Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Impact of plants on the microbial activity in soils with high and low levels of copper

Identifieur interne : 002A96 ( PascalFrancis/Curation ); précédent : 002A95; suivant : 002A97

Impact of plants on the microbial activity in soils with high and low levels of copper

Auteurs : Iris Vogeler [Nouvelle-Zélande] ; Antoine Vachey [France] ; Markus Deurer [Nouvelle-Zélande] ; Nanthi Bolan [Australie]

Source :

RBID : Pascal:08-0277303

Descripteurs français

English descriptors

Abstract

Elevated copper (Cu) concentrations have been shown to decrease the microbial activity in soils. Plants can have beneficial effects on the biological activity of soils mainly through their root exudates. In this study we investigated the impact of various plant species with different Cu tolerance levels on the microbial activity in two soils with low (10 mg/ kg) and high (180 mg/kg) copper concentrations. The soil was a Kahangi Sandy Loam. Three different plants, Agrostis capillaris 'Parys' tolerant for Cu, Agrostis capillaris 'Highland' non-tolerant and Helianthus annuus tolerant and a hyper-accumulator for Cu were used. To increase the Cu availability to plants, EDTA was added to some of the pots 20 days after sowing. The effect of Cu contamination on the biological activity of soil in the presence and absence of plant growth was evaluated by measuring the dehydrogenase activity, the microbial biomass, the basal respiration, and the potential nitrification. Results show that plants increased the microbial activity in the low Cu soil. In the high Cu soil the microbial activity seemed to be related to the plant health. With the Cu-tolerant Agrostis capillaris 'Parys', the microbial activity increased faster than with the other plant species. Up to 50 days after sowing, the tolerant grass Agrostis capillaris 'Parys' had a higher plant biomass and was much healthier than the non-tolerant grass. Later on the growth of the non-tolerant Agrostis capillaris 'Highland' recovered, and the microbial activity of the soil reached close to those recorded for the soil treatments with the Cu-tolerant plant species. The addition of EDTA delayed the increase in microbial activity even further. The proportion of microbial biomass carbon in the organic fraction was higher in the low Cu soil than in the high Cu soil, with ratios ranging from 1.3 to 3.3 and from 0.5 to 1.7 respectively. The basal respiration rate in the original soil was significantly lower in the high Cu soil than in the low Cu soil, and was generally increased by the presence of plants.
pA  
A01 01  1    @0 1164-5563
A03   1    @0 Eur. j. soil biol.
A05       @2 44
A06       @2 1
A08 01  1  ENG  @1 Impact of plants on the microbial activity in soils with high and low levels of copper
A11 01  1    @1 VOGELER (Iris)
A11 02  1    @1 VACHEY (Antoine)
A11 03  1    @1 DEURER (Markus)
A11 04  1    @1 BOLAN (Nanthi)
A14 01      @1 HortResearch, Private Bag 11030 @2 Palmerston North @3 NZL @Z 1 aut. @Z 3 aut.
A14 02      @1 Institut National Polytechnique de Toulouse @2 31326 Castanet, Tolosan @3 FRA @Z 2 aut.
A14 03      @1 Uniuersity of South Australia @2 SA 5095 @3 AUS @Z 4 aut.
A20       @1 92-100
A21       @1 2008
A23 01      @0 ENG
A43 01      @1 INIST @2 12344 @5 354000175126340130
A44       @0 0000 @1 © 2008 INIST-CNRS. All rights reserved.
A45       @0 39 ref.
A47 01  1    @0 08-0277303
A60       @1 P
A61       @0 A
A64 01  1    @0 European journal of soil biology
A66 01      @0 FRA
C01 01    ENG  @0 Elevated copper (Cu) concentrations have been shown to decrease the microbial activity in soils. Plants can have beneficial effects on the biological activity of soils mainly through their root exudates. In this study we investigated the impact of various plant species with different Cu tolerance levels on the microbial activity in two soils with low (10 mg/ kg) and high (180 mg/kg) copper concentrations. The soil was a Kahangi Sandy Loam. Three different plants, Agrostis capillaris 'Parys' tolerant for Cu, Agrostis capillaris 'Highland' non-tolerant and Helianthus annuus tolerant and a hyper-accumulator for Cu were used. To increase the Cu availability to plants, EDTA was added to some of the pots 20 days after sowing. The effect of Cu contamination on the biological activity of soil in the presence and absence of plant growth was evaluated by measuring the dehydrogenase activity, the microbial biomass, the basal respiration, and the potential nitrification. Results show that plants increased the microbial activity in the low Cu soil. In the high Cu soil the microbial activity seemed to be related to the plant health. With the Cu-tolerant Agrostis capillaris 'Parys', the microbial activity increased faster than with the other plant species. Up to 50 days after sowing, the tolerant grass Agrostis capillaris 'Parys' had a higher plant biomass and was much healthier than the non-tolerant grass. Later on the growth of the non-tolerant Agrostis capillaris 'Highland' recovered, and the microbial activity of the soil reached close to those recorded for the soil treatments with the Cu-tolerant plant species. The addition of EDTA delayed the increase in microbial activity even further. The proportion of microbial biomass carbon in the organic fraction was higher in the low Cu soil than in the high Cu soil, with ratios ranging from 1.3 to 3.3 and from 0.5 to 1.7 respectively. The basal respiration rate in the original soil was significantly lower in the high Cu soil than in the low Cu soil, and was generally increased by the presence of plants.
C02 01  X    @0 002A32B03B4C
C02 02  X    @0 002A32B06
C03 01  X  FRE  @0 Activité microbienne @5 01
C03 01  X  ENG  @0 Microbial activity @5 01
C03 01  X  SPA  @0 Actividad microbiana @5 01
C03 02  X  FRE  @0 Pollution sol @5 02
C03 02  X  ENG  @0 Soil pollution @5 02
C03 02  X  SPA  @0 Polución suelo @5 02
C03 03  X  FRE  @0 Contamination @5 03
C03 03  X  ENG  @0 Contamination @5 03
C03 03  X  SPA  @0 Contaminación @5 03
C03 04  X  FRE  @0 Microorganisme @5 04
C03 04  X  ENG  @0 Microorganism @5 04
C03 04  X  SPA  @0 Microorganismo @5 04
C03 05  X  FRE  @0 Etat sanitaire @5 05
C03 05  X  ENG  @0 Health status @5 05
C03 05  X  SPA  @0 Estado sanitario @5 05
C03 06  X  FRE  @0 Activité enzymatique @5 06
C03 06  X  ENG  @0 Enzymatic activity @5 06
C03 06  X  SPA  @0 Actividad enzimática @5 06
C03 07  X  FRE  @0 Respiration @5 07
C03 07  X  ENG  @0 Respiration @5 07
C03 07  X  SPA  @0 Respiración @5 07
C03 08  X  FRE  @0 Science du sol @5 08
C03 08  X  ENG  @0 Soil science @5 08
C03 08  X  SPA  @0 Ciencia del suelo @5 08
C03 09  X  FRE  @0 Action végétation @5 09
C03 09  X  ENG  @0 Vegetation effect @5 09
C03 09  X  SPA  @0 Acción vegetación @5 09
C03 10  X  FRE  @0 Cuivre @2 NC @5 15
C03 10  X  ENG  @0 Copper @2 NC @5 15
C03 10  X  SPA  @0 Cobre @2 NC @5 15
C03 11  X  FRE  @0 Dehydrogenase @2 FE @5 16
C03 11  X  ENG  @0 Dehydrogenase @2 FE @5 16
C03 11  X  SPA  @0 Dehydrogenase @2 FE @5 16
C03 12  X  FRE  @0 Sol @2 NT @5 24
C03 12  X  ENG  @0 Soils @2 NT @5 24
C03 12  X  SPA  @0 Suelo @2 NT @5 24
C07 01  X  FRE  @0 Oxidoreductases @2 FE
C07 01  X  ENG  @0 Oxidoreductases @2 FE
C07 01  X  SPA  @0 Oxidoreductases @2 FE
C07 02  X  FRE  @0 Enzyme @2 FE
C07 02  X  ENG  @0 Enzyme @2 FE
C07 02  X  SPA  @0 Enzima @2 FE
N21       @1 175

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:08-0277303

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Impact of plants on the microbial activity in soils with high and low levels of copper</title>
<author>
<name sortKey="Vogeler, Iris" sort="Vogeler, Iris" uniqKey="Vogeler I" first="Iris" last="Vogeler">Iris Vogeler</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>HortResearch, Private Bag 11030</s1>
<s2>Palmerston North</s2>
<s3>NZL</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Nouvelle-Zélande</country>
</affiliation>
</author>
<author>
<name sortKey="Vachey, Antoine" sort="Vachey, Antoine" uniqKey="Vachey A" first="Antoine" last="Vachey">Antoine Vachey</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institut National Polytechnique de Toulouse</s1>
<s2>31326 Castanet, Tolosan</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Deurer, Markus" sort="Deurer, Markus" uniqKey="Deurer M" first="Markus" last="Deurer">Markus Deurer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>HortResearch, Private Bag 11030</s1>
<s2>Palmerston North</s2>
<s3>NZL</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Nouvelle-Zélande</country>
</affiliation>
</author>
<author>
<name sortKey="Bolan, Nanthi" sort="Bolan, Nanthi" uniqKey="Bolan N" first="Nanthi" last="Bolan">Nanthi Bolan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Uniuersity of South Australia</s1>
<s2>SA 5095</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">08-0277303</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0277303 INIST</idno>
<idno type="RBID">Pascal:08-0277303</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">003552</idno>
<idno type="wicri:Area/PascalFrancis/Curation">002A96</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Impact of plants on the microbial activity in soils with high and low levels of copper</title>
<author>
<name sortKey="Vogeler, Iris" sort="Vogeler, Iris" uniqKey="Vogeler I" first="Iris" last="Vogeler">Iris Vogeler</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>HortResearch, Private Bag 11030</s1>
<s2>Palmerston North</s2>
<s3>NZL</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Nouvelle-Zélande</country>
</affiliation>
</author>
<author>
<name sortKey="Vachey, Antoine" sort="Vachey, Antoine" uniqKey="Vachey A" first="Antoine" last="Vachey">Antoine Vachey</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institut National Polytechnique de Toulouse</s1>
<s2>31326 Castanet, Tolosan</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Deurer, Markus" sort="Deurer, Markus" uniqKey="Deurer M" first="Markus" last="Deurer">Markus Deurer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>HortResearch, Private Bag 11030</s1>
<s2>Palmerston North</s2>
<s3>NZL</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Nouvelle-Zélande</country>
</affiliation>
</author>
<author>
<name sortKey="Bolan, Nanthi" sort="Bolan, Nanthi" uniqKey="Bolan N" first="Nanthi" last="Bolan">Nanthi Bolan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Uniuersity of South Australia</s1>
<s2>SA 5095</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">European journal of soil biology</title>
<title level="j" type="abbreviated">Eur. j. soil biol.</title>
<idno type="ISSN">1164-5563</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">European journal of soil biology</title>
<title level="j" type="abbreviated">Eur. j. soil biol.</title>
<idno type="ISSN">1164-5563</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Contamination</term>
<term>Copper</term>
<term>Dehydrogenase</term>
<term>Enzymatic activity</term>
<term>Health status</term>
<term>Microbial activity</term>
<term>Microorganism</term>
<term>Respiration</term>
<term>Soil pollution</term>
<term>Soil science</term>
<term>Soils</term>
<term>Vegetation effect</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Activité microbienne</term>
<term>Pollution sol</term>
<term>Contamination</term>
<term>Microorganisme</term>
<term>Etat sanitaire</term>
<term>Activité enzymatique</term>
<term>Respiration</term>
<term>Science du sol</term>
<term>Action végétation</term>
<term>Cuivre</term>
<term>Dehydrogenase</term>
<term>Sol</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Cuivre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Elevated copper (Cu) concentrations have been shown to decrease the microbial activity in soils. Plants can have beneficial effects on the biological activity of soils mainly through their root exudates. In this study we investigated the impact of various plant species with different Cu tolerance levels on the microbial activity in two soils with low (10 mg/ kg) and high (180 mg/kg) copper concentrations. The soil was a Kahangi Sandy Loam. Three different plants, Agrostis capillaris 'Parys' tolerant for Cu, Agrostis capillaris 'Highland' non-tolerant and Helianthus annuus tolerant and a hyper-accumulator for Cu were used. To increase the Cu availability to plants, EDTA was added to some of the pots 20 days after sowing. The effect of Cu contamination on the biological activity of soil in the presence and absence of plant growth was evaluated by measuring the dehydrogenase activity, the microbial biomass, the basal respiration, and the potential nitrification. Results show that plants increased the microbial activity in the low Cu soil. In the high Cu soil the microbial activity seemed to be related to the plant health. With the Cu-tolerant Agrostis capillaris 'Parys', the microbial activity increased faster than with the other plant species. Up to 50 days after sowing, the tolerant grass Agrostis capillaris 'Parys' had a higher plant biomass and was much healthier than the non-tolerant grass. Later on the growth of the non-tolerant Agrostis capillaris 'Highland' recovered, and the microbial activity of the soil reached close to those recorded for the soil treatments with the Cu-tolerant plant species. The addition of EDTA delayed the increase in microbial activity even further. The proportion of microbial biomass carbon in the organic fraction was higher in the low Cu soil than in the high Cu soil, with ratios ranging from 1.3 to 3.3 and from 0.5 to 1.7 respectively. The basal respiration rate in the original soil was significantly lower in the high Cu soil than in the low Cu soil, and was generally increased by the presence of plants.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1164-5563</s0>
</fA01>
<fA03 i2="1">
<s0>Eur. j. soil biol.</s0>
</fA03>
<fA05>
<s2>44</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Impact of plants on the microbial activity in soils with high and low levels of copper</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>VOGELER (Iris)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>VACHEY (Antoine)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DEURER (Markus)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BOLAN (Nanthi)</s1>
</fA11>
<fA14 i1="01">
<s1>HortResearch, Private Bag 11030</s1>
<s2>Palmerston North</s2>
<s3>NZL</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institut National Polytechnique de Toulouse</s1>
<s2>31326 Castanet, Tolosan</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Uniuersity of South Australia</s1>
<s2>SA 5095</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>92-100</s1>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>12344</s2>
<s5>354000175126340130</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>39 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0277303</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>European journal of soil biology</s0>
</fA64>
<fA66 i1="01">
<s0>FRA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Elevated copper (Cu) concentrations have been shown to decrease the microbial activity in soils. Plants can have beneficial effects on the biological activity of soils mainly through their root exudates. In this study we investigated the impact of various plant species with different Cu tolerance levels on the microbial activity in two soils with low (10 mg/ kg) and high (180 mg/kg) copper concentrations. The soil was a Kahangi Sandy Loam. Three different plants, Agrostis capillaris 'Parys' tolerant for Cu, Agrostis capillaris 'Highland' non-tolerant and Helianthus annuus tolerant and a hyper-accumulator for Cu were used. To increase the Cu availability to plants, EDTA was added to some of the pots 20 days after sowing. The effect of Cu contamination on the biological activity of soil in the presence and absence of plant growth was evaluated by measuring the dehydrogenase activity, the microbial biomass, the basal respiration, and the potential nitrification. Results show that plants increased the microbial activity in the low Cu soil. In the high Cu soil the microbial activity seemed to be related to the plant health. With the Cu-tolerant Agrostis capillaris 'Parys', the microbial activity increased faster than with the other plant species. Up to 50 days after sowing, the tolerant grass Agrostis capillaris 'Parys' had a higher plant biomass and was much healthier than the non-tolerant grass. Later on the growth of the non-tolerant Agrostis capillaris 'Highland' recovered, and the microbial activity of the soil reached close to those recorded for the soil treatments with the Cu-tolerant plant species. The addition of EDTA delayed the increase in microbial activity even further. The proportion of microbial biomass carbon in the organic fraction was higher in the low Cu soil than in the high Cu soil, with ratios ranging from 1.3 to 3.3 and from 0.5 to 1.7 respectively. The basal respiration rate in the original soil was significantly lower in the high Cu soil than in the low Cu soil, and was generally increased by the presence of plants.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A32B03B4C</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002A32B06</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Activité microbienne</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Microbial activity</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Actividad microbiana</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Pollution sol</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Soil pollution</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Polución suelo</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Contamination</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Contamination</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Contaminación</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Microorganisme</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Microorganism</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Microorganismo</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Etat sanitaire</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Health status</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Estado sanitario</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Activité enzymatique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Enzymatic activity</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Actividad enzimática</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Respiration</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Respiration</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Respiración</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Science du sol</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Soil science</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Ciencia del suelo</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Action végétation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Vegetation effect</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Acción vegetación</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Cobre</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Dehydrogenase</s0>
<s2>FE</s2>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Dehydrogenase</s0>
<s2>FE</s2>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Dehydrogenase</s0>
<s2>FE</s2>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Sol</s0>
<s2>NT</s2>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Soils</s0>
<s2>NT</s2>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Suelo</s0>
<s2>NT</s2>
<s5>24</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Oxidoreductases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Oxidoreductases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Oxidoreductases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Enzyme</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Enzyme</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Enzima</s0>
<s2>FE</s2>
</fC07>
<fN21>
<s1>175</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A96 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 002A96 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:08-0277303
   |texte=   Impact of plants on the microbial activity in soils with high and low levels of copper
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024