Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Self-sustained oscillations in flows around long blunt plates

Identifieur interne : 005B62 ( PascalFrancis/Corpus ); précédent : 005B61; suivant : 005B63

Self-sustained oscillations in flows around long blunt plates

Auteurs : K. Hourigan ; M. C. Thompson ; B. T. Tan

Source :

RBID : Pascal:01-0326679

Descripteurs français

English descriptors

Abstract

The presence of flow separation from both leading and trailing edges of elongated bluff bodies leads to vortex interactions and resonances not observed in shorter bodies such as circular and square cylinders. Stepwise behaviour in the Strouhal number with increasing plate chord-to-thickness ratio has been observed for long bodies in a number of different situations: natural shedding, under transverse forcing, and with excited duct modes. In the present study, an investigation is made of the predicted unforced laminar flow around long plates (up to chord, c, to thickness, t, ratio c/t = 16). The two main types of plate geometry considered are rectangular plates and plates with an aerodynamic leading edge. The rectangular plate represents a geometrical extension of the normal flat and square plates. The aerodynamic leading-edge plate is a natural precursor to the rectangular plate because the vortex shedding is only from the trailing edge. The natural flow around rectangular plates is of greater complexity due to the interaction between the leading- and trailing-edge shedding. The previously neglected influence of the trailing-edge vortex shedding is found to play an important role in the stepwise progression of the Strouhal number with chord-to-thickness ratio. In addition, the formation of three-dimensional patterns in the boundary layer along the plate and in the trailing-edge wake is predicted. The predicted boundary layer hairpin vortices are compared with previous observations and the predicted streamwise modes in the wake are compared with those found in the case of circular cylinders.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0889-9746
A02 01      @0 JFSTEF
A03   1    @0 J. fluids struct.
A05       @2 15
A06       @2 3-4
A08 01  1  ENG  @1 Self-sustained oscillations in flows around long blunt plates
A09 01  1  ENG  @1 Bluff Body Wakes and Vortex - Induced Vibrations
A11 01  1    @1 HOURIGAN (K.)
A11 02  1    @1 THOMPSON (M. C.)
A11 03  1    @1 TAN (B. T.)
A12 01  1    @1 LEWEKE (Thomas) @9 ed.
A12 02  1    @1 BEARMAN (Peter W.) @9 ed.
A12 03  1    @1 WILLIAMSON (Charles H. K.) @9 ed.
A14 01      @1 Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical Engineering, Monash University @2 Clayton, 3800 @3 AUS @Z 1 aut. @Z 2 aut. @Z 3 aut.
A15 01      @1 IRPHE/CNRS @3 FRA @Z 1 aut.
A15 02      @1 Department of Aeronautics, Imperial College of Science, Technology and Medicine, Prince Consort Road @2 London SW7 2BY @3 GBR @Z 2 aut.
A15 03      @1 Sibley School of Mechanical & Aerospace Engineering, Upson Hall, Cornell University @2 Ithaca NY 14853-7501 @3 USA @Z 3 aut.
A18 01  1    @1 International Union of Theoretical and Applied Mechanics (IUTAM) @3 INT @9 patr.
A20       @1 387-398 @3 1 pl. h. t.
A21       @1 2001
A23 01      @0 ENG
A43 01      @1 INIST @2 21394 @5 354000095616070010
A44       @0 0000 @1 © 2001 INIST-CNRS. All rights reserved.
A45       @0 23 ref.
A47 01  1    @0 01-0326679
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Journal of fluids and structures
A66 01      @0 GBR
C01 01    ENG  @0 The presence of flow separation from both leading and trailing edges of elongated bluff bodies leads to vortex interactions and resonances not observed in shorter bodies such as circular and square cylinders. Stepwise behaviour in the Strouhal number with increasing plate chord-to-thickness ratio has been observed for long bodies in a number of different situations: natural shedding, under transverse forcing, and with excited duct modes. In the present study, an investigation is made of the predicted unforced laminar flow around long plates (up to chord, c, to thickness, t, ratio c/t = 16). The two main types of plate geometry considered are rectangular plates and plates with an aerodynamic leading edge. The rectangular plate represents a geometrical extension of the normal flat and square plates. The aerodynamic leading-edge plate is a natural precursor to the rectangular plate because the vortex shedding is only from the trailing edge. The natural flow around rectangular plates is of greater complexity due to the interaction between the leading- and trailing-edge shedding. The previously neglected influence of the trailing-edge vortex shedding is found to play an important role in the stepwise progression of the Strouhal number with chord-to-thickness ratio. In addition, the formation of three-dimensional patterns in the boundary layer along the plate and in the trailing-edge wake is predicted. The predicted boundary layer hairpin vortices are compared with previous observations and the predicted streamwise modes in the wake are compared with those found in the case of circular cylinders.
C02 01  3    @0 001B40G85B
C03 01  3  FRE  @0 Décollement écoulement @5 01
C03 01  3  ENG  @0 Flow separation @5 01
C03 02  X  FRE  @0 Formation motif @5 03
C03 02  X  ENG  @0 Patterning @5 03
C03 02  X  SPA  @0 Formacíon motivo @5 03
C03 03  X  FRE  @0 Plaque rectangulaire @5 04
C03 03  X  ENG  @0 Rectangular plate @5 04
C03 03  X  SPA  @0 Placa rectangular @5 04
C03 04  3  FRE  @0 Ecoulement tourbillonnaire @5 05
C03 04  3  ENG  @0 Vortex flow @5 05
C03 05  3  FRE  @0 Résonance @5 06
C03 05  3  ENG  @0 Resonance @5 06
C03 06  X  FRE  @0 Cylindre circulaire @5 07
C03 06  X  ENG  @0 Circular cylinder @5 07
C03 06  X  SPA  @0 Cilindro circular @5 07
C03 07  3  FRE  @0 Conduite @5 08
C03 07  3  ENG  @0 Ducts @5 08
C03 08  3  FRE  @0 Ecoulement laminaire @5 09
C03 08  3  ENG  @0 Laminar flow @5 09
C03 09  3  FRE  @0 Aérodynamique @5 10
C03 09  3  ENG  @0 Aerodynamics @5 10
C03 10  X  FRE  @0 Plaque plane @5 11
C03 10  X  ENG  @0 Flat plate @5 11
C03 10  X  SPA  @0 Placa plana @5 11
C03 11  X  FRE  @0 Détachement tourbillonnaire @5 12
C03 11  X  ENG  @0 Vortex shedding @5 12
C03 11  X  SPA  @0 Desprendimiento vorticial @5 12
C03 12  3  FRE  @0 Structure sandwich @5 13
C03 12  3  ENG  @0 Sandwich structures @5 13
C03 13  3  FRE  @0 Couche limite @5 14
C03 13  3  ENG  @0 Boundary layers @5 14
C03 14  3  FRE  @0 Sillage @5 15
C03 14  3  ENG  @0 Wakes @5 15
C03 15  3  FRE  @0 Nombre Strouhal @5 16
C03 15  3  ENG  @0 Strouhal number @5 16
C03 16  X  FRE  @0 Autooscillation @5 17
C03 16  X  ENG  @0 Selfoscillation @5 17
C03 16  X  SPA  @0 Autooscilación @5 17
C03 17  X  FRE  @0 Modèle 3 dimensions @5 18
C03 17  X  ENG  @0 Three dimensional model @5 18
C03 17  X  SPA  @0 Modelo 3 dimensiones @5 18
C03 18  X  FRE  @0 Bord attaque @5 19
C03 18  X  ENG  @0 Leading edge @5 19
C03 18  X  SPA  @0 Borde ataque @5 19
C03 19  X  FRE  @0 Bord fuite @5 20
C03 19  X  ENG  @0 Trailing edge @5 20
C03 19  X  SPA  @0 Borde salida @5 20
C03 20  X  FRE  @0 Corps arête vive @5 21
C03 20  X  ENG  @0 Bluff body @5 21
C03 20  X  SPA  @0 Cuerpo arista viva @5 21
C03 21  X  FRE  @0 Tourbillon extrémité @5 23
C03 21  X  ENG  @0 End vortex @5 23
C03 21  X  SPA  @0 Torbellino extremidad @5 23
C03 22  3  FRE  @0 4785G @2 PAC @4 INC @5 56
N21       @1 225
pR  
A30 01  1  ENG  @1 BBVIV IUTAM Symposium on Bluff Body Wakes and Vortex-Induced Vibrations @2 2 @3 Carry-Le-Rouet FRA @4 2000-06-13

Format Inist (serveur)

NO : PASCAL 01-0326679 INIST
ET : Self-sustained oscillations in flows around long blunt plates
AU : HOURIGAN (K.); THOMPSON (M. C.); TAN (B. T.); LEWEKE (Thomas); BEARMAN (Peter W.); WILLIAMSON (Charles H. K.)
AF : Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical Engineering, Monash University/Clayton, 3800/Australie (1 aut., 2 aut., 3 aut.); IRPHE/CNRS/France (1 aut.); Department of Aeronautics, Imperial College of Science, Technology and Medicine, Prince Consort Road/London SW7 2BY/Royaume-Uni (2 aut.); Sibley School of Mechanical & Aerospace Engineering, Upson Hall, Cornell University/Ithaca NY 14853-7501/Etats-Unis (3 aut.)
DT : Publication en série; Congrès; Niveau analytique
SO : Journal of fluids and structures; ISSN 0889-9746; Coden JFSTEF; Royaume-Uni; Da. 2001; Vol. 15; No. 3-4; Pp. 387-398; Bibl. 23 ref.; 1 pl. h. t.
LA : Anglais
EA : The presence of flow separation from both leading and trailing edges of elongated bluff bodies leads to vortex interactions and resonances not observed in shorter bodies such as circular and square cylinders. Stepwise behaviour in the Strouhal number with increasing plate chord-to-thickness ratio has been observed for long bodies in a number of different situations: natural shedding, under transverse forcing, and with excited duct modes. In the present study, an investigation is made of the predicted unforced laminar flow around long plates (up to chord, c, to thickness, t, ratio c/t = 16). The two main types of plate geometry considered are rectangular plates and plates with an aerodynamic leading edge. The rectangular plate represents a geometrical extension of the normal flat and square plates. The aerodynamic leading-edge plate is a natural precursor to the rectangular plate because the vortex shedding is only from the trailing edge. The natural flow around rectangular plates is of greater complexity due to the interaction between the leading- and trailing-edge shedding. The previously neglected influence of the trailing-edge vortex shedding is found to play an important role in the stepwise progression of the Strouhal number with chord-to-thickness ratio. In addition, the formation of three-dimensional patterns in the boundary layer along the plate and in the trailing-edge wake is predicted. The predicted boundary layer hairpin vortices are compared with previous observations and the predicted streamwise modes in the wake are compared with those found in the case of circular cylinders.
CC : 001B40G85B
FD : Décollement écoulement; Formation motif; Plaque rectangulaire; Ecoulement tourbillonnaire; Résonance; Cylindre circulaire; Conduite; Ecoulement laminaire; Aérodynamique; Plaque plane; Détachement tourbillonnaire; Structure sandwich; Couche limite; Sillage; Nombre Strouhal; Autooscillation; Modèle 3 dimensions; Bord attaque; Bord fuite; Corps arête vive; Tourbillon extrémité; 4785G
ED : Flow separation; Patterning; Rectangular plate; Vortex flow; Resonance; Circular cylinder; Ducts; Laminar flow; Aerodynamics; Flat plate; Vortex shedding; Sandwich structures; Boundary layers; Wakes; Strouhal number; Selfoscillation; Three dimensional model; Leading edge; Trailing edge; Bluff body; End vortex
SD : Formacíon motivo; Placa rectangular; Cilindro circular; Placa plana; Desprendimiento vorticial; Autooscilación; Modelo 3 dimensiones; Borde ataque; Borde salida; Cuerpo arista viva; Torbellino extremidad
LO : INIST-21394.354000095616070010
ID : 01-0326679

Links to Exploration step

Pascal:01-0326679

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Self-sustained oscillations in flows around long blunt plates</title>
<author>
<name sortKey="Hourigan, K" sort="Hourigan, K" uniqKey="Hourigan K" first="K." last="Hourigan">K. Hourigan</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical Engineering, Monash University</s1>
<s2>Clayton, 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Thompson, M C" sort="Thompson, M C" uniqKey="Thompson M" first="M. C." last="Thompson">M. C. Thompson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical Engineering, Monash University</s1>
<s2>Clayton, 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tan, B T" sort="Tan, B T" uniqKey="Tan B" first="B. T." last="Tan">B. T. Tan</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical Engineering, Monash University</s1>
<s2>Clayton, 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">01-0326679</idno>
<date when="2001">2001</date>
<idno type="stanalyst">PASCAL 01-0326679 INIST</idno>
<idno type="RBID">Pascal:01-0326679</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">005B62</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Self-sustained oscillations in flows around long blunt plates</title>
<author>
<name sortKey="Hourigan, K" sort="Hourigan, K" uniqKey="Hourigan K" first="K." last="Hourigan">K. Hourigan</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical Engineering, Monash University</s1>
<s2>Clayton, 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Thompson, M C" sort="Thompson, M C" uniqKey="Thompson M" first="M. C." last="Thompson">M. C. Thompson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical Engineering, Monash University</s1>
<s2>Clayton, 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tan, B T" sort="Tan, B T" uniqKey="Tan B" first="B. T." last="Tan">B. T. Tan</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical Engineering, Monash University</s1>
<s2>Clayton, 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of fluids and structures</title>
<title level="j" type="abbreviated">J. fluids struct.</title>
<idno type="ISSN">0889-9746</idno>
<imprint>
<date when="2001">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of fluids and structures</title>
<title level="j" type="abbreviated">J. fluids struct.</title>
<idno type="ISSN">0889-9746</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aerodynamics</term>
<term>Bluff body</term>
<term>Boundary layers</term>
<term>Circular cylinder</term>
<term>Ducts</term>
<term>End vortex</term>
<term>Flat plate</term>
<term>Flow separation</term>
<term>Laminar flow</term>
<term>Leading edge</term>
<term>Patterning</term>
<term>Rectangular plate</term>
<term>Resonance</term>
<term>Sandwich structures</term>
<term>Selfoscillation</term>
<term>Strouhal number</term>
<term>Three dimensional model</term>
<term>Trailing edge</term>
<term>Vortex flow</term>
<term>Vortex shedding</term>
<term>Wakes</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Décollement écoulement</term>
<term>Formation motif</term>
<term>Plaque rectangulaire</term>
<term>Ecoulement tourbillonnaire</term>
<term>Résonance</term>
<term>Cylindre circulaire</term>
<term>Conduite</term>
<term>Ecoulement laminaire</term>
<term>Aérodynamique</term>
<term>Plaque plane</term>
<term>Détachement tourbillonnaire</term>
<term>Structure sandwich</term>
<term>Couche limite</term>
<term>Sillage</term>
<term>Nombre Strouhal</term>
<term>Autooscillation</term>
<term>Modèle 3 dimensions</term>
<term>Bord attaque</term>
<term>Bord fuite</term>
<term>Corps arête vive</term>
<term>Tourbillon extrémité</term>
<term>4785G</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The presence of flow separation from both leading and trailing edges of elongated bluff bodies leads to vortex interactions and resonances not observed in shorter bodies such as circular and square cylinders. Stepwise behaviour in the Strouhal number with increasing plate chord-to-thickness ratio has been observed for long bodies in a number of different situations: natural shedding, under transverse forcing, and with excited duct modes. In the present study, an investigation is made of the predicted unforced laminar flow around long plates (up to chord, c, to thickness, t, ratio c/t = 16). The two main types of plate geometry considered are rectangular plates and plates with an aerodynamic leading edge. The rectangular plate represents a geometrical extension of the normal flat and square plates. The aerodynamic leading-edge plate is a natural precursor to the rectangular plate because the vortex shedding is only from the trailing edge. The natural flow around rectangular plates is of greater complexity due to the interaction between the leading- and trailing-edge shedding. The previously neglected influence of the trailing-edge vortex shedding is found to play an important role in the stepwise progression of the Strouhal number with chord-to-thickness ratio. In addition, the formation of three-dimensional patterns in the boundary layer along the plate and in the trailing-edge wake is predicted. The predicted boundary layer hairpin vortices are compared with previous observations and the predicted streamwise modes in the wake are compared with those found in the case of circular cylinders.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0889-9746</s0>
</fA01>
<fA02 i1="01">
<s0>JFSTEF</s0>
</fA02>
<fA03 i2="1">
<s0>J. fluids struct.</s0>
</fA03>
<fA05>
<s2>15</s2>
</fA05>
<fA06>
<s2>3-4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Self-sustained oscillations in flows around long blunt plates</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Bluff Body Wakes and Vortex - Induced Vibrations</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>HOURIGAN (K.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>THOMPSON (M. C.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>TAN (B. T.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>LEWEKE (Thomas)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>BEARMAN (Peter W.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>WILLIAMSON (Charles H. K.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical Engineering, Monash University</s1>
<s2>Clayton, 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>IRPHE/CNRS</s1>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Department of Aeronautics, Imperial College of Science, Technology and Medicine, Prince Consort Road</s1>
<s2>London SW7 2BY</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>Sibley School of Mechanical & Aerospace Engineering, Upson Hall, Cornell University</s1>
<s2>Ithaca NY 14853-7501</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA18 i1="01" i2="1">
<s1>International Union of Theoretical and Applied Mechanics (IUTAM)</s1>
<s3>INT</s3>
<s9>patr.</s9>
</fA18>
<fA20>
<s1>387-398</s1>
<s3>1 pl. h. t.</s3>
</fA20>
<fA21>
<s1>2001</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21394</s2>
<s5>354000095616070010</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2001 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>23 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>01-0326679</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of fluids and structures</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The presence of flow separation from both leading and trailing edges of elongated bluff bodies leads to vortex interactions and resonances not observed in shorter bodies such as circular and square cylinders. Stepwise behaviour in the Strouhal number with increasing plate chord-to-thickness ratio has been observed for long bodies in a number of different situations: natural shedding, under transverse forcing, and with excited duct modes. In the present study, an investigation is made of the predicted unforced laminar flow around long plates (up to chord, c, to thickness, t, ratio c/t = 16). The two main types of plate geometry considered are rectangular plates and plates with an aerodynamic leading edge. The rectangular plate represents a geometrical extension of the normal flat and square plates. The aerodynamic leading-edge plate is a natural precursor to the rectangular plate because the vortex shedding is only from the trailing edge. The natural flow around rectangular plates is of greater complexity due to the interaction between the leading- and trailing-edge shedding. The previously neglected influence of the trailing-edge vortex shedding is found to play an important role in the stepwise progression of the Strouhal number with chord-to-thickness ratio. In addition, the formation of three-dimensional patterns in the boundary layer along the plate and in the trailing-edge wake is predicted. The predicted boundary layer hairpin vortices are compared with previous observations and the predicted streamwise modes in the wake are compared with those found in the case of circular cylinders.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40G85B</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Décollement écoulement</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Flow separation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Formation motif</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Patterning</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Formacíon motivo</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Plaque rectangulaire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Rectangular plate</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Placa rectangular</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Ecoulement tourbillonnaire</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Vortex flow</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Résonance</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Resonance</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Cylindre circulaire</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Circular cylinder</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Cilindro circular</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Conduite</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Ducts</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Ecoulement laminaire</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Laminar flow</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Aérodynamique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Aerodynamics</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Plaque plane</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Flat plate</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Placa plana</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Détachement tourbillonnaire</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Vortex shedding</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Desprendimiento vorticial</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Structure sandwich</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Sandwich structures</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Couche limite</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Boundary layers</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Sillage</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Wakes</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Nombre Strouhal</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Strouhal number</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Autooscillation</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Selfoscillation</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Autooscilación</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Modèle 3 dimensions</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Three dimensional model</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Modelo 3 dimensiones</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Bord attaque</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Leading edge</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Borde ataque</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Bord fuite</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Trailing edge</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Borde salida</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Corps arête vive</s0>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Bluff body</s0>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Cuerpo arista viva</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Tourbillon extrémité</s0>
<s5>23</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>End vortex</s0>
<s5>23</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Torbellino extremidad</s0>
<s5>23</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>4785G</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fN21>
<s1>225</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>BBVIV IUTAM Symposium on Bluff Body Wakes and Vortex-Induced Vibrations</s1>
<s2>2</s2>
<s3>Carry-Le-Rouet FRA</s3>
<s4>2000-06-13</s4>
</fA30>
</pR>
</standard>
<server>
<NO>PASCAL 01-0326679 INIST</NO>
<ET>Self-sustained oscillations in flows around long blunt plates</ET>
<AU>HOURIGAN (K.); THOMPSON (M. C.); TAN (B. T.); LEWEKE (Thomas); BEARMAN (Peter W.); WILLIAMSON (Charles H. K.)</AU>
<AF>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical Engineering, Monash University/Clayton, 3800/Australie (1 aut., 2 aut., 3 aut.); IRPHE/CNRS/France (1 aut.); Department of Aeronautics, Imperial College of Science, Technology and Medicine, Prince Consort Road/London SW7 2BY/Royaume-Uni (2 aut.); Sibley School of Mechanical & Aerospace Engineering, Upson Hall, Cornell University/Ithaca NY 14853-7501/Etats-Unis (3 aut.)</AF>
<DT>Publication en série; Congrès; Niveau analytique</DT>
<SO>Journal of fluids and structures; ISSN 0889-9746; Coden JFSTEF; Royaume-Uni; Da. 2001; Vol. 15; No. 3-4; Pp. 387-398; Bibl. 23 ref.; 1 pl. h. t.</SO>
<LA>Anglais</LA>
<EA>The presence of flow separation from both leading and trailing edges of elongated bluff bodies leads to vortex interactions and resonances not observed in shorter bodies such as circular and square cylinders. Stepwise behaviour in the Strouhal number with increasing plate chord-to-thickness ratio has been observed for long bodies in a number of different situations: natural shedding, under transverse forcing, and with excited duct modes. In the present study, an investigation is made of the predicted unforced laminar flow around long plates (up to chord, c, to thickness, t, ratio c/t = 16). The two main types of plate geometry considered are rectangular plates and plates with an aerodynamic leading edge. The rectangular plate represents a geometrical extension of the normal flat and square plates. The aerodynamic leading-edge plate is a natural precursor to the rectangular plate because the vortex shedding is only from the trailing edge. The natural flow around rectangular plates is of greater complexity due to the interaction between the leading- and trailing-edge shedding. The previously neglected influence of the trailing-edge vortex shedding is found to play an important role in the stepwise progression of the Strouhal number with chord-to-thickness ratio. In addition, the formation of three-dimensional patterns in the boundary layer along the plate and in the trailing-edge wake is predicted. The predicted boundary layer hairpin vortices are compared with previous observations and the predicted streamwise modes in the wake are compared with those found in the case of circular cylinders.</EA>
<CC>001B40G85B</CC>
<FD>Décollement écoulement; Formation motif; Plaque rectangulaire; Ecoulement tourbillonnaire; Résonance; Cylindre circulaire; Conduite; Ecoulement laminaire; Aérodynamique; Plaque plane; Détachement tourbillonnaire; Structure sandwich; Couche limite; Sillage; Nombre Strouhal; Autooscillation; Modèle 3 dimensions; Bord attaque; Bord fuite; Corps arête vive; Tourbillon extrémité; 4785G</FD>
<ED>Flow separation; Patterning; Rectangular plate; Vortex flow; Resonance; Circular cylinder; Ducts; Laminar flow; Aerodynamics; Flat plate; Vortex shedding; Sandwich structures; Boundary layers; Wakes; Strouhal number; Selfoscillation; Three dimensional model; Leading edge; Trailing edge; Bluff body; End vortex</ED>
<SD>Formacíon motivo; Placa rectangular; Cilindro circular; Placa plana; Desprendimiento vorticial; Autooscilación; Modelo 3 dimensiones; Borde ataque; Borde salida; Cuerpo arista viva; Torbellino extremidad</SD>
<LO>INIST-21394.354000095616070010</LO>
<ID>01-0326679</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005B62 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 005B62 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:01-0326679
   |texte=   Self-sustained oscillations in flows around long blunt plates
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024