Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Microbial food web structure in a naturally iron-fertilized area in the Southern Ocean (Kerguelen Plateau)

Identifieur interne : 002B44 ( PascalFrancis/Curation ); précédent : 002B43; suivant : 002B45

Microbial food web structure in a naturally iron-fertilized area in the Southern Ocean (Kerguelen Plateau)

Auteurs : U. Christaki [France] ; I. Obernosterer [France] ; F. Van Wambeke [France] ; M. Veldhuis [Pays-Bas] ; N. Garcia [France] ; P. Catala [France]

Source :

RBID : Pascal:08-0300421

Descripteurs français

English descriptors

Abstract

The objective of this study in the framework of the KErguelen Ocean and Plateau compared Study, 2005-2007 (KEOPS) project was to examine the microbial food web structure within a phytoplankton bloom induced by natural iron fertilization. Integrated bacterial production (BP, 0-100 m) varied 12-fold over the study area (23.5-304 mg C m-2 d-1), while bacterial abundance (0-100 m) varied only by a factor of 2.8. Highest bacterial abundances and rates of BP were observed in the center of the diatom-dominated bloom, and substantial decreases in BP towards the later bloom stage were detectable. The abundance of bacterial predators (heterotrophic nanoflagellates, HNF) showed a significant coupling with BP in the high-nutrient low-chlorophyll (HNLC) area only. In the core of the bloom, BP consumed by HNF was 27 %, 29%, 52% and 34% during the four consecutive visits that extended over 4 weeks and was much higher (80-95%) in HNLC waters. The relative contribution of the small-sized (< 10 μm) phytoplankton in terms of chlorophyll was only minor within bloom. Ciliated protozoa showed low abundance (20-556 cells l-1) all over the studied area; however, in terms of biomass ciliates were more important within (224 mg C m-2, 0-lOOm) than outside the bloom (30.5 mg C m-2, 0-100m). This difference was attributable mainly to tintinnids Cymatocyclis spp. accounting for 30-80% of the total ciliate biomass within the Kerguelen bloom but being rare in the HNLC water. Mixotrophic ciliate biomass accounted for 40-60% of the total aloricate ciliate biomass all over the studied area. This was mainly due to the relatively large size of mixotrophic ciliates present in the samples (Tontonia antarctica, Strombidium spp. and Laboea strobila). Overall, our results suggest a strong response of bacteria, weak response of HNF, and strong controlling effects on ciliates. The weak coupling between heterotrophic bacteria and HNF and the low abundance of ciliates suggest a low transfer of carbon from the microbial to the classical food web within the Kerguelen bloom.
pA  
A01 01  1    @0 0967-0645
A03   1    @0 Deep-sea res., Part 2, Top. stud. oceanogr.
A05       @2 55
A06       @2 5-7
A08 01  1  ENG  @1 Microbial food web structure in a naturally iron-fertilized area in the Southern Ocean (Kerguelen Plateau)
A09 01  1  ENG  @1 KEOPS: Kerguelen Ocean and Plateau compared Study
A11 01  1    @1 CHRISTAKI (U.)
A11 02  1    @1 OBERNOSTERER (I.)
A11 03  1    @1 VAN WAMBEKE (F.)
A11 04  1    @1 VELDHUIS (M.)
A11 05  1    @1 GARCIA (N.)
A11 06  1    @1 CATALA (P.)
A12 01  1    @1 BLAIN (Stéphane) @9 ed.
A12 02  1    @1 QUEGUINER (Bernard) @9 ed.
A12 03  1    @1 TRULL (Thomas) @9 ed.
A14 01      @1 Laboratoire d'Océanologie et de Géosciences (LOG) CNRS -UMR 8187. Université du Littoral Côte d'Opale, 32 avenue Foch @2 62930 Wimereux @3 FRA @Z 1 aut.
A14 02      @1 Laboratoire d'Océanographie Biologique de Banyuls (ARAGO) CNRS UMR 7621, Université Pierre et Marie Curie-Paris 6 @2 66650 Banyuls-sur-Mer @3 FRA @Z 2 aut. @Z 6 aut.
A14 03      @1 Laboratoire de Microbiologie, Géologie et Ecologie Marine (LMGEM), CNRS. Université de la Méditerranée, UMR 6117, Campus de Luminy, Case 901 @2 13288 Marseille @3 FRA @Z 3 aut.
A14 04      @1 Royal Netherlands Institute for Sea Research, P.O. Box 59 @2 1790 AB, Den Burg, Texel @3 NLD @Z 4 aut.
A14 05      @1 Laboratoire d'Océanographie et de Biogéochimie, OSU/Centre d'Océanologie de Marseille, Campus de Luminy, Aix-Marseille Université. CNRS. LOB-UMR 6535. case 901 @2 13288 Marseille @3 FRA @Z 5 aut.
A15 01      @1 Laboratoire d'Océanographie Biologique, UMR CNRS 7621, Université Pierre et Marie Curie, BP 44 @2 66651 Banuyls sur mer @3 FRA @Z 1 aut.
A15 02      @1 Aix-Marseille Université, CNRS, LOB-UMR 6535, Laboratoire d'Océanographie et de Biogéochimie, OSU/Centre d'Océanologie de Marseille @2 Marseille 13288 @3 FRA @Z 2 aut.
A15 03      @1 ACE CRC, PB 80, University of Tasmania @2 Hobart, 7001 @3 AUS @Z 3 aut.
A20       @1 706-719
A21       @1 2008
A23 01      @0 ENG
A43 01      @1 INIST @2 7679A2 @5 354000195987060100
A44       @0 0000 @1 © 2008 INIST-CNRS. All rights reserved.
A45       @0 1 p.3/4
A47 01  1    @0 08-0300421
A60       @1 P
A61       @0 A
A64 01  1    @0 Deep-sea research. Part 2. Topical studies in oceanography
A66 01      @0 GBR
C01 01    ENG  @0 The objective of this study in the framework of the KErguelen Ocean and Plateau compared Study, 2005-2007 (KEOPS) project was to examine the microbial food web structure within a phytoplankton bloom induced by natural iron fertilization. Integrated bacterial production (BP, 0-100 m) varied 12-fold over the study area (23.5-304 mg C m-2 d-1), while bacterial abundance (0-100 m) varied only by a factor of 2.8. Highest bacterial abundances and rates of BP were observed in the center of the diatom-dominated bloom, and substantial decreases in BP towards the later bloom stage were detectable. The abundance of bacterial predators (heterotrophic nanoflagellates, HNF) showed a significant coupling with BP in the high-nutrient low-chlorophyll (HNLC) area only. In the core of the bloom, BP consumed by HNF was 27 %, 29%, 52% and 34% during the four consecutive visits that extended over 4 weeks and was much higher (80-95%) in HNLC waters. The relative contribution of the small-sized (< 10 μm) phytoplankton in terms of chlorophyll was only minor within bloom. Ciliated protozoa showed low abundance (20-556 cells l-1) all over the studied area; however, in terms of biomass ciliates were more important within (224 mg C m-2, 0-lOOm) than outside the bloom (30.5 mg C m-2, 0-100m). This difference was attributable mainly to tintinnids Cymatocyclis spp. accounting for 30-80% of the total ciliate biomass within the Kerguelen bloom but being rare in the HNLC water. Mixotrophic ciliate biomass accounted for 40-60% of the total aloricate ciliate biomass all over the studied area. This was mainly due to the relatively large size of mixotrophic ciliates present in the samples (Tontonia antarctica, Strombidium spp. and Laboea strobila). Overall, our results suggest a strong response of bacteria, weak response of HNF, and strong controlling effects on ciliates. The weak coupling between heterotrophic bacteria and HNF and the low abundance of ciliates suggest a low transfer of carbon from the microbial to the classical food web within the Kerguelen bloom.
C02 01  2    @0 001E02B
C02 02  2    @0 001E01P02
C02 03  2    @0 001E01H
C02 04  2    @0 226C02
C02 05  2    @0 223B
C03 01  2  FRE  @0 Fer @5 01
C03 01  2  ENG  @0 iron @5 01
C03 01  2  SPA  @0 Hierro @5 01
C03 02  2  FRE  @0 Océan Antarctique @2 564 @5 02
C03 02  2  ENG  @0 Antarctic Ocean @2 564 @5 02
C03 03  2  FRE  @0 Bâti @5 03
C03 03  2  ENG  @0 frame structure @5 03
C03 04  2  FRE  @0 Projet @5 04
C03 04  2  ENG  @0 projects @5 04
C03 04  2  SPA  @0 Proyecto @5 04
C03 05  2  FRE  @0 Phytoplancton @2 NY @5 05
C03 05  2  ENG  @0 phytoplankton @2 NY @5 05
C03 05  2  SPA  @0 Fitoplancton @2 NY @5 05
C03 06  2  FRE  @0 Fertilisation @5 06
C03 06  2  ENG  @0 fertilization @5 06
C03 06  2  SPA  @0 Fertilización @5 06
C03 07  2  FRE  @0 Pli @5 07
C03 07  2  ENG  @0 folds @5 07
C03 07  2  SPA  @0 Pliegue @5 07
C03 08  2  FRE  @0 Abondance @5 08
C03 08  2  ENG  @0 abundance @5 08
C03 08  2  SPA  @0 Abundancia @5 08
C03 09  2  FRE  @0 Diatomeae @2 NY @5 09
C03 09  2  ENG  @0 diatoms @2 NY @5 09
C03 09  2  SPA  @0 Diatomea @2 NY @5 09
C03 10  2  FRE  @0 Prédateur @5 10
C03 10  2  ENG  @0 predators @5 10
C03 11  X  FRE  @0 Couplage faible @5 11
C03 11  X  ENG  @0 Weak coupling @5 11
C03 11  X  SPA  @0 Acoplamiento débil @5 11
C03 12  2  FRE  @0 Elément nutritif @5 12
C03 12  2  ENG  @0 nutrients @5 12
C03 12  2  SPA  @0 Nutriente @5 12
C03 13  2  FRE  @0 Chlorophylle @5 14
C03 13  2  ENG  @0 chlorophyll @5 14
C03 13  2  SPA  @0 Clorofila @5 14
C03 14  2  FRE  @0 Carotte @5 15
C03 14  2  ENG  @0 drill cores @5 15
C03 14  2  SPA  @0 Testigo @5 15
C03 15  2  FRE  @0 Protozoa @5 16
C03 15  2  ENG  @0 Protozoa @5 16
C03 15  2  SPA  @0 Protozoa @5 16
C03 16  2  FRE  @0 Biomasse @5 17
C03 16  2  ENG  @0 biomass @5 17
C03 16  2  SPA  @0 Biomasa @5 17
C03 17  2  FRE  @0 Bactérie @2 NY @5 18
C03 17  2  ENG  @0 bacteria @2 NY @5 18
C03 18  2  FRE  @0 Carbone @5 19
C03 18  2  ENG  @0 carbon @5 19
C03 18  2  SPA  @0 Carbono @5 19
C03 19  2  FRE  @0 Plateau Kerguelen @2 NG @5 61
C03 19  2  ENG  @0 Kerguelen Plateau @2 NG @5 61
C03 20  2  FRE  @0 Antarctique @2 NG @5 62
C03 20  2  ENG  @0 Antarctica @2 NG @5 62
C03 20  2  SPA  @0 Antártico @2 NG @5 62
C07 01  2  FRE  @0 Plancton @2 NY
C07 01  2  ENG  @0 plankton @2 NY
C07 01  2  SPA  @0 Plancton @2 NY
C07 02  2  FRE  @0 Algae @2 NY
C07 02  2  ENG  @0 algae @2 NY
C07 02  2  SPA  @0 Algae @2 NY
C07 03  2  FRE  @0 Thallophyta @2 NY
C07 03  2  ENG  @0 Thallophyta @2 NY
C07 03  2  SPA  @0 Thallophyta @2 NY
C07 04  2  FRE  @0 Plantae @2 NY
C07 04  2  ENG  @0 Plantae @2 NY
C07 05  2  FRE  @0 Procaryote @2 NY
C07 05  2  ENG  @0 prokaryotes @2 NY
C07 06  2  FRE  @0 Océan Indien @2 564
C07 06  2  ENG  @0 Indian Ocean @2 564
C07 06  2  SPA  @0 Océano Indico @2 564
C07 07  2  FRE  @0 Région Polaire @2 564
C07 07  2  ENG  @0 polar regions @2 564
N21       @1 189
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:08-0300421

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Microbial food web structure in a naturally iron-fertilized area in the Southern Ocean (Kerguelen Plateau)</title>
<author>
<name sortKey="Christaki, U" sort="Christaki, U" uniqKey="Christaki U" first="U." last="Christaki">U. Christaki</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire d'Océanologie et de Géosciences (LOG) CNRS -UMR 8187. Université du Littoral Côte d'Opale, 32 avenue Foch</s1>
<s2>62930 Wimereux</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Obernosterer, I" sort="Obernosterer, I" uniqKey="Obernosterer I" first="I." last="Obernosterer">I. Obernosterer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire d'Océanographie Biologique de Banyuls (ARAGO) CNRS UMR 7621, Université Pierre et Marie Curie-Paris 6</s1>
<s2>66650 Banyuls-sur-Mer</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Van Wambeke, F" sort="Van Wambeke, F" uniqKey="Van Wambeke F" first="F." last="Van Wambeke">F. Van Wambeke</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Laboratoire de Microbiologie, Géologie et Ecologie Marine (LMGEM), CNRS. Université de la Méditerranée, UMR 6117, Campus de Luminy, Case 901</s1>
<s2>13288 Marseille</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Veldhuis, M" sort="Veldhuis, M" uniqKey="Veldhuis M" first="M." last="Veldhuis">M. Veldhuis</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Royal Netherlands Institute for Sea Research, P.O. Box 59</s1>
<s2>1790 AB, Den Burg, Texel</s2>
<s3>NLD</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
</affiliation>
</author>
<author>
<name sortKey="Garcia, N" sort="Garcia, N" uniqKey="Garcia N" first="N." last="Garcia">N. Garcia</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Laboratoire d'Océanographie et de Biogéochimie, OSU/Centre d'Océanologie de Marseille, Campus de Luminy, Aix-Marseille Université. CNRS. LOB-UMR 6535. case 901</s1>
<s2>13288 Marseille</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Catala, P" sort="Catala, P" uniqKey="Catala P" first="P." last="Catala">P. Catala</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire d'Océanographie Biologique de Banyuls (ARAGO) CNRS UMR 7621, Université Pierre et Marie Curie-Paris 6</s1>
<s2>66650 Banyuls-sur-Mer</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">08-0300421</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0300421 INIST</idno>
<idno type="RBID">Pascal:08-0300421</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">003505</idno>
<idno type="wicri:Area/PascalFrancis/Curation">002B44</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Microbial food web structure in a naturally iron-fertilized area in the Southern Ocean (Kerguelen Plateau)</title>
<author>
<name sortKey="Christaki, U" sort="Christaki, U" uniqKey="Christaki U" first="U." last="Christaki">U. Christaki</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire d'Océanologie et de Géosciences (LOG) CNRS -UMR 8187. Université du Littoral Côte d'Opale, 32 avenue Foch</s1>
<s2>62930 Wimereux</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Obernosterer, I" sort="Obernosterer, I" uniqKey="Obernosterer I" first="I." last="Obernosterer">I. Obernosterer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire d'Océanographie Biologique de Banyuls (ARAGO) CNRS UMR 7621, Université Pierre et Marie Curie-Paris 6</s1>
<s2>66650 Banyuls-sur-Mer</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Van Wambeke, F" sort="Van Wambeke, F" uniqKey="Van Wambeke F" first="F." last="Van Wambeke">F. Van Wambeke</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Laboratoire de Microbiologie, Géologie et Ecologie Marine (LMGEM), CNRS. Université de la Méditerranée, UMR 6117, Campus de Luminy, Case 901</s1>
<s2>13288 Marseille</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Veldhuis, M" sort="Veldhuis, M" uniqKey="Veldhuis M" first="M." last="Veldhuis">M. Veldhuis</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Royal Netherlands Institute for Sea Research, P.O. Box 59</s1>
<s2>1790 AB, Den Burg, Texel</s2>
<s3>NLD</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
</affiliation>
</author>
<author>
<name sortKey="Garcia, N" sort="Garcia, N" uniqKey="Garcia N" first="N." last="Garcia">N. Garcia</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Laboratoire d'Océanographie et de Biogéochimie, OSU/Centre d'Océanologie de Marseille, Campus de Luminy, Aix-Marseille Université. CNRS. LOB-UMR 6535. case 901</s1>
<s2>13288 Marseille</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Catala, P" sort="Catala, P" uniqKey="Catala P" first="P." last="Catala">P. Catala</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire d'Océanographie Biologique de Banyuls (ARAGO) CNRS UMR 7621, Université Pierre et Marie Curie-Paris 6</s1>
<s2>66650 Banyuls-sur-Mer</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Deep-sea research. Part 2. Topical studies in oceanography</title>
<title level="j" type="abbreviated">Deep-sea res., Part 2, Top. stud. oceanogr.</title>
<idno type="ISSN">0967-0645</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Deep-sea research. Part 2. Topical studies in oceanography</title>
<title level="j" type="abbreviated">Deep-sea res., Part 2, Top. stud. oceanogr.</title>
<idno type="ISSN">0967-0645</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antarctic Ocean</term>
<term>Antarctica</term>
<term>Kerguelen Plateau</term>
<term>Protozoa</term>
<term>Weak coupling</term>
<term>abundance</term>
<term>bacteria</term>
<term>biomass</term>
<term>carbon</term>
<term>chlorophyll</term>
<term>diatoms</term>
<term>drill cores</term>
<term>fertilization</term>
<term>folds</term>
<term>frame structure</term>
<term>iron</term>
<term>nutrients</term>
<term>phytoplankton</term>
<term>predators</term>
<term>projects</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Fer</term>
<term>Océan Antarctique</term>
<term>Bâti</term>
<term>Projet</term>
<term>Phytoplancton</term>
<term>Fertilisation</term>
<term>Pli</term>
<term>Abondance</term>
<term>Diatomeae</term>
<term>Prédateur</term>
<term>Couplage faible</term>
<term>Elément nutritif</term>
<term>Chlorophylle</term>
<term>Carotte</term>
<term>Protozoa</term>
<term>Biomasse</term>
<term>Bactérie</term>
<term>Carbone</term>
<term>Plateau Kerguelen</term>
<term>Antarctique</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Fer</term>
<term>Océan Antarctique</term>
<term>Biomasse</term>
<term>Carbone</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The objective of this study in the framework of the KErguelen Ocean and Plateau compared Study, 2005-2007 (KEOPS) project was to examine the microbial food web structure within a phytoplankton bloom induced by natural iron fertilization. Integrated bacterial production (BP, 0-100 m) varied 12-fold over the study area (23.5-304 mg C m
<sup>-2</sup>
d
<sup>-1</sup>
), while bacterial abundance (0-100 m) varied only by a factor of 2.8. Highest bacterial abundances and rates of BP were observed in the center of the diatom-dominated bloom, and substantial decreases in BP towards the later bloom stage were detectable. The abundance of bacterial predators (heterotrophic nanoflagellates, HNF) showed a significant coupling with BP in the high-nutrient low-chlorophyll (HNLC) area only. In the core of the bloom, BP consumed by HNF was 27 %, 29%, 52% and 34% during the four consecutive visits that extended over 4 weeks and was much higher (80-95%) in HNLC waters. The relative contribution of the small-sized (< 10 μm) phytoplankton in terms of chlorophyll was only minor within bloom. Ciliated protozoa showed low abundance (20-556 cells l
<sup>-1</sup>
) all over the studied area; however, in terms of biomass ciliates were more important within (224 mg C m
<sup>-2</sup>
, 0-lOOm) than outside the bloom (30.5 mg C m
<sup>-2</sup>
, 0-100m). This difference was attributable mainly to tintinnids Cymatocyclis spp. accounting for 30-80% of the total ciliate biomass within the Kerguelen bloom but being rare in the HNLC water. Mixotrophic ciliate biomass accounted for 40-60% of the total aloricate ciliate biomass all over the studied area. This was mainly due to the relatively large size of mixotrophic ciliates present in the samples (Tontonia antarctica, Strombidium spp. and Laboea strobila). Overall, our results suggest a strong response of bacteria, weak response of HNF, and strong controlling effects on ciliates. The weak coupling between heterotrophic bacteria and HNF and the low abundance of ciliates suggest a low transfer of carbon from the microbial to the classical food web within the Kerguelen bloom.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0967-0645</s0>
</fA01>
<fA03 i2="1">
<s0>Deep-sea res., Part 2, Top. stud. oceanogr.</s0>
</fA03>
<fA05>
<s2>55</s2>
</fA05>
<fA06>
<s2>5-7</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Microbial food web structure in a naturally iron-fertilized area in the Southern Ocean (Kerguelen Plateau)</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>KEOPS: Kerguelen Ocean and Plateau compared Study</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>CHRISTAKI (U.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>OBERNOSTERER (I.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>VAN WAMBEKE (F.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>VELDHUIS (M.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>GARCIA (N.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>CATALA (P.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BLAIN (Stéphane)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>QUEGUINER (Bernard)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>TRULL (Thomas)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Laboratoire d'Océanologie et de Géosciences (LOG) CNRS -UMR 8187. Université du Littoral Côte d'Opale, 32 avenue Foch</s1>
<s2>62930 Wimereux</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Laboratoire d'Océanographie Biologique de Banyuls (ARAGO) CNRS UMR 7621, Université Pierre et Marie Curie-Paris 6</s1>
<s2>66650 Banyuls-sur-Mer</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Laboratoire de Microbiologie, Géologie et Ecologie Marine (LMGEM), CNRS. Université de la Méditerranée, UMR 6117, Campus de Luminy, Case 901</s1>
<s2>13288 Marseille</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Royal Netherlands Institute for Sea Research, P.O. Box 59</s1>
<s2>1790 AB, Den Burg, Texel</s2>
<s3>NLD</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Laboratoire d'Océanographie et de Biogéochimie, OSU/Centre d'Océanologie de Marseille, Campus de Luminy, Aix-Marseille Université. CNRS. LOB-UMR 6535. case 901</s1>
<s2>13288 Marseille</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Laboratoire d'Océanographie Biologique, UMR CNRS 7621, Université Pierre et Marie Curie, BP 44</s1>
<s2>66651 Banuyls sur mer</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Aix-Marseille Université, CNRS, LOB-UMR 6535, Laboratoire d'Océanographie et de Biogéochimie, OSU/Centre d'Océanologie de Marseille</s1>
<s2>Marseille 13288</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>ACE CRC, PB 80, University of Tasmania</s1>
<s2>Hobart, 7001</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA20>
<s1>706-719</s1>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>7679A2</s2>
<s5>354000195987060100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.3/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0300421</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Deep-sea research. Part 2. Topical studies in oceanography</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The objective of this study in the framework of the KErguelen Ocean and Plateau compared Study, 2005-2007 (KEOPS) project was to examine the microbial food web structure within a phytoplankton bloom induced by natural iron fertilization. Integrated bacterial production (BP, 0-100 m) varied 12-fold over the study area (23.5-304 mg C m
<sup>-2</sup>
d
<sup>-1</sup>
), while bacterial abundance (0-100 m) varied only by a factor of 2.8. Highest bacterial abundances and rates of BP were observed in the center of the diatom-dominated bloom, and substantial decreases in BP towards the later bloom stage were detectable. The abundance of bacterial predators (heterotrophic nanoflagellates, HNF) showed a significant coupling with BP in the high-nutrient low-chlorophyll (HNLC) area only. In the core of the bloom, BP consumed by HNF was 27 %, 29%, 52% and 34% during the four consecutive visits that extended over 4 weeks and was much higher (80-95%) in HNLC waters. The relative contribution of the small-sized (< 10 μm) phytoplankton in terms of chlorophyll was only minor within bloom. Ciliated protozoa showed low abundance (20-556 cells l
<sup>-1</sup>
) all over the studied area; however, in terms of biomass ciliates were more important within (224 mg C m
<sup>-2</sup>
, 0-lOOm) than outside the bloom (30.5 mg C m
<sup>-2</sup>
, 0-100m). This difference was attributable mainly to tintinnids Cymatocyclis spp. accounting for 30-80% of the total ciliate biomass within the Kerguelen bloom but being rare in the HNLC water. Mixotrophic ciliate biomass accounted for 40-60% of the total aloricate ciliate biomass all over the studied area. This was mainly due to the relatively large size of mixotrophic ciliates present in the samples (Tontonia antarctica, Strombidium spp. and Laboea strobila). Overall, our results suggest a strong response of bacteria, weak response of HNF, and strong controlling effects on ciliates. The weak coupling between heterotrophic bacteria and HNF and the low abundance of ciliates suggest a low transfer of carbon from the microbial to the classical food web within the Kerguelen bloom.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>001E02B</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>001E01P02</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>001E01H</s0>
</fC02>
<fC02 i1="04" i2="2">
<s0>226C02</s0>
</fC02>
<fC02 i1="05" i2="2">
<s0>223B</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Fer</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>iron</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Hierro</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Océan Antarctique</s0>
<s2>564</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>Antarctic Ocean</s0>
<s2>564</s2>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Bâti</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>frame structure</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Projet</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>projects</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="SPA">
<s0>Proyecto</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Phytoplancton</s0>
<s2>NY</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>phytoplankton</s0>
<s2>NY</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Fitoplancton</s0>
<s2>NY</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Fertilisation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>fertilization</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Fertilización</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Pli</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>folds</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Pliegue</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Abondance</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>abundance</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Abundancia</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Diatomeae</s0>
<s2>NY</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>diatoms</s0>
<s2>NY</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Diatomea</s0>
<s2>NY</s2>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Prédateur</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>predators</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Couplage faible</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Weak coupling</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Acoplamiento débil</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Elément nutritif</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>nutrients</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="SPA">
<s0>Nutriente</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Chlorophylle</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>chlorophyll</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="2" l="SPA">
<s0>Clorofila</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Carotte</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>drill cores</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Testigo</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Protozoa</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>Protozoa</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="2" l="SPA">
<s0>Protozoa</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Biomasse</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>biomass</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Biomasa</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Bactérie</s0>
<s2>NY</s2>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>bacteria</s0>
<s2>NY</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Carbone</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>carbon</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="2" l="SPA">
<s0>Carbono</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Plateau Kerguelen</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>Kerguelen Plateau</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="20" i2="2" l="FRE">
<s0>Antarctique</s0>
<s2>NG</s2>
<s5>62</s5>
</fC03>
<fC03 i1="20" i2="2" l="ENG">
<s0>Antarctica</s0>
<s2>NG</s2>
<s5>62</s5>
</fC03>
<fC03 i1="20" i2="2" l="SPA">
<s0>Antártico</s0>
<s2>NG</s2>
<s5>62</s5>
</fC03>
<fC07 i1="01" i2="2" l="FRE">
<s0>Plancton</s0>
<s2>NY</s2>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>plankton</s0>
<s2>NY</s2>
</fC07>
<fC07 i1="01" i2="2" l="SPA">
<s0>Plancton</s0>
<s2>NY</s2>
</fC07>
<fC07 i1="02" i2="2" l="FRE">
<s0>Algae</s0>
<s2>NY</s2>
</fC07>
<fC07 i1="02" i2="2" l="ENG">
<s0>algae</s0>
<s2>NY</s2>
</fC07>
<fC07 i1="02" i2="2" l="SPA">
<s0>Algae</s0>
<s2>NY</s2>
</fC07>
<fC07 i1="03" i2="2" l="FRE">
<s0>Thallophyta</s0>
<s2>NY</s2>
</fC07>
<fC07 i1="03" i2="2" l="ENG">
<s0>Thallophyta</s0>
<s2>NY</s2>
</fC07>
<fC07 i1="03" i2="2" l="SPA">
<s0>Thallophyta</s0>
<s2>NY</s2>
</fC07>
<fC07 i1="04" i2="2" l="FRE">
<s0>Plantae</s0>
<s2>NY</s2>
</fC07>
<fC07 i1="04" i2="2" l="ENG">
<s0>Plantae</s0>
<s2>NY</s2>
</fC07>
<fC07 i1="05" i2="2" l="FRE">
<s0>Procaryote</s0>
<s2>NY</s2>
</fC07>
<fC07 i1="05" i2="2" l="ENG">
<s0>prokaryotes</s0>
<s2>NY</s2>
</fC07>
<fC07 i1="06" i2="2" l="FRE">
<s0>Océan Indien</s0>
<s2>564</s2>
</fC07>
<fC07 i1="06" i2="2" l="ENG">
<s0>Indian Ocean</s0>
<s2>564</s2>
</fC07>
<fC07 i1="06" i2="2" l="SPA">
<s0>Océano Indico</s0>
<s2>564</s2>
</fC07>
<fC07 i1="07" i2="2" l="FRE">
<s0>Région Polaire</s0>
<s2>564</s2>
</fC07>
<fC07 i1="07" i2="2" l="ENG">
<s0>polar regions</s0>
<s2>564</s2>
</fC07>
<fN21>
<s1>189</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002B44 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 002B44 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:08-0300421
   |texte=   Microbial food web structure in a naturally iron-fertilized area in the Southern Ocean (Kerguelen Plateau)
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024