Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evolutionary influences on the structure of red-giant acoustic oscillation spectra from 600d of Kepler observations

Identifieur interne : 004D14 ( PascalFrancis/Curation ); précédent : 004D13; suivant : 004D15

Evolutionary influences on the structure of red-giant acoustic oscillation spectra from 600d of Kepler observations

Auteurs : T. Kallinger [Belgique, Autriche] ; S. Hekker [Pays-Bas, Royaume-Uni] ; B. Mosser [France] ; J. De Ridder [Belgique] ; T. R. Bedding [Australie] ; Y. P. Elsworth [Royaume-Uni] ; M. Gruberbauer [Canada] ; D. B. Guenther [Canada] ; D. Stello [Australie] ; S. Basu [États-Unis] ; R. A. Garcia [France] ; W. J. Chaplin [Australie] ; F. Mullally [États-Unis] ; M. Still [États-Unis] ; S. E. Thompson [États-Unis]

Source :

RBID : Pascal:12-0321698

Descripteurs français

English descriptors

Abstract

Context. It was recently discovered that the period spacings of mixed pressure/gravity dipole modes in red giants permit a distinction between the otherwise unknown evolutionary stage of these stars. The Kepler space mission is reaching continuous observing times long enough to also start studying the fine structure of the observed pressure-mode spectra. Aims. In this paper, we aim to study the signature of stellar evolution on the radial and pressure-dominated l = 2 modes in an ensemble of red giants that show solar-type oscillations. Methods. We use established methods to automatically identify the mode degree of l = 0 and 2 modes and measure the large (Δνc) and small (δν02) frequency separation around the central radial mode. We then determine the phase shift εc of the central radial mode, i.e. the linear offset in the asymptotic fit to the acoustic modes. Furthermore we measure the individual frequencies of radial modes and investigate their average curvature. Results. We find that εc is significantly different for red giants at a given Δνc but which burn only H in a shell (RGB) than those that have already ignited core He burning. Even though not directly probing the stellar core the pair of local seismic observables (Δνc, εc) can be used as an evolutionary stage discriminator that turned out to be as reliable as the period spacing of the mixed dipole modes. We find a tight correlation between εc and Δνc for RGB stars and unlike less evolved stars we find no indication that εc depends on other properties of the star. It appears that the difference in εc between the two populations becomes smaller and eventually indistinguishable if we use an average of several radial orders, instead of a local, i.e. only around the central radial mode, large separation to determine the phase shift. This indicates that the information on the evolutionary stage is encoded locally, more precisely in the shape of the radial mode sequence. This shape turns out to be approximately symmetric around the central radial mode for RGB stars but asymmetric for core He burning stars. We computed radial mode frequencies for a sequence of red-giant models and find them to qualitatively confirm our findings. We also find that, at least in our models, the local Δν is an at least as good and mostly better proxy for both the asymptotic spacing and the large separation scaled from the model density than the average Δν. Finally, we investigate the signature of the evolutionary stage on δν02 and quantify the mass dependency of this seismic parameter.
pA  
A01 01  1    @0 0004-6361
A02 01      @0 AAEJAF
A03   1    @0 Astron. astrophys. : (Berl., Print)
A05       @2 541
A06       @3 p. 1
A08 01  1  ENG  @1 Evolutionary influences on the structure of red-giant acoustic oscillation spectra from 600d of Kepler observations
A11 01  1    @1 KALLINGER (T.)
A11 02  1    @1 HEKKER (S.)
A11 03  1    @1 MOSSER (B.)
A11 04  1    @1 DE RIDDER (J.)
A11 05  1    @1 BEDDING (T. R.)
A11 06  1    @1 ELSWORTH (Y. P.)
A11 07  1    @1 GRUBERBAUER (M.)
A11 08  1    @1 GUENTHER (D. B.)
A11 09  1    @1 STELLO (D.)
A11 10  1    @1 BASU (S.)
A11 11  1    @1 GARCIA (R. A.)
A11 12  1    @1 CHAPLIN (W. J.)
A11 13  1    @1 MULLALLY (F.)
A11 14  1    @1 STILL (M.)
A11 15  1    @1 THOMPSON (S. E.)
A14 01      @1 Instituut voor Sterrenkunde, K.U. Leuven, Celestijnenlaan 200D @2 3001 Leuven @3 BEL @Z 1 aut. @Z 4 aut.
A14 02      @1 Institute for Astronomy (IfA), University of Vienna, Türkenschanzstrasse 17 @2 1180 Vienna @3 AUT @Z 1 aut.
A14 03      @1 Astronomical Institute "Anton Pannekoek", University of Amsterdam, PO Box 94249 @2 1090 GE Amsterdam @3 NLD @Z 2 aut.
A14 04      @1 School of Physics and Astronomy, University of Birmingham, Edgbaston @2 Birmingham B 15 2TT @3 GBR @Z 2 aut. @Z 6 aut.
A14 05      @1 LESIA, CNRS, Université Pierre et Marie Curie, Université Denis Diderot, Observatoire de Paris @2 92195 Meudon @3 FRA @Z 3 aut.
A14 06      @1 Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney @2 NSW 2006 @3 AUS @Z 5 aut. @Z 9 aut. @Z 12 aut.
A14 07      @1 Department of Astronomy and Physics, Saint Marys University @2 Halifax, NS B3H 3C3 @3 CAN @Z 7 aut. @Z 8 aut.
A14 08      @1 Department of Astronomy, Yale University, PO Box 208101 @2 New Haven, CT 06520-8101 @3 USA @Z 10 aut.
A14 09      @1 Laboratoire AIM, CEA/DSM-CNRS, Universite Paris 7 Diderot, IRFU/SAp, Centre de Saclay @2 91191 Gif-sur-Yvette @3 FRA @Z 11 aut.
A14 10      @1 SETI Institute/NASA Ames Research Center @2 Moffett Field, CA 94035 @3 USA @Z 13 aut. @Z 15 aut.
A14 11      @1 Bay Area Environmental Research Inst./NASA Ames Research Center @2 Moffett Field, CA 94035 @3 USA @Z 14 aut.
A20       @2 A51.1-A51.12
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 14176 @5 354000508321470510
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 1/2 p.
A47 01  1    @0 12-0321698
A60       @1 P
A61       @0 A
A64 01  1    @0 Astronomy and astrophysics : (Berlin. Print)
A66 01      @0 FRA
C01 01    ENG  @0 Context. It was recently discovered that the period spacings of mixed pressure/gravity dipole modes in red giants permit a distinction between the otherwise unknown evolutionary stage of these stars. The Kepler space mission is reaching continuous observing times long enough to also start studying the fine structure of the observed pressure-mode spectra. Aims. In this paper, we aim to study the signature of stellar evolution on the radial and pressure-dominated l = 2 modes in an ensemble of red giants that show solar-type oscillations. Methods. We use established methods to automatically identify the mode degree of l = 0 and 2 modes and measure the large (Δνc) and small (δν02) frequency separation around the central radial mode. We then determine the phase shift εc of the central radial mode, i.e. the linear offset in the asymptotic fit to the acoustic modes. Furthermore we measure the individual frequencies of radial modes and investigate their average curvature. Results. We find that εc is significantly different for red giants at a given Δνc but which burn only H in a shell (RGB) than those that have already ignited core He burning. Even though not directly probing the stellar core the pair of local seismic observables (Δνc, εc) can be used as an evolutionary stage discriminator that turned out to be as reliable as the period spacing of the mixed dipole modes. We find a tight correlation between εc and Δνc for RGB stars and unlike less evolved stars we find no indication that εc depends on other properties of the star. It appears that the difference in εc between the two populations becomes smaller and eventually indistinguishable if we use an average of several radial orders, instead of a local, i.e. only around the central radial mode, large separation to determine the phase shift. This indicates that the information on the evolutionary stage is encoded locally, more precisely in the shape of the radial mode sequence. This shape turns out to be approximately symmetric around the central radial mode for RGB stars but asymmetric for core He burning stars. We computed radial mode frequencies for a sequence of red-giant models and find them to qualitatively confirm our findings. We also find that, at least in our models, the local Δν is an at least as good and mostly better proxy for both the asymptotic spacing and the large separation scaled from the model density than the average Δν. Finally, we investigate the signature of the evolutionary stage on δν02 and quantify the mass dependency of this seismic parameter.
C02 01  3    @0 001E03
C03 01  3  FRE  @0 Géante rouge @5 26
C03 01  3  ENG  @0 Red giant stars @5 26
C03 02  3  FRE  @0 Gravité @5 27
C03 02  3  ENG  @0 Gravity @5 27
C03 03  3  FRE  @0 Dipôle @5 28
C03 03  3  ENG  @0 Dipoles @5 28
C03 04  3  FRE  @0 Structure fine @5 29
C03 04  3  ENG  @0 Fine structure @5 29
C03 05  3  FRE  @0 Evolution stellaire @5 30
C03 05  3  ENG  @0 Stellar evolution @5 30
C03 06  3  FRE  @0 Courbure @5 31
C03 06  3  ENG  @0 Curvature @5 31
C03 07  3  FRE  @0 Noyau stellaire @5 32
C03 07  3  ENG  @0 Stellar cores @5 32
C03 08  3  FRE  @0 Corrélation @5 33
C03 08  3  ENG  @0 Correlations @5 33
C03 09  3  FRE  @0 Combustion stellaire @5 34
C03 09  3  ENG  @0 Star burning @5 34
C03 10  X  FRE  @0 Modèle @5 35
C03 10  X  ENG  @0 Models @5 35
C03 10  X  SPA  @0 Modelo @5 35
C03 11  3  FRE  @0 Etoile type avancé @5 36
C03 11  3  ENG  @0 Late type stars @5 36
N21       @1 247
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0321698

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Evolutionary influences on the structure of red-giant acoustic oscillation spectra from 600d of Kepler observations</title>
<author>
<name sortKey="Kallinger, T" sort="Kallinger, T" uniqKey="Kallinger T" first="T." last="Kallinger">T. Kallinger</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Instituut voor Sterrenkunde, K.U. Leuven, Celestijnenlaan 200D</s1>
<s2>3001 Leuven</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Belgique</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute for Astronomy (IfA), University of Vienna, Türkenschanzstrasse 17</s1>
<s2>1180 Vienna</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
</affiliation>
</author>
<author>
<name sortKey="Hekker, S" sort="Hekker, S" uniqKey="Hekker S" first="S." last="Hekker">S. Hekker</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Astronomical Institute "Anton Pannekoek", University of Amsterdam, PO Box 94249</s1>
<s2>1090 GE Amsterdam</s2>
<s3>NLD</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>School of Physics and Astronomy, University of Birmingham, Edgbaston</s1>
<s2>Birmingham B 15 2TT</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
</affiliation>
</author>
<author>
<name sortKey="Mosser, B" sort="Mosser, B" uniqKey="Mosser B" first="B." last="Mosser">B. Mosser</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>LESIA, CNRS, Université Pierre et Marie Curie, Université Denis Diderot, Observatoire de Paris</s1>
<s2>92195 Meudon</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="De Ridder, J" sort="De Ridder, J" uniqKey="De Ridder J" first="J." last="De Ridder">J. De Ridder</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Instituut voor Sterrenkunde, K.U. Leuven, Celestijnenlaan 200D</s1>
<s2>3001 Leuven</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Belgique</country>
</affiliation>
</author>
<author>
<name sortKey="Bedding, T R" sort="Bedding, T R" uniqKey="Bedding T" first="T. R." last="Bedding">T. R. Bedding</name>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney</s1>
<s2>NSW 2006</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Elsworth, Y P" sort="Elsworth, Y P" uniqKey="Elsworth Y" first="Y. P." last="Elsworth">Y. P. Elsworth</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>School of Physics and Astronomy, University of Birmingham, Edgbaston</s1>
<s2>Birmingham B 15 2TT</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
</affiliation>
</author>
<author>
<name sortKey="Gruberbauer, M" sort="Gruberbauer, M" uniqKey="Gruberbauer M" first="M." last="Gruberbauer">M. Gruberbauer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="07">
<s1>Department of Astronomy and Physics, Saint Marys University</s1>
<s2>Halifax, NS B3H 3C3</s2>
<s3>CAN</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
</author>
<author>
<name sortKey="Guenther, D B" sort="Guenther, D B" uniqKey="Guenther D" first="D. B." last="Guenther">D. B. Guenther</name>
<affiliation wicri:level="1">
<inist:fA14 i1="07">
<s1>Department of Astronomy and Physics, Saint Marys University</s1>
<s2>Halifax, NS B3H 3C3</s2>
<s3>CAN</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
</author>
<author>
<name sortKey="Stello, D" sort="Stello, D" uniqKey="Stello D" first="D." last="Stello">D. Stello</name>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney</s1>
<s2>NSW 2006</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Basu, S" sort="Basu, S" uniqKey="Basu S" first="S." last="Basu">S. Basu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="08">
<s1>Department of Astronomy, Yale University, PO Box 208101</s1>
<s2>New Haven, CT 06520-8101</s2>
<s3>USA</s3>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Garcia, R A" sort="Garcia, R A" uniqKey="Garcia R" first="R. A." last="Garcia">R. A. Garcia</name>
<affiliation wicri:level="1">
<inist:fA14 i1="09">
<s1>Laboratoire AIM, CEA/DSM-CNRS, Universite Paris 7 Diderot, IRFU/SAp, Centre de Saclay</s1>
<s2>91191 Gif-sur-Yvette</s2>
<s3>FRA</s3>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Chaplin, W J" sort="Chaplin, W J" uniqKey="Chaplin W" first="W. J." last="Chaplin">W. J. Chaplin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney</s1>
<s2>NSW 2006</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Mullally, F" sort="Mullally, F" uniqKey="Mullally F" first="F." last="Mullally">F. Mullally</name>
<affiliation wicri:level="1">
<inist:fA14 i1="10">
<s1>SETI Institute/NASA Ames Research Center</s1>
<s2>Moffett Field, CA 94035</s2>
<s3>USA</s3>
<sZ>13 aut.</sZ>
<sZ>15 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Still, M" sort="Still, M" uniqKey="Still M" first="M." last="Still">M. Still</name>
<affiliation wicri:level="1">
<inist:fA14 i1="11">
<s1>Bay Area Environmental Research Inst./NASA Ames Research Center</s1>
<s2>Moffett Field, CA 94035</s2>
<s3>USA</s3>
<sZ>14 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Thompson, S E" sort="Thompson, S E" uniqKey="Thompson S" first="S. E." last="Thompson">S. E. Thompson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="10">
<s1>SETI Institute/NASA Ames Research Center</s1>
<s2>Moffett Field, CA 94035</s2>
<s3>USA</s3>
<sZ>13 aut.</sZ>
<sZ>15 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0321698</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0321698 INIST</idno>
<idno type="RBID">Pascal:12-0321698</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001203</idno>
<idno type="wicri:Area/PascalFrancis/Curation">004D14</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Evolutionary influences on the structure of red-giant acoustic oscillation spectra from 600d of Kepler observations</title>
<author>
<name sortKey="Kallinger, T" sort="Kallinger, T" uniqKey="Kallinger T" first="T." last="Kallinger">T. Kallinger</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Instituut voor Sterrenkunde, K.U. Leuven, Celestijnenlaan 200D</s1>
<s2>3001 Leuven</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Belgique</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute for Astronomy (IfA), University of Vienna, Türkenschanzstrasse 17</s1>
<s2>1180 Vienna</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
</affiliation>
</author>
<author>
<name sortKey="Hekker, S" sort="Hekker, S" uniqKey="Hekker S" first="S." last="Hekker">S. Hekker</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Astronomical Institute "Anton Pannekoek", University of Amsterdam, PO Box 94249</s1>
<s2>1090 GE Amsterdam</s2>
<s3>NLD</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>School of Physics and Astronomy, University of Birmingham, Edgbaston</s1>
<s2>Birmingham B 15 2TT</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
</affiliation>
</author>
<author>
<name sortKey="Mosser, B" sort="Mosser, B" uniqKey="Mosser B" first="B." last="Mosser">B. Mosser</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>LESIA, CNRS, Université Pierre et Marie Curie, Université Denis Diderot, Observatoire de Paris</s1>
<s2>92195 Meudon</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="De Ridder, J" sort="De Ridder, J" uniqKey="De Ridder J" first="J." last="De Ridder">J. De Ridder</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Instituut voor Sterrenkunde, K.U. Leuven, Celestijnenlaan 200D</s1>
<s2>3001 Leuven</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Belgique</country>
</affiliation>
</author>
<author>
<name sortKey="Bedding, T R" sort="Bedding, T R" uniqKey="Bedding T" first="T. R." last="Bedding">T. R. Bedding</name>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney</s1>
<s2>NSW 2006</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Elsworth, Y P" sort="Elsworth, Y P" uniqKey="Elsworth Y" first="Y. P." last="Elsworth">Y. P. Elsworth</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>School of Physics and Astronomy, University of Birmingham, Edgbaston</s1>
<s2>Birmingham B 15 2TT</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
</affiliation>
</author>
<author>
<name sortKey="Gruberbauer, M" sort="Gruberbauer, M" uniqKey="Gruberbauer M" first="M." last="Gruberbauer">M. Gruberbauer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="07">
<s1>Department of Astronomy and Physics, Saint Marys University</s1>
<s2>Halifax, NS B3H 3C3</s2>
<s3>CAN</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
</author>
<author>
<name sortKey="Guenther, D B" sort="Guenther, D B" uniqKey="Guenther D" first="D. B." last="Guenther">D. B. Guenther</name>
<affiliation wicri:level="1">
<inist:fA14 i1="07">
<s1>Department of Astronomy and Physics, Saint Marys University</s1>
<s2>Halifax, NS B3H 3C3</s2>
<s3>CAN</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
</author>
<author>
<name sortKey="Stello, D" sort="Stello, D" uniqKey="Stello D" first="D." last="Stello">D. Stello</name>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney</s1>
<s2>NSW 2006</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Basu, S" sort="Basu, S" uniqKey="Basu S" first="S." last="Basu">S. Basu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="08">
<s1>Department of Astronomy, Yale University, PO Box 208101</s1>
<s2>New Haven, CT 06520-8101</s2>
<s3>USA</s3>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Garcia, R A" sort="Garcia, R A" uniqKey="Garcia R" first="R. A." last="Garcia">R. A. Garcia</name>
<affiliation wicri:level="1">
<inist:fA14 i1="09">
<s1>Laboratoire AIM, CEA/DSM-CNRS, Universite Paris 7 Diderot, IRFU/SAp, Centre de Saclay</s1>
<s2>91191 Gif-sur-Yvette</s2>
<s3>FRA</s3>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Chaplin, W J" sort="Chaplin, W J" uniqKey="Chaplin W" first="W. J." last="Chaplin">W. J. Chaplin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney</s1>
<s2>NSW 2006</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Mullally, F" sort="Mullally, F" uniqKey="Mullally F" first="F." last="Mullally">F. Mullally</name>
<affiliation wicri:level="1">
<inist:fA14 i1="10">
<s1>SETI Institute/NASA Ames Research Center</s1>
<s2>Moffett Field, CA 94035</s2>
<s3>USA</s3>
<sZ>13 aut.</sZ>
<sZ>15 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Still, M" sort="Still, M" uniqKey="Still M" first="M." last="Still">M. Still</name>
<affiliation wicri:level="1">
<inist:fA14 i1="11">
<s1>Bay Area Environmental Research Inst./NASA Ames Research Center</s1>
<s2>Moffett Field, CA 94035</s2>
<s3>USA</s3>
<sZ>14 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Thompson, S E" sort="Thompson, S E" uniqKey="Thompson S" first="S. E." last="Thompson">S. E. Thompson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="10">
<s1>SETI Institute/NASA Ames Research Center</s1>
<s2>Moffett Field, CA 94035</s2>
<s3>USA</s3>
<sZ>13 aut.</sZ>
<sZ>15 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Astronomy and astrophysics : (Berlin. Print)</title>
<title level="j" type="abbreviated">Astron. astrophys. : (Berl., Print)</title>
<idno type="ISSN">0004-6361</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Astronomy and astrophysics : (Berlin. Print)</title>
<title level="j" type="abbreviated">Astron. astrophys. : (Berl., Print)</title>
<idno type="ISSN">0004-6361</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Correlations</term>
<term>Curvature</term>
<term>Dipoles</term>
<term>Fine structure</term>
<term>Gravity</term>
<term>Late type stars</term>
<term>Models</term>
<term>Red giant stars</term>
<term>Star burning</term>
<term>Stellar cores</term>
<term>Stellar evolution</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Géante rouge</term>
<term>Gravité</term>
<term>Dipôle</term>
<term>Structure fine</term>
<term>Evolution stellaire</term>
<term>Courbure</term>
<term>Noyau stellaire</term>
<term>Corrélation</term>
<term>Combustion stellaire</term>
<term>Modèle</term>
<term>Etoile type avancé</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Context. It was recently discovered that the period spacings of mixed pressure/gravity dipole modes in red giants permit a distinction between the otherwise unknown evolutionary stage of these stars. The Kepler space mission is reaching continuous observing times long enough to also start studying the fine structure of the observed pressure-mode spectra. Aims. In this paper, we aim to study the signature of stellar evolution on the radial and pressure-dominated l = 2 modes in an ensemble of red giants that show solar-type oscillations. Methods. We use established methods to automatically identify the mode degree of l = 0 and 2 modes and measure the large (Δν
<sub>c</sub>
) and small (δν
<sub>02</sub>
) frequency separation around the central radial mode. We then determine the phase shift ε
<sub>c</sub>
of the central radial mode, i.e. the linear offset in the asymptotic fit to the acoustic modes. Furthermore we measure the individual frequencies of radial modes and investigate their average curvature. Results. We find that ε
<sub>c</sub>
is significantly different for red giants at a given Δν
<sub>c</sub>
but which burn only H in a shell (RGB) than those that have already ignited core He burning. Even though not directly probing the stellar core the pair of local seismic observables (Δν
<sub>c</sub>
, ε
<sub>c</sub>
) can be used as an evolutionary stage discriminator that turned out to be as reliable as the period spacing of the mixed dipole modes. We find a tight correlation between ε
<sub>c</sub>
and Δν
<sub>c</sub>
for RGB stars and unlike less evolved stars we find no indication that ε
<sub>c</sub>
depends on other properties of the star. It appears that the difference in ε
<sub>c</sub>
between the two populations becomes smaller and eventually indistinguishable if we use an average of several radial orders, instead of a local, i.e. only around the central radial mode, large separation to determine the phase shift. This indicates that the information on the evolutionary stage is encoded locally, more precisely in the shape of the radial mode sequence. This shape turns out to be approximately symmetric around the central radial mode for RGB stars but asymmetric for core He burning stars. We computed radial mode frequencies for a sequence of red-giant models and find them to qualitatively confirm our findings. We also find that, at least in our models, the local Δν is an at least as good and mostly better proxy for both the asymptotic spacing and the large separation scaled from the model density than the average Δν. Finally, we investigate the signature of the evolutionary stage on δν
<sub>02</sub>
and quantify the mass dependency of this seismic parameter.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0004-6361</s0>
</fA01>
<fA02 i1="01">
<s0>AAEJAF</s0>
</fA02>
<fA03 i2="1">
<s0>Astron. astrophys. : (Berl., Print)</s0>
</fA03>
<fA05>
<s2>541</s2>
</fA05>
<fA06>
<s3>p. 1</s3>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Evolutionary influences on the structure of red-giant acoustic oscillation spectra from 600d of Kepler observations</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KALLINGER (T.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HEKKER (S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MOSSER (B.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>DE RIDDER (J.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BEDDING (T. R.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>ELSWORTH (Y. P.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>GRUBERBAUER (M.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>GUENTHER (D. B.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>STELLO (D.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>BASU (S.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>GARCIA (R. A.)</s1>
</fA11>
<fA11 i1="12" i2="1">
<s1>CHAPLIN (W. J.)</s1>
</fA11>
<fA11 i1="13" i2="1">
<s1>MULLALLY (F.)</s1>
</fA11>
<fA11 i1="14" i2="1">
<s1>STILL (M.)</s1>
</fA11>
<fA11 i1="15" i2="1">
<s1>THOMPSON (S. E.)</s1>
</fA11>
<fA14 i1="01">
<s1>Instituut voor Sterrenkunde, K.U. Leuven, Celestijnenlaan 200D</s1>
<s2>3001 Leuven</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute for Astronomy (IfA), University of Vienna, Türkenschanzstrasse 17</s1>
<s2>1180 Vienna</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Astronomical Institute "Anton Pannekoek", University of Amsterdam, PO Box 94249</s1>
<s2>1090 GE Amsterdam</s2>
<s3>NLD</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>School of Physics and Astronomy, University of Birmingham, Edgbaston</s1>
<s2>Birmingham B 15 2TT</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>LESIA, CNRS, Université Pierre et Marie Curie, Université Denis Diderot, Observatoire de Paris</s1>
<s2>92195 Meudon</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney</s1>
<s2>NSW 2006</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>12 aut.</sZ>
</fA14>
<fA14 i1="07">
<s1>Department of Astronomy and Physics, Saint Marys University</s1>
<s2>Halifax, NS B3H 3C3</s2>
<s3>CAN</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="08">
<s1>Department of Astronomy, Yale University, PO Box 208101</s1>
<s2>New Haven, CT 06520-8101</s2>
<s3>USA</s3>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="09">
<s1>Laboratoire AIM, CEA/DSM-CNRS, Universite Paris 7 Diderot, IRFU/SAp, Centre de Saclay</s1>
<s2>91191 Gif-sur-Yvette</s2>
<s3>FRA</s3>
<sZ>11 aut.</sZ>
</fA14>
<fA14 i1="10">
<s1>SETI Institute/NASA Ames Research Center</s1>
<s2>Moffett Field, CA 94035</s2>
<s3>USA</s3>
<sZ>13 aut.</sZ>
<sZ>15 aut.</sZ>
</fA14>
<fA14 i1="11">
<s1>Bay Area Environmental Research Inst./NASA Ames Research Center</s1>
<s2>Moffett Field, CA 94035</s2>
<s3>USA</s3>
<sZ>14 aut.</sZ>
</fA14>
<fA20>
<s2>A51.1-A51.12</s2>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>14176</s2>
<s5>354000508321470510</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1/2 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0321698</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Astronomy and astrophysics : (Berlin. Print)</s0>
</fA64>
<fA66 i1="01">
<s0>FRA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Context. It was recently discovered that the period spacings of mixed pressure/gravity dipole modes in red giants permit a distinction between the otherwise unknown evolutionary stage of these stars. The Kepler space mission is reaching continuous observing times long enough to also start studying the fine structure of the observed pressure-mode spectra. Aims. In this paper, we aim to study the signature of stellar evolution on the radial and pressure-dominated l = 2 modes in an ensemble of red giants that show solar-type oscillations. Methods. We use established methods to automatically identify the mode degree of l = 0 and 2 modes and measure the large (Δν
<sub>c</sub>
) and small (δν
<sub>02</sub>
) frequency separation around the central radial mode. We then determine the phase shift ε
<sub>c</sub>
of the central radial mode, i.e. the linear offset in the asymptotic fit to the acoustic modes. Furthermore we measure the individual frequencies of radial modes and investigate their average curvature. Results. We find that ε
<sub>c</sub>
is significantly different for red giants at a given Δν
<sub>c</sub>
but which burn only H in a shell (RGB) than those that have already ignited core He burning. Even though not directly probing the stellar core the pair of local seismic observables (Δν
<sub>c</sub>
, ε
<sub>c</sub>
) can be used as an evolutionary stage discriminator that turned out to be as reliable as the period spacing of the mixed dipole modes. We find a tight correlation between ε
<sub>c</sub>
and Δν
<sub>c</sub>
for RGB stars and unlike less evolved stars we find no indication that ε
<sub>c</sub>
depends on other properties of the star. It appears that the difference in ε
<sub>c</sub>
between the two populations becomes smaller and eventually indistinguishable if we use an average of several radial orders, instead of a local, i.e. only around the central radial mode, large separation to determine the phase shift. This indicates that the information on the evolutionary stage is encoded locally, more precisely in the shape of the radial mode sequence. This shape turns out to be approximately symmetric around the central radial mode for RGB stars but asymmetric for core He burning stars. We computed radial mode frequencies for a sequence of red-giant models and find them to qualitatively confirm our findings. We also find that, at least in our models, the local Δν is an at least as good and mostly better proxy for both the asymptotic spacing and the large separation scaled from the model density than the average Δν. Finally, we investigate the signature of the evolutionary stage on δν
<sub>02</sub>
and quantify the mass dependency of this seismic parameter.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001E03</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Géante rouge</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Red giant stars</s0>
<s5>26</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Gravité</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Gravity</s0>
<s5>27</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Dipôle</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Dipoles</s0>
<s5>28</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Structure fine</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Fine structure</s0>
<s5>29</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Evolution stellaire</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Stellar evolution</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Courbure</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Curvature</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Noyau stellaire</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Stellar cores</s0>
<s5>32</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Corrélation</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Correlations</s0>
<s5>33</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Combustion stellaire</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Star burning</s0>
<s5>34</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Modèle</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Models</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Modelo</s0>
<s5>35</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Etoile type avancé</s0>
<s5>36</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Late type stars</s0>
<s5>36</s5>
</fC03>
<fN21>
<s1>247</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004D14 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 004D14 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:12-0321698
   |texte=   Evolutionary influences on the structure of red-giant acoustic oscillation spectra from 600d of Kepler observations
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024