Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Kinematics and dynamics of sphere wake transition

Identifieur interne : 005B64 ( PascalFrancis/Corpus ); précédent : 005B63; suivant : 005B65

Kinematics and dynamics of sphere wake transition

Auteurs : M. C. Thompson ; T. Leweke ; M. Provansal

Source :

RBID : Pascal:01-0326559

Descripteurs français

English descriptors

Abstract

The wake of a sphere undergoes a number of symmetry-breaking transitions as it changes from laminar to turbulent. This paper concentrates on the first two transitions. At Re = 212 a regular transition occurs, when the wake develops a spectacular two-tailed structure consisting of two trailing streamwise vortices. During the second transition at Re = 272 the flow undergoes a Hopf bifurcation. In this case there is a complex interaction between the trailing vortices leading to the periodic shedding of vortex loops. Both these transitions are shown to be supercritical (or nonhysteretic). Landau models are constructed for both transitions and the coefficients determined. The visual impression of an apparently sudden bifurcation to the two-tailed wake is shown to be due to the focal nature of the trailing vortices, which draws dye into the cores, even if their net circulation is small. A precursor to the second transition to the periodic wake is strong kinking of the trailing vortices about 1 diameter downstream from the back of the sphere. The vorticity structure of the two-tailed wake prior to transition is also quantified which may prove useful for development of models of the transition process.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0889-9746
A02 01      @0 JFSTEF
A03   1    @0 J. fluids struct.
A05       @2 15
A06       @2 3-4
A08 01  1  ENG  @1 Kinematics and dynamics of sphere wake transition
A09 01  1  ENG  @1 Bluff Body Wakes and Vortex - Induced Vibrations
A11 01  1    @1 THOMPSON (M. C.)
A11 02  1    @1 LEWEKE (T.)
A11 03  1    @1 PROVANSAL (M.)
A12 01  1    @1 LEWEKE (Thomas) @9 ed.
A12 02  1    @1 BEARMAN (Peter W.) @9 ed.
A12 03  1    @1 WILLIAMSON (Charles H. K.) @9 ed.
A14 01      @1 Department of Mechanical Engineering, Monash University @2 Clayton, VIC 3800 @3 AUS @Z 1 aut.
A14 02      @1 Institut de Recherche sur les Phénomènes Hors Equilibre, 49, rue Frédéric Joliot-Curie, B.P. 146 @2 13384 Marseille @3 FRA @Z 2 aut. @Z 3 aut.
A15 01      @1 IRPHE/CNRS @3 FRA @Z 1 aut.
A15 02      @1 Department of Aeronautics, Imperial College of Science, Technology and Medicine, Prince Consort Road @2 London SW7 2BY @3 GBR @Z 2 aut.
A15 03      @1 Sibley School of Mechanical & Aerospace Engineering, Upson Hall, Cornell University @2 Ithaca NY 14853-7501 @3 USA @Z 3 aut.
A18 01  1    @1 International Union of Theoretical and Applied Mechanics (IUTAM) @3 INT @9 patr.
A20       @1 575-585
A21       @1 2001
A23 01      @0 ENG
A43 01      @1 INIST @2 21394 @5 354000095616070170
A44       @0 0000 @1 © 2001 INIST-CNRS. All rights reserved.
A45       @0 18 ref.
A47 01  1    @0 01-0326559
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Journal of fluids and structures
A66 01      @0 GBR
C01 01    ENG  @0 The wake of a sphere undergoes a number of symmetry-breaking transitions as it changes from laminar to turbulent. This paper concentrates on the first two transitions. At Re = 212 a regular transition occurs, when the wake develops a spectacular two-tailed structure consisting of two trailing streamwise vortices. During the second transition at Re = 272 the flow undergoes a Hopf bifurcation. In this case there is a complex interaction between the trailing vortices leading to the periodic shedding of vortex loops. Both these transitions are shown to be supercritical (or nonhysteretic). Landau models are constructed for both transitions and the coefficients determined. The visual impression of an apparently sudden bifurcation to the two-tailed wake is shown to be due to the focal nature of the trailing vortices, which draws dye into the cores, even if their net circulation is small. A precursor to the second transition to the periodic wake is strong kinking of the trailing vortices about 1 diameter downstream from the back of the sphere. The vorticity structure of the two-tailed wake prior to transition is also quantified which may prove useful for development of models of the transition process.
C02 01  3    @0 001B40G27V
C03 01  3  FRE  @0 Cinématique @5 01
C03 01  3  ENG  @0 Kinematics @5 01
C03 02  3  FRE  @0 Dynamique @5 02
C03 02  3  ENG  @0 Dynamics @5 02
C03 03  3  FRE  @0 Sphère @5 03
C03 03  3  ENG  @0 Spheres @5 03
C03 04  3  FRE  @0 Sillage @5 04
C03 04  3  ENG  @0 Wakes @5 04
C03 05  3  FRE  @0 Transition laminaire turbulente @5 05
C03 05  3  ENG  @0 Turbulent laminar transition @5 05
C03 06  3  FRE  @0 Ecoulement tourbillonnaire @5 06
C03 06  3  ENG  @0 Vortex flow @5 06
C03 07  3  FRE  @0 Ecoulement transition @5 07
C03 07  3  ENG  @0 Transition flow @5 07
C03 08  X  FRE  @0 Détachement tourbillonnaire @5 08
C03 08  X  ENG  @0 Vortex shedding @5 08
C03 08  X  SPA  @0 Desprendimiento vorticial @5 08
C03 09  X  FRE  @0 Coudure @5 09
C03 09  X  ENG  @0 Kinking @5 09
C03 09  X  SPA  @0 Torsión @5 09
C03 10  X  FRE  @0 Modèle Landau @5 10
C03 10  X  ENG  @0 Landau model @5 10
C03 10  X  SPA  @0 Modelo Landau @5 10
C03 11  X  FRE  @0 Bifurcation Hopf @5 11
C03 11  X  ENG  @0 Hopf bifurcation @5 11
C03 11  X  SPA  @0 Bifurcación Hopf @5 11
C03 12  3  FRE  @0 Modélisation @5 12
C03 12  3  ENG  @0 Modelling @5 12
C03 13  3  FRE  @0 Vorticité @5 13
C03 13  3  ENG  @0 Vorticity @5 13
C03 14  3  FRE  @0 Précurseur @5 14
C03 14  3  ENG  @0 Precursor @5 14
C03 15  3  FRE  @0 4727V @2 PAC @4 INC @5 56
N21       @1 225
pR  
A30 01  1  ENG  @1 BBVIV IUTAM Symposium on Bluff Body Wakes and Vortex-Induced Vibrations @2 2 @3 Carry-Le-Rouet FRA @4 2000-06-13

Format Inist (serveur)

NO : PASCAL 01-0326559 INIST
ET : Kinematics and dynamics of sphere wake transition
AU : THOMPSON (M. C.); LEWEKE (T.); PROVANSAL (M.); LEWEKE (Thomas); BEARMAN (Peter W.); WILLIAMSON (Charles H. K.)
AF : Department of Mechanical Engineering, Monash University/Clayton, VIC 3800/Australie (1 aut.); Institut de Recherche sur les Phénomènes Hors Equilibre, 49, rue Frédéric Joliot-Curie, B.P. 146/13384 Marseille/France (2 aut., 3 aut.); IRPHE/CNRS/France (1 aut.); Department of Aeronautics, Imperial College of Science, Technology and Medicine, Prince Consort Road/London SW7 2BY/Royaume-Uni (2 aut.); Sibley School of Mechanical & Aerospace Engineering, Upson Hall, Cornell University/Ithaca NY 14853-7501/Etats-Unis (3 aut.)
DT : Publication en série; Congrès; Niveau analytique
SO : Journal of fluids and structures; ISSN 0889-9746; Coden JFSTEF; Royaume-Uni; Da. 2001; Vol. 15; No. 3-4; Pp. 575-585; Bibl. 18 ref.
LA : Anglais
EA : The wake of a sphere undergoes a number of symmetry-breaking transitions as it changes from laminar to turbulent. This paper concentrates on the first two transitions. At Re = 212 a regular transition occurs, when the wake develops a spectacular two-tailed structure consisting of two trailing streamwise vortices. During the second transition at Re = 272 the flow undergoes a Hopf bifurcation. In this case there is a complex interaction between the trailing vortices leading to the periodic shedding of vortex loops. Both these transitions are shown to be supercritical (or nonhysteretic). Landau models are constructed for both transitions and the coefficients determined. The visual impression of an apparently sudden bifurcation to the two-tailed wake is shown to be due to the focal nature of the trailing vortices, which draws dye into the cores, even if their net circulation is small. A precursor to the second transition to the periodic wake is strong kinking of the trailing vortices about 1 diameter downstream from the back of the sphere. The vorticity structure of the two-tailed wake prior to transition is also quantified which may prove useful for development of models of the transition process.
CC : 001B40G27V
FD : Cinématique; Dynamique; Sphère; Sillage; Transition laminaire turbulente; Ecoulement tourbillonnaire; Ecoulement transition; Détachement tourbillonnaire; Coudure; Modèle Landau; Bifurcation Hopf; Modélisation; Vorticité; Précurseur; 4727V
ED : Kinematics; Dynamics; Spheres; Wakes; Turbulent laminar transition; Vortex flow; Transition flow; Vortex shedding; Kinking; Landau model; Hopf bifurcation; Modelling; Vorticity; Precursor
SD : Desprendimiento vorticial; Torsión; Modelo Landau; Bifurcación Hopf
LO : INIST-21394.354000095616070170
ID : 01-0326559

Links to Exploration step

Pascal:01-0326559

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Kinematics and dynamics of sphere wake transition</title>
<author>
<name sortKey="Thompson, M C" sort="Thompson, M C" uniqKey="Thompson M" first="M. C." last="Thompson">M. C. Thompson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, Monash University</s1>
<s2>Clayton, VIC 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Leweke, T" sort="Leweke, T" uniqKey="Leweke T" first="T." last="Leweke">T. Leweke</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institut de Recherche sur les Phénomènes Hors Equilibre, 49, rue Frédéric Joliot-Curie, B.P. 146</s1>
<s2>13384 Marseille</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Provansal, M" sort="Provansal, M" uniqKey="Provansal M" first="M." last="Provansal">M. Provansal</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institut de Recherche sur les Phénomènes Hors Equilibre, 49, rue Frédéric Joliot-Curie, B.P. 146</s1>
<s2>13384 Marseille</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">01-0326559</idno>
<date when="2001">2001</date>
<idno type="stanalyst">PASCAL 01-0326559 INIST</idno>
<idno type="RBID">Pascal:01-0326559</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">005B64</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Kinematics and dynamics of sphere wake transition</title>
<author>
<name sortKey="Thompson, M C" sort="Thompson, M C" uniqKey="Thompson M" first="M. C." last="Thompson">M. C. Thompson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, Monash University</s1>
<s2>Clayton, VIC 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Leweke, T" sort="Leweke, T" uniqKey="Leweke T" first="T." last="Leweke">T. Leweke</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institut de Recherche sur les Phénomènes Hors Equilibre, 49, rue Frédéric Joliot-Curie, B.P. 146</s1>
<s2>13384 Marseille</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Provansal, M" sort="Provansal, M" uniqKey="Provansal M" first="M." last="Provansal">M. Provansal</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institut de Recherche sur les Phénomènes Hors Equilibre, 49, rue Frédéric Joliot-Curie, B.P. 146</s1>
<s2>13384 Marseille</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of fluids and structures</title>
<title level="j" type="abbreviated">J. fluids struct.</title>
<idno type="ISSN">0889-9746</idno>
<imprint>
<date when="2001">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of fluids and structures</title>
<title level="j" type="abbreviated">J. fluids struct.</title>
<idno type="ISSN">0889-9746</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Dynamics</term>
<term>Hopf bifurcation</term>
<term>Kinematics</term>
<term>Kinking</term>
<term>Landau model</term>
<term>Modelling</term>
<term>Precursor</term>
<term>Spheres</term>
<term>Transition flow</term>
<term>Turbulent laminar transition</term>
<term>Vortex flow</term>
<term>Vortex shedding</term>
<term>Vorticity</term>
<term>Wakes</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Cinématique</term>
<term>Dynamique</term>
<term>Sphère</term>
<term>Sillage</term>
<term>Transition laminaire turbulente</term>
<term>Ecoulement tourbillonnaire</term>
<term>Ecoulement transition</term>
<term>Détachement tourbillonnaire</term>
<term>Coudure</term>
<term>Modèle Landau</term>
<term>Bifurcation Hopf</term>
<term>Modélisation</term>
<term>Vorticité</term>
<term>Précurseur</term>
<term>4727V</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The wake of a sphere undergoes a number of symmetry-breaking transitions as it changes from laminar to turbulent. This paper concentrates on the first two transitions. At Re = 212 a regular transition occurs, when the wake develops a spectacular two-tailed structure consisting of two trailing streamwise vortices. During the second transition at Re = 272 the flow undergoes a Hopf bifurcation. In this case there is a complex interaction between the trailing vortices leading to the periodic shedding of vortex loops. Both these transitions are shown to be supercritical (or nonhysteretic). Landau models are constructed for both transitions and the coefficients determined. The visual impression of an apparently sudden bifurcation to the two-tailed wake is shown to be due to the focal nature of the trailing vortices, which draws dye into the cores, even if their net circulation is small. A precursor to the second transition to the periodic wake is strong kinking of the trailing vortices about 1 diameter downstream from the back of the sphere. The vorticity structure of the two-tailed wake prior to transition is also quantified which may prove useful for development of models of the transition process.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0889-9746</s0>
</fA01>
<fA02 i1="01">
<s0>JFSTEF</s0>
</fA02>
<fA03 i2="1">
<s0>J. fluids struct.</s0>
</fA03>
<fA05>
<s2>15</s2>
</fA05>
<fA06>
<s2>3-4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Kinematics and dynamics of sphere wake transition</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Bluff Body Wakes and Vortex - Induced Vibrations</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>THOMPSON (M. C.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LEWEKE (T.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PROVANSAL (M.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>LEWEKE (Thomas)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>BEARMAN (Peter W.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>WILLIAMSON (Charles H. K.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Department of Mechanical Engineering, Monash University</s1>
<s2>Clayton, VIC 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institut de Recherche sur les Phénomènes Hors Equilibre, 49, rue Frédéric Joliot-Curie, B.P. 146</s1>
<s2>13384 Marseille</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>IRPHE/CNRS</s1>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Department of Aeronautics, Imperial College of Science, Technology and Medicine, Prince Consort Road</s1>
<s2>London SW7 2BY</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>Sibley School of Mechanical & Aerospace Engineering, Upson Hall, Cornell University</s1>
<s2>Ithaca NY 14853-7501</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA18 i1="01" i2="1">
<s1>International Union of Theoretical and Applied Mechanics (IUTAM)</s1>
<s3>INT</s3>
<s9>patr.</s9>
</fA18>
<fA20>
<s1>575-585</s1>
</fA20>
<fA21>
<s1>2001</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21394</s2>
<s5>354000095616070170</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2001 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>18 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>01-0326559</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of fluids and structures</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The wake of a sphere undergoes a number of symmetry-breaking transitions as it changes from laminar to turbulent. This paper concentrates on the first two transitions. At Re = 212 a regular transition occurs, when the wake develops a spectacular two-tailed structure consisting of two trailing streamwise vortices. During the second transition at Re = 272 the flow undergoes a Hopf bifurcation. In this case there is a complex interaction between the trailing vortices leading to the periodic shedding of vortex loops. Both these transitions are shown to be supercritical (or nonhysteretic). Landau models are constructed for both transitions and the coefficients determined. The visual impression of an apparently sudden bifurcation to the two-tailed wake is shown to be due to the focal nature of the trailing vortices, which draws dye into the cores, even if their net circulation is small. A precursor to the second transition to the periodic wake is strong kinking of the trailing vortices about 1 diameter downstream from the back of the sphere. The vorticity structure of the two-tailed wake prior to transition is also quantified which may prove useful for development of models of the transition process.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40G27V</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Cinématique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Kinematics</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Dynamique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Dynamics</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Sphère</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Spheres</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Sillage</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Wakes</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Transition laminaire turbulente</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Turbulent laminar transition</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Ecoulement tourbillonnaire</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Vortex flow</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Ecoulement transition</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Transition flow</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Détachement tourbillonnaire</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Vortex shedding</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Desprendimiento vorticial</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Coudure</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Kinking</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Torsión</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Modèle Landau</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Landau model</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Modelo Landau</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Bifurcation Hopf</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Hopf bifurcation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Bifurcación Hopf</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Modélisation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Modelling</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Vorticité</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Vorticity</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Précurseur</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Precursor</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>4727V</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fN21>
<s1>225</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>BBVIV IUTAM Symposium on Bluff Body Wakes and Vortex-Induced Vibrations</s1>
<s2>2</s2>
<s3>Carry-Le-Rouet FRA</s3>
<s4>2000-06-13</s4>
</fA30>
</pR>
</standard>
<server>
<NO>PASCAL 01-0326559 INIST</NO>
<ET>Kinematics and dynamics of sphere wake transition</ET>
<AU>THOMPSON (M. C.); LEWEKE (T.); PROVANSAL (M.); LEWEKE (Thomas); BEARMAN (Peter W.); WILLIAMSON (Charles H. K.)</AU>
<AF>Department of Mechanical Engineering, Monash University/Clayton, VIC 3800/Australie (1 aut.); Institut de Recherche sur les Phénomènes Hors Equilibre, 49, rue Frédéric Joliot-Curie, B.P. 146/13384 Marseille/France (2 aut., 3 aut.); IRPHE/CNRS/France (1 aut.); Department of Aeronautics, Imperial College of Science, Technology and Medicine, Prince Consort Road/London SW7 2BY/Royaume-Uni (2 aut.); Sibley School of Mechanical & Aerospace Engineering, Upson Hall, Cornell University/Ithaca NY 14853-7501/Etats-Unis (3 aut.)</AF>
<DT>Publication en série; Congrès; Niveau analytique</DT>
<SO>Journal of fluids and structures; ISSN 0889-9746; Coden JFSTEF; Royaume-Uni; Da. 2001; Vol. 15; No. 3-4; Pp. 575-585; Bibl. 18 ref.</SO>
<LA>Anglais</LA>
<EA>The wake of a sphere undergoes a number of symmetry-breaking transitions as it changes from laminar to turbulent. This paper concentrates on the first two transitions. At Re = 212 a regular transition occurs, when the wake develops a spectacular two-tailed structure consisting of two trailing streamwise vortices. During the second transition at Re = 272 the flow undergoes a Hopf bifurcation. In this case there is a complex interaction between the trailing vortices leading to the periodic shedding of vortex loops. Both these transitions are shown to be supercritical (or nonhysteretic). Landau models are constructed for both transitions and the coefficients determined. The visual impression of an apparently sudden bifurcation to the two-tailed wake is shown to be due to the focal nature of the trailing vortices, which draws dye into the cores, even if their net circulation is small. A precursor to the second transition to the periodic wake is strong kinking of the trailing vortices about 1 diameter downstream from the back of the sphere. The vorticity structure of the two-tailed wake prior to transition is also quantified which may prove useful for development of models of the transition process.</EA>
<CC>001B40G27V</CC>
<FD>Cinématique; Dynamique; Sphère; Sillage; Transition laminaire turbulente; Ecoulement tourbillonnaire; Ecoulement transition; Détachement tourbillonnaire; Coudure; Modèle Landau; Bifurcation Hopf; Modélisation; Vorticité; Précurseur; 4727V</FD>
<ED>Kinematics; Dynamics; Spheres; Wakes; Turbulent laminar transition; Vortex flow; Transition flow; Vortex shedding; Kinking; Landau model; Hopf bifurcation; Modelling; Vorticity; Precursor</ED>
<SD>Desprendimiento vorticial; Torsión; Modelo Landau; Bifurcación Hopf</SD>
<LO>INIST-21394.354000095616070170</LO>
<ID>01-0326559</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005B64 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 005B64 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:01-0326559
   |texte=   Kinematics and dynamics of sphere wake transition
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024