Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A note on the wavelet oracle

Identifieur interne : 006291 ( PascalFrancis/Corpus ); précédent : 006290; suivant : 006292

A note on the wavelet oracle

Auteurs : P. Hall ; G. Kerkyacharian ; D. Picard

Source :

RBID : Pascal:99-0402177

Descripteurs français

English descriptors

Abstract

The extent to which wavelet function estimators achieve benchmark levels of performance is sometimes described in terms of our ability to interpret a mythical oracle, who has access to the "truth' about the target function. Since he is so wise, he is able to threshold in an optimal manner - that is, to include a term in the empirical wavelet expansion if and only if the square of the corresponding true coefficient is larger than the variance of its estimate. In this note we show that if thresholding is performed in blocks then, for piecewise-smooth functions, we can achieve the same first-order mean-square performance as the oracle, right down to the constant factor, for fixed, piecewise-smooth functions.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0167-7152
A02 01      @0 SPLTDC
A03   1    @0 Stat. probab. lett.
A05       @2 43
A06       @2 4
A08 01  1  ENG  @1 A note on the wavelet oracle
A11 01  1    @1 HALL (P.)
A11 02  1    @1 KERKYACHARIAN (G.)
A11 03  1    @1 PICARD (D.)
A14 01      @1 Centre for Mathematics and its Applications, Australian National University @2 Canberra, ACT 0260 @3 AUS @Z 1 aut. @Z 2 aut. @Z 3 aut.
A14 02      @1 Faculté Mathematiques et Informatiques, Université de Picardie, 33 rue Saint-Leu @2 80039 Amiens @3 FRA @Z 2 aut.
A14 03      @1 Département de Mathematiques, Université de Paris VII @2 75251 Paris @3 FRA @Z 3 aut.
A20       @1 415-420
A21       @1 1999
A23 01      @0 ENG
A43 01      @1 INIST @2 19178 @5 354000085331280120
A44       @0 0000 @1 © 1999 INIST-CNRS. All rights reserved.
A45       @0 9 ref.
A47 01  1    @0 99-0402177
A60       @1 P
A61       @0 A
A64 01  1    @0 Statistics & probability letters
A66 01      @0 NLD
C01 01    ENG  @0 The extent to which wavelet function estimators achieve benchmark levels of performance is sometimes described in terms of our ability to interpret a mythical oracle, who has access to the "truth' about the target function. Since he is so wise, he is able to threshold in an optimal manner - that is, to include a term in the empirical wavelet expansion if and only if the square of the corresponding true coefficient is larger than the variance of its estimate. In this note we show that if thresholding is performed in blocks then, for piecewise-smooth functions, we can achieve the same first-order mean-square performance as the oracle, right down to the constant factor, for fixed, piecewise-smooth functions.
C02 01  X    @0 001A02H02H
C02 02  X    @0 001A02H02I
C03 01  X  FRE  @0 Méthode optimisation @5 01
C03 01  X  ENG  @0 Optimization method @5 01
C03 01  X  SPA  @0 Método optimización @5 01
C03 02  X  FRE  @0 Transformation ondelette @5 02
C03 02  X  ENG  @0 Wavelet transformation @5 02
C03 02  X  SPA  @0 Transformación ondita @5 02
C03 03  X  FRE  @0 Analyse variance @5 03
C03 03  X  ENG  @0 Variance analysis @5 03
C03 03  X  SPA  @0 Análisis variancia @5 03
N21       @1 256

Format Inist (serveur)

NO : PASCAL 99-0402177 INIST
ET : A note on the wavelet oracle
AU : HALL (P.); KERKYACHARIAN (G.); PICARD (D.)
AF : Centre for Mathematics and its Applications, Australian National University/Canberra, ACT 0260/Australie (1 aut., 2 aut., 3 aut.); Faculté Mathematiques et Informatiques, Université de Picardie, 33 rue Saint-Leu/80039 Amiens/France (2 aut.); Département de Mathematiques, Université de Paris VII/75251 Paris/France (3 aut.)
DT : Publication en série; Niveau analytique
SO : Statistics & probability letters; ISSN 0167-7152; Coden SPLTDC; Pays-Bas; Da. 1999; Vol. 43; No. 4; Pp. 415-420; Bibl. 9 ref.
LA : Anglais
EA : The extent to which wavelet function estimators achieve benchmark levels of performance is sometimes described in terms of our ability to interpret a mythical oracle, who has access to the "truth' about the target function. Since he is so wise, he is able to threshold in an optimal manner - that is, to include a term in the empirical wavelet expansion if and only if the square of the corresponding true coefficient is larger than the variance of its estimate. In this note we show that if thresholding is performed in blocks then, for piecewise-smooth functions, we can achieve the same first-order mean-square performance as the oracle, right down to the constant factor, for fixed, piecewise-smooth functions.
CC : 001A02H02H; 001A02H02I
FD : Méthode optimisation; Transformation ondelette; Analyse variance
ED : Optimization method; Wavelet transformation; Variance analysis
SD : Método optimización; Transformación ondita; Análisis variancia
LO : INIST-19178.354000085331280120
ID : 99-0402177

Links to Exploration step

Pascal:99-0402177

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">A note on the wavelet oracle</title>
<author>
<name sortKey="Hall, P" sort="Hall, P" uniqKey="Hall P" first="P." last="Hall">P. Hall</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Centre for Mathematics and its Applications, Australian National University</s1>
<s2>Canberra, ACT 0260</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kerkyacharian, G" sort="Kerkyacharian, G" uniqKey="Kerkyacharian G" first="G." last="Kerkyacharian">G. Kerkyacharian</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Centre for Mathematics and its Applications, Australian National University</s1>
<s2>Canberra, ACT 0260</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Faculté Mathematiques et Informatiques, Université de Picardie, 33 rue Saint-Leu</s1>
<s2>80039 Amiens</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Picard, D" sort="Picard, D" uniqKey="Picard D" first="D." last="Picard">D. Picard</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Centre for Mathematics and its Applications, Australian National University</s1>
<s2>Canberra, ACT 0260</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Département de Mathematiques, Université de Paris VII</s1>
<s2>75251 Paris</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">99-0402177</idno>
<date when="1999">1999</date>
<idno type="stanalyst">PASCAL 99-0402177 INIST</idno>
<idno type="RBID">Pascal:99-0402177</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">006291</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">A note on the wavelet oracle</title>
<author>
<name sortKey="Hall, P" sort="Hall, P" uniqKey="Hall P" first="P." last="Hall">P. Hall</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Centre for Mathematics and its Applications, Australian National University</s1>
<s2>Canberra, ACT 0260</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kerkyacharian, G" sort="Kerkyacharian, G" uniqKey="Kerkyacharian G" first="G." last="Kerkyacharian">G. Kerkyacharian</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Centre for Mathematics and its Applications, Australian National University</s1>
<s2>Canberra, ACT 0260</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Faculté Mathematiques et Informatiques, Université de Picardie, 33 rue Saint-Leu</s1>
<s2>80039 Amiens</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Picard, D" sort="Picard, D" uniqKey="Picard D" first="D." last="Picard">D. Picard</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Centre for Mathematics and its Applications, Australian National University</s1>
<s2>Canberra, ACT 0260</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Département de Mathematiques, Université de Paris VII</s1>
<s2>75251 Paris</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Statistics & probability letters</title>
<title level="j" type="abbreviated">Stat. probab. lett.</title>
<idno type="ISSN">0167-7152</idno>
<imprint>
<date when="1999">1999</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Statistics & probability letters</title>
<title level="j" type="abbreviated">Stat. probab. lett.</title>
<idno type="ISSN">0167-7152</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Optimization method</term>
<term>Variance analysis</term>
<term>Wavelet transformation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Méthode optimisation</term>
<term>Transformation ondelette</term>
<term>Analyse variance</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The extent to which wavelet function estimators achieve benchmark levels of performance is sometimes described in terms of our ability to interpret a mythical oracle, who has access to the "truth' about the target function. Since he is so wise, he is able to threshold in an optimal manner - that is, to include a term in the empirical wavelet expansion if and only if the square of the corresponding true coefficient is larger than the variance of its estimate. In this note we show that if thresholding is performed in blocks then, for piecewise-smooth functions, we can achieve the same first-order mean-square performance as the oracle, right down to the constant factor, for fixed, piecewise-smooth functions.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0167-7152</s0>
</fA01>
<fA02 i1="01">
<s0>SPLTDC</s0>
</fA02>
<fA03 i2="1">
<s0>Stat. probab. lett.</s0>
</fA03>
<fA05>
<s2>43</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>A note on the wavelet oracle</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HALL (P.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KERKYACHARIAN (G.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PICARD (D.)</s1>
</fA11>
<fA14 i1="01">
<s1>Centre for Mathematics and its Applications, Australian National University</s1>
<s2>Canberra, ACT 0260</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Faculté Mathematiques et Informatiques, Université de Picardie, 33 rue Saint-Leu</s1>
<s2>80039 Amiens</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Département de Mathematiques, Université de Paris VII</s1>
<s2>75251 Paris</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>415-420</s1>
</fA20>
<fA21>
<s1>1999</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>19178</s2>
<s5>354000085331280120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 1999 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>9 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>99-0402177</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Statistics & probability letters</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The extent to which wavelet function estimators achieve benchmark levels of performance is sometimes described in terms of our ability to interpret a mythical oracle, who has access to the "truth' about the target function. Since he is so wise, he is able to threshold in an optimal manner - that is, to include a term in the empirical wavelet expansion if and only if the square of the corresponding true coefficient is larger than the variance of its estimate. In this note we show that if thresholding is performed in blocks then, for piecewise-smooth functions, we can achieve the same first-order mean-square performance as the oracle, right down to the constant factor, for fixed, piecewise-smooth functions.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001A02H02H</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001A02H02I</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Méthode optimisation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Optimization method</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Método optimización</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Transformation ondelette</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Wavelet transformation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Transformación ondita</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Analyse variance</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Variance analysis</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Análisis variancia</s0>
<s5>03</s5>
</fC03>
<fN21>
<s1>256</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 99-0402177 INIST</NO>
<ET>A note on the wavelet oracle</ET>
<AU>HALL (P.); KERKYACHARIAN (G.); PICARD (D.)</AU>
<AF>Centre for Mathematics and its Applications, Australian National University/Canberra, ACT 0260/Australie (1 aut., 2 aut., 3 aut.); Faculté Mathematiques et Informatiques, Université de Picardie, 33 rue Saint-Leu/80039 Amiens/France (2 aut.); Département de Mathematiques, Université de Paris VII/75251 Paris/France (3 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Statistics & probability letters; ISSN 0167-7152; Coden SPLTDC; Pays-Bas; Da. 1999; Vol. 43; No. 4; Pp. 415-420; Bibl. 9 ref.</SO>
<LA>Anglais</LA>
<EA>The extent to which wavelet function estimators achieve benchmark levels of performance is sometimes described in terms of our ability to interpret a mythical oracle, who has access to the "truth' about the target function. Since he is so wise, he is able to threshold in an optimal manner - that is, to include a term in the empirical wavelet expansion if and only if the square of the corresponding true coefficient is larger than the variance of its estimate. In this note we show that if thresholding is performed in blocks then, for piecewise-smooth functions, we can achieve the same first-order mean-square performance as the oracle, right down to the constant factor, for fixed, piecewise-smooth functions.</EA>
<CC>001A02H02H; 001A02H02I</CC>
<FD>Méthode optimisation; Transformation ondelette; Analyse variance</FD>
<ED>Optimization method; Wavelet transformation; Variance analysis</ED>
<SD>Método optimización; Transformación ondita; Análisis variancia</SD>
<LO>INIST-19178.354000085331280120</LO>
<ID>99-0402177</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 006291 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 006291 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:99-0402177
   |texte=   A note on the wavelet oracle
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024