Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The study of Type Ia supernovae spectral diversity using principal component analysis

Identifieur interne : 003E49 ( PascalFrancis/Curation ); précédent : 003E48; suivant : 003E50

The study of Type Ia supernovae spectral diversity using principal component analysis

Auteurs : Diane Cormier [Australie, France] ; Tamara M. Davis [Australie, Danemark]

Source :

RBID : Pascal:11-0058001

Descripteurs français

English descriptors

Abstract

In order to use supernovae (SNe) as cosmological probes, a good understanding of their properties and diversity is necessary. Here we investigate whether principal component analysis (PCA) can be used to improve the calibration of Type Ia SNe. We apply PCA to two different cases: a small data set of supernova spectra taken at maximum light and a larger data set with more spectra taken at various epochs. On the SN Ia luminosity scale, the supernova SN 1991T appears at the upper end and SN 1991bg at the lower end. While 91bg-like SNe seem to form a distinct group, 91T-like SNe show a continuum of properties with normal SNe. The differences are mainly explained by line shifts in the spectra. However, we do not find that PCA is able to distinguish trends or subsets in the supernova data beyond what has already been found using specific spectral features. The main utility of PCA will be as a tool for characterizing large sets of spectra. We show how the information in a data base of supernova spectra can be vastly simplified using PCA. This can be used to make a continuum of spectral templates from a discrete library of spectra, which may be useful in k-corrections and the training of supernova light-curve fitters.
pA  
A01 01  1    @0 0035-8711
A02 01      @0 MNRAA4
A03   1    @0 Mon. Not. R. Astron. Soc.
A05       @2 410
A06       @2 4
A08 01  1  ENG  @1 The study of Type Ia supernovae spectral diversity using principal component analysis
A11 01  1    @1 CORMIER (Diane)
A11 02  1    @1 DAVIS (Tamara M.)
A14 01      @1 Department of Physics, University of Queensland @2 QLD 4072 @3 AUS @Z 1 aut. @Z 2 aut.
A14 02      @1 Service d'Astrophysique, CEA Saclay @2 91191 Gif-sur-Yvette @3 FRA @Z 1 aut.
A14 03      @1 Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen @3 DNK @Z 2 aut.
A20       @1 2137-2148
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 2067 @5 354000191847050030
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 1/2 p.
A47 01  1    @0 11-0058001
A60       @1 P
A61       @0 A
A64 01  1    @0 Monthly Notices of the Royal Astronomical Society
A66 01      @0 USA
C01 01    ENG  @0 In order to use supernovae (SNe) as cosmological probes, a good understanding of their properties and diversity is necessary. Here we investigate whether principal component analysis (PCA) can be used to improve the calibration of Type Ia SNe. We apply PCA to two different cases: a small data set of supernova spectra taken at maximum light and a larger data set with more spectra taken at various epochs. On the SN Ia luminosity scale, the supernova SN 1991T appears at the upper end and SN 1991bg at the lower end. While 91bg-like SNe seem to form a distinct group, 91T-like SNe show a continuum of properties with normal SNe. The differences are mainly explained by line shifts in the spectra. However, we do not find that PCA is able to distinguish trends or subsets in the supernova data beyond what has already been found using specific spectral features. The main utility of PCA will be as a tool for characterizing large sets of spectra. We show how the information in a data base of supernova spectra can be vastly simplified using PCA. This can be used to make a continuum of spectral templates from a discrete library of spectra, which may be useful in k-corrections and the training of supernova light-curve fitters.
C02 01  3    @0 001E03
C03 01  X  FRE  @0 Supernova type I @5 26
C03 01  X  ENG  @0 Type I supernova @5 26
C03 01  X  SPA  @0 Supernova tipo I @5 26
C03 02  3  FRE  @0 Analyse composante principale @5 27
C03 02  3  ENG  @0 Principal component analysis @5 27
C03 03  3  FRE  @0 Luminosité @5 28
C03 03  3  ENG  @0 Luminosity @5 28
C03 04  X  FRE  @0 Continuum @5 29
C03 04  X  ENG  @0 Continuum @5 29
C03 04  X  SPA  @0 Continuo @5 29
C03 05  X  FRE  @0 Spectre discret @5 30
C03 05  X  ENG  @0 Discrete spectrum @5 30
C03 05  X  SPA  @0 Espectro discreto @5 30
C03 06  3  FRE  @0 Correction @5 31
C03 06  3  ENG  @0 Corrections @5 31
C03 07  3  FRE  @0 Courbe lumière @5 32
C03 07  3  ENG  @0 Light curves @5 32
C03 08  3  FRE  @0 Analyse donnée @5 33
C03 08  3  ENG  @0 Data analysis @5 33
C03 09  X  FRE  @0 Méthode statistique @5 34
C03 09  X  ENG  @0 Statistical method @5 34
C03 09  X  SPA  @0 Método estadístico @5 34
N21       @1 038
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0058001

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">The study of Type Ia supernovae spectral diversity using principal component analysis</title>
<author>
<name sortKey="Cormier, Diane" sort="Cormier, Diane" uniqKey="Cormier D" first="Diane" last="Cormier">Diane Cormier</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, University of Queensland</s1>
<s2>QLD 4072</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Service d'Astrophysique, CEA Saclay</s1>
<s2>91191 Gif-sur-Yvette</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Davis, Tamara M" sort="Davis, Tamara M" uniqKey="Davis T" first="Tamara M." last="Davis">Tamara M. Davis</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, University of Queensland</s1>
<s2>QLD 4072</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen</s1>
<s3>DNK</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Danemark</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0058001</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0058001 INIST</idno>
<idno type="RBID">Pascal:11-0058001</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">002078</idno>
<idno type="wicri:Area/PascalFrancis/Curation">003E49</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">The study of Type Ia supernovae spectral diversity using principal component analysis</title>
<author>
<name sortKey="Cormier, Diane" sort="Cormier, Diane" uniqKey="Cormier D" first="Diane" last="Cormier">Diane Cormier</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, University of Queensland</s1>
<s2>QLD 4072</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Service d'Astrophysique, CEA Saclay</s1>
<s2>91191 Gif-sur-Yvette</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Davis, Tamara M" sort="Davis, Tamara M" uniqKey="Davis T" first="Tamara M." last="Davis">Tamara M. Davis</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, University of Queensland</s1>
<s2>QLD 4072</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen</s1>
<s3>DNK</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Danemark</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="abbreviated">Mon. Not. R. Astron. Soc.</title>
<idno type="ISSN">0035-8711</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="abbreviated">Mon. Not. R. Astron. Soc.</title>
<idno type="ISSN">0035-8711</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Continuum</term>
<term>Corrections</term>
<term>Data analysis</term>
<term>Discrete spectrum</term>
<term>Light curves</term>
<term>Luminosity</term>
<term>Principal component analysis</term>
<term>Statistical method</term>
<term>Type I supernova</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Supernova type I</term>
<term>Analyse composante principale</term>
<term>Luminosité</term>
<term>Continuum</term>
<term>Spectre discret</term>
<term>Correction</term>
<term>Courbe lumière</term>
<term>Analyse donnée</term>
<term>Méthode statistique</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Méthode statistique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In order to use supernovae (SNe) as cosmological probes, a good understanding of their properties and diversity is necessary. Here we investigate whether principal component analysis (PCA) can be used to improve the calibration of Type Ia SNe. We apply PCA to two different cases: a small data set of supernova spectra taken at maximum light and a larger data set with more spectra taken at various epochs. On the SN Ia luminosity scale, the supernova SN 1991T appears at the upper end and SN 1991bg at the lower end. While 91bg-like SNe seem to form a distinct group, 91T-like SNe show a continuum of properties with normal SNe. The differences are mainly explained by line shifts in the spectra. However, we do not find that PCA is able to distinguish trends or subsets in the supernova data beyond what has already been found using specific spectral features. The main utility of PCA will be as a tool for characterizing large sets of spectra. We show how the information in a data base of supernova spectra can be vastly simplified using PCA. This can be used to make a continuum of spectral templates from a discrete library of spectra, which may be useful in k-corrections and the training of supernova light-curve fitters.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0035-8711</s0>
</fA01>
<fA02 i1="01">
<s0>MNRAA4</s0>
</fA02>
<fA03 i2="1">
<s0>Mon. Not. R. Astron. Soc.</s0>
</fA03>
<fA05>
<s2>410</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>The study of Type Ia supernovae spectral diversity using principal component analysis</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>CORMIER (Diane)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DAVIS (Tamara M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, University of Queensland</s1>
<s2>QLD 4072</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Service d'Astrophysique, CEA Saclay</s1>
<s2>91191 Gif-sur-Yvette</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen</s1>
<s3>DNK</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>2137-2148</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>2067</s2>
<s5>354000191847050030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1/2 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0058001</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Monthly Notices of the Royal Astronomical Society</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In order to use supernovae (SNe) as cosmological probes, a good understanding of their properties and diversity is necessary. Here we investigate whether principal component analysis (PCA) can be used to improve the calibration of Type Ia SNe. We apply PCA to two different cases: a small data set of supernova spectra taken at maximum light and a larger data set with more spectra taken at various epochs. On the SN Ia luminosity scale, the supernova SN 1991T appears at the upper end and SN 1991bg at the lower end. While 91bg-like SNe seem to form a distinct group, 91T-like SNe show a continuum of properties with normal SNe. The differences are mainly explained by line shifts in the spectra. However, we do not find that PCA is able to distinguish trends or subsets in the supernova data beyond what has already been found using specific spectral features. The main utility of PCA will be as a tool for characterizing large sets of spectra. We show how the information in a data base of supernova spectra can be vastly simplified using PCA. This can be used to make a continuum of spectral templates from a discrete library of spectra, which may be useful in k-corrections and the training of supernova light-curve fitters.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001E03</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Supernova type I</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Type I supernova</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Supernova tipo I</s0>
<s5>26</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Analyse composante principale</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Principal component analysis</s0>
<s5>27</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Luminosité</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Luminosity</s0>
<s5>28</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Continuum</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Continuum</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Continuo</s0>
<s5>29</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Spectre discret</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Discrete spectrum</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Espectro discreto</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Correction</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Corrections</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Courbe lumière</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Light curves</s0>
<s5>32</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Analyse donnée</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Data analysis</s0>
<s5>33</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Méthode statistique</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Statistical method</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Método estadístico</s0>
<s5>34</s5>
</fC03>
<fN21>
<s1>038</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003E49 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 003E49 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:11-0058001
   |texte=   The study of Type Ia supernovae spectral diversity using principal component analysis
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024