Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of radar beam geometry on radar rainfall estimation

Identifieur interne : 000F46 ( PascalFrancis/Curation ); précédent : 000F45; suivant : 000F47

Effect of radar beam geometry on radar rainfall estimation

Auteurs : Siriluk Chumchean [Australie] ; Alan Seed [Australie] ; Ashish Sharma [Australie]

Source :

RBID : Pascal:03-0459142

Descripteurs français

English descriptors

Abstract

The frequency, accuracy and resolution of hydrological records is a major limitation in the accurate modelling of hydrological events. The weather radar provides real-time spatially continuous measurements covering a large area at short time intervals. However, considerable uncertainty remains in the procedures used to estimate the rainfall from weather radar observations. This uncertainty may be caused by the variability of raindrop size distribution, the variation of reflectivity with height and with range, and the temporal and spatial resolutions adopted for sampling the radar reflectivity. This paper accounts for the effect of the radar beam geometry as a function of distance. The conical shape of the radar beam causes the observed volume to increase with range from the radar, leading to both bias and an increase in the standard error associated with the measured reflectivity as a function of range. To remove the bias caused by the radar beam spreading, a simple-scaling transformation is proposed. The results show that the transformed reflectivity becomes relatively free from range dependent bias, which leads to more accurate relations with the measured ground rainfall than what is obtained otherwise. A 6-month long rainfall-reflectivity record from the Kurnell radar at Sydney, Australia is used to illustrate the efficiency and applicability of the reflectivity scaling transformation, compared to radar rainfall algorithms used conventionally.
pA  
A01 01  1    @0 0144-7815
A06       @2 282
A08 01  1  ENG  @1 Effect of radar beam geometry on radar rainfall estimation
A09 01  1  ENG  @1 Weather radar information and distributed hydrological modelling : Sapporo, 30 June - 11 July 2003
A11 01  1    @1 CHUMCHEAN (Siriluk)
A11 02  1    @1 SEED (Alan)
A11 03  1    @1 SHARMA (Ashish)
A12 01  1    @1 TACHIKAWA (Yasuto) @9 ed.
A12 02  1    @1 VIEUX (Baxter E.) @9 ed.
A12 03  1    @1 GEORGAKAKOS (Konstantine P.) @9 ed.
A12 04  1    @1 NAKAKITA (Eiichi) @9 ed.
A14 01      @1 School of Civil and Environmental Engineering, The University of New South Wales @2 Sydney 2052, New South Wales @3 AUS @Z 1 aut. @Z 3 aut.
A14 02      @1 Cooperative Research Centre for Catchment Hydrology, Bureau of Meteorology @2 Melbourne, Victoria @3 AUS @Z 2 aut.
A18 01  1    @1 International Association of Hydrological Sciences. International Commission on Surface Water @2 Paris @3 FRA @9 patr.
A20       @1 3-10 @7 2
A21       @1 2003
A23 01      @0 ENG
A26 01      @0 1-901502-37-6
A43 01      @1 INIST @2 8967 @5 354000117354390010
A44       @0 0000 @1 © 2003 INIST-CNRS. All rights reserved.
A45       @0 5 ref.
A47 01  1    @0 03-0459142
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 IAHS-AISH publication
A66 01      @0 GBR
C01 01    ENG  @0 The frequency, accuracy and resolution of hydrological records is a major limitation in the accurate modelling of hydrological events. The weather radar provides real-time spatially continuous measurements covering a large area at short time intervals. However, considerable uncertainty remains in the procedures used to estimate the rainfall from weather radar observations. This uncertainty may be caused by the variability of raindrop size distribution, the variation of reflectivity with height and with range, and the temporal and spatial resolutions adopted for sampling the radar reflectivity. This paper accounts for the effect of the radar beam geometry as a function of distance. The conical shape of the radar beam causes the observed volume to increase with range from the radar, leading to both bias and an increase in the standard error associated with the measured reflectivity as a function of range. To remove the bias caused by the radar beam spreading, a simple-scaling transformation is proposed. The results show that the transformed reflectivity becomes relatively free from range dependent bias, which leads to more accurate relations with the measured ground rainfall than what is obtained otherwise. A 6-month long rainfall-reflectivity record from the Kurnell radar at Sydney, Australia is used to illustrate the efficiency and applicability of the reflectivity scaling transformation, compared to radar rainfall algorithms used conventionally.
C02 01  2    @0 226A01
C02 02  2    @0 225B04
C02 03  X    @0 001E01N01
C02 04  X    @0 001E01M04
C03 01  2  FRE  @0 Australie @2 NG @5 01
C03 01  2  ENG  @0 Australia @2 NG @5 01
C03 01  2  SPA  @0 Australia @2 NG @5 01
C03 02  2  FRE  @0 Géométrie @5 06
C03 02  2  ENG  @0 geometry @5 06
C03 02  2  SPA  @0 Geometría @5 06
C03 03  2  FRE  @0 Pluie @5 07
C03 03  2  ENG  @0 rainfall @5 07
C03 03  2  SPA  @0 Lluvia @5 07
C03 04  2  FRE  @0 Fréquence @5 08
C03 04  2  ENG  @0 frequency @5 08
C03 04  2  SPA  @0 Frecuencia @5 08
C03 05  2  FRE  @0 Précision @5 09
C03 05  2  ENG  @0 accuracy @5 09
C03 05  2  SPA  @0 Precisión @5 09
C03 06  2  FRE  @0 Goutte pluie @5 10
C03 06  2  ENG  @0 raindrops @5 10
C03 06  2  SPA  @0 Gota de lluvia @5 10
C03 07  2  FRE  @0 Distribution dimension @5 11
C03 07  2  ENG  @0 size distribution @5 11
C03 08  2  FRE  @0 Résolution spatiale @5 12
C03 08  2  ENG  @0 spatial resolution @5 12
C03 09  2  FRE  @0 Erreur @5 14
C03 09  2  ENG  @0 errors @5 14
C03 09  2  SPA  @0 Error @5 14
C03 10  2  FRE  @0 Transformation @5 15
C03 10  2  ENG  @0 transformations @5 15
C03 10  2  SPA  @0 Transformación @5 15
C03 11  2  FRE  @0 Algorithme @5 17
C03 11  2  ENG  @0 algorithms @5 17
C03 11  2  SPA  @0 Algoritmo @5 17
C03 12  2  FRE  @0 Méthode radar @5 18
C03 12  2  ENG  @0 radar methods @5 18
C03 12  2  SPA  @0 Radar @5 18
C03 13  2  FRE  @0 Modèle hydrologique @5 19
C03 13  2  ENG  @0 hydrological modeling @5 19
C03 14  2  FRE  @0 Prévision @5 20
C03 14  2  ENG  @0 prediction @5 20
C03 14  2  SPA  @0 Previsión @5 20
C03 15  2  FRE  @0 Etalonnage @5 21
C03 15  2  ENG  @0 calibration @5 21
C03 15  2  SPA  @0 Contraste @5 21
C03 16  2  FRE  @0 Tempête @5 22
C03 16  2  ENG  @0 storms @5 22
C03 16  2  SPA  @0 Tempestad @5 22
C06       @0 ILS @0 TAS
C07 01  2  FRE  @0 Australasie
C07 01  2  ENG  @0 Australasia
C07 01  2  SPA  @0 Australasia
N21       @1 315
N82       @1 PSI
pR  
A30 01  1  ENG  @1 Weather radar information and distributed hydrological modelling. International symposium @3 Sapporo JPN @4 2003-06-30

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:03-0459142

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effect of radar beam geometry on radar rainfall estimation</title>
<author>
<name sortKey="Chumchean, Siriluk" sort="Chumchean, Siriluk" uniqKey="Chumchean S" first="Siriluk" last="Chumchean">Siriluk Chumchean</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Civil and Environmental Engineering, The University of New South Wales</s1>
<s2>Sydney 2052, New South Wales</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Seed, Alan" sort="Seed, Alan" uniqKey="Seed A" first="Alan" last="Seed">Alan Seed</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Cooperative Research Centre for Catchment Hydrology, Bureau of Meteorology</s1>
<s2>Melbourne, Victoria</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Sharma, Ashish" sort="Sharma, Ashish" uniqKey="Sharma A" first="Ashish" last="Sharma">Ashish Sharma</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Civil and Environmental Engineering, The University of New South Wales</s1>
<s2>Sydney 2052, New South Wales</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">03-0459142</idno>
<date when="2003">2003</date>
<idno type="stanalyst">PASCAL 03-0459142 INIST</idno>
<idno type="RBID">Pascal:03-0459142</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">005180</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000F46</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Effect of radar beam geometry on radar rainfall estimation</title>
<author>
<name sortKey="Chumchean, Siriluk" sort="Chumchean, Siriluk" uniqKey="Chumchean S" first="Siriluk" last="Chumchean">Siriluk Chumchean</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Civil and Environmental Engineering, The University of New South Wales</s1>
<s2>Sydney 2052, New South Wales</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Seed, Alan" sort="Seed, Alan" uniqKey="Seed A" first="Alan" last="Seed">Alan Seed</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Cooperative Research Centre for Catchment Hydrology, Bureau of Meteorology</s1>
<s2>Melbourne, Victoria</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Sharma, Ashish" sort="Sharma, Ashish" uniqKey="Sharma A" first="Ashish" last="Sharma">Ashish Sharma</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Civil and Environmental Engineering, The University of New South Wales</s1>
<s2>Sydney 2052, New South Wales</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IAHS-AISH publication</title>
<idno type="ISSN">0144-7815</idno>
<imprint>
<date when="2003">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IAHS-AISH publication</title>
<idno type="ISSN">0144-7815</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Australia</term>
<term>accuracy</term>
<term>algorithms</term>
<term>calibration</term>
<term>errors</term>
<term>frequency</term>
<term>geometry</term>
<term>hydrological modeling</term>
<term>prediction</term>
<term>radar methods</term>
<term>raindrops</term>
<term>rainfall</term>
<term>size distribution</term>
<term>spatial resolution</term>
<term>storms</term>
<term>transformations</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Australie</term>
<term>Géométrie</term>
<term>Pluie</term>
<term>Fréquence</term>
<term>Précision</term>
<term>Goutte pluie</term>
<term>Distribution dimension</term>
<term>Résolution spatiale</term>
<term>Erreur</term>
<term>Transformation</term>
<term>Algorithme</term>
<term>Méthode radar</term>
<term>Modèle hydrologique</term>
<term>Prévision</term>
<term>Etalonnage</term>
<term>Tempête</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>Australie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The frequency, accuracy and resolution of hydrological records is a major limitation in the accurate modelling of hydrological events. The weather radar provides real-time spatially continuous measurements covering a large area at short time intervals. However, considerable uncertainty remains in the procedures used to estimate the rainfall from weather radar observations. This uncertainty may be caused by the variability of raindrop size distribution, the variation of reflectivity with height and with range, and the temporal and spatial resolutions adopted for sampling the radar reflectivity. This paper accounts for the effect of the radar beam geometry as a function of distance. The conical shape of the radar beam causes the observed volume to increase with range from the radar, leading to both bias and an increase in the standard error associated with the measured reflectivity as a function of range. To remove the bias caused by the radar beam spreading, a simple-scaling transformation is proposed. The results show that the transformed reflectivity becomes relatively free from range dependent bias, which leads to more accurate relations with the measured ground rainfall than what is obtained otherwise. A 6-month long rainfall-reflectivity record from the Kurnell radar at Sydney, Australia is used to illustrate the efficiency and applicability of the reflectivity scaling transformation, compared to radar rainfall algorithms used conventionally.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0144-7815</s0>
</fA01>
<fA06>
<s2>282</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Effect of radar beam geometry on radar rainfall estimation</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Weather radar information and distributed hydrological modelling : Sapporo, 30 June - 11 July 2003</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>CHUMCHEAN (Siriluk)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SEED (Alan)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SHARMA (Ashish)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>TACHIKAWA (Yasuto)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>VIEUX (Baxter E.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>GEORGAKAKOS (Konstantine P.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>NAKAKITA (Eiichi)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>School of Civil and Environmental Engineering, The University of New South Wales</s1>
<s2>Sydney 2052, New South Wales</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Cooperative Research Centre for Catchment Hydrology, Bureau of Meteorology</s1>
<s2>Melbourne, Victoria</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>International Association of Hydrological Sciences. International Commission on Surface Water</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<s9>patr.</s9>
</fA18>
<fA20>
<s1>3-10</s1>
<s7>2</s7>
</fA20>
<fA21>
<s1>2003</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA26 i1="01">
<s0>1-901502-37-6</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>8967</s2>
<s5>354000117354390010</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2003 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>5 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>03-0459142</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IAHS-AISH publication</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The frequency, accuracy and resolution of hydrological records is a major limitation in the accurate modelling of hydrological events. The weather radar provides real-time spatially continuous measurements covering a large area at short time intervals. However, considerable uncertainty remains in the procedures used to estimate the rainfall from weather radar observations. This uncertainty may be caused by the variability of raindrop size distribution, the variation of reflectivity with height and with range, and the temporal and spatial resolutions adopted for sampling the radar reflectivity. This paper accounts for the effect of the radar beam geometry as a function of distance. The conical shape of the radar beam causes the observed volume to increase with range from the radar, leading to both bias and an increase in the standard error associated with the measured reflectivity as a function of range. To remove the bias caused by the radar beam spreading, a simple-scaling transformation is proposed. The results show that the transformed reflectivity becomes relatively free from range dependent bias, which leads to more accurate relations with the measured ground rainfall than what is obtained otherwise. A 6-month long rainfall-reflectivity record from the Kurnell radar at Sydney, Australia is used to illustrate the efficiency and applicability of the reflectivity scaling transformation, compared to radar rainfall algorithms used conventionally.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>226A01</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>225B04</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001E01N01</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001E01M04</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Australie</s0>
<s2>NG</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>Australia</s0>
<s2>NG</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Australia</s0>
<s2>NG</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Géométrie</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>geometry</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Geometría</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Pluie</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>rainfall</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="2" l="SPA">
<s0>Lluvia</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Fréquence</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>frequency</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="2" l="SPA">
<s0>Frecuencia</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Précision</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>accuracy</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Precisión</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Goutte pluie</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>raindrops</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Gota de lluvia</s0>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Distribution dimension</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>size distribution</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Résolution spatiale</s0>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>spatial resolution</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Erreur</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>errors</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Error</s0>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Transformation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>transformations</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="2" l="SPA">
<s0>Transformación</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Algorithme</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>algorithms</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="2" l="SPA">
<s0>Algoritmo</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Méthode radar</s0>
<s5>18</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>radar methods</s0>
<s5>18</s5>
</fC03>
<fC03 i1="12" i2="2" l="SPA">
<s0>Radar</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Modèle hydrologique</s0>
<s5>19</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>hydrological modeling</s0>
<s5>19</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Prévision</s0>
<s5>20</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>prediction</s0>
<s5>20</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Previsión</s0>
<s5>20</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Etalonnage</s0>
<s5>21</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>calibration</s0>
<s5>21</s5>
</fC03>
<fC03 i1="15" i2="2" l="SPA">
<s0>Contraste</s0>
<s5>21</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Tempête</s0>
<s5>22</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>storms</s0>
<s5>22</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Tempestad</s0>
<s5>22</s5>
</fC03>
<fC06>
<s0>ILS</s0>
<s0>TAS</s0>
</fC06>
<fC07 i1="01" i2="2" l="FRE">
<s0>Australasie</s0>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>Australasia</s0>
</fC07>
<fC07 i1="01" i2="2" l="SPA">
<s0>Australasia</s0>
</fC07>
<fN21>
<s1>315</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Weather radar information and distributed hydrological modelling. International symposium</s1>
<s3>Sapporo JPN</s3>
<s4>2003-06-30</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F46 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000F46 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:03-0459142
   |texte=   Effect of radar beam geometry on radar rainfall estimation
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024