Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Synthetic Route Effect on Macromolecular Architecture: From Block to Gradient Copolymers Based on Acryloyl Galactose Monomer Using RAFT Polymerization

Identifieur interne : 004493 ( PascalFrancis/Curation ); précédent : 004492; suivant : 004494

Synthetic Route Effect on Macromolecular Architecture: From Block to Gradient Copolymers Based on Acryloyl Galactose Monomer Using RAFT Polymerization

Auteurs : Pierre Escale [France, Australie] ; S. R. Simon Ting [Australie] ; Abdel Khoukh [France] ; Laurent Rubatat [France] ; Maud Save [France] ; Martina H. Stenzel [Australie] ; Laurent Billon [France]

Source :

RBID : Pascal:11-0366829

Descripteurs français

English descriptors

Abstract

Statistical, gradient, and block copolymer containing 2-(2',3',4',6'-tetra-O-acetyl-β-D-galactosyloxy)ethyl acrylate (AcGalEA) glycomonomer and styrene (S) were synthesized by RAFT polymerization using S-methoxycarbonylphenylmethyl dodecyltrithiocarbonate (MCPDT) as control agent. The block copolymer was synthesized by a two-stage experiment, whereas the statistical and gradient copolymers were obtained in one-pot synthesis. Results obtained from the size exclusion chromatography (SEC) and the nuclear magnetic resonance (NMR) reveal that the polymers synthesized by RAFT were controlled. The kinetic of each synthetic route was investigated, and the reactivity ratio of both monomers was estimated by in situ NMR experiments: AcGalEA = 0.07 ± 0.01 and rs = 0.7 ± 0.1. Moreover the AcGalEA moieties were deacetylated to achieve potential amphiphilic bioactive copolymer. The preparation of three different macromolecular architectures to form honeycomb porous films by breath figure process was investigated using atomic force microscopy (AFM).
pA  
A01 01  1    @0 0024-9297
A02 01      @0 MAMOBX
A03   1    @0 Macromolecules : (Print)
A05       @2 44
A06       @2 15
A08 01  1  ENG  @1 Synthetic Route Effect on Macromolecular Architecture: From Block to Gradient Copolymers Based on Acryloyl Galactose Monomer Using RAFT Polymerization
A11 01  1    @1 ESCALE (Pierre)
A11 02  1    @1 SIMON TING (S. R.)
A11 03  1    @1 KHOUKH (Abdel)
A11 04  1    @1 RUBATAT (Laurent)
A11 05  1    @1 SAVE (Maud)
A11 06  1    @1 STENZEL (Martina H.)
A11 07  1    @1 BILLON (Laurent)
A14 01      @1 IPREM Equipe de Physique et Chimie des Polymères, UMR 5254 CNRS, Université de Pau et des Pays de L'Adour, Helioparc, 2 Avenue du President Angot @2 64053 Pau @3 FRA @Z 1 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut. @Z 7 aut.
A14 02      @1 Centre for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales @2 Sydney NSW 2052 @3 AUS @Z 1 aut. @Z 2 aut. @Z 6 aut.
A20       @1 5911-5919
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 13789 @5 354000191106680140
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 72 ref.
A47 01  1    @0 11-0366829
A60       @1 P
A61       @0 A
A64 01  1    @0 Macromolecules : (Print)
A66 01      @0 USA
C01 01    ENG  @0 Statistical, gradient, and block copolymer containing 2-(2',3',4',6'-tetra-O-acetyl-β-D-galactosyloxy)ethyl acrylate (AcGalEA) glycomonomer and styrene (S) were synthesized by RAFT polymerization using S-methoxycarbonylphenylmethyl dodecyltrithiocarbonate (MCPDT) as control agent. The block copolymer was synthesized by a two-stage experiment, whereas the statistical and gradient copolymers were obtained in one-pot synthesis. Results obtained from the size exclusion chromatography (SEC) and the nuclear magnetic resonance (NMR) reveal that the polymers synthesized by RAFT were controlled. The kinetic of each synthetic route was investigated, and the reactivity ratio of both monomers was estimated by in situ NMR experiments: AcGalEA = 0.07 ± 0.01 and rs = 0.7 ± 0.1. Moreover the AcGalEA moieties were deacetylated to achieve potential amphiphilic bioactive copolymer. The preparation of three different macromolecular architectures to form honeycomb porous films by breath figure process was investigated using atomic force microscopy (AFM).
C02 01  X    @0 001D09D02C
C03 01  X  FRE  @0 Styrène copolymère @2 NK @5 01
C03 01  X  ENG  @0 Styrene copolymer @2 NK @5 01
C03 01  X  SPA  @0 Estireno copolímero @2 NK @5 01
C03 02  X  FRE  @0 Copolymère biséquencé @2 NK @5 02
C03 02  X  ENG  @0 Diblock copolymer @2 NK @5 02
C03 02  X  SPA  @0 Copolímero bisecuencia @2 NK @5 02
C03 03  X  FRE  @0 Copolymère statistique @2 NK @5 03
C03 03  X  ENG  @0 Random copolymer @2 NK @5 03
C03 03  X  SPA  @0 Copolímero estadístico @2 NK @5 03
C03 04  X  FRE  @0 Acrylate copolymère @2 NK @5 04
C03 04  X  ENG  @0 Acrylate copolymer @2 NK @5 04
C03 04  X  SPA  @0 Acrilato copolímero @2 NK @5 04
C03 05  X  FRE  @0 Copolymère vivant @2 NK @5 05
C03 05  X  ENG  @0 Living copolymer @2 NK @5 05
C03 05  X  SPA  @0 Copolímero viviente @2 NK @5 05
C03 06  X  FRE  @0 Groupe latéral @5 06
C03 06  X  ENG  @0 Lateral group @5 06
C03 06  X  SPA  @0 Grupo lateral @5 06
C03 07  X  FRE  @0 Aldose @5 07
C03 07  X  ENG  @0 Aldose @5 07
C03 07  X  SPA  @0 Aldosa @5 07
C03 08  X  FRE  @0 Glycoside @5 08
C03 08  X  ENG  @0 Glycoside @5 08
C03 08  X  SPA  @0 Glicósido @5 08
C03 09  X  FRE  @0 Préparation @5 09
C03 09  X  ENG  @0 Preparation @5 09
C03 09  X  SPA  @0 Preparación @5 09
C03 10  X  FRE  @0 Copolymérisation radicalaire @5 10
C03 10  X  ENG  @0 Radical copolymerization @5 10
C03 10  X  SPA  @0 Copolimerización radical @5 10
C03 11  X  FRE  @0 Transfert chaîne @5 11
C03 11  X  ENG  @0 Chain transfer @5 11
C03 11  X  SPA  @0 Transferencia en cadena @5 11
C03 12  X  FRE  @0 Trithiocarbonate organique @1 ACT @5 12
C03 12  X  ENG  @0 Organic trithiocarbonate @1 ACT @5 12
C03 12  X  SPA  @0 Tritiocarbonato orgánico @1 ACT @5 12
C03 13  X  FRE  @0 Rapport réactivité @5 14
C03 13  X  ENG  @0 Reactivity ratio @5 14
C03 13  X  SPA  @0 Relación reactividad @5 14
C03 14  X  FRE  @0 Modification chimique @5 15
C03 14  X  ENG  @0 Chemical modification @5 15
C03 14  X  SPA  @0 Modificación química @5 15
C03 15  X  FRE  @0 Désacétylation @5 16
C03 15  X  ENG  @0 Deacetylation @5 16
C03 15  X  SPA  @0 Desacetilación @5 16
C03 16  X  FRE  @0 Film @5 18
C03 16  X  ENG  @0 Film @5 18
C03 16  X  SPA  @0 Película @5 18
C03 17  X  FRE  @0 Matériau poreux @5 19
C03 17  X  ENG  @0 Porous material @5 19
C03 17  X  SPA  @0 Material poroso @5 19
C03 18  X  FRE  @0 Morphologie @5 20
C03 18  X  ENG  @0 Morphology @5 20
C03 18  X  SPA  @0 Morfología @5 20
C03 19  X  FRE  @0 Structure nid abeille @5 21
C03 19  X  ENG  @0 Honeycomb structure @5 21
C03 19  X  SPA  @0 Estructura alveolar @5 21
C03 20  X  FRE  @0 Etude expérimentale @5 22
C03 20  X  ENG  @0 Experimental study @5 22
C03 20  X  SPA  @0 Estudio experimental @5 22
C03 21  X  FRE  @0 Addition fragmentation réversible @4 INC @5 32
C03 22  X  FRE  @0 Coulée solution @4 INC @5 33
C03 23  X  FRE  @0 Méthode figures souffle @4 INC @5 34
C03 24  X  FRE  @0 Glycopolymère @4 CD @5 96
C03 24  X  ENG  @0 Glycopolymer @4 CD @5 96
C03 25  X  FRE  @0 Copolymère gradient @4 CD @5 97
C03 25  X  ENG  @0 Gradient copolymer @4 CD @5 97
N21       @1 249
N44 01      @1 PSI
N82       @1 PSI

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0366829

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Synthetic Route Effect on Macromolecular Architecture: From Block to Gradient Copolymers Based on Acryloyl Galactose Monomer Using RAFT Polymerization</title>
<author>
<name sortKey="Escale, Pierre" sort="Escale, Pierre" uniqKey="Escale P" first="Pierre" last="Escale">Pierre Escale</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IPREM Equipe de Physique et Chimie des Polymères, UMR 5254 CNRS, Université de Pau et des Pays de L'Adour, Helioparc, 2 Avenue du President Angot</s1>
<s2>64053 Pau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Centre for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales</s1>
<s2>Sydney NSW 2052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Simon Ting, S R" sort="Simon Ting, S R" uniqKey="Simon Ting S" first="S. R." last="Simon Ting">S. R. Simon Ting</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Centre for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales</s1>
<s2>Sydney NSW 2052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Khoukh, Abdel" sort="Khoukh, Abdel" uniqKey="Khoukh A" first="Abdel" last="Khoukh">Abdel Khoukh</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IPREM Equipe de Physique et Chimie des Polymères, UMR 5254 CNRS, Université de Pau et des Pays de L'Adour, Helioparc, 2 Avenue du President Angot</s1>
<s2>64053 Pau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Rubatat, Laurent" sort="Rubatat, Laurent" uniqKey="Rubatat L" first="Laurent" last="Rubatat">Laurent Rubatat</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IPREM Equipe de Physique et Chimie des Polymères, UMR 5254 CNRS, Université de Pau et des Pays de L'Adour, Helioparc, 2 Avenue du President Angot</s1>
<s2>64053 Pau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Save, Maud" sort="Save, Maud" uniqKey="Save M" first="Maud" last="Save">Maud Save</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IPREM Equipe de Physique et Chimie des Polymères, UMR 5254 CNRS, Université de Pau et des Pays de L'Adour, Helioparc, 2 Avenue du President Angot</s1>
<s2>64053 Pau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Stenzel, Martina H" sort="Stenzel, Martina H" uniqKey="Stenzel M" first="Martina H." last="Stenzel">Martina H. Stenzel</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Centre for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales</s1>
<s2>Sydney NSW 2052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Billon, Laurent" sort="Billon, Laurent" uniqKey="Billon L" first="Laurent" last="Billon">Laurent Billon</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IPREM Equipe de Physique et Chimie des Polymères, UMR 5254 CNRS, Université de Pau et des Pays de L'Adour, Helioparc, 2 Avenue du President Angot</s1>
<s2>64053 Pau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0366829</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0366829 INIST</idno>
<idno type="RBID">Pascal:11-0366829</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001A51</idno>
<idno type="wicri:Area/PascalFrancis/Curation">004493</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Synthetic Route Effect on Macromolecular Architecture: From Block to Gradient Copolymers Based on Acryloyl Galactose Monomer Using RAFT Polymerization</title>
<author>
<name sortKey="Escale, Pierre" sort="Escale, Pierre" uniqKey="Escale P" first="Pierre" last="Escale">Pierre Escale</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IPREM Equipe de Physique et Chimie des Polymères, UMR 5254 CNRS, Université de Pau et des Pays de L'Adour, Helioparc, 2 Avenue du President Angot</s1>
<s2>64053 Pau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Centre for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales</s1>
<s2>Sydney NSW 2052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Simon Ting, S R" sort="Simon Ting, S R" uniqKey="Simon Ting S" first="S. R." last="Simon Ting">S. R. Simon Ting</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Centre for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales</s1>
<s2>Sydney NSW 2052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Khoukh, Abdel" sort="Khoukh, Abdel" uniqKey="Khoukh A" first="Abdel" last="Khoukh">Abdel Khoukh</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IPREM Equipe de Physique et Chimie des Polymères, UMR 5254 CNRS, Université de Pau et des Pays de L'Adour, Helioparc, 2 Avenue du President Angot</s1>
<s2>64053 Pau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Rubatat, Laurent" sort="Rubatat, Laurent" uniqKey="Rubatat L" first="Laurent" last="Rubatat">Laurent Rubatat</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IPREM Equipe de Physique et Chimie des Polymères, UMR 5254 CNRS, Université de Pau et des Pays de L'Adour, Helioparc, 2 Avenue du President Angot</s1>
<s2>64053 Pau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Save, Maud" sort="Save, Maud" uniqKey="Save M" first="Maud" last="Save">Maud Save</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IPREM Equipe de Physique et Chimie des Polymères, UMR 5254 CNRS, Université de Pau et des Pays de L'Adour, Helioparc, 2 Avenue du President Angot</s1>
<s2>64053 Pau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Stenzel, Martina H" sort="Stenzel, Martina H" uniqKey="Stenzel M" first="Martina H." last="Stenzel">Martina H. Stenzel</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Centre for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales</s1>
<s2>Sydney NSW 2052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Billon, Laurent" sort="Billon, Laurent" uniqKey="Billon L" first="Laurent" last="Billon">Laurent Billon</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IPREM Equipe de Physique et Chimie des Polymères, UMR 5254 CNRS, Université de Pau et des Pays de L'Adour, Helioparc, 2 Avenue du President Angot</s1>
<s2>64053 Pau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Macromolecules : (Print)</title>
<title level="j" type="abbreviated">Macromolecules : (Print)</title>
<idno type="ISSN">0024-9297</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Macromolecules : (Print)</title>
<title level="j" type="abbreviated">Macromolecules : (Print)</title>
<idno type="ISSN">0024-9297</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acrylate copolymer</term>
<term>Aldose</term>
<term>Chain transfer</term>
<term>Chemical modification</term>
<term>Deacetylation</term>
<term>Diblock copolymer</term>
<term>Experimental study</term>
<term>Film</term>
<term>Glycopolymer</term>
<term>Glycoside</term>
<term>Gradient copolymer</term>
<term>Honeycomb structure</term>
<term>Lateral group</term>
<term>Living copolymer</term>
<term>Morphology</term>
<term>Organic trithiocarbonate</term>
<term>Porous material</term>
<term>Preparation</term>
<term>Radical copolymerization</term>
<term>Random copolymer</term>
<term>Reactivity ratio</term>
<term>Styrene copolymer</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Styrène copolymère</term>
<term>Copolymère biséquencé</term>
<term>Copolymère statistique</term>
<term>Acrylate copolymère</term>
<term>Copolymère vivant</term>
<term>Groupe latéral</term>
<term>Aldose</term>
<term>Glycoside</term>
<term>Préparation</term>
<term>Copolymérisation radicalaire</term>
<term>Transfert chaîne</term>
<term>Trithiocarbonate organique</term>
<term>Rapport réactivité</term>
<term>Modification chimique</term>
<term>Désacétylation</term>
<term>Film</term>
<term>Matériau poreux</term>
<term>Morphologie</term>
<term>Structure nid abeille</term>
<term>Etude expérimentale</term>
<term>Addition fragmentation réversible</term>
<term>Coulée solution</term>
<term>Méthode figures souffle</term>
<term>Glycopolymère</term>
<term>Copolymère gradient</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Statistical, gradient, and block copolymer containing 2-(2',3',4',6'-tetra-O-acetyl-β-D-galactosyloxy)ethyl acrylate (AcGalEA) glycomonomer and styrene (S) were synthesized by RAFT polymerization using S-methoxycarbonylphenylmethyl dodecyltrithiocarbonate (MCPDT) as control agent. The block copolymer was synthesized by a two-stage experiment, whereas the statistical and gradient copolymers were obtained in one-pot synthesis. Results obtained from the size exclusion chromatography (SEC) and the nuclear magnetic resonance (NMR) reveal that the polymers synthesized by RAFT were controlled. The kinetic of each synthetic route was investigated, and the reactivity ratio of both monomers was estimated by in situ NMR experiments: AcGalEA = 0.07 ± 0.01 and r
<sub>s</sub>
= 0.7 ± 0.1. Moreover the AcGalEA moieties were deacetylated to achieve potential amphiphilic bioactive copolymer. The preparation of three different macromolecular architectures to form honeycomb porous films by breath figure process was investigated using atomic force microscopy (AFM).</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0024-9297</s0>
</fA01>
<fA02 i1="01">
<s0>MAMOBX</s0>
</fA02>
<fA03 i2="1">
<s0>Macromolecules : (Print)</s0>
</fA03>
<fA05>
<s2>44</s2>
</fA05>
<fA06>
<s2>15</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Synthetic Route Effect on Macromolecular Architecture: From Block to Gradient Copolymers Based on Acryloyl Galactose Monomer Using RAFT Polymerization</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ESCALE (Pierre)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SIMON TING (S. R.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KHOUKH (Abdel)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>RUBATAT (Laurent)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SAVE (Maud)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>STENZEL (Martina H.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>BILLON (Laurent)</s1>
</fA11>
<fA14 i1="01">
<s1>IPREM Equipe de Physique et Chimie des Polymères, UMR 5254 CNRS, Université de Pau et des Pays de L'Adour, Helioparc, 2 Avenue du President Angot</s1>
<s2>64053 Pau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Centre for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales</s1>
<s2>Sydney NSW 2052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>5911-5919</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13789</s2>
<s5>354000191106680140</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>72 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0366829</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Macromolecules : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Statistical, gradient, and block copolymer containing 2-(2',3',4',6'-tetra-O-acetyl-β-D-galactosyloxy)ethyl acrylate (AcGalEA) glycomonomer and styrene (S) were synthesized by RAFT polymerization using S-methoxycarbonylphenylmethyl dodecyltrithiocarbonate (MCPDT) as control agent. The block copolymer was synthesized by a two-stage experiment, whereas the statistical and gradient copolymers were obtained in one-pot synthesis. Results obtained from the size exclusion chromatography (SEC) and the nuclear magnetic resonance (NMR) reveal that the polymers synthesized by RAFT were controlled. The kinetic of each synthetic route was investigated, and the reactivity ratio of both monomers was estimated by in situ NMR experiments: AcGalEA = 0.07 ± 0.01 and r
<sub>s</sub>
= 0.7 ± 0.1. Moreover the AcGalEA moieties were deacetylated to achieve potential amphiphilic bioactive copolymer. The preparation of three different macromolecular architectures to form honeycomb porous films by breath figure process was investigated using atomic force microscopy (AFM).</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D09D02C</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Styrène copolymère</s0>
<s2>NK</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Styrene copolymer</s0>
<s2>NK</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Estireno copolímero</s0>
<s2>NK</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Copolymère biséquencé</s0>
<s2>NK</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Diblock copolymer</s0>
<s2>NK</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Copolímero bisecuencia</s0>
<s2>NK</s2>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Copolymère statistique</s0>
<s2>NK</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Random copolymer</s0>
<s2>NK</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Copolímero estadístico</s0>
<s2>NK</s2>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Acrylate copolymère</s0>
<s2>NK</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Acrylate copolymer</s0>
<s2>NK</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Acrilato copolímero</s0>
<s2>NK</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Copolymère vivant</s0>
<s2>NK</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Living copolymer</s0>
<s2>NK</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Copolímero viviente</s0>
<s2>NK</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Groupe latéral</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Lateral group</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Grupo lateral</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Aldose</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Aldose</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Aldosa</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Glycoside</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Glycoside</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Glicósido</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Préparation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Preparation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Preparación</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Copolymérisation radicalaire</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Radical copolymerization</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Copolimerización radical</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Transfert chaîne</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Chain transfer</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Transferencia en cadena</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Trithiocarbonate organique</s0>
<s1>ACT</s1>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Organic trithiocarbonate</s0>
<s1>ACT</s1>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Tritiocarbonato orgánico</s0>
<s1>ACT</s1>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Rapport réactivité</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Reactivity ratio</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Relación reactividad</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Modification chimique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Chemical modification</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Modificación química</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Désacétylation</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Deacetylation</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Desacetilación</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Film</s0>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Film</s0>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Película</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Matériau poreux</s0>
<s5>19</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Porous material</s0>
<s5>19</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Material poroso</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Morphologie</s0>
<s5>20</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Morphology</s0>
<s5>20</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Morfología</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Structure nid abeille</s0>
<s5>21</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Honeycomb structure</s0>
<s5>21</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Estructura alveolar</s0>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Etude expérimentale</s0>
<s5>22</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Experimental study</s0>
<s5>22</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Estudio experimental</s0>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Addition fragmentation réversible</s0>
<s4>INC</s4>
<s5>32</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Coulée solution</s0>
<s4>INC</s4>
<s5>33</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Méthode figures souffle</s0>
<s4>INC</s4>
<s5>34</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Glycopolymère</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Glycopolymer</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Copolymère gradient</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Gradient copolymer</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fN21>
<s1>249</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004493 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 004493 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:11-0366829
   |texte=   Synthetic Route Effect on Macromolecular Architecture: From Block to Gradient Copolymers Based on Acryloyl Galactose Monomer Using RAFT Polymerization
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024