Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Membrane separation bioreactors for wastewater treatment

Identifieur interne : 006054 ( PascalFrancis/Corpus ); précédent : 006053; suivant : 006055

Membrane separation bioreactors for wastewater treatment

Auteurs : C. Visvanathan ; R. Ben Aim ; K. Parameshwaran

Source :

RBID : Pascal:00-0101085

Descripteurs français

English descriptors

Abstract

With continuing depletion of fresh water resources, focus has shifted more toward water recovery, reuse, and recycling, which require an extension of conventional wastewater treatment technologies. Downstream external factors like stricter compliance requirements for wastewater discharge, rising treatment costs, and spatial constraints necessitate renewed investigation of alternative technologies. Coupled with biological treatment processes, membrane technology has gained considerable attention due to its wide range of applicability and the performance characteristics of membrane systems that have been established by various investigations and innovations during the last decade. This article summarizes research efforts and presents a review of the how and why of their development and applications. The focus is on appraising and comparing technologies on the basis of their relative merits and demerits. Additional facts and figures, especially regarding process parameters and effluent quality, are used to evaluate primary findings on these technologies. Key factors such as loading rates, retention time, cross-flow velocities, membrane types, membrane fouling, and backwashing, etc. are some of the aspects covered. Membrane applications in various aerobic and anaerobic schemes are discussed at length. However, the emphasis is on the use of membranes as a solid/liquid separator, a key in achieving desired effluent quality. Further, technology development directions and possibilities are also explored. The review concludes with an economic assessment of the technologies because one of the key technology selection criteria is financial viability.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1064-3389
A03   1    @0 Crit. rev. environ. sci. technol.
A05       @2 30
A06       @2 1
A08 01  1  ENG  @1 Membrane separation bioreactors for wastewater treatment
A11 01  1    @1 VISVANATHAN (C.)
A11 02  1    @1 BEN AIM (R.)
A11 03  1    @1 PARAMESHWARAN (K.)
A14 01      @1 Environmental Engineering Program, Asian Institute of Technology, P.O. Box 4, Klong Luang @2 Pathumthani 12120 @3 THA @Z 1 aut.
A14 02      @1 Institute National des Sciences Appliquées de Toulouse, Complexe Scientifique de Rangueil @2 31077, Toulouse @3 FRA @Z 2 aut.
A14 03      @1 Center for Membrane Science and Technology, The University of New South Wales @2 Sydney 2052 @3 AUS @Z 3 aut.
A20       @1 1-48
A21       @1 2000
A23 01      @0 ENG
A43 01      @1 INIST @2 16181 @5 354000081896400010
A44       @0 0000 @1 © 2000 INIST-CNRS. All rights reserved.
A45       @0 4 p.3/4
A47 01  1    @0 00-0101085
A60       @1 P
A61       @0 A
A64 01  1    @0 Critical reviews in environmental science and technology
A66 01      @0 USA
C01 01    ENG  @0 With continuing depletion of fresh water resources, focus has shifted more toward water recovery, reuse, and recycling, which require an extension of conventional wastewater treatment technologies. Downstream external factors like stricter compliance requirements for wastewater discharge, rising treatment costs, and spatial constraints necessitate renewed investigation of alternative technologies. Coupled with biological treatment processes, membrane technology has gained considerable attention due to its wide range of applicability and the performance characteristics of membrane systems that have been established by various investigations and innovations during the last decade. This article summarizes research efforts and presents a review of the how and why of their development and applications. The focus is on appraising and comparing technologies on the basis of their relative merits and demerits. Additional facts and figures, especially regarding process parameters and effluent quality, are used to evaluate primary findings on these technologies. Key factors such as loading rates, retention time, cross-flow velocities, membrane types, membrane fouling, and backwashing, etc. are some of the aspects covered. Membrane applications in various aerobic and anaerobic schemes are discussed at length. However, the emphasis is on the use of membranes as a solid/liquid separator, a key in achieving desired effluent quality. Further, technology development directions and possibilities are also explored. The review concludes with an economic assessment of the technologies because one of the key technology selection criteria is financial viability.
C02 01  X    @0 001D16A05A
C02 02  X    @0 002A31D07A
C02 03  X    @0 215
C03 01  X  FRE  @0 Article synthèse @5 01
C03 01  X  ENG  @0 Review @5 01
C03 01  X  SPA  @0 Artículo síntesis @5 01
C03 02  X  FRE  @0 Epuration eau usée @5 02
C03 02  X  ENG  @0 Waste water purification @5 02
C03 02  X  SPA  @0 Depuración aguas servidas @5 02
C03 03  X  FRE  @0 Epuration biologique @5 03
C03 03  X  ENG  @0 Biological purification @5 03
C03 03  X  SPA  @0 Depuración biológica @5 03
C03 04  X  FRE  @0 Bioréacteur @5 04
C03 04  X  ENG  @0 Bioreactor @5 04
C03 04  X  SPA  @0 Biorreactor @5 04
C03 05  X  FRE  @0 Réacteur membrane @5 05
C03 05  X  ENG  @0 Membrane reactor @5 05
C03 05  X  SPA  @0 Reactor membrana @5 05
C03 06  X  FRE  @0 Séparation par membrane @5 06
C03 06  X  ENG  @0 Membrane separation @5 06
C03 06  X  SPA  @0 Separación por membrana @5 06
C03 07  X  FRE  @0 Filtration @5 07
C03 07  X  ENG  @0 Filtration @5 07
C03 07  X  SPA  @0 Filtración @5 07
C03 08  X  FRE  @0 Ultrafiltration @5 08
C03 08  X  ENG  @0 Ultrafiltration @5 08
C03 08  X  SPA  @0 Ultrafiltración @5 08
C03 09  X  FRE  @0 Microfiltration @5 09
C03 09  X  ENG  @0 Microfiltration @5 09
C03 09  X  SPA  @0 Microfiltración @5 09
C03 10  X  FRE  @0 Membrane poreuse @5 10
C03 10  X  ENG  @0 Porous membrane @5 10
C03 10  X  SPA  @0 Membrana porosa @5 10
C03 11  X  FRE  @0 Microporosité @5 11
C03 11  X  ENG  @0 Microporosity @5 11
C03 11  X  SPA  @0 Microporosidad @5 11
C03 12  X  FRE  @0 Aérobiose @5 12
C03 12  X  ENG  @0 Aerobiosis @5 12
C03 12  X  SPA  @0 Aerobiosis @5 12
C03 13  X  FRE  @0 Anaérobiose @5 13
C03 13  X  ENG  @0 Anaerobiosis @5 13
C03 13  X  SPA  @0 Anaerobiosis @5 13
C03 14  X  FRE  @0 Eau usée domestique @5 14
C03 14  X  ENG  @0 Domestic waste water @5 14
C03 14  X  SPA  @0 Agua residual doméstica @5 14
C03 15  X  FRE  @0 Eau usée industrielle @5 15
C03 15  X  ENG  @0 Industrial waste water @5 15
C03 15  X  SPA  @0 Agua servida industrial @5 15
C03 16  X  FRE  @0 Condition opératoire @5 16
C03 16  X  ENG  @0 Operating conditions @5 16
C03 16  X  SPA  @0 Condición operatoria @5 16
C03 17  X  FRE  @0 Bioencrassement @5 17
C03 17  X  ENG  @0 Biofouling @5 17
C03 17  X  SPA  @0 Incrustación biológica @5 17
C03 18  X  FRE  @0 Etude économique @5 18
C03 18  X  ENG  @0 Economic study @5 18
C03 18  X  SPA  @0 Estudio económico @5 18
C03 19  X  FRE  @0 Analyse coût efficacité @5 19
C03 19  X  ENG  @0 Cost efficiency analysis @5 19
C03 19  X  SPA  @0 Análisis costo eficacia @5 19
N21       @1 073

Format Inist (serveur)

NO : PASCAL 00-0101085 INIST
ET : Membrane separation bioreactors for wastewater treatment
AU : VISVANATHAN (C.); BEN AIM (R.); PARAMESHWARAN (K.)
AF : Environmental Engineering Program, Asian Institute of Technology, P.O. Box 4, Klong Luang/Pathumthani 12120/Thaïlande (1 aut.); Institute National des Sciences Appliquées de Toulouse, Complexe Scientifique de Rangueil/31077, Toulouse/France (2 aut.); Center for Membrane Science and Technology, The University of New South Wales/Sydney 2052/Australie (3 aut.)
DT : Publication en série; Niveau analytique
SO : Critical reviews in environmental science and technology; ISSN 1064-3389; Etats-Unis; Da. 2000; Vol. 30; No. 1; Pp. 1-48; Bibl. 4 p.3/4
LA : Anglais
EA : With continuing depletion of fresh water resources, focus has shifted more toward water recovery, reuse, and recycling, which require an extension of conventional wastewater treatment technologies. Downstream external factors like stricter compliance requirements for wastewater discharge, rising treatment costs, and spatial constraints necessitate renewed investigation of alternative technologies. Coupled with biological treatment processes, membrane technology has gained considerable attention due to its wide range of applicability and the performance characteristics of membrane systems that have been established by various investigations and innovations during the last decade. This article summarizes research efforts and presents a review of the how and why of their development and applications. The focus is on appraising and comparing technologies on the basis of their relative merits and demerits. Additional facts and figures, especially regarding process parameters and effluent quality, are used to evaluate primary findings on these technologies. Key factors such as loading rates, retention time, cross-flow velocities, membrane types, membrane fouling, and backwashing, etc. are some of the aspects covered. Membrane applications in various aerobic and anaerobic schemes are discussed at length. However, the emphasis is on the use of membranes as a solid/liquid separator, a key in achieving desired effluent quality. Further, technology development directions and possibilities are also explored. The review concludes with an economic assessment of the technologies because one of the key technology selection criteria is financial viability.
CC : 001D16A05A; 002A31D07A; 215
FD : Article synthèse; Epuration eau usée; Epuration biologique; Bioréacteur; Réacteur membrane; Séparation par membrane; Filtration; Ultrafiltration; Microfiltration; Membrane poreuse; Microporosité; Aérobiose; Anaérobiose; Eau usée domestique; Eau usée industrielle; Condition opératoire; Bioencrassement; Etude économique; Analyse coût efficacité
ED : Review; Waste water purification; Biological purification; Bioreactor; Membrane reactor; Membrane separation; Filtration; Ultrafiltration; Microfiltration; Porous membrane; Microporosity; Aerobiosis; Anaerobiosis; Domestic waste water; Industrial waste water; Operating conditions; Biofouling; Economic study; Cost efficiency analysis
SD : Artículo síntesis; Depuración aguas servidas; Depuración biológica; Biorreactor; Reactor membrana; Separación por membrana; Filtración; Ultrafiltración; Microfiltración; Membrana porosa; Microporosidad; Aerobiosis; Anaerobiosis; Agua residual doméstica; Agua servida industrial; Condición operatoria; Incrustación biológica; Estudio económico; Análisis costo eficacia
LO : INIST-16181.354000081896400010
ID : 00-0101085

Links to Exploration step

Pascal:00-0101085

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Membrane separation bioreactors for wastewater treatment</title>
<author>
<name sortKey="Visvanathan, C" sort="Visvanathan, C" uniqKey="Visvanathan C" first="C." last="Visvanathan">C. Visvanathan</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Environmental Engineering Program, Asian Institute of Technology, P.O. Box 4, Klong Luang</s1>
<s2>Pathumthani 12120</s2>
<s3>THA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ben Aim, R" sort="Ben Aim, R" uniqKey="Ben Aim R" first="R." last="Ben Aim">R. Ben Aim</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute National des Sciences Appliquées de Toulouse, Complexe Scientifique de Rangueil</s1>
<s2>31077, Toulouse</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Parameshwaran, K" sort="Parameshwaran, K" uniqKey="Parameshwaran K" first="K." last="Parameshwaran">K. Parameshwaran</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Center for Membrane Science and Technology, The University of New South Wales</s1>
<s2>Sydney 2052</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">00-0101085</idno>
<date when="2000">2000</date>
<idno type="stanalyst">PASCAL 00-0101085 INIST</idno>
<idno type="RBID">Pascal:00-0101085</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">006054</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Membrane separation bioreactors for wastewater treatment</title>
<author>
<name sortKey="Visvanathan, C" sort="Visvanathan, C" uniqKey="Visvanathan C" first="C." last="Visvanathan">C. Visvanathan</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Environmental Engineering Program, Asian Institute of Technology, P.O. Box 4, Klong Luang</s1>
<s2>Pathumthani 12120</s2>
<s3>THA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ben Aim, R" sort="Ben Aim, R" uniqKey="Ben Aim R" first="R." last="Ben Aim">R. Ben Aim</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute National des Sciences Appliquées de Toulouse, Complexe Scientifique de Rangueil</s1>
<s2>31077, Toulouse</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Parameshwaran, K" sort="Parameshwaran, K" uniqKey="Parameshwaran K" first="K." last="Parameshwaran">K. Parameshwaran</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Center for Membrane Science and Technology, The University of New South Wales</s1>
<s2>Sydney 2052</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Critical reviews in environmental science and technology</title>
<title level="j" type="abbreviated">Crit. rev. environ. sci. technol.</title>
<idno type="ISSN">1064-3389</idno>
<imprint>
<date when="2000">2000</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Critical reviews in environmental science and technology</title>
<title level="j" type="abbreviated">Crit. rev. environ. sci. technol.</title>
<idno type="ISSN">1064-3389</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aerobiosis</term>
<term>Anaerobiosis</term>
<term>Biofouling</term>
<term>Biological purification</term>
<term>Bioreactor</term>
<term>Cost efficiency analysis</term>
<term>Domestic waste water</term>
<term>Economic study</term>
<term>Filtration</term>
<term>Industrial waste water</term>
<term>Membrane reactor</term>
<term>Membrane separation</term>
<term>Microfiltration</term>
<term>Microporosity</term>
<term>Operating conditions</term>
<term>Porous membrane</term>
<term>Review</term>
<term>Ultrafiltration</term>
<term>Waste water purification</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Article synthèse</term>
<term>Epuration eau usée</term>
<term>Epuration biologique</term>
<term>Bioréacteur</term>
<term>Réacteur membrane</term>
<term>Séparation par membrane</term>
<term>Filtration</term>
<term>Ultrafiltration</term>
<term>Microfiltration</term>
<term>Membrane poreuse</term>
<term>Microporosité</term>
<term>Aérobiose</term>
<term>Anaérobiose</term>
<term>Eau usée domestique</term>
<term>Eau usée industrielle</term>
<term>Condition opératoire</term>
<term>Bioencrassement</term>
<term>Etude économique</term>
<term>Analyse coût efficacité</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">With continuing depletion of fresh water resources, focus has shifted more toward water recovery, reuse, and recycling, which require an extension of conventional wastewater treatment technologies. Downstream external factors like stricter compliance requirements for wastewater discharge, rising treatment costs, and spatial constraints necessitate renewed investigation of alternative technologies. Coupled with biological treatment processes, membrane technology has gained considerable attention due to its wide range of applicability and the performance characteristics of membrane systems that have been established by various investigations and innovations during the last decade. This article summarizes research efforts and presents a review of the how and why of their development and applications. The focus is on appraising and comparing technologies on the basis of their relative merits and demerits. Additional facts and figures, especially regarding process parameters and effluent quality, are used to evaluate primary findings on these technologies. Key factors such as loading rates, retention time, cross-flow velocities, membrane types, membrane fouling, and backwashing, etc. are some of the aspects covered. Membrane applications in various aerobic and anaerobic schemes are discussed at length. However, the emphasis is on the use of membranes as a solid/liquid separator, a key in achieving desired effluent quality. Further, technology development directions and possibilities are also explored. The review concludes with an economic assessment of the technologies because one of the key technology selection criteria is financial viability.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1064-3389</s0>
</fA01>
<fA03 i2="1">
<s0>Crit. rev. environ. sci. technol.</s0>
</fA03>
<fA05>
<s2>30</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Membrane separation bioreactors for wastewater treatment</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>VISVANATHAN (C.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BEN AIM (R.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PARAMESHWARAN (K.)</s1>
</fA11>
<fA14 i1="01">
<s1>Environmental Engineering Program, Asian Institute of Technology, P.O. Box 4, Klong Luang</s1>
<s2>Pathumthani 12120</s2>
<s3>THA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute National des Sciences Appliquées de Toulouse, Complexe Scientifique de Rangueil</s1>
<s2>31077, Toulouse</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Center for Membrane Science and Technology, The University of New South Wales</s1>
<s2>Sydney 2052</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>1-48</s1>
</fA20>
<fA21>
<s1>2000</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>16181</s2>
<s5>354000081896400010</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2000 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>4 p.3/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>00-0101085</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Critical reviews in environmental science and technology</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>With continuing depletion of fresh water resources, focus has shifted more toward water recovery, reuse, and recycling, which require an extension of conventional wastewater treatment technologies. Downstream external factors like stricter compliance requirements for wastewater discharge, rising treatment costs, and spatial constraints necessitate renewed investigation of alternative technologies. Coupled with biological treatment processes, membrane technology has gained considerable attention due to its wide range of applicability and the performance characteristics of membrane systems that have been established by various investigations and innovations during the last decade. This article summarizes research efforts and presents a review of the how and why of their development and applications. The focus is on appraising and comparing technologies on the basis of their relative merits and demerits. Additional facts and figures, especially regarding process parameters and effluent quality, are used to evaluate primary findings on these technologies. Key factors such as loading rates, retention time, cross-flow velocities, membrane types, membrane fouling, and backwashing, etc. are some of the aspects covered. Membrane applications in various aerobic and anaerobic schemes are discussed at length. However, the emphasis is on the use of membranes as a solid/liquid separator, a key in achieving desired effluent quality. Further, technology development directions and possibilities are also explored. The review concludes with an economic assessment of the technologies because one of the key technology selection criteria is financial viability.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D16A05A</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002A31D07A</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>215</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Article synthèse</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Review</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Artículo síntesis</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Epuration eau usée</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Waste water purification</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Depuración aguas servidas</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Epuration biologique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Biological purification</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Depuración biológica</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Bioréacteur</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Bioreactor</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Biorreactor</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Réacteur membrane</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Membrane reactor</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Reactor membrana</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Séparation par membrane</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Membrane separation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Separación por membrana</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Filtration</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Filtration</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Filtración</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Ultrafiltration</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Ultrafiltration</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Ultrafiltración</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Microfiltration</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Microfiltration</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Microfiltración</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Membrane poreuse</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Porous membrane</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Membrana porosa</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Microporosité</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Microporosity</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Microporosidad</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Aérobiose</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Aerobiosis</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Aerobiosis</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Anaérobiose</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Anaerobiosis</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Anaerobiosis</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Eau usée domestique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Domestic waste water</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Agua residual doméstica</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Eau usée industrielle</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Industrial waste water</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Agua servida industrial</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Condition opératoire</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Operating conditions</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Condición operatoria</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Bioencrassement</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Biofouling</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Incrustación biológica</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Etude économique</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Economic study</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Estudio económico</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Analyse coût efficacité</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Cost efficiency analysis</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Análisis costo eficacia</s0>
<s5>19</s5>
</fC03>
<fN21>
<s1>073</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 00-0101085 INIST</NO>
<ET>Membrane separation bioreactors for wastewater treatment</ET>
<AU>VISVANATHAN (C.); BEN AIM (R.); PARAMESHWARAN (K.)</AU>
<AF>Environmental Engineering Program, Asian Institute of Technology, P.O. Box 4, Klong Luang/Pathumthani 12120/Thaïlande (1 aut.); Institute National des Sciences Appliquées de Toulouse, Complexe Scientifique de Rangueil/31077, Toulouse/France (2 aut.); Center for Membrane Science and Technology, The University of New South Wales/Sydney 2052/Australie (3 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Critical reviews in environmental science and technology; ISSN 1064-3389; Etats-Unis; Da. 2000; Vol. 30; No. 1; Pp. 1-48; Bibl. 4 p.3/4</SO>
<LA>Anglais</LA>
<EA>With continuing depletion of fresh water resources, focus has shifted more toward water recovery, reuse, and recycling, which require an extension of conventional wastewater treatment technologies. Downstream external factors like stricter compliance requirements for wastewater discharge, rising treatment costs, and spatial constraints necessitate renewed investigation of alternative technologies. Coupled with biological treatment processes, membrane technology has gained considerable attention due to its wide range of applicability and the performance characteristics of membrane systems that have been established by various investigations and innovations during the last decade. This article summarizes research efforts and presents a review of the how and why of their development and applications. The focus is on appraising and comparing technologies on the basis of their relative merits and demerits. Additional facts and figures, especially regarding process parameters and effluent quality, are used to evaluate primary findings on these technologies. Key factors such as loading rates, retention time, cross-flow velocities, membrane types, membrane fouling, and backwashing, etc. are some of the aspects covered. Membrane applications in various aerobic and anaerobic schemes are discussed at length. However, the emphasis is on the use of membranes as a solid/liquid separator, a key in achieving desired effluent quality. Further, technology development directions and possibilities are also explored. The review concludes with an economic assessment of the technologies because one of the key technology selection criteria is financial viability.</EA>
<CC>001D16A05A; 002A31D07A; 215</CC>
<FD>Article synthèse; Epuration eau usée; Epuration biologique; Bioréacteur; Réacteur membrane; Séparation par membrane; Filtration; Ultrafiltration; Microfiltration; Membrane poreuse; Microporosité; Aérobiose; Anaérobiose; Eau usée domestique; Eau usée industrielle; Condition opératoire; Bioencrassement; Etude économique; Analyse coût efficacité</FD>
<ED>Review; Waste water purification; Biological purification; Bioreactor; Membrane reactor; Membrane separation; Filtration; Ultrafiltration; Microfiltration; Porous membrane; Microporosity; Aerobiosis; Anaerobiosis; Domestic waste water; Industrial waste water; Operating conditions; Biofouling; Economic study; Cost efficiency analysis</ED>
<SD>Artículo síntesis; Depuración aguas servidas; Depuración biológica; Biorreactor; Reactor membrana; Separación por membrana; Filtración; Ultrafiltración; Microfiltración; Membrana porosa; Microporosidad; Aerobiosis; Anaerobiosis; Agua residual doméstica; Agua servida industrial; Condición operatoria; Incrustación biológica; Estudio económico; Análisis costo eficacia</SD>
<LO>INIST-16181.354000081896400010</LO>
<ID>00-0101085</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 006054 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 006054 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:00-0101085
   |texte=   Membrane separation bioreactors for wastewater treatment
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024