Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Photolysis of methane revisited at 121.6 nm and at 118.2 nm: quantum yields of the primary products, measured by mass spectrometry

Identifieur interne : 004333 ( PascalFrancis/Curation ); précédent : 004332; suivant : 004334

Photolysis of methane revisited at 121.6 nm and at 118.2 nm: quantum yields of the primary products, measured by mass spectrometry

Auteurs : Berenger Gans [France] ; Severine Boye-Peronne [France] ; Michel Broquier [France] ; Maxence Delsaut [Belgique] ; Stephane Douin [France] ; Carlos E. Fellows [Brésil] ; Philippe Halvick [France] ; Jean-Christophe Loison [France] ; Robert R. Lucchese [États-Unis] ; Dolores Gauyacq [France]

Source :

RBID : Pascal:11-0290996

Descripteurs français

English descriptors

Abstract

Methane photolysis has been performed at the two Vacuum UltraViolet (VUV) wavelengths, 121.6 nm and 118.2 nm, via a spectrally pure laser pump-probe technique. The first photon is used to dissociate methane (either at 121.6 nm or at 118.2 nm) and the second one is used to ionise the CH2 and CH3 fragments. The radical products, CH3(X), CH2(X), CH2(a) and C('D), have been selectively probed by mass spectrometry. In order to quantify the fragment quantum yields from the mass spectra, the photoionisation cross sections have been carefully evaluated for the CH2 and CH3 radicals, in two steps: first, theoretical ab initio approaches have been used in order to determine the pure electronic photoionisation cross sections of CH2(X) and CH2(a), and have been rescaled with respect to the measured absolute photoionisation cross section of the CH3(X) radical. In a second step, in order to take into account the substantial vibrational energy deposited in the CH3(X) and CH2(a) radicals, the variation of their cross sections near threshold has been simulated by introducing the pertinent Franck-Condon overlaps between neutral and cation species. By adding the interpolated values of CH quantum yields measured by Rebbert and Ausloos [J. Photochem., 1972, 1,171-176], a complete set of fragment quantum yields has been derived for the methane photodissociation at 121.6 nm, with carefully evaluated 1σ uncertainties: ϕ[CH3(X)] = 0.42 ± 0.05, ϕ[CH2(a)] = 0.48 ± 0.05, ϕ[CH2(X)] = 0.03 ± 0.08, ϕ[CH(X)] = 0.07 ± 0.01. These new data have been measured independently of the H atom fragment quantum yield, subject to many controversies in the literature. From our results, we evaluate ϕ(H) = 0.55 ± 0.17 at 121.6 nm. The quantum yields for the photolysis at 118.2 nm differ notably from those measured at 121.6 nm, with a substantial production of the CH2(X) fragment: ϕ[CH3(X)] = 0.26 ± 0.04, ϕ[CH2(a)] = 0.17 ± 0.05, ϕ[CH2(X)] = 0.48 ± 0.06, ϕ[CH(X)] = 0.09 ± 0.01, ϕ(H) = 1.31 ± 0.13. These new data should bring reliable and essential inputs for the photochemical models of the Titan atmosphere.
pA  
A01 01  1    @0 1463-9076
A03   1    @0 PCCP, Phys. chem. chem. phys. : (Print)
A05       @2 13
A06       @2 18
A08 01  1  ENG  @1 Photolysis of methane revisited at 121.6 nm and at 118.2 nm: quantum yields of the primary products, measured by mass spectrometry
A09 01  1  ENG  @1 Molecular Collision Dynamics
A11 01  1    @1 GANS (Berenger)
A11 02  1    @1 BOYE-PERONNE (Severine)
A11 03  1    @1 BROQUIER (Michel)
A11 04  1    @1 DELSAUT (Maxence)
A11 05  1    @1 DOUIN (Stephane)
A11 06  1    @1 FELLOWS (Carlos E.)
A11 07  1    @1 HALVICK (Philippe)
A11 08  1    @1 LOISON (Jean-Christophe)
A11 09  1    @1 LUCCHESE (Robert R.)
A11 10  1    @1 GAUYACQ (Dolores)
A12 01  1    @1 CASAVECCHIA (Piergiorgio) @9 ed.
A12 02  1    @1 BROUARD (Mark) @9 ed.
A12 03  1    @1 COSTES (Michel) @9 ed.
A12 04  1    @1 NESBITT (David) @9 ed.
A12 05  1    @1 BIESKE (Evan) @9 ed.
A12 06  1    @1 KABLE (Scott) @9 ed.
A14 01      @1 Institut des Sciences Moléculaires d'Orsay, CNRS UMR 8214, Universifé Paris-Sud @2 91405 Orsay @3 FRA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 5 aut. @Z 10 aut.
A14 02      @1 Centre Laser de l'Université Paris-Sud, Université Paris-Sud. LUMAT FR2764 @2 91405 Orsay @3 FRA @Z 3 aut.
A14 03      @1 Service de Chimie Quantique et Photophysique, Université Libre de Bruxelles CP 160/09, 50 Avenue F.D. Roosevelt @2 1050 Bruxelles @3 BEL @Z 4 aut.
A14 04      @1 Laboratorio de Espectroscopia e Laser, Instituto de Fisica, Universidade Federal Fluminense @2 24210-340, Niteroi, RJ @3 BRA @Z 6 aut.
A14 05      @1 Institut des Sciences Moléculaires, CNRS UMR 5255, Université Bordeaux I @2 33405 Talence @3 FRA @Z 7 aut. @Z 8 aut.
A14 06      @1 Texas Department of Chemistry, Texas A&M University, P.O. Box 30012 @2 College Station, Texas 77842-3012 @3 USA @Z 9 aut.
A15 01      @1 Università degli Studi di Perugia, Dipartimento di Chimica, via Elce dio Sotto, 8 @2 06123 Perugia @3 ITA @Z 1 aut.
A15 02      @1 Oxford University, Department of Chemistry, The Physical and Theoretical Chemistry Laboratory, South Parks Road @2 Oxford, OX1 3QZ @3 GBR @Z 2 aut.
A15 03      @1 Université Bordeaux 1/CNRS UMR 5255, Institut des Sciences Moléculaires @2 33405 Talence @3 FRA @Z 3 aut.
A15 04      @1 JILA/NIST, Department of Chemistry and Biochemistry, University of Colorado, @2 Boulder, CO, 80309 @3 USA @Z 4 aut.
A15 05      @1 University of Melbourne, School of Chemistry @3 AUS @Z 5 aut.
A15 06      @1 University of Sydney, School of Chemistry @3 AUS @Z 6 aut.
A20       @1 8140-8152
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 26801 @5 354000191573960080
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 51 ref.
A47 01  1    @0 11-0290996
A60       @1 P @3 PR
A61       @0 A
A64 01  1    @0 PCCP. Physical chemistry chemical physics : (Print)
A66 01      @0 GBR
C01 01    ENG  @0 Methane photolysis has been performed at the two Vacuum UltraViolet (VUV) wavelengths, 121.6 nm and 118.2 nm, via a spectrally pure laser pump-probe technique. The first photon is used to dissociate methane (either at 121.6 nm or at 118.2 nm) and the second one is used to ionise the CH2 and CH3 fragments. The radical products, CH3(X), CH2(X), CH2(a) and C('D), have been selectively probed by mass spectrometry. In order to quantify the fragment quantum yields from the mass spectra, the photoionisation cross sections have been carefully evaluated for the CH2 and CH3 radicals, in two steps: first, theoretical ab initio approaches have been used in order to determine the pure electronic photoionisation cross sections of CH2(X) and CH2(a), and have been rescaled with respect to the measured absolute photoionisation cross section of the CH3(X) radical. In a second step, in order to take into account the substantial vibrational energy deposited in the CH3(X) and CH2(a) radicals, the variation of their cross sections near threshold has been simulated by introducing the pertinent Franck-Condon overlaps between neutral and cation species. By adding the interpolated values of CH quantum yields measured by Rebbert and Ausloos [J. Photochem., 1972, 1,171-176], a complete set of fragment quantum yields has been derived for the methane photodissociation at 121.6 nm, with carefully evaluated 1σ uncertainties: ϕ[CH3(X)] = 0.42 ± 0.05, ϕ[CH2(a)] = 0.48 ± 0.05, ϕ[CH2(X)] = 0.03 ± 0.08, ϕ[CH(X)] = 0.07 ± 0.01. These new data have been measured independently of the H atom fragment quantum yield, subject to many controversies in the literature. From our results, we evaluate ϕ(H) = 0.55 ± 0.17 at 121.6 nm. The quantum yields for the photolysis at 118.2 nm differ notably from those measured at 121.6 nm, with a substantial production of the CH2(X) fragment: ϕ[CH3(X)] = 0.26 ± 0.04, ϕ[CH2(a)] = 0.17 ± 0.05, ϕ[CH2(X)] = 0.48 ± 0.06, ϕ[CH(X)] = 0.09 ± 0.01, ϕ(H) = 1.31 ± 0.13. These new data should bring reliable and essential inputs for the photochemical models of the Titan atmosphere.
C02 01  X    @0 001C01F01
C03 01  X  FRE  @0 Photolyse @5 01
C03 01  X  ENG  @0 Photolysis @5 01
C03 01  X  SPA  @0 Fotolisis @5 01
C03 02  X  FRE  @0 Méthane @2 NK @2 FX @5 02
C03 02  X  ENG  @0 Methane @2 NK @2 FX @5 02
C03 02  X  SPA  @0 Metano @2 NK @2 FX @5 02
C03 03  X  FRE  @0 Rendement quantique @5 03
C03 03  X  ENG  @0 Quantum yield @5 03
C03 03  X  SPA  @0 Rendimiento quántico @5 03
C03 04  X  FRE  @0 Spectrométrie masse @5 04
C03 04  X  ENG  @0 Mass spectrometry @5 04
C03 04  X  SPA  @0 Espectrometría masa @5 04
C03 05  X  FRE  @0 Longueur onde @5 05
C03 05  X  ENG  @0 Wavelength @5 05
C03 05  X  SPA  @0 Longitud onda @5 05
C03 06  X  FRE  @0 Laser @5 06
C03 06  X  ENG  @0 Laser @5 06
C03 06  X  SPA  @0 Láser @5 06
C03 07  X  FRE  @0 Pompe @5 07
C03 07  X  ENG  @0 Pump @5 07
C03 07  X  SPA  @0 Bomba @5 07
C03 08  X  FRE  @0 Photon @5 08
C03 08  X  ENG  @0 Photon @5 08
C03 08  X  SPA  @0 Fotón @5 08
C03 09  X  FRE  @0 Fragment @5 09
C03 09  X  ENG  @0 Fragment @5 09
C03 09  X  SPA  @0 Fragmento @5 09
C03 10  X  FRE  @0 Spectre masse @5 10
C03 10  X  ENG  @0 Mass spectrum @5 10
C03 10  X  SPA  @0 Espectro masa @5 10
C03 11  X  FRE  @0 Photoionisation @5 11
C03 11  X  ENG  @0 Photoionization @5 11
C03 11  X  SPA  @0 Fotoionización @5 11
C03 12  X  FRE  @0 Section efficace @5 12
C03 12  X  ENG  @0 Cross section (collision) @5 12
C03 12  X  SPA  @0 Sección eficaz @5 12
C03 13  3  FRE  @0 Calcul ab initio @5 13
C03 13  3  ENG  @0 Ab initio calculations @5 13
C03 14  X  FRE  @0 Energie vibrationnelle @5 14
C03 14  X  ENG  @0 Vibrational energy @5 14
C03 14  X  SPA  @0 Energía vibracional @5 14
C03 15  X  FRE  @0 Photodissociation @5 15
C03 15  X  ENG  @0 Photodissociation @5 15
C03 15  X  SPA  @0 Fotodisociación @5 15
C03 16  X  FRE  @0 Incertitude @5 16
C03 16  X  ENG  @0 Uncertainty @5 16
C03 16  X  SPA  @0 Incertidumbre @5 16
C03 17  X  FRE  @0 Modèle @5 17
C03 17  X  ENG  @0 Models @5 17
C03 17  X  SPA  @0 Modelo @5 17
C03 18  X  FRE  @0 Atmosphère @5 18
C03 18  X  ENG  @0 Atmosphere @5 18
C03 18  X  SPA  @0 Atmósfera @5 18
C03 19  X  FRE  @0 Etude théorique @5 19
C03 19  X  ENG  @0 Theoretical study @5 19
C03 19  X  SPA  @0 Estudio teórico @5 19
C03 20  X  FRE  @0 3115A @4 INC @5 32
C03 21  X  FRE  @0 3380G @4 INC @5 33
N21       @1 192
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0290996

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Photolysis of methane revisited at 121.6 nm and at 118.2 nm: quantum yields of the primary products, measured by mass spectrometry</title>
<author>
<name sortKey="Gans, Berenger" sort="Gans, Berenger" uniqKey="Gans B" first="Berenger" last="Gans">Berenger Gans</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut des Sciences Moléculaires d'Orsay, CNRS UMR 8214, Universifé Paris-Sud</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Boye Peronne, Severine" sort="Boye Peronne, Severine" uniqKey="Boye Peronne S" first="Severine" last="Boye-Peronne">Severine Boye-Peronne</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut des Sciences Moléculaires d'Orsay, CNRS UMR 8214, Universifé Paris-Sud</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Broquier, Michel" sort="Broquier, Michel" uniqKey="Broquier M" first="Michel" last="Broquier">Michel Broquier</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut des Sciences Moléculaires d'Orsay, CNRS UMR 8214, Universifé Paris-Sud</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Centre Laser de l'Université Paris-Sud, Université Paris-Sud. LUMAT FR2764</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Delsaut, Maxence" sort="Delsaut, Maxence" uniqKey="Delsaut M" first="Maxence" last="Delsaut">Maxence Delsaut</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Service de Chimie Quantique et Photophysique, Université Libre de Bruxelles CP 160/09, 50 Avenue F.D. Roosevelt</s1>
<s2>1050 Bruxelles</s2>
<s3>BEL</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Belgique</country>
</affiliation>
</author>
<author>
<name sortKey="Douin, Stephane" sort="Douin, Stephane" uniqKey="Douin S" first="Stephane" last="Douin">Stephane Douin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut des Sciences Moléculaires d'Orsay, CNRS UMR 8214, Universifé Paris-Sud</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Fellows, Carlos E" sort="Fellows, Carlos E" uniqKey="Fellows C" first="Carlos E." last="Fellows">Carlos E. Fellows</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Laboratorio de Espectroscopia e Laser, Instituto de Fisica, Universidade Federal Fluminense</s1>
<s2>24210-340, Niteroi, RJ</s2>
<s3>BRA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Brésil</country>
</affiliation>
</author>
<author>
<name sortKey="Halvick, Philippe" sort="Halvick, Philippe" uniqKey="Halvick P" first="Philippe" last="Halvick">Philippe Halvick</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Institut des Sciences Moléculaires, CNRS UMR 5255, Université Bordeaux I</s1>
<s2>33405 Talence</s2>
<s3>FRA</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Loison, Jean Christophe" sort="Loison, Jean Christophe" uniqKey="Loison J" first="Jean-Christophe" last="Loison">Jean-Christophe Loison</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Institut des Sciences Moléculaires, CNRS UMR 5255, Université Bordeaux I</s1>
<s2>33405 Talence</s2>
<s3>FRA</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Lucchese, Robert R" sort="Lucchese, Robert R" uniqKey="Lucchese R" first="Robert R." last="Lucchese">Robert R. Lucchese</name>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>Texas Department of Chemistry, Texas A&M University, P.O. Box 30012</s1>
<s2>College Station, Texas 77842-3012</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Gauyacq, Dolores" sort="Gauyacq, Dolores" uniqKey="Gauyacq D" first="Dolores" last="Gauyacq">Dolores Gauyacq</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut des Sciences Moléculaires d'Orsay, CNRS UMR 8214, Universifé Paris-Sud</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0290996</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0290996 INIST</idno>
<idno type="RBID">Pascal:11-0290996</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001C11</idno>
<idno type="wicri:Area/PascalFrancis/Curation">004333</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Photolysis of methane revisited at 121.6 nm and at 118.2 nm: quantum yields of the primary products, measured by mass spectrometry</title>
<author>
<name sortKey="Gans, Berenger" sort="Gans, Berenger" uniqKey="Gans B" first="Berenger" last="Gans">Berenger Gans</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut des Sciences Moléculaires d'Orsay, CNRS UMR 8214, Universifé Paris-Sud</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Boye Peronne, Severine" sort="Boye Peronne, Severine" uniqKey="Boye Peronne S" first="Severine" last="Boye-Peronne">Severine Boye-Peronne</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut des Sciences Moléculaires d'Orsay, CNRS UMR 8214, Universifé Paris-Sud</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Broquier, Michel" sort="Broquier, Michel" uniqKey="Broquier M" first="Michel" last="Broquier">Michel Broquier</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut des Sciences Moléculaires d'Orsay, CNRS UMR 8214, Universifé Paris-Sud</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Centre Laser de l'Université Paris-Sud, Université Paris-Sud. LUMAT FR2764</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Delsaut, Maxence" sort="Delsaut, Maxence" uniqKey="Delsaut M" first="Maxence" last="Delsaut">Maxence Delsaut</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Service de Chimie Quantique et Photophysique, Université Libre de Bruxelles CP 160/09, 50 Avenue F.D. Roosevelt</s1>
<s2>1050 Bruxelles</s2>
<s3>BEL</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Belgique</country>
</affiliation>
</author>
<author>
<name sortKey="Douin, Stephane" sort="Douin, Stephane" uniqKey="Douin S" first="Stephane" last="Douin">Stephane Douin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut des Sciences Moléculaires d'Orsay, CNRS UMR 8214, Universifé Paris-Sud</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Fellows, Carlos E" sort="Fellows, Carlos E" uniqKey="Fellows C" first="Carlos E." last="Fellows">Carlos E. Fellows</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Laboratorio de Espectroscopia e Laser, Instituto de Fisica, Universidade Federal Fluminense</s1>
<s2>24210-340, Niteroi, RJ</s2>
<s3>BRA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Brésil</country>
</affiliation>
</author>
<author>
<name sortKey="Halvick, Philippe" sort="Halvick, Philippe" uniqKey="Halvick P" first="Philippe" last="Halvick">Philippe Halvick</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Institut des Sciences Moléculaires, CNRS UMR 5255, Université Bordeaux I</s1>
<s2>33405 Talence</s2>
<s3>FRA</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Loison, Jean Christophe" sort="Loison, Jean Christophe" uniqKey="Loison J" first="Jean-Christophe" last="Loison">Jean-Christophe Loison</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Institut des Sciences Moléculaires, CNRS UMR 5255, Université Bordeaux I</s1>
<s2>33405 Talence</s2>
<s3>FRA</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Lucchese, Robert R" sort="Lucchese, Robert R" uniqKey="Lucchese R" first="Robert R." last="Lucchese">Robert R. Lucchese</name>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>Texas Department of Chemistry, Texas A&M University, P.O. Box 30012</s1>
<s2>College Station, Texas 77842-3012</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Gauyacq, Dolores" sort="Gauyacq, Dolores" uniqKey="Gauyacq D" first="Dolores" last="Gauyacq">Dolores Gauyacq</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut des Sciences Moléculaires d'Orsay, CNRS UMR 8214, Universifé Paris-Sud</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">PCCP. Physical chemistry chemical physics : (Print)</title>
<title level="j" type="abbreviated">PCCP, Phys. chem. chem. phys. : (Print)</title>
<idno type="ISSN">1463-9076</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">PCCP. Physical chemistry chemical physics : (Print)</title>
<title level="j" type="abbreviated">PCCP, Phys. chem. chem. phys. : (Print)</title>
<idno type="ISSN">1463-9076</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ab initio calculations</term>
<term>Atmosphere</term>
<term>Cross section (collision)</term>
<term>Fragment</term>
<term>Laser</term>
<term>Mass spectrometry</term>
<term>Mass spectrum</term>
<term>Methane</term>
<term>Models</term>
<term>Photodissociation</term>
<term>Photoionization</term>
<term>Photolysis</term>
<term>Photon</term>
<term>Pump</term>
<term>Quantum yield</term>
<term>Theoretical study</term>
<term>Uncertainty</term>
<term>Vibrational energy</term>
<term>Wavelength</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Photolyse</term>
<term>Méthane</term>
<term>Rendement quantique</term>
<term>Spectrométrie masse</term>
<term>Longueur onde</term>
<term>Laser</term>
<term>Pompe</term>
<term>Photon</term>
<term>Fragment</term>
<term>Spectre masse</term>
<term>Photoionisation</term>
<term>Section efficace</term>
<term>Calcul ab initio</term>
<term>Energie vibrationnelle</term>
<term>Photodissociation</term>
<term>Incertitude</term>
<term>Modèle</term>
<term>Atmosphère</term>
<term>Etude théorique</term>
<term>3115A</term>
<term>3380G</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Pompe</term>
<term>Atmosphère</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Methane photolysis has been performed at the two Vacuum UltraViolet (VUV) wavelengths, 121.6 nm and 118.2 nm, via a spectrally pure laser pump-probe technique. The first photon is used to dissociate methane (either at 121.6 nm or at 118.2 nm) and the second one is used to ionise the CH
<sub>2</sub>
and CH
<sub>3</sub>
fragments. The radical products, CH
<sub>3</sub>
(X), CH
<sub>2</sub>
(X), CH
<sub>2</sub>
(a) and C('D), have been selectively probed by mass spectrometry. In order to quantify the fragment quantum yields from the mass spectra, the photoionisation cross sections have been carefully evaluated for the CH
<sub>2</sub>
and CH
<sub>3</sub>
radicals, in two steps: first, theoretical ab initio approaches have been used in order to determine the pure electronic photoionisation cross sections of CH
<sub>2</sub>
(X) and CH
<sub>2</sub>
(a), and have been rescaled with respect to the measured absolute photoionisation cross section of the CH
<sub>3</sub>
(X) radical. In a second step, in order to take into account the substantial vibrational energy deposited in the CH
<sub>3</sub>
(X) and CH
<sub>2</sub>
(a) radicals, the variation of their cross sections near threshold has been simulated by introducing the pertinent Franck-Condon overlaps between neutral and cation species. By adding the interpolated values of CH quantum yields measured by Rebbert and Ausloos [J. Photochem., 1972, 1,171-176], a complete set of fragment quantum yields has been derived for the methane photodissociation at 121.6 nm, with carefully evaluated 1σ uncertainties: ϕ[CH
<sub>3</sub>
(X)] = 0.42 ± 0.05, ϕ[CH
<sub>2</sub>
(a)] = 0.48 ± 0.05, ϕ[CH
<sub>2</sub>
(X)] = 0.03 ± 0.08, ϕ[CH(X)] = 0.07 ± 0.01. These new data have been measured independently of the H atom fragment quantum yield, subject to many controversies in the literature. From our results, we evaluate ϕ(H) = 0.55 ± 0.17 at 121.6 nm. The quantum yields for the photolysis at 118.2 nm differ notably from those measured at 121.6 nm, with a substantial production of the CH
<sub>2</sub>
(X) fragment: ϕ[CH
<sub>3</sub>
(X)] = 0.26 ± 0.04, ϕ[CH
<sub>2</sub>
(a)] = 0.17 ± 0.05, ϕ[CH
<sub>2</sub>
(X)] = 0.48 ± 0.06, ϕ[CH(X)] = 0.09 ± 0.01, ϕ(H) = 1.31 ± 0.13. These new data should bring reliable and essential inputs for the photochemical models of the Titan atmosphere.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1463-9076</s0>
</fA01>
<fA03 i2="1">
<s0>PCCP, Phys. chem. chem. phys. : (Print)</s0>
</fA03>
<fA05>
<s2>13</s2>
</fA05>
<fA06>
<s2>18</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Photolysis of methane revisited at 121.6 nm and at 118.2 nm: quantum yields of the primary products, measured by mass spectrometry</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Molecular Collision Dynamics</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>GANS (Berenger)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BOYE-PERONNE (Severine)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BROQUIER (Michel)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>DELSAUT (Maxence)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>DOUIN (Stephane)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>FELLOWS (Carlos E.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>HALVICK (Philippe)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>LOISON (Jean-Christophe)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>LUCCHESE (Robert R.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>GAUYACQ (Dolores)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>CASAVECCHIA (Piergiorgio)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>BROUARD (Mark)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>COSTES (Michel)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>NESBITT (David)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>BIESKE (Evan)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="06" i2="1">
<s1>KABLE (Scott)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Institut des Sciences Moléculaires d'Orsay, CNRS UMR 8214, Universifé Paris-Sud</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Centre Laser de l'Université Paris-Sud, Université Paris-Sud. LUMAT FR2764</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Service de Chimie Quantique et Photophysique, Université Libre de Bruxelles CP 160/09, 50 Avenue F.D. Roosevelt</s1>
<s2>1050 Bruxelles</s2>
<s3>BEL</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Laboratorio de Espectroscopia e Laser, Instituto de Fisica, Universidade Federal Fluminense</s1>
<s2>24210-340, Niteroi, RJ</s2>
<s3>BRA</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Institut des Sciences Moléculaires, CNRS UMR 5255, Université Bordeaux I</s1>
<s2>33405 Talence</s2>
<s3>FRA</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Texas Department of Chemistry, Texas A&M University, P.O. Box 30012</s1>
<s2>College Station, Texas 77842-3012</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Università degli Studi di Perugia, Dipartimento di Chimica, via Elce dio Sotto, 8</s1>
<s2>06123 Perugia</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Oxford University, Department of Chemistry, The Physical and Theoretical Chemistry Laboratory, South Parks Road</s1>
<s2>Oxford, OX1 3QZ</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>Université Bordeaux 1/CNRS UMR 5255, Institut des Sciences Moléculaires</s1>
<s2>33405 Talence</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA15 i1="04">
<s1>JILA/NIST, Department of Chemistry and Biochemistry, University of Colorado,</s1>
<s2>Boulder, CO, 80309</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA15>
<fA15 i1="05">
<s1>University of Melbourne, School of Chemistry</s1>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
</fA15>
<fA15 i1="06">
<s1>University of Sydney, School of Chemistry</s1>
<s3>AUS</s3>
<sZ>6 aut.</sZ>
</fA15>
<fA20>
<s1>8140-8152</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26801</s2>
<s5>354000191573960080</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>51 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0290996</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>PR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>PCCP. Physical chemistry chemical physics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Methane photolysis has been performed at the two Vacuum UltraViolet (VUV) wavelengths, 121.6 nm and 118.2 nm, via a spectrally pure laser pump-probe technique. The first photon is used to dissociate methane (either at 121.6 nm or at 118.2 nm) and the second one is used to ionise the CH
<sub>2</sub>
and CH
<sub>3</sub>
fragments. The radical products, CH
<sub>3</sub>
(X), CH
<sub>2</sub>
(X), CH
<sub>2</sub>
(a) and C('D), have been selectively probed by mass spectrometry. In order to quantify the fragment quantum yields from the mass spectra, the photoionisation cross sections have been carefully evaluated for the CH
<sub>2</sub>
and CH
<sub>3</sub>
radicals, in two steps: first, theoretical ab initio approaches have been used in order to determine the pure electronic photoionisation cross sections of CH
<sub>2</sub>
(X) and CH
<sub>2</sub>
(a), and have been rescaled with respect to the measured absolute photoionisation cross section of the CH
<sub>3</sub>
(X) radical. In a second step, in order to take into account the substantial vibrational energy deposited in the CH
<sub>3</sub>
(X) and CH
<sub>2</sub>
(a) radicals, the variation of their cross sections near threshold has been simulated by introducing the pertinent Franck-Condon overlaps between neutral and cation species. By adding the interpolated values of CH quantum yields measured by Rebbert and Ausloos [J. Photochem., 1972, 1,171-176], a complete set of fragment quantum yields has been derived for the methane photodissociation at 121.6 nm, with carefully evaluated 1σ uncertainties: ϕ[CH
<sub>3</sub>
(X)] = 0.42 ± 0.05, ϕ[CH
<sub>2</sub>
(a)] = 0.48 ± 0.05, ϕ[CH
<sub>2</sub>
(X)] = 0.03 ± 0.08, ϕ[CH(X)] = 0.07 ± 0.01. These new data have been measured independently of the H atom fragment quantum yield, subject to many controversies in the literature. From our results, we evaluate ϕ(H) = 0.55 ± 0.17 at 121.6 nm. The quantum yields for the photolysis at 118.2 nm differ notably from those measured at 121.6 nm, with a substantial production of the CH
<sub>2</sub>
(X) fragment: ϕ[CH
<sub>3</sub>
(X)] = 0.26 ± 0.04, ϕ[CH
<sub>2</sub>
(a)] = 0.17 ± 0.05, ϕ[CH
<sub>2</sub>
(X)] = 0.48 ± 0.06, ϕ[CH(X)] = 0.09 ± 0.01, ϕ(H) = 1.31 ± 0.13. These new data should bring reliable and essential inputs for the photochemical models of the Titan atmosphere.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001C01F01</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Photolyse</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Photolysis</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Fotolisis</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Méthane</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Methane</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Metano</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Rendement quantique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Quantum yield</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Rendimiento quántico</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Spectrométrie masse</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Mass spectrometry</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Espectrometría masa</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Longueur onde</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Wavelength</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Longitud onda</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Laser</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Laser</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Láser</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Pompe</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Pump</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Bomba</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Photon</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Photon</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Fotón</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Fragment</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Fragment</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Fragmento</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Spectre masse</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Mass spectrum</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Espectro masa</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Photoionisation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Photoionization</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Fotoionización</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Section efficace</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Cross section (collision)</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Sección eficaz</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Calcul ab initio</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Ab initio calculations</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Energie vibrationnelle</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Vibrational energy</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Energía vibracional</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Photodissociation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Photodissociation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Fotodisociación</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Incertitude</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Uncertainty</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Incertidumbre</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Modèle</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Models</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Modelo</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Atmosphère</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Atmosphere</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Atmósfera</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Etude théorique</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Theoretical study</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Estudio teórico</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>3115A</s0>
<s4>INC</s4>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>3380G</s0>
<s4>INC</s4>
<s5>33</s5>
</fC03>
<fN21>
<s1>192</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004333 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 004333 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:11-0290996
   |texte=   Photolysis of methane revisited at 121.6 nm and at 118.2 nm: quantum yields of the primary products, measured by mass spectrometry
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024