Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Superionic AgI-MIn-Sb2S3 glasses (M=Pb, Sb): conduction pathways associated with additional metal iodide

Identifieur interne : 000C48 ( PascalFrancis/Curation ); précédent : 000C47; suivant : 000C49

Superionic AgI-MIn-Sb2S3 glasses (M=Pb, Sb): conduction pathways associated with additional metal iodide

Auteurs : C. Renard [France] ; G. Coquet [France] ; E. Bychkov [France]

Source :

RBID : Pascal:03-0071218

Descripteurs français

English descriptors

Abstract

The ionic conductivity of the 0.5 AgI.xSbI3.(0.5-x)Sb2S3 and 0.5 AgI.xPbI2.(0.5-x)Sb2S3 glassy systems with a constant silver concentration has been investigated. It was found that the Ag+ ion transport is closely related to the heavy metal iodide content. The conductivity activation energy decreases from 0.38 to 0.28 eV, and the room temperature conductivity increases by a factor of 100 with increasing x. A structural model based on available neutron diffraction, EXAFS and 129I-Mössbauer spectroscopy data was proposed to explain the observed phenomena.
pA  
A01 01  1    @0 0167-2738
A02 01      @0 SSIOD3
A03   1    @0 Solid state ion.
A05       @2 154-5
A08 01  1  ENG  @1 Superionic AgI-MIn-Sb2S3 glasses (M=Pb, Sb): conduction pathways associated with additional metal iodide
A09 01  1  ENG  @1 Materials and Processes for Energy and Environment. Part B
A11 01  1    @1 RENARD (C.)
A11 02  1    @1 COQUET (G.)
A11 03  1    @1 BYCHKOV (E.)
A12 01  1    @1 BADWAL (S. P. S.) @9 ed.
A14 01      @1 LPCA, UMR CARS 8101, Université du Littoral Côte d'Opale, 145 Avenue Marice Schumann @2 59140 Dunkirk @3 FRA @Z 1 aut. @Z 2 aut. @Z 3 aut.
A15 01      @1 CSIRO Manufacturing and Infrastructure Technology, Private Bag 33 @2 Clayton South, Victoria @3 AUS @Z 1 aut.
A18 01  1    @1 International Society for Solid State Ionics (ISSI) @3 INT @9 patr.
A20       @1 749-757
A21       @1 2002
A23 01      @0 ENG
A43 01      @1 INIST @2 18305 @5 354000106857911060
A44       @0 0000 @1 © 2003 INIST-CNRS. All rights reserved.
A45       @0 24 ref.
A47 01  1    @0 03-0071218
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Solid state ionics
A66 01      @0 NLD
C01 01    ENG  @0 The ionic conductivity of the 0.5 AgI.xSbI3.(0.5-x)Sb2S3 and 0.5 AgI.xPbI2.(0.5-x)Sb2S3 glassy systems with a constant silver concentration has been investigated. It was found that the Ag+ ion transport is closely related to the heavy metal iodide content. The conductivity activation energy decreases from 0.38 to 0.28 eV, and the room temperature conductivity increases by a factor of 100 with increasing x. A structural model based on available neutron diffraction, EXAFS and 129I-Mössbauer spectroscopy data was proposed to explain the observed phenomena.
C02 01  3    @0 001B60F30H
C03 01  3  FRE  @0 Conductivité ionique @5 02
C03 01  3  ENG  @0 Ionic conductivity @5 02
C03 02  3  FRE  @0 Energie activation @5 04
C03 02  3  ENG  @0 Activation energy @5 04
C03 03  3  FRE  @0 Modèle structure @5 05
C03 03  3  ENG  @0 Structural models @5 05
C03 04  3  FRE  @0 Diffraction neutron @5 06
C03 04  3  ENG  @0 Neutron diffraction @5 06
C03 05  3  FRE  @0 EXAFS @5 07
C03 05  3  ENG  @0 EXAFS @5 07
C03 06  3  FRE  @0 Effet Mössbauer @5 08
C03 06  3  ENG  @0 Moessbauer effect @5 08
C03 07  X  FRE  @0 Effet composition @5 13
C03 07  X  ENG  @0 Composition effect @5 13
C03 07  X  SPA  @0 Efecto composición @5 13
C03 08  3  FRE  @0 Conducteur superionique @5 14
C03 08  3  ENG  @0 Superionic conductors @5 14
C03 09  3  FRE  @0 Verre @5 15
C03 09  3  ENG  @0 Glass @5 15
C03 10  3  FRE  @0 Antimoine sulfure @2 NK @5 16
C03 10  3  ENG  @0 Antimony sulfides @2 NK @5 16
C03 11  3  FRE  @0 Argent iodure @2 NK @5 17
C03 11  3  ENG  @0 Silver iodides @2 NK @5 17
C03 12  3  FRE  @0 Plomb iodure @2 NK @5 18
C03 12  3  ENG  @0 Lead iodides @2 NK @5 18
C03 13  3  FRE  @0 Antimoine iodure @2 NK @5 19
C03 13  3  ENG  @0 Antimony iodides @2 NK @5 19
C03 14  3  FRE  @0 Système ternaire @5 20
C03 14  3  ENG  @0 Ternary systems @5 20
C03 15  3  FRE  @0 Composé n éléments @5 21
C03 15  3  ENG  @0 Multi-element compounds @5 21
C03 16  3  FRE  @0 Système AgI PbI2 Sb2S3 @4 INC @5 53
C03 17  3  FRE  @0 Ag I Pb Sb S @4 INC @5 54
C03 18  3  FRE  @0 Système AgI SbI3 Sb2S3 @4 INC @5 55
C03 19  3  FRE  @0 6630H @2 PAC @4 INC @5 56
C03 20  3  FRE  @0 Etude expérimentale @5 84
C03 20  3  ENG  @0 Experimental study @5 84
C03 21  3  FRE  @0 Ag I S Sb @4 INC @5 92
C07 01  3  FRE  @0 Composé minéral @5 48
C07 01  3  ENG  @0 Inorganic compounds @5 48
C07 02  3  FRE  @0 Métal transition composé @5 49
C07 02  3  ENG  @0 Transition element compounds @5 49
N21       @1 041
N82       @1 PSI
pR  
A30 01  1  ENG  @1 SSI 2001 International Conference on Solid State Ionics @3 Cairns AUS @4 2001-07-08

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:03-0071218

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Superionic AgI-MI
<sub>n</sub>
-Sb
<sub>2</sub>
S
<sub>3</sub>
glasses (M=Pb, Sb): conduction pathways associated with additional metal iodide</title>
<author>
<name sortKey="Renard, C" sort="Renard, C" uniqKey="Renard C" first="C." last="Renard">C. Renard</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>LPCA, UMR CARS 8101, Université du Littoral Côte d'Opale, 145 Avenue Marice Schumann</s1>
<s2>59140 Dunkirk</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Coquet, G" sort="Coquet, G" uniqKey="Coquet G" first="G." last="Coquet">G. Coquet</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>LPCA, UMR CARS 8101, Université du Littoral Côte d'Opale, 145 Avenue Marice Schumann</s1>
<s2>59140 Dunkirk</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Bychkov, E" sort="Bychkov, E" uniqKey="Bychkov E" first="E." last="Bychkov">E. Bychkov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>LPCA, UMR CARS 8101, Université du Littoral Côte d'Opale, 145 Avenue Marice Schumann</s1>
<s2>59140 Dunkirk</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">03-0071218</idno>
<date when="2002">2002</date>
<idno type="stanalyst">PASCAL 03-0071218 INIST</idno>
<idno type="RBID">Pascal:03-0071218</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">005478</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000C48</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Superionic AgI-MI
<sub>n</sub>
-Sb
<sub>2</sub>
S
<sub>3</sub>
glasses (M=Pb, Sb): conduction pathways associated with additional metal iodide</title>
<author>
<name sortKey="Renard, C" sort="Renard, C" uniqKey="Renard C" first="C." last="Renard">C. Renard</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>LPCA, UMR CARS 8101, Université du Littoral Côte d'Opale, 145 Avenue Marice Schumann</s1>
<s2>59140 Dunkirk</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Coquet, G" sort="Coquet, G" uniqKey="Coquet G" first="G." last="Coquet">G. Coquet</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>LPCA, UMR CARS 8101, Université du Littoral Côte d'Opale, 145 Avenue Marice Schumann</s1>
<s2>59140 Dunkirk</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Bychkov, E" sort="Bychkov, E" uniqKey="Bychkov E" first="E." last="Bychkov">E. Bychkov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>LPCA, UMR CARS 8101, Université du Littoral Côte d'Opale, 145 Avenue Marice Schumann</s1>
<s2>59140 Dunkirk</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Solid state ionics</title>
<title level="j" type="abbreviated">Solid state ion.</title>
<idno type="ISSN">0167-2738</idno>
<imprint>
<date when="2002">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Solid state ionics</title>
<title level="j" type="abbreviated">Solid state ion.</title>
<idno type="ISSN">0167-2738</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Activation energy</term>
<term>Antimony iodides</term>
<term>Antimony sulfides</term>
<term>Composition effect</term>
<term>EXAFS</term>
<term>Experimental study</term>
<term>Glass</term>
<term>Ionic conductivity</term>
<term>Lead iodides</term>
<term>Moessbauer effect</term>
<term>Multi-element compounds</term>
<term>Neutron diffraction</term>
<term>Silver iodides</term>
<term>Structural models</term>
<term>Superionic conductors</term>
<term>Ternary systems</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Conductivité ionique</term>
<term>Energie activation</term>
<term>Modèle structure</term>
<term>Diffraction neutron</term>
<term>EXAFS</term>
<term>Effet Mössbauer</term>
<term>Effet composition</term>
<term>Conducteur superionique</term>
<term>Verre</term>
<term>Antimoine sulfure</term>
<term>Argent iodure</term>
<term>Plomb iodure</term>
<term>Antimoine iodure</term>
<term>Système ternaire</term>
<term>Composé n éléments</term>
<term>Système AgI PbI2 Sb2S3</term>
<term>Ag I Pb Sb S</term>
<term>Système AgI SbI3 Sb2S3</term>
<term>6630H</term>
<term>Etude expérimentale</term>
<term>Ag I S Sb</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Verre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The ionic conductivity of the 0.5 AgI.xSbI
<sub>3</sub>
.(0.5-x)Sb
<sub>2</sub>
S
<sub>3</sub>
and 0.5 AgI.xPbI
<sub>2</sub>
.(0.5-x)Sb
<sub>2</sub>
S
<sub>3</sub>
glassy systems with a constant silver concentration has been investigated. It was found that the Ag
<sup>+</sup>
ion transport is closely related to the heavy metal iodide content. The conductivity activation energy decreases from 0.38 to 0.28 eV, and the room temperature conductivity increases by a factor of 100 with increasing x. A structural model based on available neutron diffraction, EXAFS and
<sup>129</sup>
I-Mössbauer spectroscopy data was proposed to explain the observed phenomena.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0167-2738</s0>
</fA01>
<fA02 i1="01">
<s0>SSIOD3</s0>
</fA02>
<fA03 i2="1">
<s0>Solid state ion.</s0>
</fA03>
<fA05>
<s2>154-5</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Superionic AgI-MI
<sub>n</sub>
-Sb
<sub>2</sub>
S
<sub>3</sub>
glasses (M=Pb, Sb): conduction pathways associated with additional metal iodide</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Materials and Processes for Energy and Environment. Part B</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>RENARD (C.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>COQUET (G.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BYCHKOV (E.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BADWAL (S. P. S.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>LPCA, UMR CARS 8101, Université du Littoral Côte d'Opale, 145 Avenue Marice Schumann</s1>
<s2>59140 Dunkirk</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>CSIRO Manufacturing and Infrastructure Technology, Private Bag 33</s1>
<s2>Clayton South, Victoria</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA18 i1="01" i2="1">
<s1>International Society for Solid State Ionics (ISSI)</s1>
<s3>INT</s3>
<s9>patr.</s9>
</fA18>
<fA20>
<s1>749-757</s1>
</fA20>
<fA21>
<s1>2002</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18305</s2>
<s5>354000106857911060</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2003 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>03-0071218</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solid state ionics</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The ionic conductivity of the 0.5 AgI.xSbI
<sub>3</sub>
.(0.5-x)Sb
<sub>2</sub>
S
<sub>3</sub>
and 0.5 AgI.xPbI
<sub>2</sub>
.(0.5-x)Sb
<sub>2</sub>
S
<sub>3</sub>
glassy systems with a constant silver concentration has been investigated. It was found that the Ag
<sup>+</sup>
ion transport is closely related to the heavy metal iodide content. The conductivity activation energy decreases from 0.38 to 0.28 eV, and the room temperature conductivity increases by a factor of 100 with increasing x. A structural model based on available neutron diffraction, EXAFS and
<sup>129</sup>
I-Mössbauer spectroscopy data was proposed to explain the observed phenomena.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60F30H</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Conductivité ionique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Ionic conductivity</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Energie activation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Activation energy</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Modèle structure</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Structural models</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Diffraction neutron</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Neutron diffraction</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>EXAFS</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>EXAFS</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Effet Mössbauer</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Moessbauer effect</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Effet composition</s0>
<s5>13</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Composition effect</s0>
<s5>13</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Efecto composición</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Conducteur superionique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Superionic conductors</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Verre</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Glass</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Antimoine sulfure</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Antimony sulfides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Argent iodure</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Silver iodides</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Plomb iodure</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Lead iodides</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Antimoine iodure</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Antimony iodides</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Système ternaire</s0>
<s5>20</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Ternary systems</s0>
<s5>20</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Composé n éléments</s0>
<s5>21</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Multi-element compounds</s0>
<s5>21</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Système AgI PbI2 Sb2S3</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Ag I Pb Sb S</s0>
<s4>INC</s4>
<s5>54</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Système AgI SbI3 Sb2S3</s0>
<s4>INC</s4>
<s5>55</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>6630H</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>84</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>84</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Ag I S Sb</s0>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fC07 i1="01" i2="3" l="FRE">
<s0>Composé minéral</s0>
<s5>48</s5>
</fC07>
<fC07 i1="01" i2="3" l="ENG">
<s0>Inorganic compounds</s0>
<s5>48</s5>
</fC07>
<fC07 i1="02" i2="3" l="FRE">
<s0>Métal transition composé</s0>
<s5>49</s5>
</fC07>
<fC07 i1="02" i2="3" l="ENG">
<s0>Transition element compounds</s0>
<s5>49</s5>
</fC07>
<fN21>
<s1>041</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>SSI 2001 International Conference on Solid State Ionics</s1>
<s3>Cairns AUS</s3>
<s4>2001-07-08</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C48 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000C48 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:03-0071218
   |texte=   Superionic AgI-MIn-Sb2S3 glasses (M=Pb, Sb): conduction pathways associated with additional metal iodide
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024