Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transdimensional inversion of receiver functions and surface wave dispersion

Identifieur interne : 004C37 ( PascalFrancis/Curation ); précédent : 004C36; suivant : 004C38

Transdimensional inversion of receiver functions and surface wave dispersion

Auteurs : T. Bodin [Australie] ; M. Sambridge [Australie] ; H. Tkalcic [Australie] ; P. Arroucau [États-Unis] ; K. Gallagher [France] ; N. Rawlinson [Australie]

Source :

RBID : Pascal:12-0253616

Descripteurs français

English descriptors

Abstract

We present a novel method for joint inversion of receiver functions and surface wave dispersion data, using a transdimensional Bayesian formulation. This class of algorithm treats the number of model parameters (e.g. number of layers) as an unknown in the problem. The dimension of the model space is variable and a Markov chain Monte Carlo (McMC) scheme is used to provide a parsimonious solution that fully quantifies the degree of knowledge one has about seismic structure (i.e constraints on the model, resolution, and trade-offs). The level of data noise (i.e. the covariance matrix of data errors) effectively controls the information recoverable from the data and here it naturally determines the complexity of the model (i.e. the number of model parameters). However, it is often difficult to quantify the data noise appropriately, particularly in the case of seismic waveform inversion where data errors are correlated. Here we address the issue of noise estimation using an extended Hierarchical Bayesian formulation, which allows both the variance and covariance of data noise to be treated as unknowns in the inversion. In this way it is possible to let the data infer the appropriate level of data fit. In the context of joint inversions, assessment of uncertainty for different data types becomes crucial in the evaluation of the misfit function. We show that the Hierarchical Bayes procedure is a powerful tool in this situation, because it is able to evaluate the level of information brought by different data types in the misfit, thus removing the arbitrary choice of weighting factors. After illustrating the method with synthetic tests, a real data application is shown where teleseismic receiver functions and ambient noise surface wave dispersion measurements from the WOMBAT array (South-East Australia) are jointly inverted to provide a probabilistic 1D model of shear-wave velocity beneath a given station.
pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 117
A06       @2 B2
A08 01  1  ENG  @1 Transdimensional inversion of receiver functions and surface wave dispersion
A11 01  1    @1 BODIN (T.)
A11 02  1    @1 SAMBRIDGE (M.)
A11 03  1    @1 TKALCIC (H.)
A11 04  1    @1 ARROUCAU (P.)
A11 05  1    @1 GALLAGHER (K.)
A11 06  1    @1 RAWLINSON (N.)
A14 01      @1 Research School of Earth Sciences, Australian National University @2 Canberra, ACT @3 AUS @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 6 aut.
A14 02      @1 Environmental, Earth and Geospatial Sciences, North Carolina Central University @2 Durham, North Carolina @3 USA @Z 4 aut.
A14 03      @1 Géosciences Rennes, Université de Rennes 1 @2 Rennes @3 FRA @Z 5 aut.
A20       @2 B02301.1-B02301.24
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000507776800140
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 1 p.3/4
A47 01  1    @0 12-0253616
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 We present a novel method for joint inversion of receiver functions and surface wave dispersion data, using a transdimensional Bayesian formulation. This class of algorithm treats the number of model parameters (e.g. number of layers) as an unknown in the problem. The dimension of the model space is variable and a Markov chain Monte Carlo (McMC) scheme is used to provide a parsimonious solution that fully quantifies the degree of knowledge one has about seismic structure (i.e constraints on the model, resolution, and trade-offs). The level of data noise (i.e. the covariance matrix of data errors) effectively controls the information recoverable from the data and here it naturally determines the complexity of the model (i.e. the number of model parameters). However, it is often difficult to quantify the data noise appropriately, particularly in the case of seismic waveform inversion where data errors are correlated. Here we address the issue of noise estimation using an extended Hierarchical Bayesian formulation, which allows both the variance and covariance of data noise to be treated as unknowns in the inversion. In this way it is possible to let the data infer the appropriate level of data fit. In the context of joint inversions, assessment of uncertainty for different data types becomes crucial in the evaluation of the misfit function. We show that the Hierarchical Bayes procedure is a powerful tool in this situation, because it is able to evaluate the level of information brought by different data types in the misfit, thus removing the arbitrary choice of weighting factors. After illustrating the method with synthetic tests, a real data application is shown where teleseismic receiver functions and ambient noise surface wave dispersion measurements from the WOMBAT array (South-East Australia) are jointly inverted to provide a probabilistic 1D model of shear-wave velocity beneath a given station.
C02 01  3    @0 001E
C02 02  2    @0 001E01
C02 03  2    @0 220
C03 01  2  FRE  @0 Problème inverse @5 01
C03 01  2  ENG  @0 inverse problem @5 01
C03 01  2  SPA  @0 Problema inverso @5 01
C03 02  2  FRE  @0 Onde surface @5 02
C03 02  2  ENG  @0 surface waves @5 02
C03 02  2  SPA  @0 Onda superficie @5 02
C03 03  2  FRE  @0 Dispersion onde @5 03
C03 03  2  ENG  @0 wave dispersion @5 03
C03 03  2  SPA  @0 Dispersión onda @5 03
C03 04  2  FRE  @0 Diaclase @5 04
C03 04  2  ENG  @0 joints @5 04
C03 04  2  SPA  @0 Diaclasa @5 04
C03 05  2  FRE  @0 Algorithme @5 05
C03 05  2  ENG  @0 algorithms @5 05
C03 05  2  SPA  @0 Algoritmo @5 05
C03 06  2  FRE  @0 Modèle 1 dimension @5 06
C03 06  2  ENG  @0 one-dimensional models @5 06
C03 06  2  SPA  @0 Modelo 1 dimensión @5 06
C03 07  2  FRE  @0 Analyse Chaîne Markov @5 07
C03 07  2  ENG  @0 Markov chain analysis @5 07
C03 08  X  FRE  @0 Chaîne Markov @5 08
C03 08  X  ENG  @0 Markov chain @5 08
C03 08  X  SPA  @0 Cadena Markov @5 08
C03 09  2  FRE  @0 Méthode Monte Carlo @5 09
C03 09  2  ENG  @0 Monte Carlo analysis @5 09
C03 10  2  FRE  @0 Solution @5 10
C03 10  2  ENG  @0 solution @5 10
C03 11  X  FRE  @0 Alizé @5 11
C03 11  X  ENG  @0 Trade wind @5 11
C03 11  X  SPA  @0 Alisio @5 11
C03 12  2  FRE  @0 Bruit @5 12
C03 12  2  ENG  @0 noise @5 12
C03 13  X  FRE  @0 Matrice covariance @5 13
C03 13  X  ENG  @0 Covariance matrix @5 13
C03 13  X  SPA  @0 Matriz covariancia @5 13
C03 14  2  FRE  @0 Erreur @5 14
C03 14  2  ENG  @0 errors @5 14
C03 14  2  SPA  @0 Error @5 14
C03 15  X  FRE  @0 Complexité @5 15
C03 15  X  ENG  @0 Complexity @5 15
C03 15  X  SPA  @0 Complejidad @5 15
C03 16  2  FRE  @0 Forme onde @5 16
C03 16  2  ENG  @0 waveforms @5 16
C03 17  X  FRE  @0 Variance @5 17
C03 17  X  ENG  @0 Variance @5 17
C03 17  X  SPA  @0 Variancia @5 17
C03 18  2  FRE  @0 Covariance @5 18
C03 18  2  ENG  @0 covariance @5 18
C03 19  2  FRE  @0 Incertitude @5 19
C03 19  2  ENG  @0 uncertainties @5 19
C03 20  X  FRE  @0 Pondération @5 20
C03 20  X  ENG  @0 Weighting @5 20
C03 20  X  SPA  @0 Ponderación @5 20
C03 21  2  FRE  @0 Onde S @5 21
C03 21  2  ENG  @0 S-waves @5 21
C03 21  2  SPA  @0 Onda S @5 21
C03 22  X  FRE  @0 Vitesse onde @5 22
C03 22  X  ENG  @0 Wave velocity @5 22
C03 22  X  SPA  @0 Velocidad onda @5 22
C03 23  2  FRE  @0 Australie @2 NG @5 61
C03 23  2  ENG  @0 Australia @2 NG @5 61
C03 23  2  SPA  @0 Australia @2 NG @5 61
C07 01  2  FRE  @0 Australasie
C07 01  2  ENG  @0 Australasia
C07 01  2  SPA  @0 Australasia
N21       @1 191
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0253616

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Transdimensional inversion of receiver functions and surface wave dispersion</title>
<author>
<name sortKey="Bodin, T" sort="Bodin, T" uniqKey="Bodin T" first="T." last="Bodin">T. Bodin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Research School of Earth Sciences, Australian National University</s1>
<s2>Canberra, ACT</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Sambridge, M" sort="Sambridge, M" uniqKey="Sambridge M" first="M." last="Sambridge">M. Sambridge</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Research School of Earth Sciences, Australian National University</s1>
<s2>Canberra, ACT</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Tkalcic, H" sort="Tkalcic, H" uniqKey="Tkalcic H" first="H." last="Tkalcic">H. Tkalcic</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Research School of Earth Sciences, Australian National University</s1>
<s2>Canberra, ACT</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Arroucau, P" sort="Arroucau, P" uniqKey="Arroucau P" first="P." last="Arroucau">P. Arroucau</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Environmental, Earth and Geospatial Sciences, North Carolina Central University</s1>
<s2>Durham, North Carolina</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Gallagher, K" sort="Gallagher, K" uniqKey="Gallagher K" first="K." last="Gallagher">K. Gallagher</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Géosciences Rennes, Université de Rennes 1</s1>
<s2>Rennes</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Rawlinson, N" sort="Rawlinson, N" uniqKey="Rawlinson N" first="N." last="Rawlinson">N. Rawlinson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Research School of Earth Sciences, Australian National University</s1>
<s2>Canberra, ACT</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0253616</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0253616 INIST</idno>
<idno type="RBID">Pascal:12-0253616</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001279</idno>
<idno type="wicri:Area/PascalFrancis/Curation">004C37</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Transdimensional inversion of receiver functions and surface wave dispersion</title>
<author>
<name sortKey="Bodin, T" sort="Bodin, T" uniqKey="Bodin T" first="T." last="Bodin">T. Bodin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Research School of Earth Sciences, Australian National University</s1>
<s2>Canberra, ACT</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Sambridge, M" sort="Sambridge, M" uniqKey="Sambridge M" first="M." last="Sambridge">M. Sambridge</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Research School of Earth Sciences, Australian National University</s1>
<s2>Canberra, ACT</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Tkalcic, H" sort="Tkalcic, H" uniqKey="Tkalcic H" first="H." last="Tkalcic">H. Tkalcic</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Research School of Earth Sciences, Australian National University</s1>
<s2>Canberra, ACT</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Arroucau, P" sort="Arroucau, P" uniqKey="Arroucau P" first="P." last="Arroucau">P. Arroucau</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Environmental, Earth and Geospatial Sciences, North Carolina Central University</s1>
<s2>Durham, North Carolina</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Gallagher, K" sort="Gallagher, K" uniqKey="Gallagher K" first="K." last="Gallagher">K. Gallagher</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Géosciences Rennes, Université de Rennes 1</s1>
<s2>Rennes</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Rawlinson, N" sort="Rawlinson, N" uniqKey="Rawlinson N" first="N." last="Rawlinson">N. Rawlinson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Research School of Earth Sciences, Australian National University</s1>
<s2>Canberra, ACT</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Australia</term>
<term>Complexity</term>
<term>Covariance matrix</term>
<term>Markov chain</term>
<term>Markov chain analysis</term>
<term>Monte Carlo analysis</term>
<term>S-waves</term>
<term>Trade wind</term>
<term>Variance</term>
<term>Wave velocity</term>
<term>Weighting</term>
<term>algorithms</term>
<term>covariance</term>
<term>errors</term>
<term>inverse problem</term>
<term>joints</term>
<term>noise</term>
<term>one-dimensional models</term>
<term>solution</term>
<term>surface waves</term>
<term>uncertainties</term>
<term>wave dispersion</term>
<term>waveforms</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Problème inverse</term>
<term>Onde surface</term>
<term>Dispersion onde</term>
<term>Diaclase</term>
<term>Algorithme</term>
<term>Modèle 1 dimension</term>
<term>Analyse Chaîne Markov</term>
<term>Chaîne Markov</term>
<term>Méthode Monte Carlo</term>
<term>Solution</term>
<term>Alizé</term>
<term>Bruit</term>
<term>Matrice covariance</term>
<term>Erreur</term>
<term>Complexité</term>
<term>Forme onde</term>
<term>Variance</term>
<term>Covariance</term>
<term>Incertitude</term>
<term>Pondération</term>
<term>Onde S</term>
<term>Vitesse onde</term>
<term>Australie</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>Australie</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Bruit</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We present a novel method for joint inversion of receiver functions and surface wave dispersion data, using a transdimensional Bayesian formulation. This class of algorithm treats the number of model parameters (e.g. number of layers) as an unknown in the problem. The dimension of the model space is variable and a Markov chain Monte Carlo (McMC) scheme is used to provide a parsimonious solution that fully quantifies the degree of knowledge one has about seismic structure (i.e constraints on the model, resolution, and trade-offs). The level of data noise (i.e. the covariance matrix of data errors) effectively controls the information recoverable from the data and here it naturally determines the complexity of the model (i.e. the number of model parameters). However, it is often difficult to quantify the data noise appropriately, particularly in the case of seismic waveform inversion where data errors are correlated. Here we address the issue of noise estimation using an extended Hierarchical Bayesian formulation, which allows both the variance and covariance of data noise to be treated as unknowns in the inversion. In this way it is possible to let the data infer the appropriate level of data fit. In the context of joint inversions, assessment of uncertainty for different data types becomes crucial in the evaluation of the misfit function. We show that the Hierarchical Bayes procedure is a powerful tool in this situation, because it is able to evaluate the level of information brought by different data types in the misfit, thus removing the arbitrary choice of weighting factors. After illustrating the method with synthetic tests, a real data application is shown where teleseismic receiver functions and ambient noise surface wave dispersion measurements from the WOMBAT array (South-East Australia) are jointly inverted to provide a probabilistic 1D model of shear-wave velocity beneath a given station.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>117</s2>
</fA05>
<fA06>
<s2>B2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Transdimensional inversion of receiver functions and surface wave dispersion</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BODIN (T.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SAMBRIDGE (M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>TKALCIC (H.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ARROUCAU (P.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>GALLAGHER (K.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>RAWLINSON (N.)</s1>
</fA11>
<fA14 i1="01">
<s1>Research School of Earth Sciences, Australian National University</s1>
<s2>Canberra, ACT</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Environmental, Earth and Geospatial Sciences, North Carolina Central University</s1>
<s2>Durham, North Carolina</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Géosciences Rennes, Université de Rennes 1</s1>
<s2>Rennes</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s2>B02301.1-B02301.24</s2>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000507776800140</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.3/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0253616</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We present a novel method for joint inversion of receiver functions and surface wave dispersion data, using a transdimensional Bayesian formulation. This class of algorithm treats the number of model parameters (e.g. number of layers) as an unknown in the problem. The dimension of the model space is variable and a Markov chain Monte Carlo (McMC) scheme is used to provide a parsimonious solution that fully quantifies the degree of knowledge one has about seismic structure (i.e constraints on the model, resolution, and trade-offs). The level of data noise (i.e. the covariance matrix of data errors) effectively controls the information recoverable from the data and here it naturally determines the complexity of the model (i.e. the number of model parameters). However, it is often difficult to quantify the data noise appropriately, particularly in the case of seismic waveform inversion where data errors are correlated. Here we address the issue of noise estimation using an extended Hierarchical Bayesian formulation, which allows both the variance and covariance of data noise to be treated as unknowns in the inversion. In this way it is possible to let the data infer the appropriate level of data fit. In the context of joint inversions, assessment of uncertainty for different data types becomes crucial in the evaluation of the misfit function. We show that the Hierarchical Bayes procedure is a powerful tool in this situation, because it is able to evaluate the level of information brought by different data types in the misfit, thus removing the arbitrary choice of weighting factors. After illustrating the method with synthetic tests, a real data application is shown where teleseismic receiver functions and ambient noise surface wave dispersion measurements from the WOMBAT array (South-East Australia) are jointly inverted to provide a probabilistic 1D model of shear-wave velocity beneath a given station.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001E</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>001E01</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>220</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Problème inverse</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>inverse problem</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Problema inverso</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Onde surface</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>surface waves</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Onda superficie</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Dispersion onde</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>wave dispersion</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="SPA">
<s0>Dispersión onda</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Diaclase</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>joints</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="SPA">
<s0>Diaclasa</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Algorithme</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>algorithms</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Algoritmo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Modèle 1 dimension</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>one-dimensional models</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Modelo 1 dimensión</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Analyse Chaîne Markov</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>Markov chain analysis</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Chaîne Markov</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Markov chain</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Cadena Markov</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Méthode Monte Carlo</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>Monte Carlo analysis</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Solution</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>solution</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Alizé</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Trade wind</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Alisio</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Bruit</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>noise</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Matrice covariance</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Covariance matrix</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Matriz covariancia</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Erreur</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>errors</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Error</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Complexité</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Complexity</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Complejidad</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Forme onde</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>waveforms</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Variance</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Variance</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Variancia</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Covariance</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>covariance</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Incertitude</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>uncertainties</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Pondération</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Weighting</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Ponderación</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="2" l="FRE">
<s0>Onde S</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="2" l="ENG">
<s0>S-waves</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="2" l="SPA">
<s0>Onda S</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Vitesse onde</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Wave velocity</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Velocidad onda</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="2" l="FRE">
<s0>Australie</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="23" i2="2" l="ENG">
<s0>Australia</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="23" i2="2" l="SPA">
<s0>Australia</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC07 i1="01" i2="2" l="FRE">
<s0>Australasie</s0>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>Australasia</s0>
</fC07>
<fC07 i1="01" i2="2" l="SPA">
<s0>Australasia</s0>
</fC07>
<fN21>
<s1>191</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004C37 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 004C37 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:12-0253616
   |texte=   Transdimensional inversion of receiver functions and surface wave dispersion
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024