Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mixing and gas dispersion in mineral flotation cells

Identifieur interne : 003D41 ( PascalFrancis/Curation ); précédent : 003D40; suivant : 003D42

Mixing and gas dispersion in mineral flotation cells

Auteurs : G. M. Evans [Australie] ; E. Doroodchi [Australie] ; G. L. Lane [Australie] ; P. T. L. Koh [Australie] ; M. P. Schwarz [Australie]

Source :

RBID : Pascal:10-0514602

Descripteurs français

English descriptors

Abstract

Mineral flotation in mechanically agitated vessels (cells) involves complex interaction between bubbles, particles and the liquid phase. Ideally, just enough power input from the impeller is needed to so that the frequency of particle-bubble collision and attachment is maximised, while at the same time detachment events are minimised. This paper firstly investigated how the slip velocity of 2-10 mm diameter bubbles, a size commonly encountered in flotation devices, was influenced by turbulence intensity. The measurements confirmed the earlier correlation by [Lane, G.L., 2005, Numerical modelling of gas-liquid flow in stirred tanks, Ph.D. Thesis, University of Newcastle, Australia], which was then inputted into a computational fluid dynamic model to describe the gas dispersion in a mechanically agitated tank. The model provided turbulence intensity values that were then coupled with both slip velocity and critical Weber number models to generate both bubble size and gas holdup profiles for the entire vessel. Moreover, a simple equation was introduced to allow prediction of cavity formation behind the rotating impeller blades, which is a common occurrence in most flotation cells they normally operate at high gas loadings. This inclusion allowed the model to predict power reduction resulting from the presence of the cavities. Finally, extension of the computational model to include flotation hydrodynamics, such as probabilities of collision, adhesion and stabilisation of the particles at the bubble surface, is also described. The model is able to compute net attachment rates, and hence the particle flux entering the froth recovery phase, as a function of bubble and particle diameter, gas flowrate and power input.
pA  
A01 01  1    @0 0263-8762
A02 01      @0 CERDEE
A03   1    @0 Chem. eng. res. des.
A05       @2 86
A06       @2 12
A08 01  1  ENG  @1 Mixing and gas dispersion in mineral flotation cells
A09 01  1  ENG  @1 ISMIP-VI
A11 01  1    @1 EVANS (G. M.)
A11 02  1    @1 DOROODCHI (E.)
A11 03  1    @1 LANE (G. L.)
A11 04  1    @1 KOH (P. T. L.)
A11 05  1    @1 SCHWARZ (M. P.)
A12 01  1    @1 XUEREB (Catherine) @9 ed.
A12 02  1    @1 TANGUY (Philippe) @9 ed.
A14 01      @1 School of Engineering, University of Newcastle @2 Callaghan, NSW 2308 @3 AUS @Z 1 aut. @Z 2 aut.
A14 02      @1 CSIRO Minerals, Box 312 @2 Clayton South, Vic 3169 @3 AUS @Z 3 aut. @Z 4 aut. @Z 5 aut.
A15 01      @1 Laboratoire de Génie Chimique @2 Toulouse @3 FRA @Z 1 aut.
A15 02      @1 Ecole Polytechnique @2 Montreal @3 CAN @Z 2 aut.
A18 01  1    @1 Procter & Gamble @3 INC @9 org-cong.
A20       @1 1350-1362
A21       @1 2008
A23 01      @0 ENG
A43 01      @1 INIST @2 4284 @5 354000185132680050
A44       @0 0000 @1 © 2010 INIST-CNRS. All rights reserved.
A45       @0 1 p.3/4
A47 01  1    @0 10-0514602
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Chemical engineering research & design
A66 01      @0 NLD
C01 01    ENG  @0 Mineral flotation in mechanically agitated vessels (cells) involves complex interaction between bubbles, particles and the liquid phase. Ideally, just enough power input from the impeller is needed to so that the frequency of particle-bubble collision and attachment is maximised, while at the same time detachment events are minimised. This paper firstly investigated how the slip velocity of 2-10 mm diameter bubbles, a size commonly encountered in flotation devices, was influenced by turbulence intensity. The measurements confirmed the earlier correlation by [Lane, G.L., 2005, Numerical modelling of gas-liquid flow in stirred tanks, Ph.D. Thesis, University of Newcastle, Australia], which was then inputted into a computational fluid dynamic model to describe the gas dispersion in a mechanically agitated tank. The model provided turbulence intensity values that were then coupled with both slip velocity and critical Weber number models to generate both bubble size and gas holdup profiles for the entire vessel. Moreover, a simple equation was introduced to allow prediction of cavity formation behind the rotating impeller blades, which is a common occurrence in most flotation cells they normally operate at high gas loadings. This inclusion allowed the model to predict power reduction resulting from the presence of the cavities. Finally, extension of the computational model to include flotation hydrodynamics, such as probabilities of collision, adhesion and stabilisation of the particles at the bubble surface, is also described. The model is able to compute net attachment rates, and hence the particle flux entering the froth recovery phase, as a function of bubble and particle diameter, gas flowrate and power input.
C02 01  X    @0 001D07Q06
C02 02  X    @0 001D07E
C02 03  X    @0 001D07D
C03 01  X  FRE  @0 Mélangeage @5 01
C03 01  X  ENG  @0 Mixing @5 01
C03 01  X  SPA  @0 Mezclado @5 01
C03 02  X  FRE  @0 Dispersion @5 02
C03 02  X  ENG  @0 Dispersion @5 02
C03 02  X  SPA  @0 Dispersión @5 02
C03 03  X  FRE  @0 Flottation @5 03
C03 03  X  ENG  @0 Flotation @5 03
C03 03  X  SPA  @0 Flotación @5 03
C03 04  X  FRE  @0 Appareil agité @5 04
C03 04  X  ENG  @0 Stirred vessel @5 04
C03 04  X  SPA  @0 Aparato agitado @5 04
C03 05  X  FRE  @0 Bulle @5 05
C03 05  X  ENG  @0 Bubble @5 05
C03 05  X  SPA  @0 Ampolla @5 05
C03 06  X  FRE  @0 Phase liquide @5 06
C03 06  X  ENG  @0 Liquid phase @5 06
C03 06  X  SPA  @0 Fase líquida @5 06
C03 07  X  FRE  @0 Agitateur @5 07
C03 07  X  ENG  @0 Agitator @5 07
C03 07  X  SPA  @0 Agitador @5 07
C03 08  X  FRE  @0 Collision @5 08
C03 08  X  ENG  @0 Collision @5 08
C03 08  X  SPA  @0 Colisión @5 08
C03 09  X  FRE  @0 Turbulence @5 09
C03 09  X  ENG  @0 Turbulence @5 09
C03 09  X  SPA  @0 Turbulencia @5 09
C03 10  X  FRE  @0 Corrélation @5 10
C03 10  X  ENG  @0 Correlation @5 10
C03 10  X  SPA  @0 Correlación @5 10
C03 11  X  FRE  @0 Analyse corrélation @5 11
C03 11  X  ENG  @0 Correlation analysis @5 11
C03 11  X  SPA  @0 Análisis correlación @5 11
C03 12  X  FRE  @0 Modélisation @5 12
C03 12  X  ENG  @0 Modeling @5 12
C03 12  X  SPA  @0 Modelización @5 12
C03 13  X  FRE  @0 Ecoulement gaz liquide @5 13
C03 13  X  ENG  @0 Gas liquid flow @5 13
C03 13  X  SPA  @0 Flujo gas líquido @5 13
C03 14  X  FRE  @0 Ecoulement diphasique @5 14
C03 14  X  ENG  @0 Two phase flow @5 14
C03 14  X  SPA  @0 Flujo difásico @5 14
C03 15  X  FRE  @0 Mécanique fluide numérique @5 15
C03 15  X  ENG  @0 Computational fluid dynamics @5 15
C03 15  X  SPA  @0 Mecánica fluido numérica @5 15
C03 16  X  FRE  @0 Dimension particule @5 16
C03 16  X  ENG  @0 Particle size @5 16
C03 16  X  SPA  @0 Dimensión partícula @5 16
C03 17  X  FRE  @0 Retenue gaz @5 17
C03 17  X  ENG  @0 Gas holdup @5 17
C03 17  X  SPA  @0 Detención gas @5 17
C03 18  X  FRE  @0 Hydrodynamique @5 18
C03 18  X  ENG  @0 Hydrodynamics @5 18
C03 18  X  SPA  @0 Hidrodinámica @5 18
C03 19  X  FRE  @0 Prédiction @5 19
C03 19  X  ENG  @0 Prediction @5 19
C03 19  X  SPA  @0 Predicción @5 19
C03 20  X  FRE  @0 Chargement @5 20
C03 20  X  ENG  @0 Loading @5 20
C03 20  X  SPA  @0 Cargamento @5 20
C03 21  X  FRE  @0 Adhérence @5 21
C03 21  X  ENG  @0 Adhesion @5 21
C03 21  X  SPA  @0 Adherencia @5 21
C03 22  X  FRE  @0 Mousse (émulsion) @5 22
C03 22  X  ENG  @0 Foam @5 22
C03 22  X  SPA  @0 Espuma @5 22
C03 23  X  FRE  @0 Débit fluide @4 INC @5 32
N21       @1 347
N44 01      @1 OTO
N82       @1 OTO
pR  
A30 01  1  ENG  @1 International Symposium on Mixing in Industrial Processes VI (ISMIP-6) @2 6 @3 Niagara Falls CAN @4 2008-08-17

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0514602

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Mixing and gas dispersion in mineral flotation cells</title>
<author>
<name sortKey="Evans, G M" sort="Evans, G M" uniqKey="Evans G" first="G. M." last="Evans">G. M. Evans</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Engineering, University of Newcastle</s1>
<s2>Callaghan, NSW 2308</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Doroodchi, E" sort="Doroodchi, E" uniqKey="Doroodchi E" first="E." last="Doroodchi">E. Doroodchi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Engineering, University of Newcastle</s1>
<s2>Callaghan, NSW 2308</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Lane, G L" sort="Lane, G L" uniqKey="Lane G" first="G. L." last="Lane">G. L. Lane</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>CSIRO Minerals, Box 312</s1>
<s2>Clayton South, Vic 3169</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Koh, P T L" sort="Koh, P T L" uniqKey="Koh P" first="P. T. L." last="Koh">P. T. L. Koh</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>CSIRO Minerals, Box 312</s1>
<s2>Clayton South, Vic 3169</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Schwarz, M P" sort="Schwarz, M P" uniqKey="Schwarz M" first="M. P." last="Schwarz">M. P. Schwarz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>CSIRO Minerals, Box 312</s1>
<s2>Clayton South, Vic 3169</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">10-0514602</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 10-0514602 INIST</idno>
<idno type="RBID">Pascal:10-0514602</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">002253</idno>
<idno type="wicri:Area/PascalFrancis/Curation">003D41</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Mixing and gas dispersion in mineral flotation cells</title>
<author>
<name sortKey="Evans, G M" sort="Evans, G M" uniqKey="Evans G" first="G. M." last="Evans">G. M. Evans</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Engineering, University of Newcastle</s1>
<s2>Callaghan, NSW 2308</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Doroodchi, E" sort="Doroodchi, E" uniqKey="Doroodchi E" first="E." last="Doroodchi">E. Doroodchi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Engineering, University of Newcastle</s1>
<s2>Callaghan, NSW 2308</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Lane, G L" sort="Lane, G L" uniqKey="Lane G" first="G. L." last="Lane">G. L. Lane</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>CSIRO Minerals, Box 312</s1>
<s2>Clayton South, Vic 3169</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Koh, P T L" sort="Koh, P T L" uniqKey="Koh P" first="P. T. L." last="Koh">P. T. L. Koh</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>CSIRO Minerals, Box 312</s1>
<s2>Clayton South, Vic 3169</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Schwarz, M P" sort="Schwarz, M P" uniqKey="Schwarz M" first="M. P." last="Schwarz">M. P. Schwarz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>CSIRO Minerals, Box 312</s1>
<s2>Clayton South, Vic 3169</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Chemical engineering research & design</title>
<title level="j" type="abbreviated">Chem. eng. res. des.</title>
<idno type="ISSN">0263-8762</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Chemical engineering research & design</title>
<title level="j" type="abbreviated">Chem. eng. res. des.</title>
<idno type="ISSN">0263-8762</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adhesion</term>
<term>Agitator</term>
<term>Bubble</term>
<term>Collision</term>
<term>Computational fluid dynamics</term>
<term>Correlation</term>
<term>Correlation analysis</term>
<term>Dispersion</term>
<term>Flotation</term>
<term>Foam</term>
<term>Gas holdup</term>
<term>Gas liquid flow</term>
<term>Hydrodynamics</term>
<term>Liquid phase</term>
<term>Loading</term>
<term>Mixing</term>
<term>Modeling</term>
<term>Particle size</term>
<term>Prediction</term>
<term>Stirred vessel</term>
<term>Turbulence</term>
<term>Two phase flow</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Mélangeage</term>
<term>Dispersion</term>
<term>Flottation</term>
<term>Appareil agité</term>
<term>Bulle</term>
<term>Phase liquide</term>
<term>Agitateur</term>
<term>Collision</term>
<term>Turbulence</term>
<term>Corrélation</term>
<term>Analyse corrélation</term>
<term>Modélisation</term>
<term>Ecoulement gaz liquide</term>
<term>Ecoulement diphasique</term>
<term>Mécanique fluide numérique</term>
<term>Dimension particule</term>
<term>Retenue gaz</term>
<term>Hydrodynamique</term>
<term>Prédiction</term>
<term>Chargement</term>
<term>Adhérence</term>
<term>Mousse (émulsion)</term>
<term>Débit fluide</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Chargement</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mineral flotation in mechanically agitated vessels (cells) involves complex interaction between bubbles, particles and the liquid phase. Ideally, just enough power input from the impeller is needed to so that the frequency of particle-bubble collision and attachment is maximised, while at the same time detachment events are minimised. This paper firstly investigated how the slip velocity of 2-10 mm diameter bubbles, a size commonly encountered in flotation devices, was influenced by turbulence intensity. The measurements confirmed the earlier correlation by [Lane, G.L., 2005, Numerical modelling of gas-liquid flow in stirred tanks, Ph.D. Thesis, University of Newcastle, Australia], which was then inputted into a computational fluid dynamic model to describe the gas dispersion in a mechanically agitated tank. The model provided turbulence intensity values that were then coupled with both slip velocity and critical Weber number models to generate both bubble size and gas holdup profiles for the entire vessel. Moreover, a simple equation was introduced to allow prediction of cavity formation behind the rotating impeller blades, which is a common occurrence in most flotation cells they normally operate at high gas loadings. This inclusion allowed the model to predict power reduction resulting from the presence of the cavities. Finally, extension of the computational model to include flotation hydrodynamics, such as probabilities of collision, adhesion and stabilisation of the particles at the bubble surface, is also described. The model is able to compute net attachment rates, and hence the particle flux entering the froth recovery phase, as a function of bubble and particle diameter, gas flowrate and power input.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0263-8762</s0>
</fA01>
<fA02 i1="01">
<s0>CERDEE</s0>
</fA02>
<fA03 i2="1">
<s0>Chem. eng. res. des.</s0>
</fA03>
<fA05>
<s2>86</s2>
</fA05>
<fA06>
<s2>12</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Mixing and gas dispersion in mineral flotation cells</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>ISMIP-VI</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>EVANS (G. M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DOROODCHI (E.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LANE (G. L.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KOH (P. T. L.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SCHWARZ (M. P.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>XUEREB (Catherine)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>TANGUY (Philippe)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>School of Engineering, University of Newcastle</s1>
<s2>Callaghan, NSW 2308</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>CSIRO Minerals, Box 312</s1>
<s2>Clayton South, Vic 3169</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Laboratoire de Génie Chimique</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Ecole Polytechnique</s1>
<s2>Montreal</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA18 i1="01" i2="1">
<s1>Procter & Gamble</s1>
<s3>INC</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>1350-1362</s1>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>4284</s2>
<s5>354000185132680050</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.3/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0514602</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Chemical engineering research & design</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Mineral flotation in mechanically agitated vessels (cells) involves complex interaction between bubbles, particles and the liquid phase. Ideally, just enough power input from the impeller is needed to so that the frequency of particle-bubble collision and attachment is maximised, while at the same time detachment events are minimised. This paper firstly investigated how the slip velocity of 2-10 mm diameter bubbles, a size commonly encountered in flotation devices, was influenced by turbulence intensity. The measurements confirmed the earlier correlation by [Lane, G.L., 2005, Numerical modelling of gas-liquid flow in stirred tanks, Ph.D. Thesis, University of Newcastle, Australia], which was then inputted into a computational fluid dynamic model to describe the gas dispersion in a mechanically agitated tank. The model provided turbulence intensity values that were then coupled with both slip velocity and critical Weber number models to generate both bubble size and gas holdup profiles for the entire vessel. Moreover, a simple equation was introduced to allow prediction of cavity formation behind the rotating impeller blades, which is a common occurrence in most flotation cells they normally operate at high gas loadings. This inclusion allowed the model to predict power reduction resulting from the presence of the cavities. Finally, extension of the computational model to include flotation hydrodynamics, such as probabilities of collision, adhesion and stabilisation of the particles at the bubble surface, is also described. The model is able to compute net attachment rates, and hence the particle flux entering the froth recovery phase, as a function of bubble and particle diameter, gas flowrate and power input.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D07Q06</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D07E</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D07D</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Mélangeage</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Mixing</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Mezclado</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Dispersion</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Dispersion</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Dispersión</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Flottation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Flotation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Flotación</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Appareil agité</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Stirred vessel</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Aparato agitado</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Bulle</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Bubble</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Ampolla</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Phase liquide</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Liquid phase</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Fase líquida</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Agitateur</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Agitator</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Agitador</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Collision</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Collision</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Colisión</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Turbulence</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Turbulence</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Turbulencia</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Corrélation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Correlation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Correlación</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Analyse corrélation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Correlation analysis</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Análisis correlación</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Ecoulement gaz liquide</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Gas liquid flow</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Flujo gas líquido</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Ecoulement diphasique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Two phase flow</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Flujo difásico</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Mécanique fluide numérique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Computational fluid dynamics</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Mecánica fluido numérica</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Dimension particule</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Particle size</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Dimensión partícula</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Retenue gaz</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Gas holdup</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Detención gas</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Hydrodynamique</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Hydrodynamics</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Hidrodinámica</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Prédiction</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Prediction</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Predicción</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Chargement</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Loading</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Cargamento</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Adhérence</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Adhesion</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Adherencia</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Mousse (émulsion)</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Foam</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Espuma</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Débit fluide</s0>
<s4>INC</s4>
<s5>32</s5>
</fC03>
<fN21>
<s1>347</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>International Symposium on Mixing in Industrial Processes VI (ISMIP-6)</s1>
<s2>6</s2>
<s3>Niagara Falls CAN</s3>
<s4>2008-08-17</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003D41 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 003D41 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:10-0514602
   |texte=   Mixing and gas dispersion in mineral flotation cells
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024