Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Graph attribute embedding via Riemannian submersion learning

Identifieur interne : 004773 ( PascalFrancis/Curation ); précédent : 004772; suivant : 004774

Graph attribute embedding via Riemannian submersion learning

Auteurs : HAIFENG ZHAO [République populaire de Chine] ; Antonio Robles-Kelly [Australie] ; JUN ZHOU [Australie] ; JIANFENG LU [République populaire de Chine] ; Jing-Yu Yang [République populaire de Chine]

Source :

RBID : Pascal:12-0017653

Descripteurs français

English descriptors

Abstract

In this paper, we tackle the problem of embedding a set of relational structures into a metric space for purposes of matching and categorisation. To this end, we view the problem from a Riemannian perspective and make use of the concepts of charts on the manifold to define the embedding as a mixture of class-specific submersions. Formulated in this manner, the mixture weights are recovered using a probability density estimation on the embedded graph node coordinates. Further, we recover these class-specific submersions making use of an iterative trust-region method so as to minimise the L2 norm between the hard limit of the graph-vertex posterior probabilities and their estimated values. The method presented here is quite general in nature and allows tasks such as matching, categorisation and retrieval. We show results on graph matching, shape categorisation and digit classification on synthetic data, the MNIST dataset and the MPEG-7 database.
pA  
A01 01  1    @0 1077-3142
A02 01      @0 CVIUF4
A03   1    @0 Comput. vis. image underst. : (Print)
A05       @2 115
A06       @2 7
A08 01  1  ENG  @1 Graph attribute embedding via Riemannian submersion learning
A09 01  1  ENG  @1 Special issue on Graph-Based Representations in Computer Vision
A11 01  1    @1 HAIFENG ZHAO
A11 02  1    @1 ROBLES-KELLY (Antonio)
A11 03  1    @1 JUN ZHOU
A11 04  1    @1 JIANFENG LU
A11 05  1    @1 YANG (Jing-Yu)
A12 01  1    @1 HANCOCK (Edwin R.) @9 ed.
A12 02  1    @1 TORSELLO (Andrea) @9 ed.
A12 03  1    @1 ESCOLANO (Francisco) @9 ed.
A12 04  1    @1 BRUN (Luc) @9 ed.
A14 01      @1 Tower A 7 London Circuit @2 Canberra ACT 2601 @3 AUS @Z 2 aut. @Z 3 aut.
A14 02      @1 College of Engineering and Computer Science, The Australian National University @2 Canberra ACT 0200 @3 AUS @Z 2 aut. @Z 3 aut.
A14 03      @1 UNSW@ADFA @2 Canberra ACT 2600 @3 AUS @Z 2 aut. @Z 3 aut.
A14 04      @1 Nanjing University of Science and Technology, 200 Xiaolingwei Street @2 Nanjing 210094 @3 CHN @Z 1 aut. @Z 4 aut. @Z 5 aut.
A15 01      @1 University of York @3 GBR @Z 1 aut.
A15 02      @1 Università Ca' Foscari Venezia @3 ITA @Z 2 aut.
A15 03      @1 University of Alicante @3 ESP @Z 3 aut.
A15 04      @1 GREYC, CNRS UMR 6072, ENSICAEN @3 FRA @Z 4 aut.
A20       @1 962-975
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 15463A @5 354000509422430050
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 66 ref.
A47 01  1    @0 12-0017653
A60       @1 P
A61       @0 A
A64 01  1    @0 Computer vision and image understanding : (Print)
A66 01      @0 NLD
C01 01    ENG  @0 In this paper, we tackle the problem of embedding a set of relational structures into a metric space for purposes of matching and categorisation. To this end, we view the problem from a Riemannian perspective and make use of the concepts of charts on the manifold to define the embedding as a mixture of class-specific submersions. Formulated in this manner, the mixture weights are recovered using a probability density estimation on the embedded graph node coordinates. Further, we recover these class-specific submersions making use of an iterative trust-region method so as to minimise the L2 norm between the hard limit of the graph-vertex posterior probabilities and their estimated values. The method presented here is quite general in nature and allows tasks such as matching, categorisation and retrieval. We show results on graph matching, shape categorisation and digit classification on synthetic data, the MNIST dataset and the MPEG-7 database.
C02 01  X    @0 001D02A06
C02 02  X    @0 001D02C03
C03 01  X  FRE  @0 Vision ordinateur @5 01
C03 01  X  ENG  @0 Computer vision @5 01
C03 01  X  SPA  @0 Visión ordenador @5 01
C03 02  X  FRE  @0 Concordance forme @5 06
C03 02  X  ENG  @0 Pattern matching @5 06
C03 03  X  FRE  @0 Traitement image @5 07
C03 03  X  ENG  @0 Image processing @5 07
C03 03  X  SPA  @0 Procesamiento imagen @5 07
C03 04  X  FRE  @0 Classification @5 08
C03 04  X  ENG  @0 Classification @5 08
C03 04  X  SPA  @0 Clasificación @5 08
C03 05  X  FRE  @0 Base de données @5 09
C03 05  X  ENG  @0 Database @5 09
C03 05  X  SPA  @0 Base dato @5 09
C03 06  X  FRE  @0 Espace métrique @5 18
C03 06  X  ENG  @0 Metric space @5 18
C03 06  X  SPA  @0 Espacio métrico @5 18
C03 07  X  FRE  @0 Catégorisation @5 19
C03 07  X  ENG  @0 Categorization @5 19
C03 07  X  SPA  @0 Categorización @5 19
C03 08  X  FRE  @0 Estimation densité @5 20
C03 08  X  ENG  @0 Density estimation @5 20
C03 08  X  SPA  @0 Estimación densidad @5 20
C03 09  X  FRE  @0 Mesure densité @5 21
C03 09  X  ENG  @0 Density measurement @5 21
C03 09  X  SPA  @0 Medición densidad @5 21
C03 10  X  FRE  @0 Intervalle confiance @5 22
C03 10  X  ENG  @0 Confidence interval @5 22
C03 10  X  SPA  @0 Intervalo confianza @5 22
C03 11  X  FRE  @0 Densité probabilité @5 23
C03 11  X  ENG  @0 Probability density @5 23
C03 11  X  SPA  @0 Densidad probabilidad @5 23
C03 12  X  FRE  @0 Méthode itérative @5 24
C03 12  X  ENG  @0 Iterative method @5 24
C03 12  X  SPA  @0 Método iterativo @5 24
C03 13  X  FRE  @0 Approximation L2 @5 25
C03 13  X  ENG  @0 L2 approximation @5 25
C03 13  X  SPA  @0 Aproximación L2 @5 25
C03 14  X  FRE  @0 Sommet graphe @5 26
C03 14  X  ENG  @0 Vertex(graph) @5 26
C03 14  X  SPA  @0 Vértice grafo @5 26
C03 15  X  FRE  @0 Probabilité a posteriori @5 27
C03 15  X  ENG  @0 Posterior probability @5 27
C03 15  X  SPA  @0 Probabilidad a posteriori @5 27
C03 16  X  FRE  @0 Couplage graphe @5 28
C03 16  X  ENG  @0 Graph matching @5 28
C03 16  X  SPA  @0 Acoplamiento grafo @5 28
C03 17  X  FRE  @0 Loi a posteriori @5 41
C03 17  X  ENG  @0 Posterior distribution @5 41
C03 17  X  SPA  @0 Ley a posteriori @5 41
C03 18  X  FRE  @0 . @4 INC @5 82
C03 19  X  FRE  @0 Reconnaissance objet @4 CD @5 96
C03 19  X  ENG  @0 Object recognition @4 CD @5 96
C03 19  X  SPA  @0 Reconocimiento de objetos @4 CD @5 96
N21       @1 002
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0017653

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Graph attribute embedding via Riemannian submersion learning</title>
<author>
<name sortKey="Haifeng Zhao" sort="Haifeng Zhao" uniqKey="Haifeng Zhao" last="Haifeng Zhao">HAIFENG ZHAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Nanjing University of Science and Technology, 200 Xiaolingwei Street</s1>
<s2>Nanjing 210094</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Robles Kelly, Antonio" sort="Robles Kelly, Antonio" uniqKey="Robles Kelly A" first="Antonio" last="Robles-Kelly">Antonio Robles-Kelly</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Tower A 7 London Circuit</s1>
<s2>Canberra ACT 2601</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>College of Engineering and Computer Science, The Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>UNSW@ADFA</s1>
<s2>Canberra ACT 2600</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Jun Zhou" sort="Jun Zhou" uniqKey="Jun Zhou" last="Jun Zhou">JUN ZHOU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Tower A 7 London Circuit</s1>
<s2>Canberra ACT 2601</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>College of Engineering and Computer Science, The Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>UNSW@ADFA</s1>
<s2>Canberra ACT 2600</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Jianfeng Lu" sort="Jianfeng Lu" uniqKey="Jianfeng Lu" last="Jianfeng Lu">JIANFENG LU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Nanjing University of Science and Technology, 200 Xiaolingwei Street</s1>
<s2>Nanjing 210094</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Yang, Jing Yu" sort="Yang, Jing Yu" uniqKey="Yang J" first="Jing-Yu" last="Yang">Jing-Yu Yang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Nanjing University of Science and Technology, 200 Xiaolingwei Street</s1>
<s2>Nanjing 210094</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0017653</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 12-0017653 INIST</idno>
<idno type="RBID">Pascal:12-0017653</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001736</idno>
<idno type="wicri:Area/PascalFrancis/Curation">004773</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Graph attribute embedding via Riemannian submersion learning</title>
<author>
<name sortKey="Haifeng Zhao" sort="Haifeng Zhao" uniqKey="Haifeng Zhao" last="Haifeng Zhao">HAIFENG ZHAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Nanjing University of Science and Technology, 200 Xiaolingwei Street</s1>
<s2>Nanjing 210094</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Robles Kelly, Antonio" sort="Robles Kelly, Antonio" uniqKey="Robles Kelly A" first="Antonio" last="Robles-Kelly">Antonio Robles-Kelly</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Tower A 7 London Circuit</s1>
<s2>Canberra ACT 2601</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>College of Engineering and Computer Science, The Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>UNSW@ADFA</s1>
<s2>Canberra ACT 2600</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Jun Zhou" sort="Jun Zhou" uniqKey="Jun Zhou" last="Jun Zhou">JUN ZHOU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Tower A 7 London Circuit</s1>
<s2>Canberra ACT 2601</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>College of Engineering and Computer Science, The Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>UNSW@ADFA</s1>
<s2>Canberra ACT 2600</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Jianfeng Lu" sort="Jianfeng Lu" uniqKey="Jianfeng Lu" last="Jianfeng Lu">JIANFENG LU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Nanjing University of Science and Technology, 200 Xiaolingwei Street</s1>
<s2>Nanjing 210094</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Yang, Jing Yu" sort="Yang, Jing Yu" uniqKey="Yang J" first="Jing-Yu" last="Yang">Jing-Yu Yang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Nanjing University of Science and Technology, 200 Xiaolingwei Street</s1>
<s2>Nanjing 210094</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Computer vision and image understanding : (Print)</title>
<title level="j" type="abbreviated">Comput. vis. image underst. : (Print)</title>
<idno type="ISSN">1077-3142</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Computer vision and image understanding : (Print)</title>
<title level="j" type="abbreviated">Comput. vis. image underst. : (Print)</title>
<idno type="ISSN">1077-3142</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Categorization</term>
<term>Classification</term>
<term>Computer vision</term>
<term>Confidence interval</term>
<term>Database</term>
<term>Density estimation</term>
<term>Density measurement</term>
<term>Graph matching</term>
<term>Image processing</term>
<term>Iterative method</term>
<term>L2 approximation</term>
<term>Metric space</term>
<term>Object recognition</term>
<term>Pattern matching</term>
<term>Posterior distribution</term>
<term>Posterior probability</term>
<term>Probability density</term>
<term>Vertex(graph)</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Vision ordinateur</term>
<term>Concordance forme</term>
<term>Traitement image</term>
<term>Classification</term>
<term>Base de données</term>
<term>Espace métrique</term>
<term>Catégorisation</term>
<term>Estimation densité</term>
<term>Mesure densité</term>
<term>Intervalle confiance</term>
<term>Densité probabilité</term>
<term>Méthode itérative</term>
<term>Approximation L2</term>
<term>Sommet graphe</term>
<term>Probabilité a posteriori</term>
<term>Couplage graphe</term>
<term>Loi a posteriori</term>
<term>.</term>
<term>Reconnaissance objet</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Classification</term>
<term>Base de données</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this paper, we tackle the problem of embedding a set of relational structures into a metric space for purposes of matching and categorisation. To this end, we view the problem from a Riemannian perspective and make use of the concepts of charts on the manifold to define the embedding as a mixture of class-specific submersions. Formulated in this manner, the mixture weights are recovered using a probability density estimation on the embedded graph node coordinates. Further, we recover these class-specific submersions making use of an iterative trust-region method so as to minimise the L2 norm between the hard limit of the graph-vertex posterior probabilities and their estimated values. The method presented here is quite general in nature and allows tasks such as matching, categorisation and retrieval. We show results on graph matching, shape categorisation and digit classification on synthetic data, the MNIST dataset and the MPEG-7 database.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1077-3142</s0>
</fA01>
<fA02 i1="01">
<s0>CVIUF4</s0>
</fA02>
<fA03 i2="1">
<s0>Comput. vis. image underst. : (Print)</s0>
</fA03>
<fA05>
<s2>115</s2>
</fA05>
<fA06>
<s2>7</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Graph attribute embedding via Riemannian submersion learning</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Special issue on Graph-Based Representations in Computer Vision</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>HAIFENG ZHAO</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ROBLES-KELLY (Antonio)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>JUN ZHOU</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>JIANFENG LU</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>YANG (Jing-Yu)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>HANCOCK (Edwin R.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>TORSELLO (Andrea)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>ESCOLANO (Francisco)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>BRUN (Luc)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Tower A 7 London Circuit</s1>
<s2>Canberra ACT 2601</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>College of Engineering and Computer Science, The Australian National University</s1>
<s2>Canberra ACT 0200</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>UNSW@ADFA</s1>
<s2>Canberra ACT 2600</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Nanjing University of Science and Technology, 200 Xiaolingwei Street</s1>
<s2>Nanjing 210094</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>University of York</s1>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Università Ca' Foscari Venezia</s1>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>University of Alicante</s1>
<s3>ESP</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA15 i1="04">
<s1>GREYC, CNRS UMR 6072, ENSICAEN</s1>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA15>
<fA20>
<s1>962-975</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>15463A</s2>
<s5>354000509422430050</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>66 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0017653</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Computer vision and image understanding : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this paper, we tackle the problem of embedding a set of relational structures into a metric space for purposes of matching and categorisation. To this end, we view the problem from a Riemannian perspective and make use of the concepts of charts on the manifold to define the embedding as a mixture of class-specific submersions. Formulated in this manner, the mixture weights are recovered using a probability density estimation on the embedded graph node coordinates. Further, we recover these class-specific submersions making use of an iterative trust-region method so as to minimise the L2 norm between the hard limit of the graph-vertex posterior probabilities and their estimated values. The method presented here is quite general in nature and allows tasks such as matching, categorisation and retrieval. We show results on graph matching, shape categorisation and digit classification on synthetic data, the MNIST dataset and the MPEG-7 database.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02A06</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D02C03</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Vision ordinateur</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Computer vision</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Visión ordenador</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Concordance forme</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Pattern matching</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Traitement image</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Image processing</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Procesamiento imagen</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Classification</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Classification</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Clasificación</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Base de données</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Database</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Base dato</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Espace métrique</s0>
<s5>18</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Metric space</s0>
<s5>18</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Espacio métrico</s0>
<s5>18</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Catégorisation</s0>
<s5>19</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Categorization</s0>
<s5>19</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Categorización</s0>
<s5>19</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Estimation densité</s0>
<s5>20</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Density estimation</s0>
<s5>20</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Estimación densidad</s0>
<s5>20</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Mesure densité</s0>
<s5>21</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Density measurement</s0>
<s5>21</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Medición densidad</s0>
<s5>21</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Intervalle confiance</s0>
<s5>22</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Confidence interval</s0>
<s5>22</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Intervalo confianza</s0>
<s5>22</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Densité probabilité</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Probability density</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Densidad probabilidad</s0>
<s5>23</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Méthode itérative</s0>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Iterative method</s0>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Método iterativo</s0>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Approximation L2</s0>
<s5>25</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>L2 approximation</s0>
<s5>25</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Aproximación L2</s0>
<s5>25</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Sommet graphe</s0>
<s5>26</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Vertex(graph)</s0>
<s5>26</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Vértice grafo</s0>
<s5>26</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Probabilité a posteriori</s0>
<s5>27</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Posterior probability</s0>
<s5>27</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Probabilidad a posteriori</s0>
<s5>27</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Couplage graphe</s0>
<s5>28</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Graph matching</s0>
<s5>28</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Acoplamiento grafo</s0>
<s5>28</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Loi a posteriori</s0>
<s5>41</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Posterior distribution</s0>
<s5>41</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Ley a posteriori</s0>
<s5>41</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>.</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Reconnaissance objet</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Object recognition</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Reconocimiento de objetos</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>002</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004773 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 004773 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:12-0017653
   |texte=   Graph attribute embedding via Riemannian submersion learning
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024