Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Generation of optical 'Schrödinger cats' from photon number states

Identifieur interne : 002763 ( PascalFrancis/Curation ); précédent : 002762; suivant : 002764

Generation of optical 'Schrödinger cats' from photon number states

Auteurs : Alexei Ourjoumtsev [France] ; Hyunseok Jeong [Australie] ; Rosa Tualle-Brouril [France] ; Philippe Grangier [France]

Source :

RBID : Pascal:07-0495900

Descripteurs français

English descriptors

Abstract

Schrodinger's cat1 is a Gedankenexperiment in quantum physics, in which an atomic decay triggers the death of the cat. Because quantum physics allow atoms to remain in superpositions of states, the classical cat would then be simultaneously dead and alive. By analogy, a 'cat' state of freely propagating light can be defined as a quantum superposition of well separated quasi-classical states2,3-it is a classical light wave that simultaneously possesses two opposite phases. Such states play an important role in fundamental tests of quantum theory4-7and in many quantum information processing tasks, including quantum computation8, quantum teleportation9,10 and precision measurements". Recently, optical Schrödinger 'kittens' were prepared12-14; however, they are too small for most of the aforementioned applications and increasing their size is experimentally challenging. Here we demonstrate, theoretically and experimentally, a protocol that allows the generation of arbitrarily large squeezed Schrödinger cat states, using homodyne detection and photon number states as resources. We implemented this protocol with light pulses containing two photons, producing a squeezed Schrödinger cat state with a negative Wigner function. This state clearly exhibits several quantum phase-space interference fringes between the 'dead' and 'alive' components, and is large enough to become useful for quantum information processing and experimental tests of quantum theory.
pA  
A01 01  1    @0 0028-0836
A02 01      @0 NATUAS
A03   1    @0 Nature : (Lond.)
A05       @2 448
A06       @2 7155
A08 01  1  ENG  @1 Generation of optical 'Schrödinger cats' from photon number states
A11 01  1    @1 OURJOUMTSEV (Alexei)
A11 02  1    @1 JEONG (Hyunseok)
A11 03  1    @1 TUALLE-BROURIL (Rosa)
A11 04  1    @1 GRANGIER (Philippe)
A14 01      @1 Laboratoire Charles Fabry de l'institut d'Optique, Université Paris-Sud, CNRS UMR 8501 @2 91127 Palaiseau @3 FRA @Z 1 aut. @Z 3 aut. @Z 4 aut.
A14 02      @1 Centre for Quantum Computer Technology, Department of Physics, University of Queensland @2 Brisbane, Queensland 4072 @3 AUS @Z 2 aut.
A20       @1 784-786
A21       @1 2007
A23 01      @0 ENG
A43 01      @1 INIST @2 142 @5 354000150042610140
A44       @0 0000 @1 © 2007 INIST-CNRS. All rights reserved.
A45       @0 27 ref.
A47 01  1    @0 07-0495900
A60       @1 P @3 CR
A61       @0 A
A64 01  1    @0 Nature : (London)
A66 01      @0 GBR
C01 01    ENG  @0 Schrodinger's cat1 is a Gedankenexperiment in quantum physics, in which an atomic decay triggers the death of the cat. Because quantum physics allow atoms to remain in superpositions of states, the classical cat would then be simultaneously dead and alive. By analogy, a 'cat' state of freely propagating light can be defined as a quantum superposition of well separated quasi-classical states2,3-it is a classical light wave that simultaneously possesses two opposite phases. Such states play an important role in fundamental tests of quantum theory4-7and in many quantum information processing tasks, including quantum computation8, quantum teleportation9,10 and precision measurements". Recently, optical Schrödinger 'kittens' were prepared12-14; however, they are too small for most of the aforementioned applications and increasing their size is experimentally challenging. Here we demonstrate, theoretically and experimentally, a protocol that allows the generation of arbitrarily large squeezed Schrödinger cat states, using homodyne detection and photon number states as resources. We implemented this protocol with light pulses containing two photons, producing a squeezed Schrödinger cat state with a negative Wigner function. This state clearly exhibits several quantum phase-space interference fringes between the 'dead' and 'alive' components, and is large enough to become useful for quantum information processing and experimental tests of quantum theory.
C02 01  3    @0 001B40B50D
C03 01  X  FRE  @0 Traitement information @5 03
C03 01  X  ENG  @0 Information processing @5 03
C03 01  X  SPA  @0 Procesamiento información @5 03
C03 02  X  FRE  @0 Impulsion optique @5 04
C03 02  X  ENG  @0 Optical pulse @5 04
C03 02  X  SPA  @0 Impulsión óptica @5 04
C03 03  3  FRE  @0 Optique quantique @5 19
C03 03  3  ENG  @0 Quantum optics @5 19
C03 04  3  FRE  @0 Information quantique @5 20
C03 04  3  ENG  @0 Quantum information @5 20
C03 05  X  FRE  @0 Fonction Wigner @5 23
C03 05  X  ENG  @0 Wigner function @5 23
C03 05  X  SPA  @0 Función Wigner @5 23
C03 06  3  FRE  @0 Domaine temps fs @5 41
C03 06  3  ENG  @0 fs range @5 41
C03 07  X  FRE  @0 Etat nombre photon @5 61
C03 07  X  ENG  @0 Photon number state @5 61
C03 07  X  SPA  @0 Estado número fotón @5 61
C03 08  3  FRE  @0 4250D @4 INC @5 83
C03 09  3  FRE  @0 0367 @4 INC @5 92
C03 10  3  FRE  @0 Etat chat Schrödinger @4 CD @5 96
C03 10  3  ENG  @0 Schrödinger's cat state @4 CD @5 96
N21       @1 323

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:07-0495900

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Generation of optical 'Schrödinger cats' from photon number states</title>
<author>
<name sortKey="Ourjoumtsev, Alexei" sort="Ourjoumtsev, Alexei" uniqKey="Ourjoumtsev A" first="Alexei" last="Ourjoumtsev">Alexei Ourjoumtsev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire Charles Fabry de l'institut d'Optique, Université Paris-Sud, CNRS UMR 8501</s1>
<s2>91127 Palaiseau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Jeong, Hyunseok" sort="Jeong, Hyunseok" uniqKey="Jeong H" first="Hyunseok" last="Jeong">Hyunseok Jeong</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Centre for Quantum Computer Technology, Department of Physics, University of Queensland</s1>
<s2>Brisbane, Queensland 4072</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Tualle Brouril, Rosa" sort="Tualle Brouril, Rosa" uniqKey="Tualle Brouril R" first="Rosa" last="Tualle-Brouril">Rosa Tualle-Brouril</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire Charles Fabry de l'institut d'Optique, Université Paris-Sud, CNRS UMR 8501</s1>
<s2>91127 Palaiseau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Grangier, Philippe" sort="Grangier, Philippe" uniqKey="Grangier P" first="Philippe" last="Grangier">Philippe Grangier</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire Charles Fabry de l'institut d'Optique, Université Paris-Sud, CNRS UMR 8501</s1>
<s2>91127 Palaiseau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">07-0495900</idno>
<date when="2007">2007</date>
<idno type="stanalyst">PASCAL 07-0495900 INIST</idno>
<idno type="RBID">Pascal:07-0495900</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">003925</idno>
<idno type="wicri:Area/PascalFrancis/Curation">002763</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Generation of optical 'Schrödinger cats' from photon number states</title>
<author>
<name sortKey="Ourjoumtsev, Alexei" sort="Ourjoumtsev, Alexei" uniqKey="Ourjoumtsev A" first="Alexei" last="Ourjoumtsev">Alexei Ourjoumtsev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire Charles Fabry de l'institut d'Optique, Université Paris-Sud, CNRS UMR 8501</s1>
<s2>91127 Palaiseau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Jeong, Hyunseok" sort="Jeong, Hyunseok" uniqKey="Jeong H" first="Hyunseok" last="Jeong">Hyunseok Jeong</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Centre for Quantum Computer Technology, Department of Physics, University of Queensland</s1>
<s2>Brisbane, Queensland 4072</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Tualle Brouril, Rosa" sort="Tualle Brouril, Rosa" uniqKey="Tualle Brouril R" first="Rosa" last="Tualle-Brouril">Rosa Tualle-Brouril</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire Charles Fabry de l'institut d'Optique, Université Paris-Sud, CNRS UMR 8501</s1>
<s2>91127 Palaiseau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Grangier, Philippe" sort="Grangier, Philippe" uniqKey="Grangier P" first="Philippe" last="Grangier">Philippe Grangier</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire Charles Fabry de l'institut d'Optique, Université Paris-Sud, CNRS UMR 8501</s1>
<s2>91127 Palaiseau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Nature : (London)</title>
<title level="j" type="abbreviated">Nature : (Lond.)</title>
<idno type="ISSN">0028-0836</idno>
<imprint>
<date when="2007">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Nature : (London)</title>
<title level="j" type="abbreviated">Nature : (Lond.)</title>
<idno type="ISSN">0028-0836</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Information processing</term>
<term>Optical pulse</term>
<term>Photon number state</term>
<term>Quantum information</term>
<term>Quantum optics</term>
<term>Schrödinger's cat state</term>
<term>Wigner function</term>
<term>fs range</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Traitement information</term>
<term>Impulsion optique</term>
<term>Optique quantique</term>
<term>Information quantique</term>
<term>Fonction Wigner</term>
<term>Domaine temps fs</term>
<term>Etat nombre photon</term>
<term>4250D</term>
<term>0367</term>
<term>Etat chat Schrödinger</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Schrodinger's cat
<sup>1</sup>
is a Gedankenexperiment in quantum physics, in which an atomic decay triggers the death of the cat. Because quantum physics allow atoms to remain in superpositions of states, the classical cat would then be simultaneously dead and alive. By analogy, a 'cat' state of freely propagating light can be defined as a quantum superposition of well separated quasi-classical states
<sup>2,3</sup>
-it is a classical light wave that simultaneously possesses two opposite phases. Such states play an important role in fundamental tests of quantum theory
<sup>4-7</sup>
and in many quantum information processing tasks, including quantum computation
<sup>8</sup>
, quantum teleportation
<sup>9,10</sup>
and precision measurements". Recently, optical Schrödinger 'kittens' were prepared
<sup>12-14</sup>
; however, they are too small for most of the aforementioned applications and increasing their size is experimentally challenging. Here we demonstrate, theoretically and experimentally, a protocol that allows the generation of arbitrarily large squeezed Schrödinger cat states, using homodyne detection and photon number states as resources. We implemented this protocol with light pulses containing two photons, producing a squeezed Schrödinger cat state with a negative Wigner function. This state clearly exhibits several quantum phase-space interference fringes between the 'dead' and 'alive' components, and is large enough to become useful for quantum information processing and experimental tests of quantum theory.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0028-0836</s0>
</fA01>
<fA02 i1="01">
<s0>NATUAS</s0>
</fA02>
<fA03 i2="1">
<s0>Nature : (Lond.)</s0>
</fA03>
<fA05>
<s2>448</s2>
</fA05>
<fA06>
<s2>7155</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Generation of optical 'Schrödinger cats' from photon number states</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>OURJOUMTSEV (Alexei)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JEONG (Hyunseok)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>TUALLE-BROURIL (Rosa)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GRANGIER (Philippe)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratoire Charles Fabry de l'institut d'Optique, Université Paris-Sud, CNRS UMR 8501</s1>
<s2>91127 Palaiseau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Centre for Quantum Computer Technology, Department of Physics, University of Queensland</s1>
<s2>Brisbane, Queensland 4072</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>784-786</s1>
</fA20>
<fA21>
<s1>2007</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>142</s2>
<s5>354000150042610140</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2007 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>27 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>07-0495900</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>CR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nature : (London)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Schrodinger's cat
<sup>1</sup>
is a Gedankenexperiment in quantum physics, in which an atomic decay triggers the death of the cat. Because quantum physics allow atoms to remain in superpositions of states, the classical cat would then be simultaneously dead and alive. By analogy, a 'cat' state of freely propagating light can be defined as a quantum superposition of well separated quasi-classical states
<sup>2,3</sup>
-it is a classical light wave that simultaneously possesses two opposite phases. Such states play an important role in fundamental tests of quantum theory
<sup>4-7</sup>
and in many quantum information processing tasks, including quantum computation
<sup>8</sup>
, quantum teleportation
<sup>9,10</sup>
and precision measurements". Recently, optical Schrödinger 'kittens' were prepared
<sup>12-14</sup>
; however, they are too small for most of the aforementioned applications and increasing their size is experimentally challenging. Here we demonstrate, theoretically and experimentally, a protocol that allows the generation of arbitrarily large squeezed Schrödinger cat states, using homodyne detection and photon number states as resources. We implemented this protocol with light pulses containing two photons, producing a squeezed Schrödinger cat state with a negative Wigner function. This state clearly exhibits several quantum phase-space interference fringes between the 'dead' and 'alive' components, and is large enough to become useful for quantum information processing and experimental tests of quantum theory.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40B50D</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Traitement information</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Information processing</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Procesamiento información</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Impulsion optique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Optical pulse</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Impulsión óptica</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Optique quantique</s0>
<s5>19</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Quantum optics</s0>
<s5>19</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Information quantique</s0>
<s5>20</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Quantum information</s0>
<s5>20</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Fonction Wigner</s0>
<s5>23</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Wigner function</s0>
<s5>23</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Función Wigner</s0>
<s5>23</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Domaine temps fs</s0>
<s5>41</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>fs range</s0>
<s5>41</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Etat nombre photon</s0>
<s5>61</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Photon number state</s0>
<s5>61</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Estado número fotón</s0>
<s5>61</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>4250D</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>0367</s0>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Etat chat Schrödinger</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Schrödinger's cat state</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>323</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002763 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 002763 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:07-0495900
   |texte=   Generation of optical 'Schrödinger cats' from photon number states
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024