Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals

Identifieur interne : 005A26 ( PascalFrancis/Corpus ); précédent : 005A25; suivant : 005A27

The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals

Auteurs : R. B. Randall ; J. Antoni ; S. Chobsaard

Source :

RBID : Pascal:02-0056686

Descripteurs français

English descriptors

Abstract

In recent years there has been an increasing interest in applying cyclostationary analysis to the diagnostics of machine vibration signals. This is because some machine signals, while being almost periodic, are not exactly phase-locked to shaft speeds, and thus even after compensation for speed fluctuation cannot be extracted by synchronous averaging. Typical examples are the combustion events in IC engines, which vary from cycle to cycle, and impulsive signals from faults in rolling element bearings, which are affected by minor but randomly varying slip. Two main tools for the analysis of cyclostationary signals are the two-dimensional autocorrelation function vs central time on the one axis and time displacement around the central time on the other, and its two-dimensional Fourier transform known as the spectral correlation. The latter can be quite complex to interpret, so some authors have suggested integrating it over all frequencies to obtain a Fourier series spectrum vs cyclic frequency. In this paper, it is shown that this gives the same result as a Fourier transform of the average squared envelope of the signal, which is much easier to obtain directly. Not only that, envelope analysis has long been used in the diagnostics of rolling element bearing signals, and some of the experience gained can be carried over to spectral correlation analysis. There is a possibility that the full spectral correlation may still give some advantage in distinguishing between modulation effects due to gear rotations and bearing inner race rotations (even at the same speed) by virtue of the different amounts of randomness associated with each.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0888-3270
A03   1    @0 Mech. syst. signal process.
A05       @2 15
A06       @2 5
A08 01  1  ENG  @1 The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals
A09 01  1  ENG  @1 Gears and Bearings Diagnostics
A11 01  1    @1 RANDALL (R. B.)
A11 02  1    @1 ANTONI (J.)
A11 03  1    @1 CHOBSAARD (S.)
A12 01  1    @1 RANDALL (R. B.) @9 ed.
A14 01      @1 School of Mechanical and Manufacturing Engineering, The University of New South Wales @2 Sydney 2052 @3 AUS @Z 1 aut.
A14 02      @1 Laboratoire d'Analyse des Signaux et des Processus Industriels (LASPI), IUT de Roanne @2 42334 Roanne @3 FRA @Z 2 aut.
A14 03      @1 Department of Engineering Development, Royal Thai Naval Dockyard @3 THA @Z 3 aut.
A15 01      @1 The University of New South Wales @2 Sydney, NSW 2052 @3 AUS @Z 1 aut.
A20       @1 945-962
A21       @1 2001
A23 01      @0 ENG
A43 01      @1 INIST @2 21404 @5 354000103085500070
A44       @0 0000 @1 © 2002 INIST-CNRS. All rights reserved.
A45       @0 8 ref.
A47 01  1    @0 02-0056686
A60       @1 P
A61       @0 A
A64 01  1    @0 Mechanical systems and signal processing
A66 01      @0 GBR
C01 01    ENG  @0 In recent years there has been an increasing interest in applying cyclostationary analysis to the diagnostics of machine vibration signals. This is because some machine signals, while being almost periodic, are not exactly phase-locked to shaft speeds, and thus even after compensation for speed fluctuation cannot be extracted by synchronous averaging. Typical examples are the combustion events in IC engines, which vary from cycle to cycle, and impulsive signals from faults in rolling element bearings, which are affected by minor but randomly varying slip. Two main tools for the analysis of cyclostationary signals are the two-dimensional autocorrelation function vs central time on the one axis and time displacement around the central time on the other, and its two-dimensional Fourier transform known as the spectral correlation. The latter can be quite complex to interpret, so some authors have suggested integrating it over all frequencies to obtain a Fourier series spectrum vs cyclic frequency. In this paper, it is shown that this gives the same result as a Fourier transform of the average squared envelope of the signal, which is much easier to obtain directly. Not only that, envelope analysis has long been used in the diagnostics of rolling element bearing signals, and some of the experience gained can be carried over to spectral correlation analysis. There is a possibility that the full spectral correlation may still give some advantage in distinguishing between modulation effects due to gear rotations and bearing inner race rotations (even at the same speed) by virtue of the different amounts of randomness associated with each.
C02 01  X    @0 001D12C01
C02 02  X    @0 001B40F30R
C03 01  X  FRE  @0 Méthode mesure @5 01
C03 01  X  ENG  @0 Measurement method @5 01
C03 01  X  SPA  @0 Método medida @5 01
C03 02  X  FRE  @0 Diagnostic panne @5 02
C03 02  X  ENG  @0 Fault diagnostic @5 02
C03 02  X  SPA  @0 Diagnóstico pana @5 02
C03 03  X  FRE  @0 Détection défaut @5 03
C03 03  X  ENG  @0 Defect detection @5 03
C03 03  X  SPA  @0 Detección imperfección @5 03
C03 04  X  FRE  @0 Monitorage @5 04
C03 04  X  ENG  @0 Monitoring @5 04
C03 04  X  SPA  @0 Monitoreo @5 04
C03 05  X  FRE  @0 Vibration @5 05
C03 05  X  ENG  @0 Vibration @5 05
C03 05  X  SPA  @0 Vibración @5 05
C03 06  X  FRE  @0 Arbre transmission @5 06
C03 06  X  ENG  @0 Shaft @5 06
C03 06  X  SPA  @0 Arbol transmisión @5 06
C03 07  X  FRE  @0 Engrenage @5 09
C03 07  X  ENG  @0 Gear @5 09
C03 07  X  SPA  @0 Engranaje @5 09
C03 08  X  FRE  @0 Palier roulement @5 10
C03 08  X  ENG  @0 Rolling bearing @5 10
C03 08  X  SPA  @0 Cojinete rodillos @5 10
C03 09  X  FRE  @0 Traitement signal @5 15
C03 09  X  ENG  @0 Signal processing @5 15
C03 09  X  SPA  @0 Procesamiento señal @5 15
C03 10  X  FRE  @0 Processus non stationnaire @5 16
C03 10  X  ENG  @0 Non stationary process @5 16
C03 10  X  SPA  @0 Proceso no estacionario @5 16
C03 11  X  FRE  @0 Analyse spectrale @5 17
C03 11  X  ENG  @0 Spectral analysis @5 17
C03 11  X  SPA  @0 Análisis espectral @5 17
C03 12  X  FRE  @0 Analyse statistique @5 18
C03 12  X  ENG  @0 Statistical analysis @5 18
C03 12  X  SPA  @0 Análisis estadístico @5 18
C03 13  X  FRE  @0 Enveloppe signal @5 19
C03 13  X  ENG  @0 Signal envelope @5 19
C03 13  X  SPA  @0 Envoltura señal @5 19
C03 14  X  FRE  @0 Transformation Fourier @5 20
C03 14  X  ENG  @0 Fourier transformation @5 20
C03 14  X  SPA  @0 Transformación Fourier @5 20
C03 15  X  FRE  @0 4680 @2 PAC @4 INC @5 57
C03 16  X  FRE  @0 Cyclostationnarité @4 CD @5 96
C03 16  X  ENG  @0 Cyclostationarity @4 CD @5 96
N21       @1 028

Format Inist (serveur)

NO : PASCAL 02-0056686 INIST
ET : The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals
AU : RANDALL (R. B.); ANTONI (J.); CHOBSAARD (S.); RANDALL (R. B.)
AF : School of Mechanical and Manufacturing Engineering, The University of New South Wales/Sydney 2052/Australie (1 aut.); Laboratoire d'Analyse des Signaux et des Processus Industriels (LASPI), IUT de Roanne/42334 Roanne/France (2 aut.); Department of Engineering Development, Royal Thai Naval Dockyard/Thaïlande (3 aut.); The University of New South Wales/Sydney, NSW 2052/Australie (1 aut.)
DT : Publication en série; Niveau analytique
SO : Mechanical systems and signal processing; ISSN 0888-3270; Royaume-Uni; Da. 2001; Vol. 15; No. 5; Pp. 945-962; Bibl. 8 ref.
LA : Anglais
EA : In recent years there has been an increasing interest in applying cyclostationary analysis to the diagnostics of machine vibration signals. This is because some machine signals, while being almost periodic, are not exactly phase-locked to shaft speeds, and thus even after compensation for speed fluctuation cannot be extracted by synchronous averaging. Typical examples are the combustion events in IC engines, which vary from cycle to cycle, and impulsive signals from faults in rolling element bearings, which are affected by minor but randomly varying slip. Two main tools for the analysis of cyclostationary signals are the two-dimensional autocorrelation function vs central time on the one axis and time displacement around the central time on the other, and its two-dimensional Fourier transform known as the spectral correlation. The latter can be quite complex to interpret, so some authors have suggested integrating it over all frequencies to obtain a Fourier series spectrum vs cyclic frequency. In this paper, it is shown that this gives the same result as a Fourier transform of the average squared envelope of the signal, which is much easier to obtain directly. Not only that, envelope analysis has long been used in the diagnostics of rolling element bearing signals, and some of the experience gained can be carried over to spectral correlation analysis. There is a possibility that the full spectral correlation may still give some advantage in distinguishing between modulation effects due to gear rotations and bearing inner race rotations (even at the same speed) by virtue of the different amounts of randomness associated with each.
CC : 001D12C01; 001B40F30R
FD : Méthode mesure; Diagnostic panne; Détection défaut; Monitorage; Vibration; Arbre transmission; Engrenage; Palier roulement; Traitement signal; Processus non stationnaire; Analyse spectrale; Analyse statistique; Enveloppe signal; Transformation Fourier; 4680; Cyclostationnarité
ED : Measurement method; Fault diagnostic; Defect detection; Monitoring; Vibration; Shaft; Gear; Rolling bearing; Signal processing; Non stationary process; Spectral analysis; Statistical analysis; Signal envelope; Fourier transformation; Cyclostationarity
SD : Método medida; Diagnóstico pana; Detección imperfección; Monitoreo; Vibración; Arbol transmisión; Engranaje; Cojinete rodillos; Procesamiento señal; Proceso no estacionario; Análisis espectral; Análisis estadístico; Envoltura señal; Transformación Fourier
LO : INIST-21404.354000103085500070
ID : 02-0056686

Links to Exploration step

Pascal:02-0056686

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals</title>
<author>
<name sortKey="Randall, R B" sort="Randall, R B" uniqKey="Randall R" first="R. B." last="Randall">R. B. Randall</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Mechanical and Manufacturing Engineering, The University of New South Wales</s1>
<s2>Sydney 2052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Antoni, J" sort="Antoni, J" uniqKey="Antoni J" first="J." last="Antoni">J. Antoni</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire d'Analyse des Signaux et des Processus Industriels (LASPI), IUT de Roanne</s1>
<s2>42334 Roanne</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Chobsaard, S" sort="Chobsaard, S" uniqKey="Chobsaard S" first="S." last="Chobsaard">S. Chobsaard</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Engineering Development, Royal Thai Naval Dockyard</s1>
<s3>THA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">02-0056686</idno>
<date when="2001">2001</date>
<idno type="stanalyst">PASCAL 02-0056686 INIST</idno>
<idno type="RBID">Pascal:02-0056686</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">005A26</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals</title>
<author>
<name sortKey="Randall, R B" sort="Randall, R B" uniqKey="Randall R" first="R. B." last="Randall">R. B. Randall</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Mechanical and Manufacturing Engineering, The University of New South Wales</s1>
<s2>Sydney 2052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Antoni, J" sort="Antoni, J" uniqKey="Antoni J" first="J." last="Antoni">J. Antoni</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire d'Analyse des Signaux et des Processus Industriels (LASPI), IUT de Roanne</s1>
<s2>42334 Roanne</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Chobsaard, S" sort="Chobsaard, S" uniqKey="Chobsaard S" first="S." last="Chobsaard">S. Chobsaard</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Engineering Development, Royal Thai Naval Dockyard</s1>
<s3>THA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Mechanical systems and signal processing</title>
<title level="j" type="abbreviated">Mech. syst. signal process.</title>
<idno type="ISSN">0888-3270</idno>
<imprint>
<date when="2001">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Mechanical systems and signal processing</title>
<title level="j" type="abbreviated">Mech. syst. signal process.</title>
<idno type="ISSN">0888-3270</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cyclostationarity</term>
<term>Defect detection</term>
<term>Fault diagnostic</term>
<term>Fourier transformation</term>
<term>Gear</term>
<term>Measurement method</term>
<term>Monitoring</term>
<term>Non stationary process</term>
<term>Rolling bearing</term>
<term>Shaft</term>
<term>Signal envelope</term>
<term>Signal processing</term>
<term>Spectral analysis</term>
<term>Statistical analysis</term>
<term>Vibration</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Méthode mesure</term>
<term>Diagnostic panne</term>
<term>Détection défaut</term>
<term>Monitorage</term>
<term>Vibration</term>
<term>Arbre transmission</term>
<term>Engrenage</term>
<term>Palier roulement</term>
<term>Traitement signal</term>
<term>Processus non stationnaire</term>
<term>Analyse spectrale</term>
<term>Analyse statistique</term>
<term>Enveloppe signal</term>
<term>Transformation Fourier</term>
<term>4680</term>
<term>Cyclostationnarité</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In recent years there has been an increasing interest in applying cyclostationary analysis to the diagnostics of machine vibration signals. This is because some machine signals, while being almost periodic, are not exactly phase-locked to shaft speeds, and thus even after compensation for speed fluctuation cannot be extracted by synchronous averaging. Typical examples are the combustion events in IC engines, which vary from cycle to cycle, and impulsive signals from faults in rolling element bearings, which are affected by minor but randomly varying slip. Two main tools for the analysis of cyclostationary signals are the two-dimensional autocorrelation function vs central time on the one axis and time displacement around the central time on the other, and its two-dimensional Fourier transform known as the spectral correlation. The latter can be quite complex to interpret, so some authors have suggested integrating it over all frequencies to obtain a Fourier series spectrum vs cyclic frequency. In this paper, it is shown that this gives the same result as a Fourier transform of the average squared envelope of the signal, which is much easier to obtain directly. Not only that, envelope analysis has long been used in the diagnostics of rolling element bearing signals, and some of the experience gained can be carried over to spectral correlation analysis. There is a possibility that the full spectral correlation may still give some advantage in distinguishing between modulation effects due to gear rotations and bearing inner race rotations (even at the same speed) by virtue of the different amounts of randomness associated with each.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0888-3270</s0>
</fA01>
<fA03 i2="1">
<s0>Mech. syst. signal process.</s0>
</fA03>
<fA05>
<s2>15</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Gears and Bearings Diagnostics</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>RANDALL (R. B.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ANTONI (J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CHOBSAARD (S.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>RANDALL (R. B.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>School of Mechanical and Manufacturing Engineering, The University of New South Wales</s1>
<s2>Sydney 2052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Laboratoire d'Analyse des Signaux et des Processus Industriels (LASPI), IUT de Roanne</s1>
<s2>42334 Roanne</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Engineering Development, Royal Thai Naval Dockyard</s1>
<s3>THA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>The University of New South Wales</s1>
<s2>Sydney, NSW 2052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA20>
<s1>945-962</s1>
</fA20>
<fA21>
<s1>2001</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21404</s2>
<s5>354000103085500070</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2002 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>8 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>02-0056686</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Mechanical systems and signal processing</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In recent years there has been an increasing interest in applying cyclostationary analysis to the diagnostics of machine vibration signals. This is because some machine signals, while being almost periodic, are not exactly phase-locked to shaft speeds, and thus even after compensation for speed fluctuation cannot be extracted by synchronous averaging. Typical examples are the combustion events in IC engines, which vary from cycle to cycle, and impulsive signals from faults in rolling element bearings, which are affected by minor but randomly varying slip. Two main tools for the analysis of cyclostationary signals are the two-dimensional autocorrelation function vs central time on the one axis and time displacement around the central time on the other, and its two-dimensional Fourier transform known as the spectral correlation. The latter can be quite complex to interpret, so some authors have suggested integrating it over all frequencies to obtain a Fourier series spectrum vs cyclic frequency. In this paper, it is shown that this gives the same result as a Fourier transform of the average squared envelope of the signal, which is much easier to obtain directly. Not only that, envelope analysis has long been used in the diagnostics of rolling element bearing signals, and some of the experience gained can be carried over to spectral correlation analysis. There is a possibility that the full spectral correlation may still give some advantage in distinguishing between modulation effects due to gear rotations and bearing inner race rotations (even at the same speed) by virtue of the different amounts of randomness associated with each.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D12C01</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001B40F30R</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Méthode mesure</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Measurement method</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Método medida</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Diagnostic panne</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Fault diagnostic</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Diagnóstico pana</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Détection défaut</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Defect detection</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Detección imperfección</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Monitorage</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Monitoring</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Monitoreo</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Vibration</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Vibration</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Vibración</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Arbre transmission</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Shaft</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Arbol transmisión</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Engrenage</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Gear</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Engranaje</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Palier roulement</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Rolling bearing</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Cojinete rodillos</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Traitement signal</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Signal processing</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Procesamiento señal</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Processus non stationnaire</s0>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Non stationary process</s0>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Proceso no estacionario</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Analyse spectrale</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Spectral analysis</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Análisis espectral</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Analyse statistique</s0>
<s5>18</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Statistical analysis</s0>
<s5>18</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Análisis estadístico</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Enveloppe signal</s0>
<s5>19</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Signal envelope</s0>
<s5>19</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Envoltura señal</s0>
<s5>19</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Transformation Fourier</s0>
<s5>20</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Fourier transformation</s0>
<s5>20</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Transformación Fourier</s0>
<s5>20</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>4680</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Cyclostationnarité</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Cyclostationarity</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>028</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 02-0056686 INIST</NO>
<ET>The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals</ET>
<AU>RANDALL (R. B.); ANTONI (J.); CHOBSAARD (S.); RANDALL (R. B.)</AU>
<AF>School of Mechanical and Manufacturing Engineering, The University of New South Wales/Sydney 2052/Australie (1 aut.); Laboratoire d'Analyse des Signaux et des Processus Industriels (LASPI), IUT de Roanne/42334 Roanne/France (2 aut.); Department of Engineering Development, Royal Thai Naval Dockyard/Thaïlande (3 aut.); The University of New South Wales/Sydney, NSW 2052/Australie (1 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Mechanical systems and signal processing; ISSN 0888-3270; Royaume-Uni; Da. 2001; Vol. 15; No. 5; Pp. 945-962; Bibl. 8 ref.</SO>
<LA>Anglais</LA>
<EA>In recent years there has been an increasing interest in applying cyclostationary analysis to the diagnostics of machine vibration signals. This is because some machine signals, while being almost periodic, are not exactly phase-locked to shaft speeds, and thus even after compensation for speed fluctuation cannot be extracted by synchronous averaging. Typical examples are the combustion events in IC engines, which vary from cycle to cycle, and impulsive signals from faults in rolling element bearings, which are affected by minor but randomly varying slip. Two main tools for the analysis of cyclostationary signals are the two-dimensional autocorrelation function vs central time on the one axis and time displacement around the central time on the other, and its two-dimensional Fourier transform known as the spectral correlation. The latter can be quite complex to interpret, so some authors have suggested integrating it over all frequencies to obtain a Fourier series spectrum vs cyclic frequency. In this paper, it is shown that this gives the same result as a Fourier transform of the average squared envelope of the signal, which is much easier to obtain directly. Not only that, envelope analysis has long been used in the diagnostics of rolling element bearing signals, and some of the experience gained can be carried over to spectral correlation analysis. There is a possibility that the full spectral correlation may still give some advantage in distinguishing between modulation effects due to gear rotations and bearing inner race rotations (even at the same speed) by virtue of the different amounts of randomness associated with each.</EA>
<CC>001D12C01; 001B40F30R</CC>
<FD>Méthode mesure; Diagnostic panne; Détection défaut; Monitorage; Vibration; Arbre transmission; Engrenage; Palier roulement; Traitement signal; Processus non stationnaire; Analyse spectrale; Analyse statistique; Enveloppe signal; Transformation Fourier; 4680; Cyclostationnarité</FD>
<ED>Measurement method; Fault diagnostic; Defect detection; Monitoring; Vibration; Shaft; Gear; Rolling bearing; Signal processing; Non stationary process; Spectral analysis; Statistical analysis; Signal envelope; Fourier transformation; Cyclostationarity</ED>
<SD>Método medida; Diagnóstico pana; Detección imperfección; Monitoreo; Vibración; Arbol transmisión; Engranaje; Cojinete rodillos; Procesamiento señal; Proceso no estacionario; Análisis espectral; Análisis estadístico; Envoltura señal; Transformación Fourier</SD>
<LO>INIST-21404.354000103085500070</LO>
<ID>02-0056686</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005A26 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 005A26 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:02-0056686
   |texte=   The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024