Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Human-chimpanzee DNA sequence variation in the four major genes of the renin angiotensin system

Identifieur interne : 005D34 ( PascalFrancis/Corpus ); précédent : 005D33; suivant : 005D35

Human-chimpanzee DNA sequence variation in the four major genes of the renin angiotensin system

Auteurs : Cécile Dufour ; Didier Casane ; Derek Denton ; Jean Wickings ; Pierre Corvol ; Xavier Jeunemaitre

Source :

RBID : Pascal:01-0049610

Descripteurs français

English descriptors

Abstract

The renin angiotensin system (RAS) is involved in blood pressure control and water/sodium metabolism. The genes encoding the proteins of this system are candidate genes for essential hypertension. The RAS involves four main molecules: angiotensinogen, renin, angiotensin I-converting enzyme, and the angiotensin II type 1 receptor (encoded by the genes AGT, REN, DCP1, and AGTR1, respectively). We performed a molecular screening over 17,037 bp of the coding and 5' and 3' untranslated regions of these genes, from three to six common chimpanzees. We identified 44 single-nucleotide polymorphisms (SNPs) in chimpanzee samples, including 18 coding-region SNPs, 5 of which led to an amino acid replacement. We observed common and different features at various sites (synonymous, nonsynonymous, and noncoding) within and between the four chimpanzee genes: (1) the nucleotide diversity at noncoding sites was similar; (2) the nucleotide diversity at nonsynonymous sites was low, probably reflecting purifying selection, except for the AGT gene; (3) the nucleotide diversity at synonymous sites, which was dependent on the G+C content at the third position of the codon, was high, except for the AGTR1 gene. Comparison of the chimpanzee SNPs with those previously reported for humans identified 119 sites with fixed differences (including 62 coding sites, 17 of which resulted in amino acid differences between the species). Analysis of polymorphism within species and divergence between species shed light on the evolutionary constraints on these genes. In particular, comparison of the pattern of mutation at polymorphic and fixed sites between humans and chimpanzees suggested that the high G+C content of the DCP1 gene was maintained by positive selection at its silent sites. Finally, we propose 68 ancestral alleles for the human RAS genes and discuss the implications for their use in future hypertension-susceptibility association studies.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0888-7543
A03   1    @0 Genomics : (S. Diego CA)
A05       @2 69
A06       @2 1
A08 01  1  ENG  @1 Human-chimpanzee DNA sequence variation in the four major genes of the renin angiotensin system
A11 01  1    @1 DUFOUR (Cécile)
A11 02  1    @1 CASANE (Didier)
A11 03  1    @1 DENTON (Derek)
A11 04  1    @1 WICKINGS (Jean)
A11 05  1    @1 CORVOL (Pierre)
A11 06  1    @1 JEUNEMAITRE (Xavier)
A14 01      @1 Pathologie Vasculaire et Endocrinologie Rénale, Collège de France, Chaire de Médecine Expérimentale et d'Endocrinologie Rénale, Institut National de la Santé et de la Recherche Médicale U36, 3, rue d'Ulm @2 75005 Paris @3 FRA @Z 1 aut. @Z 5 aut. @Z 6 aut.
A14 02      @1 Equipe "phylogénie et évolution moléculaires," UPRESA CNRS 8080, Bâtiment 444, Université Paris-Sud @2 91405 Orsay @3 FRA @Z 2 aut.
A14 03      @1 Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne @2 Parkville, Victoria 3052 @3 AUS @Z 3 aut.
A14 04      @1 Centre International de Recherche Médicale, BP 769 @2 Franceville @3 GAB @Z 4 aut.
A20       @1 14-26
A21       @1 2000
A23 01      @0 ENG
A43 01      @1 INIST @2 21389 @5 354000092666030020
A44       @0 0000 @1 © 2001 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/4
A47 01  1    @0 01-0049610
A60       @1 P
A61       @0 A
A64 01  1    @0 Genomics : (San Diego, CA)
A66 01      @0 USA
C01 01    ENG  @0 The renin angiotensin system (RAS) is involved in blood pressure control and water/sodium metabolism. The genes encoding the proteins of this system are candidate genes for essential hypertension. The RAS involves four main molecules: angiotensinogen, renin, angiotensin I-converting enzyme, and the angiotensin II type 1 receptor (encoded by the genes AGT, REN, DCP1, and AGTR1, respectively). We performed a molecular screening over 17,037 bp of the coding and 5' and 3' untranslated regions of these genes, from three to six common chimpanzees. We identified 44 single-nucleotide polymorphisms (SNPs) in chimpanzee samples, including 18 coding-region SNPs, 5 of which led to an amino acid replacement. We observed common and different features at various sites (synonymous, nonsynonymous, and noncoding) within and between the four chimpanzee genes: (1) the nucleotide diversity at noncoding sites was similar; (2) the nucleotide diversity at nonsynonymous sites was low, probably reflecting purifying selection, except for the AGT gene; (3) the nucleotide diversity at synonymous sites, which was dependent on the G+C content at the third position of the codon, was high, except for the AGTR1 gene. Comparison of the chimpanzee SNPs with those previously reported for humans identified 119 sites with fixed differences (including 62 coding sites, 17 of which resulted in amino acid differences between the species). Analysis of polymorphism within species and divergence between species shed light on the evolutionary constraints on these genes. In particular, comparison of the pattern of mutation at polymorphic and fixed sites between humans and chimpanzees suggested that the high G+C content of the DCP1 gene was maintained by positive selection at its silent sites. Finally, we propose 68 ancestral alleles for the human RAS genes and discuss the implications for their use in future hypertension-susceptibility association studies.
C02 01  X    @0 002A07C01B
C02 02  X    @0 002A07C03
C03 01  X  FRE  @0 Homme @5 01
C03 01  X  ENG  @0 Human @5 01
C03 01  X  SPA  @0 Hombre @5 01
C03 02  X  FRE  @0 Pan troglodytes @2 NS @5 02
C03 02  X  ENG  @0 Pan troglodytes @2 NS @5 02
C03 02  X  SPA  @0 Pan troglodytes @2 NS @5 02
C03 03  X  FRE  @0 Système renin angiotensine @5 05
C03 03  X  ENG  @0 Renin angiotensin system @5 05
C03 03  X  SPA  @0 Sistema renin angiotensina @5 05
C03 04  X  FRE  @0 Gène @5 06
C03 04  X  ENG  @0 Gene @5 06
C03 04  X  SPA  @0 Gen @5 06
C03 05  X  FRE  @0 Variabilité génétique @5 07
C03 05  X  ENG  @0 Genetic variability @5 07
C03 05  X  SPA  @0 Variabilidad genética @5 07
C03 06  X  FRE  @0 Evolution moléculaire @5 09
C03 06  X  ENG  @0 Molecular evolution @5 09
C03 06  X  SPA  @0 Evolución molecular @5 09
C03 07  X  FRE  @0 Comparaison intraspécifique @5 10
C03 07  X  ENG  @0 Intraspecific comparison @5 10
C03 07  X  SPA  @0 Comparación intraespecífica @5 10
C03 08  X  FRE  @0 Comparaison interspécifique @5 11
C03 08  X  ENG  @0 Interspecific comparison @5 11
C03 08  X  SPA  @0 Comparación interespecífica @5 11
C03 09  X  FRE  @0 Pression sanguine @5 13
C03 09  X  ENG  @0 Blood pressure @5 13
C03 09  X  SPA  @0 Presión sanguínea @5 13
C03 10  X  FRE  @0 Hypertension artérielle @5 14
C03 10  X  ENG  @0 Hypertension @5 14
C03 10  X  SPA  @0 Hipertensión arterial @5 14
C03 11  X  FRE  @0 Régulation @5 39
C03 11  X  ENG  @0 Regulation(control) @5 39
C03 11  X  SPA  @0 Regulación @5 39
C03 12  X  FRE  @0 Polymorphisme mononucléotide @4 INC @5 91
C07 01  X  FRE  @0 Simioidea @2 NS
C07 01  X  ENG  @0 Simioidea @2 NS
C07 01  X  SPA  @0 Simioidea @2 NS
C07 02  X  FRE  @0 Primates @2 NS
C07 02  X  ENG  @0 Primates @2 NS
C07 02  X  SPA  @0 Primates @2 NS
C07 03  X  FRE  @0 Mammalia @2 NS
C07 03  X  ENG  @0 Mammalia @2 NS
C07 03  X  SPA  @0 Mammalia @2 NS
C07 04  X  FRE  @0 Vertebrata @2 NS
C07 04  X  ENG  @0 Vertebrata @2 NS
C07 04  X  SPA  @0 Vertebrata @2 NS
N21       @1 029

Format Inist (serveur)

NO : PASCAL 01-0049610 INIST
ET : Human-chimpanzee DNA sequence variation in the four major genes of the renin angiotensin system
AU : DUFOUR (Cécile); CASANE (Didier); DENTON (Derek); WICKINGS (Jean); CORVOL (Pierre); JEUNEMAITRE (Xavier)
AF : Pathologie Vasculaire et Endocrinologie Rénale, Collège de France, Chaire de Médecine Expérimentale et d'Endocrinologie Rénale, Institut National de la Santé et de la Recherche Médicale U36, 3, rue d'Ulm/75005 Paris/France (1 aut., 5 aut., 6 aut.); Equipe "phylogénie et évolution moléculaires," UPRESA CNRS 8080, Bâtiment 444, Université Paris-Sud/91405 Orsay/France (2 aut.); Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne/Parkville, Victoria 3052/Australie (3 aut.); Centre International de Recherche Médicale, BP 769/Franceville/Gabon (4 aut.)
DT : Publication en série; Niveau analytique
SO : Genomics : (San Diego, CA); ISSN 0888-7543; Etats-Unis; Da. 2000; Vol. 69; No. 1; Pp. 14-26; Bibl. 1 p.1/4
LA : Anglais
EA : The renin angiotensin system (RAS) is involved in blood pressure control and water/sodium metabolism. The genes encoding the proteins of this system are candidate genes for essential hypertension. The RAS involves four main molecules: angiotensinogen, renin, angiotensin I-converting enzyme, and the angiotensin II type 1 receptor (encoded by the genes AGT, REN, DCP1, and AGTR1, respectively). We performed a molecular screening over 17,037 bp of the coding and 5' and 3' untranslated regions of these genes, from three to six common chimpanzees. We identified 44 single-nucleotide polymorphisms (SNPs) in chimpanzee samples, including 18 coding-region SNPs, 5 of which led to an amino acid replacement. We observed common and different features at various sites (synonymous, nonsynonymous, and noncoding) within and between the four chimpanzee genes: (1) the nucleotide diversity at noncoding sites was similar; (2) the nucleotide diversity at nonsynonymous sites was low, probably reflecting purifying selection, except for the AGT gene; (3) the nucleotide diversity at synonymous sites, which was dependent on the G+C content at the third position of the codon, was high, except for the AGTR1 gene. Comparison of the chimpanzee SNPs with those previously reported for humans identified 119 sites with fixed differences (including 62 coding sites, 17 of which resulted in amino acid differences between the species). Analysis of polymorphism within species and divergence between species shed light on the evolutionary constraints on these genes. In particular, comparison of the pattern of mutation at polymorphic and fixed sites between humans and chimpanzees suggested that the high G+C content of the DCP1 gene was maintained by positive selection at its silent sites. Finally, we propose 68 ancestral alleles for the human RAS genes and discuss the implications for their use in future hypertension-susceptibility association studies.
CC : 002A07C01B; 002A07C03
FD : Homme; Pan troglodytes; Système renin angiotensine; Gène; Variabilité génétique; Evolution moléculaire; Comparaison intraspécifique; Comparaison interspécifique; Pression sanguine; Hypertension artérielle; Régulation; Polymorphisme mononucléotide
FG : Simioidea; Primates; Mammalia; Vertebrata
ED : Human; Pan troglodytes; Renin angiotensin system; Gene; Genetic variability; Molecular evolution; Intraspecific comparison; Interspecific comparison; Blood pressure; Hypertension; Regulation(control)
EG : Simioidea; Primates; Mammalia; Vertebrata
SD : Hombre; Pan troglodytes; Sistema renin angiotensina; Gen; Variabilidad genética; Evolución molecular; Comparación intraespecífica; Comparación interespecífica; Presión sanguínea; Hipertensión arterial; Regulación
LO : INIST-21389.354000092666030020
ID : 01-0049610

Links to Exploration step

Pascal:01-0049610

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Human-chimpanzee DNA sequence variation in the four major genes of the renin angiotensin system</title>
<author>
<name sortKey="Dufour, Cecile" sort="Dufour, Cecile" uniqKey="Dufour C" first="Cécile" last="Dufour">Cécile Dufour</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Pathologie Vasculaire et Endocrinologie Rénale, Collège de France, Chaire de Médecine Expérimentale et d'Endocrinologie Rénale, Institut National de la Santé et de la Recherche Médicale U36, 3, rue d'Ulm</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Casane, Didier" sort="Casane, Didier" uniqKey="Casane D" first="Didier" last="Casane">Didier Casane</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Equipe "phylogénie et évolution moléculaires," UPRESA CNRS 8080, Bâtiment 444, Université Paris-Sud</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Denton, Derek" sort="Denton, Derek" uniqKey="Denton D" first="Derek" last="Denton">Derek Denton</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne</s1>
<s2>Parkville, Victoria 3052</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wickings, Jean" sort="Wickings, Jean" uniqKey="Wickings J" first="Jean" last="Wickings">Jean Wickings</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Centre International de Recherche Médicale, BP 769</s1>
<s2>Franceville</s2>
<s3>GAB</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Corvol, Pierre" sort="Corvol, Pierre" uniqKey="Corvol P" first="Pierre" last="Corvol">Pierre Corvol</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Pathologie Vasculaire et Endocrinologie Rénale, Collège de France, Chaire de Médecine Expérimentale et d'Endocrinologie Rénale, Institut National de la Santé et de la Recherche Médicale U36, 3, rue d'Ulm</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jeunemaitre, Xavier" sort="Jeunemaitre, Xavier" uniqKey="Jeunemaitre X" first="Xavier" last="Jeunemaitre">Xavier Jeunemaitre</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Pathologie Vasculaire et Endocrinologie Rénale, Collège de France, Chaire de Médecine Expérimentale et d'Endocrinologie Rénale, Institut National de la Santé et de la Recherche Médicale U36, 3, rue d'Ulm</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">01-0049610</idno>
<date when="2000">2000</date>
<idno type="stanalyst">PASCAL 01-0049610 INIST</idno>
<idno type="RBID">Pascal:01-0049610</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">005D34</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Human-chimpanzee DNA sequence variation in the four major genes of the renin angiotensin system</title>
<author>
<name sortKey="Dufour, Cecile" sort="Dufour, Cecile" uniqKey="Dufour C" first="Cécile" last="Dufour">Cécile Dufour</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Pathologie Vasculaire et Endocrinologie Rénale, Collège de France, Chaire de Médecine Expérimentale et d'Endocrinologie Rénale, Institut National de la Santé et de la Recherche Médicale U36, 3, rue d'Ulm</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Casane, Didier" sort="Casane, Didier" uniqKey="Casane D" first="Didier" last="Casane">Didier Casane</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Equipe "phylogénie et évolution moléculaires," UPRESA CNRS 8080, Bâtiment 444, Université Paris-Sud</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Denton, Derek" sort="Denton, Derek" uniqKey="Denton D" first="Derek" last="Denton">Derek Denton</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne</s1>
<s2>Parkville, Victoria 3052</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wickings, Jean" sort="Wickings, Jean" uniqKey="Wickings J" first="Jean" last="Wickings">Jean Wickings</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Centre International de Recherche Médicale, BP 769</s1>
<s2>Franceville</s2>
<s3>GAB</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Corvol, Pierre" sort="Corvol, Pierre" uniqKey="Corvol P" first="Pierre" last="Corvol">Pierre Corvol</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Pathologie Vasculaire et Endocrinologie Rénale, Collège de France, Chaire de Médecine Expérimentale et d'Endocrinologie Rénale, Institut National de la Santé et de la Recherche Médicale U36, 3, rue d'Ulm</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jeunemaitre, Xavier" sort="Jeunemaitre, Xavier" uniqKey="Jeunemaitre X" first="Xavier" last="Jeunemaitre">Xavier Jeunemaitre</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Pathologie Vasculaire et Endocrinologie Rénale, Collège de France, Chaire de Médecine Expérimentale et d'Endocrinologie Rénale, Institut National de la Santé et de la Recherche Médicale U36, 3, rue d'Ulm</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Genomics : (San Diego, CA)</title>
<title level="j" type="abbreviated">Genomics : (S. Diego CA)</title>
<idno type="ISSN">0888-7543</idno>
<imprint>
<date when="2000">2000</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Genomics : (San Diego, CA)</title>
<title level="j" type="abbreviated">Genomics : (S. Diego CA)</title>
<idno type="ISSN">0888-7543</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Blood pressure</term>
<term>Gene</term>
<term>Genetic variability</term>
<term>Human</term>
<term>Hypertension</term>
<term>Interspecific comparison</term>
<term>Intraspecific comparison</term>
<term>Molecular evolution</term>
<term>Pan troglodytes</term>
<term>Regulation(control)</term>
<term>Renin angiotensin system</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Homme</term>
<term>Pan troglodytes</term>
<term>Système renin angiotensine</term>
<term>Gène</term>
<term>Variabilité génétique</term>
<term>Evolution moléculaire</term>
<term>Comparaison intraspécifique</term>
<term>Comparaison interspécifique</term>
<term>Pression sanguine</term>
<term>Hypertension artérielle</term>
<term>Régulation</term>
<term>Polymorphisme mononucléotide</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The renin angiotensin system (RAS) is involved in blood pressure control and water/sodium metabolism. The genes encoding the proteins of this system are candidate genes for essential hypertension. The RAS involves four main molecules: angiotensinogen, renin, angiotensin I-converting enzyme, and the angiotensin II type 1 receptor (encoded by the genes AGT, REN, DCP1, and AGTR1, respectively). We performed a molecular screening over 17,037 bp of the coding and 5' and 3' untranslated regions of these genes, from three to six common chimpanzees. We identified 44 single-nucleotide polymorphisms (SNPs) in chimpanzee samples, including 18 coding-region SNPs, 5 of which led to an amino acid replacement. We observed common and different features at various sites (synonymous, nonsynonymous, and noncoding) within and between the four chimpanzee genes: (1) the nucleotide diversity at noncoding sites was similar; (2) the nucleotide diversity at nonsynonymous sites was low, probably reflecting purifying selection, except for the AGT gene; (3) the nucleotide diversity at synonymous sites, which was dependent on the G+C content at the third position of the codon, was high, except for the AGTR1 gene. Comparison of the chimpanzee SNPs with those previously reported for humans identified 119 sites with fixed differences (including 62 coding sites, 17 of which resulted in amino acid differences between the species). Analysis of polymorphism within species and divergence between species shed light on the evolutionary constraints on these genes. In particular, comparison of the pattern of mutation at polymorphic and fixed sites between humans and chimpanzees suggested that the high G+C content of the DCP1 gene was maintained by positive selection at its silent sites. Finally, we propose 68 ancestral alleles for the human RAS genes and discuss the implications for their use in future hypertension-susceptibility association studies.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0888-7543</s0>
</fA01>
<fA03 i2="1">
<s0>Genomics : (S. Diego CA)</s0>
</fA03>
<fA05>
<s2>69</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Human-chimpanzee DNA sequence variation in the four major genes of the renin angiotensin system</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>DUFOUR (Cécile)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CASANE (Didier)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DENTON (Derek)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>WICKINGS (Jean)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>CORVOL (Pierre)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>JEUNEMAITRE (Xavier)</s1>
</fA11>
<fA14 i1="01">
<s1>Pathologie Vasculaire et Endocrinologie Rénale, Collège de France, Chaire de Médecine Expérimentale et d'Endocrinologie Rénale, Institut National de la Santé et de la Recherche Médicale U36, 3, rue d'Ulm</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Equipe "phylogénie et évolution moléculaires," UPRESA CNRS 8080, Bâtiment 444, Université Paris-Sud</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne</s1>
<s2>Parkville, Victoria 3052</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Centre International de Recherche Médicale, BP 769</s1>
<s2>Franceville</s2>
<s3>GAB</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>14-26</s1>
</fA20>
<fA21>
<s1>2000</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21389</s2>
<s5>354000092666030020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2001 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>01-0049610</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Genomics : (San Diego, CA)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The renin angiotensin system (RAS) is involved in blood pressure control and water/sodium metabolism. The genes encoding the proteins of this system are candidate genes for essential hypertension. The RAS involves four main molecules: angiotensinogen, renin, angiotensin I-converting enzyme, and the angiotensin II type 1 receptor (encoded by the genes AGT, REN, DCP1, and AGTR1, respectively). We performed a molecular screening over 17,037 bp of the coding and 5' and 3' untranslated regions of these genes, from three to six common chimpanzees. We identified 44 single-nucleotide polymorphisms (SNPs) in chimpanzee samples, including 18 coding-region SNPs, 5 of which led to an amino acid replacement. We observed common and different features at various sites (synonymous, nonsynonymous, and noncoding) within and between the four chimpanzee genes: (1) the nucleotide diversity at noncoding sites was similar; (2) the nucleotide diversity at nonsynonymous sites was low, probably reflecting purifying selection, except for the AGT gene; (3) the nucleotide diversity at synonymous sites, which was dependent on the G+C content at the third position of the codon, was high, except for the AGTR1 gene. Comparison of the chimpanzee SNPs with those previously reported for humans identified 119 sites with fixed differences (including 62 coding sites, 17 of which resulted in amino acid differences between the species). Analysis of polymorphism within species and divergence between species shed light on the evolutionary constraints on these genes. In particular, comparison of the pattern of mutation at polymorphic and fixed sites between humans and chimpanzees suggested that the high G+C content of the DCP1 gene was maintained by positive selection at its silent sites. Finally, we propose 68 ancestral alleles for the human RAS genes and discuss the implications for their use in future hypertension-susceptibility association studies.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A07C01B</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002A07C03</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Homme</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Human</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Hombre</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Pan troglodytes</s0>
<s2>NS</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Pan troglodytes</s0>
<s2>NS</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Pan troglodytes</s0>
<s2>NS</s2>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Système renin angiotensine</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Renin angiotensin system</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Sistema renin angiotensina</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Gène</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Gene</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Gen</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Variabilité génétique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Genetic variability</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Variabilidad genética</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Evolution moléculaire</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Molecular evolution</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Evolución molecular</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Comparaison intraspécifique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Intraspecific comparison</s0>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Comparación intraespecífica</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Comparaison interspécifique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Interspecific comparison</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Comparación interespecífica</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Pression sanguine</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Blood pressure</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Presión sanguínea</s0>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Hypertension artérielle</s0>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Hypertension</s0>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Hipertensión arterial</s0>
<s5>14</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Régulation</s0>
<s5>39</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Regulation(control)</s0>
<s5>39</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Regulación</s0>
<s5>39</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Polymorphisme mononucléotide</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Simioidea</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Simioidea</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Simioidea</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Primates</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Primates</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Primates</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Mammalia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Mammalia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Mammalia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fN21>
<s1>029</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 01-0049610 INIST</NO>
<ET>Human-chimpanzee DNA sequence variation in the four major genes of the renin angiotensin system</ET>
<AU>DUFOUR (Cécile); CASANE (Didier); DENTON (Derek); WICKINGS (Jean); CORVOL (Pierre); JEUNEMAITRE (Xavier)</AU>
<AF>Pathologie Vasculaire et Endocrinologie Rénale, Collège de France, Chaire de Médecine Expérimentale et d'Endocrinologie Rénale, Institut National de la Santé et de la Recherche Médicale U36, 3, rue d'Ulm/75005 Paris/France (1 aut., 5 aut., 6 aut.); Equipe "phylogénie et évolution moléculaires," UPRESA CNRS 8080, Bâtiment 444, Université Paris-Sud/91405 Orsay/France (2 aut.); Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne/Parkville, Victoria 3052/Australie (3 aut.); Centre International de Recherche Médicale, BP 769/Franceville/Gabon (4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Genomics : (San Diego, CA); ISSN 0888-7543; Etats-Unis; Da. 2000; Vol. 69; No. 1; Pp. 14-26; Bibl. 1 p.1/4</SO>
<LA>Anglais</LA>
<EA>The renin angiotensin system (RAS) is involved in blood pressure control and water/sodium metabolism. The genes encoding the proteins of this system are candidate genes for essential hypertension. The RAS involves four main molecules: angiotensinogen, renin, angiotensin I-converting enzyme, and the angiotensin II type 1 receptor (encoded by the genes AGT, REN, DCP1, and AGTR1, respectively). We performed a molecular screening over 17,037 bp of the coding and 5' and 3' untranslated regions of these genes, from three to six common chimpanzees. We identified 44 single-nucleotide polymorphisms (SNPs) in chimpanzee samples, including 18 coding-region SNPs, 5 of which led to an amino acid replacement. We observed common and different features at various sites (synonymous, nonsynonymous, and noncoding) within and between the four chimpanzee genes: (1) the nucleotide diversity at noncoding sites was similar; (2) the nucleotide diversity at nonsynonymous sites was low, probably reflecting purifying selection, except for the AGT gene; (3) the nucleotide diversity at synonymous sites, which was dependent on the G+C content at the third position of the codon, was high, except for the AGTR1 gene. Comparison of the chimpanzee SNPs with those previously reported for humans identified 119 sites with fixed differences (including 62 coding sites, 17 of which resulted in amino acid differences between the species). Analysis of polymorphism within species and divergence between species shed light on the evolutionary constraints on these genes. In particular, comparison of the pattern of mutation at polymorphic and fixed sites between humans and chimpanzees suggested that the high G+C content of the DCP1 gene was maintained by positive selection at its silent sites. Finally, we propose 68 ancestral alleles for the human RAS genes and discuss the implications for their use in future hypertension-susceptibility association studies.</EA>
<CC>002A07C01B; 002A07C03</CC>
<FD>Homme; Pan troglodytes; Système renin angiotensine; Gène; Variabilité génétique; Evolution moléculaire; Comparaison intraspécifique; Comparaison interspécifique; Pression sanguine; Hypertension artérielle; Régulation; Polymorphisme mononucléotide</FD>
<FG>Simioidea; Primates; Mammalia; Vertebrata</FG>
<ED>Human; Pan troglodytes; Renin angiotensin system; Gene; Genetic variability; Molecular evolution; Intraspecific comparison; Interspecific comparison; Blood pressure; Hypertension; Regulation(control)</ED>
<EG>Simioidea; Primates; Mammalia; Vertebrata</EG>
<SD>Hombre; Pan troglodytes; Sistema renin angiotensina; Gen; Variabilidad genética; Evolución molecular; Comparación intraespecífica; Comparación interespecífica; Presión sanguínea; Hipertensión arterial; Regulación</SD>
<LO>INIST-21389.354000092666030020</LO>
<ID>01-0049610</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005D34 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 005D34 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:01-0049610
   |texte=   Human-chimpanzee DNA sequence variation in the four major genes of the renin angiotensin system
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024