechnological device. This includes enhancing the stability of either the enzyme itself or its immobilization onto conductive supports, increasing the amount of electrically connected enzymes and, finally, controlling hydrogenase orientation at the electrode surface, and hence the electron transfer process. We specifically focus on a particular [NiFe] membrane-bound hydrogenase purified from the hyperthermophilic and microaerophilic bacterium Aquifex aeolicus. This enzyme resists to O2, CO, and high temperatures making it potentially efficient as a biocatalyst. Recent progress in these domains strengthens the credibility of a viable H2/O2 biofuel cell and opens new avenues for biofuel cell design.
C02 01  X    @0 001D06D03E
C02 02  X    @0 230
C03 01  X  FRE  @0 Catalyse enzymatique @5 02
C03 01  X  ENG  @0 Enzymatic catalysis @5 02
C03 01  X  SPA  @0 Catálisis enzimática @5 02
C03 02  X  FRE  @0 Origine microbienne @5 03
C03 02  X  ENG  @0 Microbial origin @5 03
C03 02  X  SPA  @0 Origen microbiano @5 03
C03 03  X  FRE  @0 Enzyme immobilisée @5 04
C03 03  X  ENG  @0 Immobilized enzyme @5 04
C03 03  X  SPA  @0 Enzima inmovilizada @5 04
C03 04  X  FRE  @0 Electrode @5 05
C03 04  X  ENG  @0 Electrodes @5 05
C03 04  X  SPA  @0 Electrodo @5 05
C03 05  X  FRE  @0 Bactérie @5 06
C03 05  X  ENG  @0 Bacteria @5 06
C03 05  X  SPA  @0 Bacteria @5 06
C03 06  X  FRE  @0 Couche monomoléculaire @5 07
C03 06  X  ENG  @0 Monolayer @5 07
C03 06  X  SPA  @0 Capa monomolecular @5 07
C03 07  X  FRE  @0 Couche autoassemblée @5 08
C03 07  X  ENG  @0 Self-assembled layer @5 08
C03 07  X  SPA  @0 Capa autoensamblada @5 08
C03 08  3  FRE  @0 Nanotube carbone @5 09
C03 08  3  ENG  @0 Carbon nanotubes @5 09
C03 09  X  FRE  @0 Liposome @5 10
C03 09  X  ENG  @0 Liposome @5 10
C03 09  X  SPA  @0 Liposoma @5 10
C03 10  X  FRE  @0 Pile combustible biochimique @5 11
C03 10  X  ENG  @0 Biochemical fuel cell @5 11
C03 10  X  SPA  @0 Pila combustible bioquímica @5 11
C03 11  X  FRE  @0 Article synthèse @5 12
C03 11  X  ENG  @0 Review @5 12
C03 11  X  SPA  @0 Artículo síntesis @5 12
C03 12  X  FRE  @0 Electrocatalyse @5 13
C03 12  X  ENG  @0 Electrocatalysis @5 13
C03 12  X  SPA  @0 Electrocatálisis @5 13
C03 13  X  FRE  @0 Hydrolases @2 FE @5 14
C03 13  X  ENG  @0 Hydrolases @2 FE @5 14
C03 13  X  SPA  @0 Hydrolases @2 FE @5 14
C03 14  X  FRE  @0 Aquifex aeolicus @2 NS @4 INC @5 76
C07 01  X  FRE  @0 Enzyme @2 FE
C07 01  X  ENG  @0 Enzyme @2 FE
C07 01  X  SPA  @0 Enzima @2 FE
N21       @1 247
pR  
A30 01  1  ENG  @1 International Society of Electrochemistry (ISE) Meeting @2 61 @3 Nice FRA @4 2010-09-26

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0325089

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Hydrogenases as catalysts for fuel cells: Strategies for efficient immobilization at electrode interfaces</title>
<author>
<name sortKey="Lojou, Elisabeth" sort="Lojou, Elisabeth" uniqKey="Lojou E" first="Elisabeth" last="Lojou">Elisabeth Lojou</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Unite de Bioénergétique et Ingénierie des Protéines, UPR 9036, Institut de Microbiologie de la Méditerranée - CNRS, 31 Chemin Joseph Aiguier</s1>
<s2>13402 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0325089</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 12-0325089 INIST</idno>
<idno type="RBID">Pascal:12-0325089</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001163</idno>
<idno type="wicri:Area/PascalFrancis/Curation">004D54</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Hydrogenases as catalysts for fuel cells: Strategies for efficient immobilization at electrode interfaces</title>
<author>
<name sortKey="Lojou, Elisabeth" sort="Lojou, Elisabeth" uniqKey="Lojou E" first="Elisabeth" last="Lojou">Elisabeth Lojou</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Unite de Bioénergétique et Ingénierie des Protéines, UPR 9036, Institut de Microbiologie de la Méditerranée - CNRS, 31 Chemin Joseph Aiguier</s1>
<s2>13402 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Electrochimica acta</title>
<title level="j" type="abbreviated">Electrochim. acta</title>
<idno type="ISSN">0013-4686</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Electrochimica acta</title>
<title level="j" type="abbreviated">Electrochim. acta</title>
<idno type="ISSN">0013-4686</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacteria</term>
<term>Biochemical fuel cell</term>
<term>Carbon nanotubes</term>
<term>Electrocatalysis</term>
<term>Electrodes</term>
<term>Enzymatic catalysis</term>
<term>Hydrolases</term>
<term>Immobilized enzyme</term>
<term>Liposome</term>
<term>Microbial origin</term>
<term>Monolayer</term>
<term>Review</term>
<term>Self-assembled layer</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Catalyse enzymatique</term>
<term>Origine microbienne</term>
<term>Enzyme immobilisée</term>
<term>Electrode</term>
<term>Bactérie</term>
<term>Couche monomoléculaire</term>
<term>Couche autoassemblée</term>
<term>Nanotube carbone</term>
<term>Liposome</term>
<term>Pile combustible biochimique</term>
<term>Article synthèse</term>
<term>Electrocatalyse</term>
<term>Hydrolases</term>
<term>Aquifex aeolicus</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Hydrogenases are the key enzymes for hydrogen metabolism in many microorganisms. Due to the high efficiency they develop for H
<sub>2</sub>
oxidation, research in the last five years has aimed towards their use as biocatalysts for H
<sub>2</sub>
/O
<sub>2</sub>
biofuel cells to replace platinum-based chemical catalysts. We report in this review the major issues that have been addressed in view of the future development of such a novel biotechnological device. This includes enhancing the stability of either the enzyme itself or its immobilization onto conductive supports, increasing the amount of electrically connected enzymes and, finally, controlling hydrogenase orientation at the electrode surface, and hence the electron transfer process. We specifically focus on a particular [NiFe] membrane-bound hydrogenase purified from the hyperthermophilic and microaerophilic bacterium Aquifex aeolicus. This enzyme resists to O
<sub>2</sub>
, CO, and high temperatures making it potentially efficient as a biocatalyst. Recent progress in these domains strengthens the credibility of a viable H
<sub>2</sub>
/O
<sub>2</sub>
biofuel cell and opens new avenues for biofuel cell design.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0013-4686</s0>
</fA01>
<fA02 i1="01">
<s0>ELCAAV</s0>
</fA02>
<fA03 i2="1">
<s0>Electrochim. acta</s0>
</fA03>
<fA05>
<s2>56</s2>
</fA05>
<fA06>
<s2>28</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Hydrogenases as catalysts for fuel cells: Strategies for efficient immobilization at electrode interfaces</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Electrochemistry from Biology to Physics</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>LOJOU (Elisabeth)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BERGEL (A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>BOND (A. M.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>BRANKOVIC (S.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>BULTEL (Y.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>DI QUARTO (F.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="06" i2="1">
<s1>GORTON (L.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="07" i2="1">
<s1>INZELT (G.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="08" i2="1">
<s1>LAPICQUE (F.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="09" i2="1">
<s1>LISDAT (F.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="10" i2="1">
<s1>OPALLO (M.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="11" i2="1">
<s1>SAVINOVA (E. R.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="12" i2="1">
<s1>TOH (C.S.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="13" i2="1">
<s1>TSIRLINA (G. A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="14" i2="1">
<s1>VIVIER (V.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="15" i2="1">
<s1>WINTER (M.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Unite de Bioénergétique et Ingénierie des Protéines, UPR 9036, Institut de Microbiologie de la Méditerranée - CNRS, 31 Chemin Joseph Aiguier</s1>
<s2>13402 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>CNRS</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Monash University</s1>
<s2>Clayton, Vic.</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>University of Houston</s1>
<s2>Houston, TX</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA15 i1="04">
<s1>LEPMI</s1>
<s2>Grenoble</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA15>
<fA15 i1="05">
<s1>University of Palermo</s1>
<s3>ITA</s3>
<sZ>5 aut.</sZ>
</fA15>
<fA15 i1="06">
<s1>Lund University</s1>
<s3>SWE</s3>
<sZ>6 aut.</sZ>
</fA15>
<fA15 i1="07">
<s1>Eotvos Lorand University</s1>
<s2>Budapest</s2>
<s3>HUN</s3>
<sZ>7 aut.</sZ>
</fA15>
<fA15 i1="08">
<s1>CNRS</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>8 aut.</sZ>
</fA15>
<fA15 i1="09">
<s1>Wildau University</s1>
<s3>DEU</s3>
<sZ>9 aut.</sZ>
</fA15>
<fA15 i1="10">
<s1>Polish Academy of Sciences</s1>
<s2>Warsaw</s2>
<s3>POL</s3>
<sZ>10 aut.</sZ>
</fA15>
<fA15 i1="11">
<s1>Université de Strasbourg</s1>
<s3>FRA</s3>
<sZ>11 aut.</sZ>
</fA15>
<fA15 i1="12">
<s1>Nanyang Technological University</s1>
<s3>SGP</s3>
<sZ>12 aut.</sZ>
</fA15>
<fA15 i1="13">
<s1>Moscow State University</s1>
<s3>RUS</s3>
<sZ>13 aut.</sZ>
</fA15>
<fA15 i1="14">
<s1>Université Pierre et Marie Curie</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>14 aut.</sZ>
</fA15>
<fA15 i1="15">
<s1>University of Münster</s1>
<s3>DEU</s3>
<sZ>15 aut.</sZ>
</fA15>
<fA18 i1="01" i2="1">
<s1>International Society of Electrochemistry (ISE)</s1>
<s2>1004 Lausanne</s2>
<s3>CHE</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>10385-10397</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>1516</s2>
<s5>354000505919820130</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>95 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0325089</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Electrochimica acta</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Hydrogenases are the key enzymes for hydrogen metabolism in many microorganisms. Due to the high efficiency they develop for H
<sub>2</sub>
oxidation, research in the last five years has aimed towards their use as biocatalysts for H
<sub>2</sub>
/O
<sub>2</sub>
biofuel cells to replace platinum-based chemical catalysts. We report in this review the major issues that have been addressed in view of the future development of such a novel biotechnological device. This includes enhancing the stability of either the enzyme itself or its immobilization onto conductive supports, increasing the amount of electrically connected enzymes and, finally, controlling hydrogenase orientation at the electrode surface, and hence the electron transfer process. We specifically focus on a particular [NiFe] membrane-bound hydrogenase purified from the hyperthermophilic and microaerophilic bacterium Aquifex aeolicus. This enzyme resists to O
<sub>2</sub>
, CO, and high temperatures making it potentially efficient as a biocatalyst. Recent progress in these domains strengthens the credibility of a viable H
<sub>2</sub>
/O
<sub>2</sub>
biofuel cell and opens new avenues for biofuel cell design.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06D03E</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Catalyse enzymatique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Enzymatic catalysis</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Catálisis enzimática</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Origine microbienne</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Microbial origin</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Origen microbiano</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Enzyme immobilisée</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Immobilized enzyme</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Enzima inmovilizada</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Electrode</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Electrodes</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Electrodo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Bactérie</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Bacteria</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Bacteria</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Couche monomoléculaire</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Monolayer</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Capa monomolecular</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Couche autoassemblée</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Self-assembled layer</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Capa autoensamblada</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Nanotube carbone</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Carbon nanotubes</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Liposome</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Liposome</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Liposoma</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Pile combustible biochimique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Biochemical fuel cell</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Pila combustible bioquímica</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Article synthèse</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Review</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Artículo síntesis</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Electrocatalyse</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Electrocatalysis</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Electrocatálisis</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Hydrolases</s0>
<s2>FE</s2>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Hydrolases</s0>
<s2>FE</s2>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Hydrolases</s0>
<s2>FE</s2>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Aquifex aeolicus</s0>
<s2>NS</s2>
<s4>INC</s4>
<s5>76</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Enzyme</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Enzyme</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Enzima</s0>
<s2>FE</s2>
</fC07>
<fN21>
<s1>247</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>International Society of Electrochemistry (ISE) Meeting</s1>
<s2>61</s2>
<s3>Nice FRA</s3>
<s4>2010-09-26</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004D54 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 004D54 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:12-0325089
   |texte=   Hydrogenases as catalysts for fuel cells: Strategies for efficient immobilization at electrode interfaces
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024