Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Role of Oceanic Heat Transport and Wind Stress Forcing in Abrupt Millennial-Scale Climate Transitions

Identifieur interne : 003C01 ( PascalFrancis/Curation ); précédent : 003C00; suivant : 003C02

The Role of Oceanic Heat Transport and Wind Stress Forcing in Abrupt Millennial-Scale Climate Transitions

Auteurs : Olivier Arzel [Australie] ; Alain Colin De Verdiere [France] ; Matthew H. England [Australie]

Source :

RBID : Pascal:10-0424548

Descripteurs français

English descriptors

Abstract

The last glacial period was punctuated by rapid climate shifts, known as Dansgaard-Oeschger events, with strong imprint in the North Atlantic sector suggesting that they were linked with the Atlantic meridional overturning circulation. Here an idealized single-hemisphere three-dimensional ocean-atmosphere-sea ice coupled model is used to explore the possible origin of the instability driving these abrupt events and to provide a plausible explanation for the relative stability of the Holocene. Focusing on the physics of noise-free millennial oscillations under steady external (solar) forcing, it was shown that cold climates become unstable, that is, exhibit abrupt millennial-scale transitions, for significantly lower freshwater fluxes than warm climates, in agreement with previous studies making use of zonally averaged coupled models. This fundamental difference is a direct consequence of the weaker stratification of the glacial ocean, mainly caused by upper-ocean cooling. Using a two-hemisphere configuration of a coupled climate model of intermediate complexity, it is shown that this result is robust to the added presence of a bottom water mass of southern origin. The analysis reveals that under particular conditions, a pronounced interdecadal variability develops during warm interstadials. While the nature of the instability driving the millennial oscillations is identical to that found in ocean models under mixed boundary conditions, these interstadial-interdecadal oscillations share the same characteristics as those previously found in ocean models forced by fixed surface fluxes. The wind stress forcing is shown to profoundly affect both the properties and bifurcation structure of thermohaline millennial oscillations across a wide range of variation of freshwater forcing. In particular, it is shown that the wind stress forcing favors the maintenance of thermally direct meridional overturning circulations during the cold stadial phases of Dansgaard-Oeschger cycles.
pA  
A01 01  1    @0 0894-8755
A03   1    @0 J. clim.
A05       @2 23
A06       @2 9
A08 01  1  ENG  @1 The Role of Oceanic Heat Transport and Wind Stress Forcing in Abrupt Millennial-Scale Climate Transitions
A11 01  1    @1 ARZEL (Olivier)
A11 02  1    @1 DE VERDIERE (Alain Colin)
A11 03  1    @1 ENGLAND (Matthew H.)
A14 01      @1 Climate Change Research Centre, The University of New South Wales @2 Sydney, New South Wales @3 AUS @Z 1 aut. @Z 3 aut.
A14 02      @1 Laboratoire de Physique des Océans, Université de Bretagne Occidentale @2 Brest @3 FRA @Z 2 aut.
A20       @1 2233-2256
A21       @1 2010
A23 01      @0 ENG
A43 01      @1 INIST @2 9644B @5 354000170430930010
A44       @0 0000 @1 © 2010 INIST-CNRS. All rights reserved.
A45       @0 1 p.3/4
A47 01  1    @0 10-0424548
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of climate
A66 01      @0 USA
C01 01    ENG  @0 The last glacial period was punctuated by rapid climate shifts, known as Dansgaard-Oeschger events, with strong imprint in the North Atlantic sector suggesting that they were linked with the Atlantic meridional overturning circulation. Here an idealized single-hemisphere three-dimensional ocean-atmosphere-sea ice coupled model is used to explore the possible origin of the instability driving these abrupt events and to provide a plausible explanation for the relative stability of the Holocene. Focusing on the physics of noise-free millennial oscillations under steady external (solar) forcing, it was shown that cold climates become unstable, that is, exhibit abrupt millennial-scale transitions, for significantly lower freshwater fluxes than warm climates, in agreement with previous studies making use of zonally averaged coupled models. This fundamental difference is a direct consequence of the weaker stratification of the glacial ocean, mainly caused by upper-ocean cooling. Using a two-hemisphere configuration of a coupled climate model of intermediate complexity, it is shown that this result is robust to the added presence of a bottom water mass of southern origin. The analysis reveals that under particular conditions, a pronounced interdecadal variability develops during warm interstadials. While the nature of the instability driving the millennial oscillations is identical to that found in ocean models under mixed boundary conditions, these interstadial-interdecadal oscillations share the same characteristics as those previously found in ocean models forced by fixed surface fluxes. The wind stress forcing is shown to profoundly affect both the properties and bifurcation structure of thermohaline millennial oscillations across a wide range of variation of freshwater forcing. In particular, it is shown that the wind stress forcing favors the maintenance of thermally direct meridional overturning circulations during the cold stadial phases of Dansgaard-Oeschger cycles.
C02 01  2    @0 001E02D
C02 02  2    @0 001E01H
C02 03  2    @0 001E01P02
C02 04  2    @0 223B
C02 05  2    @0 226C02
C03 01  X  FRE  @0 Action vent @5 01
C03 01  X  ENG  @0 Wind effect @5 01
C03 01  X  SPA  @0 Acción viento @5 01
C03 02  2  FRE  @0 Paléoclimat @5 02
C03 02  2  ENG  @0 paleoclimate @5 02
C03 02  2  SPA  @0 Paleoclima @5 02
C03 03  2  FRE  @0 Période glaciaire @5 03
C03 03  2  ENG  @0 glacial periods @5 03
C03 03  2  SPA  @0 Período glaciario @5 03
C03 04  2  FRE  @0 Evénement Dansgaard-Oeschger @2 NX @5 04
C03 04  2  ENG  @0 Dansgaard-Oeschger events @2 NX @5 04
C03 05  2  FRE  @0 Circulation thermohaline @5 05
C03 05  2  ENG  @0 thermohaline circulation @5 05
C03 05  2  SPA  @0 Circulación termohalina @5 05
C03 06  2  FRE  @0 Glace marine @5 06
C03 06  2  ENG  @0 sea ice @5 06
C03 06  2  SPA  @0 Hielo marino @5 06
C03 07  2  FRE  @0 Instabilité @5 07
C03 07  2  ENG  @0 instability @5 07
C03 08  2  FRE  @0 Stabilité @5 08
C03 08  2  ENG  @0 stability @5 08
C03 08  2  SPA  @0 Estabilidad @5 08
C03 09  2  FRE  @0 Holocène @2 NX @5 09
C03 09  2  ENG  @0 Holocene @2 NX @5 09
C03 09  2  SPA  @0 Holoceno @2 NX @5 09
C03 10  X  FRE  @0 Oscillation libre @5 10
C03 10  X  ENG  @0 Free oscillation @5 10
C03 10  X  SPA  @0 Oscilación libre @5 10
C03 11  X  FRE  @0 Climat froid @5 11
C03 11  X  ENG  @0 Cold climate @5 11
C03 11  X  SPA  @0 Clima frío @5 11
C03 12  X  FRE  @0 Variation brusque @5 12
C03 12  X  ENG  @0 Sudden variation @5 12
C03 12  X  SPA  @0 Variación brusca @5 12
C03 13  2  FRE  @0 Eau douce @5 13
C03 13  2  ENG  @0 fresh water @5 13
C03 13  2  SPA  @0 Agua dulce @5 13
C03 14  X  FRE  @0 Climat chaud @5 14
C03 14  X  ENG  @0 Hot climate @5 14
C03 14  X  SPA  @0 Clima caliente @5 14
C03 15  2  FRE  @0 Stratification @5 15
C03 15  2  ENG  @0 stratification @5 15
C03 15  2  SPA  @0 Estratificación @5 15
C03 16  2  FRE  @0 Refroidissement @5 16
C03 16  2  ENG  @0 cooling @5 16
C03 16  2  SPA  @0 Enfriamiento @5 16
C03 17  3  FRE  @0 Modèle climat @5 17
C03 17  3  ENG  @0 Climate models @5 17
C03 18  2  FRE  @0 Eau fond @5 18
C03 18  2  ENG  @0 bottom water @5 18
C03 18  2  SPA  @0 Agua fondo @5 18
C03 19  X  FRE  @0 Masse eau @5 19
C03 19  X  ENG  @0 Water mass @5 19
C03 19  X  SPA  @0 Masa agua @5 19
C03 20  X  FRE  @0 Variation interdécennale @5 20
C03 20  X  ENG  @0 Interdecadal variation @5 20
C03 20  X  SPA  @0 Variación interdecenal @5 20
C03 21  2  FRE  @0 Océan Atlantique Nord @2 NG @5 21
C03 21  2  ENG  @0 North Atlantic @2 NG @5 21
C03 21  2  SPA  @0 Océano Atlántico Norte @2 NG @5 21
C03 22  2  FRE  @0 Transport @5 22
C03 22  2  ENG  @0 transport @5 22
C03 22  2  SPA  @0 Transporte @5 22
C03 23  2  FRE  @0 Transfert chaleur @5 23
C03 23  2  ENG  @0 heat transfer @5 23
C03 23  2  SPA  @0 Transferencia térmica @5 23
C03 24  2  FRE  @0 Variation climatique @5 24
C03 24  2  ENG  @0 climate variations @5 24
C03 25  2  FRE  @0 Paléo-océanographie @5 25
C03 25  2  ENG  @0 paleo-oceanography @5 25
C03 26  X  FRE  @0 Climatologie @5 26
C03 26  X  ENG  @0 Climatology @5 26
C03 26  X  SPA  @0 Climatología @5 26
C03 27  X  FRE  @0 Forçage @5 27
C03 27  X  ENG  @0 Forcing @5 27
C03 27  X  SPA  @0 Forzamiento @5 27
C03 28  2  FRE  @0 Eau surface @5 61
C03 28  2  ENG  @0 surface water @5 61
C03 28  2  SPA  @0 Agua superficie @5 61
C03 29  2  FRE  @0 Contrôle climatique @5 62
C03 29  2  ENG  @0 climatic controls @5 62
C03 30  2  FRE  @0 Température surface @5 64
C03 30  2  ENG  @0 surface temperature @5 64
C03 31  2  FRE  @0 Zonation @5 65
C03 31  2  ENG  @0 zoning @5 65
C03 31  2  SPA  @0 Zonalidad @5 65
C03 32  2  FRE  @0 Modèle couplé @4 CD @5 96
C03 32  2  ENG  @0 Coupled model @4 CD @5 96
C03 32  2  SPA  @0 Modelo acoplado @4 CD @5 96
C07 01  2  FRE  @0 Quaternaire sup @2 NX
C07 01  2  ENG  @0 upper Quaternary @2 NX
C07 01  2  SPA  @0 Cuaternario sup @2 NX
C07 02  2  FRE  @0 Quaternaire @2 NX
C07 02  2  ENG  @0 Quaternary @2 NX
C07 02  2  SPA  @0 Cuaternario @2 NX
C07 03  2  FRE  @0 Cénozoïque @2 NX
C07 03  2  ENG  @0 Cenozoic @2 NX
C07 03  2  SPA  @0 Cenozoico @2 NX
C07 04  2  FRE  @0 Phanérozoïque @2 NX
C07 04  2  ENG  @0 Phanerozoic @2 NX
C07 04  2  SPA  @0 Fanerozoico @2 NX
C07 05  2  FRE  @0 Océan Atlantique @2 564
C07 05  2  ENG  @0 Atlantic Ocean @2 564
C07 05  2  SPA  @0 Océano Atlántico @2 564
N21       @1 277
N44 01      @1 PSI
N82       @1 PSI

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0424548

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">The Role of Oceanic Heat Transport and Wind Stress Forcing in Abrupt Millennial-Scale Climate Transitions</title>
<author>
<name sortKey="Arzel, Olivier" sort="Arzel, Olivier" uniqKey="Arzel O" first="Olivier" last="Arzel">Olivier Arzel</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Climate Change Research Centre, The University of New South Wales</s1>
<s2>Sydney, New South Wales</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="De Verdiere, Alain Colin" sort="De Verdiere, Alain Colin" uniqKey="De Verdiere A" first="Alain Colin" last="De Verdiere">Alain Colin De Verdiere</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire de Physique des Océans, Université de Bretagne Occidentale</s1>
<s2>Brest</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="England, Matthew H" sort="England, Matthew H" uniqKey="England M" first="Matthew H." last="England">Matthew H. England</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Climate Change Research Centre, The University of New South Wales</s1>
<s2>Sydney, New South Wales</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">10-0424548</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0424548 INIST</idno>
<idno type="RBID">Pascal:10-0424548</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">002392</idno>
<idno type="wicri:Area/PascalFrancis/Curation">003C01</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">The Role of Oceanic Heat Transport and Wind Stress Forcing in Abrupt Millennial-Scale Climate Transitions</title>
<author>
<name sortKey="Arzel, Olivier" sort="Arzel, Olivier" uniqKey="Arzel O" first="Olivier" last="Arzel">Olivier Arzel</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Climate Change Research Centre, The University of New South Wales</s1>
<s2>Sydney, New South Wales</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="De Verdiere, Alain Colin" sort="De Verdiere, Alain Colin" uniqKey="De Verdiere A" first="Alain Colin" last="De Verdiere">Alain Colin De Verdiere</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire de Physique des Océans, Université de Bretagne Occidentale</s1>
<s2>Brest</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="England, Matthew H" sort="England, Matthew H" uniqKey="England M" first="Matthew H." last="England">Matthew H. England</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Climate Change Research Centre, The University of New South Wales</s1>
<s2>Sydney, New South Wales</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of climate</title>
<title level="j" type="abbreviated">J. clim.</title>
<idno type="ISSN">0894-8755</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of climate</title>
<title level="j" type="abbreviated">J. clim.</title>
<idno type="ISSN">0894-8755</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Climate models</term>
<term>Climatology</term>
<term>Cold climate</term>
<term>Coupled model</term>
<term>Dansgaard-Oeschger events</term>
<term>Forcing</term>
<term>Free oscillation</term>
<term>Holocene</term>
<term>Hot climate</term>
<term>Interdecadal variation</term>
<term>North Atlantic</term>
<term>Sudden variation</term>
<term>Water mass</term>
<term>Wind effect</term>
<term>bottom water</term>
<term>climate variations</term>
<term>climatic controls</term>
<term>cooling</term>
<term>fresh water</term>
<term>glacial periods</term>
<term>heat transfer</term>
<term>instability</term>
<term>paleo-oceanography</term>
<term>paleoclimate</term>
<term>sea ice</term>
<term>stability</term>
<term>stratification</term>
<term>surface temperature</term>
<term>surface water</term>
<term>thermohaline circulation</term>
<term>transport</term>
<term>zoning</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Action vent</term>
<term>Paléoclimat</term>
<term>Période glaciaire</term>
<term>Evénement Dansgaard-Oeschger</term>
<term>Circulation thermohaline</term>
<term>Glace marine</term>
<term>Instabilité</term>
<term>Stabilité</term>
<term>Holocène</term>
<term>Oscillation libre</term>
<term>Climat froid</term>
<term>Variation brusque</term>
<term>Eau douce</term>
<term>Climat chaud</term>
<term>Stratification</term>
<term>Refroidissement</term>
<term>Modèle climat</term>
<term>Eau fond</term>
<term>Masse eau</term>
<term>Variation interdécennale</term>
<term>Océan Atlantique Nord</term>
<term>Transport</term>
<term>Transfert chaleur</term>
<term>Variation climatique</term>
<term>Paléo-océanographie</term>
<term>Climatologie</term>
<term>Forçage</term>
<term>Eau surface</term>
<term>Contrôle climatique</term>
<term>Température surface</term>
<term>Zonation</term>
<term>Modèle couplé</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Eau douce</term>
<term>Climatologie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The last glacial period was punctuated by rapid climate shifts, known as Dansgaard-Oeschger events, with strong imprint in the North Atlantic sector suggesting that they were linked with the Atlantic meridional overturning circulation. Here an idealized single-hemisphere three-dimensional ocean-atmosphere-sea ice coupled model is used to explore the possible origin of the instability driving these abrupt events and to provide a plausible explanation for the relative stability of the Holocene. Focusing on the physics of noise-free millennial oscillations under steady external (solar) forcing, it was shown that cold climates become unstable, that is, exhibit abrupt millennial-scale transitions, for significantly lower freshwater fluxes than warm climates, in agreement with previous studies making use of zonally averaged coupled models. This fundamental difference is a direct consequence of the weaker stratification of the glacial ocean, mainly caused by upper-ocean cooling. Using a two-hemisphere configuration of a coupled climate model of intermediate complexity, it is shown that this result is robust to the added presence of a bottom water mass of southern origin. The analysis reveals that under particular conditions, a pronounced interdecadal variability develops during warm interstadials. While the nature of the instability driving the millennial oscillations is identical to that found in ocean models under mixed boundary conditions, these interstadial-interdecadal oscillations share the same characteristics as those previously found in ocean models forced by fixed surface fluxes. The wind stress forcing is shown to profoundly affect both the properties and bifurcation structure of thermohaline millennial oscillations across a wide range of variation of freshwater forcing. In particular, it is shown that the wind stress forcing favors the maintenance of thermally direct meridional overturning circulations during the cold stadial phases of Dansgaard-Oeschger cycles.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0894-8755</s0>
</fA01>
<fA03 i2="1">
<s0>J. clim.</s0>
</fA03>
<fA05>
<s2>23</s2>
</fA05>
<fA06>
<s2>9</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>The Role of Oceanic Heat Transport and Wind Stress Forcing in Abrupt Millennial-Scale Climate Transitions</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ARZEL (Olivier)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DE VERDIERE (Alain Colin)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ENGLAND (Matthew H.)</s1>
</fA11>
<fA14 i1="01">
<s1>Climate Change Research Centre, The University of New South Wales</s1>
<s2>Sydney, New South Wales</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Laboratoire de Physique des Océans, Université de Bretagne Occidentale</s1>
<s2>Brest</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>2233-2256</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>9644B</s2>
<s5>354000170430930010</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.3/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0424548</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of climate</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The last glacial period was punctuated by rapid climate shifts, known as Dansgaard-Oeschger events, with strong imprint in the North Atlantic sector suggesting that they were linked with the Atlantic meridional overturning circulation. Here an idealized single-hemisphere three-dimensional ocean-atmosphere-sea ice coupled model is used to explore the possible origin of the instability driving these abrupt events and to provide a plausible explanation for the relative stability of the Holocene. Focusing on the physics of noise-free millennial oscillations under steady external (solar) forcing, it was shown that cold climates become unstable, that is, exhibit abrupt millennial-scale transitions, for significantly lower freshwater fluxes than warm climates, in agreement with previous studies making use of zonally averaged coupled models. This fundamental difference is a direct consequence of the weaker stratification of the glacial ocean, mainly caused by upper-ocean cooling. Using a two-hemisphere configuration of a coupled climate model of intermediate complexity, it is shown that this result is robust to the added presence of a bottom water mass of southern origin. The analysis reveals that under particular conditions, a pronounced interdecadal variability develops during warm interstadials. While the nature of the instability driving the millennial oscillations is identical to that found in ocean models under mixed boundary conditions, these interstadial-interdecadal oscillations share the same characteristics as those previously found in ocean models forced by fixed surface fluxes. The wind stress forcing is shown to profoundly affect both the properties and bifurcation structure of thermohaline millennial oscillations across a wide range of variation of freshwater forcing. In particular, it is shown that the wind stress forcing favors the maintenance of thermally direct meridional overturning circulations during the cold stadial phases of Dansgaard-Oeschger cycles.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>001E02D</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>001E01H</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>001E01P02</s0>
</fC02>
<fC02 i1="04" i2="2">
<s0>223B</s0>
</fC02>
<fC02 i1="05" i2="2">
<s0>226C02</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Action vent</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Wind effect</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Acción viento</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Paléoclimat</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>paleoclimate</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Paleoclima</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Période glaciaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>glacial periods</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="SPA">
<s0>Período glaciario</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Evénement Dansgaard-Oeschger</s0>
<s2>NX</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>Dansgaard-Oeschger events</s0>
<s2>NX</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Circulation thermohaline</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>thermohaline circulation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Circulación termohalina</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Glace marine</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>sea ice</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Hielo marino</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Instabilité</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>instability</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Stabilité</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>stability</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Estabilidad</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Holocène</s0>
<s2>NX</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>Holocene</s0>
<s2>NX</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Holoceno</s0>
<s2>NX</s2>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Oscillation libre</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Free oscillation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Oscilación libre</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Climat froid</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Cold climate</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Clima frío</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Variation brusque</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Sudden variation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Variación brusca</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Eau douce</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>fresh water</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="SPA">
<s0>Agua dulce</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Climat chaud</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Hot climate</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Clima caliente</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Stratification</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>stratification</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="SPA">
<s0>Estratificación</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Refroidissement</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>cooling</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Enfriamiento</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Modèle climat</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Climate models</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Eau fond</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>bottom water</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="SPA">
<s0>Agua fondo</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Masse eau</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Water mass</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Masa agua</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Variation interdécennale</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Interdecadal variation</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Variación interdecenal</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="2" l="FRE">
<s0>Océan Atlantique Nord</s0>
<s2>NG</s2>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="2" l="ENG">
<s0>North Atlantic</s0>
<s2>NG</s2>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="2" l="SPA">
<s0>Océano Atlántico Norte</s0>
<s2>NG</s2>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="2" l="FRE">
<s0>Transport</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="2" l="ENG">
<s0>transport</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="2" l="SPA">
<s0>Transporte</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="2" l="FRE">
<s0>Transfert chaleur</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="2" l="ENG">
<s0>heat transfer</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="2" l="SPA">
<s0>Transferencia térmica</s0>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="2" l="FRE">
<s0>Variation climatique</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="2" l="ENG">
<s0>climate variations</s0>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="2" l="FRE">
<s0>Paléo-océanographie</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="2" l="ENG">
<s0>paleo-oceanography</s0>
<s5>25</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Climatologie</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Climatology</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Climatología</s0>
<s5>26</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Forçage</s0>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Forcing</s0>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Forzamiento</s0>
<s5>27</s5>
</fC03>
<fC03 i1="28" i2="2" l="FRE">
<s0>Eau surface</s0>
<s5>61</s5>
</fC03>
<fC03 i1="28" i2="2" l="ENG">
<s0>surface water</s0>
<s5>61</s5>
</fC03>
<fC03 i1="28" i2="2" l="SPA">
<s0>Agua superficie</s0>
<s5>61</s5>
</fC03>
<fC03 i1="29" i2="2" l="FRE">
<s0>Contrôle climatique</s0>
<s5>62</s5>
</fC03>
<fC03 i1="29" i2="2" l="ENG">
<s0>climatic controls</s0>
<s5>62</s5>
</fC03>
<fC03 i1="30" i2="2" l="FRE">
<s0>Température surface</s0>
<s5>64</s5>
</fC03>
<fC03 i1="30" i2="2" l="ENG">
<s0>surface temperature</s0>
<s5>64</s5>
</fC03>
<fC03 i1="31" i2="2" l="FRE">
<s0>Zonation</s0>
<s5>65</s5>
</fC03>
<fC03 i1="31" i2="2" l="ENG">
<s0>zoning</s0>
<s5>65</s5>
</fC03>
<fC03 i1="31" i2="2" l="SPA">
<s0>Zonalidad</s0>
<s5>65</s5>
</fC03>
<fC03 i1="32" i2="2" l="FRE">
<s0>Modèle couplé</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="32" i2="2" l="ENG">
<s0>Coupled model</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="32" i2="2" l="SPA">
<s0>Modelo acoplado</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC07 i1="01" i2="2" l="FRE">
<s0>Quaternaire sup</s0>
<s2>NX</s2>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>upper Quaternary</s0>
<s2>NX</s2>
</fC07>
<fC07 i1="01" i2="2" l="SPA">
<s0>Cuaternario sup</s0>
<s2>NX</s2>
</fC07>
<fC07 i1="02" i2="2" l="FRE">
<s0>Quaternaire</s0>
<s2>NX</s2>
</fC07>
<fC07 i1="02" i2="2" l="ENG">
<s0>Quaternary</s0>
<s2>NX</s2>
</fC07>
<fC07 i1="02" i2="2" l="SPA">
<s0>Cuaternario</s0>
<s2>NX</s2>
</fC07>
<fC07 i1="03" i2="2" l="FRE">
<s0>Cénozoïque</s0>
<s2>NX</s2>
</fC07>
<fC07 i1="03" i2="2" l="ENG">
<s0>Cenozoic</s0>
<s2>NX</s2>
</fC07>
<fC07 i1="03" i2="2" l="SPA">
<s0>Cenozoico</s0>
<s2>NX</s2>
</fC07>
<fC07 i1="04" i2="2" l="FRE">
<s0>Phanérozoïque</s0>
<s2>NX</s2>
</fC07>
<fC07 i1="04" i2="2" l="ENG">
<s0>Phanerozoic</s0>
<s2>NX</s2>
</fC07>
<fC07 i1="04" i2="2" l="SPA">
<s0>Fanerozoico</s0>
<s2>NX</s2>
</fC07>
<fC07 i1="05" i2="2" l="FRE">
<s0>Océan Atlantique</s0>
<s2>564</s2>
</fC07>
<fC07 i1="05" i2="2" l="ENG">
<s0>Atlantic Ocean</s0>
<s2>564</s2>
</fC07>
<fC07 i1="05" i2="2" l="SPA">
<s0>Océano Atlántico</s0>
<s2>564</s2>
</fC07>
<fN21>
<s1>277</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003C01 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 003C01 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:10-0424548
   |texte=   The Role of Oceanic Heat Transport and Wind Stress Forcing in Abrupt Millennial-Scale Climate Transitions
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024