Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cryogenic dual-mode resonator for a fly-wheel oscillator for a caesium frequency standard

Identifieur interne : 005572 ( PascalFrancis/Corpus ); précédent : 005571; suivant : 005573

Cryogenic dual-mode resonator for a fly-wheel oscillator for a caesium frequency standard

Auteurs : Michael E. Tobar ; John G. Hartnett ; Eugene N. Ivanov ; Dominique Cros ; Pawel Bilski

Source :

RBID : Pascal:02-0566827

Descripteurs français

English descriptors

Abstract

A dual-mode, sapphire-loaded cavity (SLC) resonator has been designed and optimized with the aid of finite element software. The resonance frequency was designed to be near the frequency of a Cs atomic frequency standard. Experimental tests are shown to agree very well with calculations. The difference frequency of two differently polarized modes is shown to be a highly sensitive temperature sensor in the 50 to 80 K temperature range. We show that an oscillator based on this resonator has the potential to operate with fractional frequency instability below 10-14 for measurement times of 1 to 100 seconds. This is sufficient to operate an atomic clock at the quantum projection noise limit.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0885-3010
A02 01      @0 ITUCER
A03   1    @0 IEEE trans. ultrason. ferroelectr. freq. control
A05       @2 49
A06       @2 10
A08 01  1  ENG  @1 Cryogenic dual-mode resonator for a fly-wheel oscillator for a caesium frequency standard
A11 01  1    @1 TOBAR (Michael E.)
A11 02  1    @1 HARTNETT (John G.)
A11 03  1    @1 IVANOV (Eugene N.)
A11 04  1    @1 CROS (Dominique)
A11 05  1    @1 BILSKI (Pawel)
A14 01      @1 University of Western Australia @2 Crawley, WA, 6009 @3 AUS @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 5 aut.
A14 02      @1 IRCOM, UMR 6615 CNRS, Faculté des Sciences @2 Limoges @3 FRA @Z 4 aut.
A20       @1 1349-1355
A21       @1 2002
A23 01      @0 ENG
A43 01      @1 INIST @2 222G9 @5 354000109274900010
A44       @0 0000 @1 © 2002 INIST-CNRS. All rights reserved.
A45       @0 13 ref.
A47 01  1    @0 02-0566827
A60       @1 P
A61       @0 A
A64 01  1    @0 IEEE transactions on ultrasonics, ferroelectrics, and frequency control
A66 01      @0 USA
C01 01    ENG  @0 A dual-mode, sapphire-loaded cavity (SLC) resonator has been designed and optimized with the aid of finite element software. The resonance frequency was designed to be near the frequency of a Cs atomic frequency standard. Experimental tests are shown to agree very well with calculations. The difference frequency of two differently polarized modes is shown to be a highly sensitive temperature sensor in the 50 to 80 K temperature range. We show that an oscillator based on this resonator has the potential to operate with fractional frequency instability below 10-14 for measurement times of 1 to 100 seconds. This is sufficient to operate an atomic clock at the quantum projection noise limit.
C02 01  3    @0 001B00F30F
C03 01  3  FRE  @0 Mesure fréquence @5 01
C03 01  3  ENG  @0 Frequency measurement @5 01
C03 02  3  FRE  @0 Césium @2 NC @5 02
C03 02  3  ENG  @0 Cesium @2 NC @5 02
C03 03  3  FRE  @0 Horloge atomique @5 03
C03 03  3  ENG  @0 Atomic clocks @5 03
C03 04  3  FRE  @0 Résonateur cavité @5 04
C03 04  3  ENG  @0 Cavity resonators @5 04
C03 05  X  FRE  @0 Température cryogénique @5 05
C03 05  X  ENG  @0 Cryogenic temperature @5 05
C03 05  X  SPA  @0 Temperatura criogénica @5 05
C03 06  X  FRE  @0 Etalon atomique @5 07
C03 06  X  ENG  @0 Atomic standard @5 07
C03 06  X  SPA  @0 Patrón atómico @5 07
C03 07  3  FRE  @0 Saphir @5 08
C03 07  3  ENG  @0 Sapphire @5 08
C03 08  3  FRE  @0 Stabilité fréquence @5 09
C03 08  3  ENG  @0 Frequency stability @5 09
C03 09  3  FRE  @0 Modélisation @5 15
C03 09  3  ENG  @0 Modelling @5 15
C03 10  X  FRE  @0 Méthode numérique @5 16
C03 10  X  ENG  @0 Numerical method @5 16
C03 10  X  SPA  @0 Método numérico @5 16
C03 11  3  FRE  @0 Méthode élément fini @5 18
C03 11  3  ENG  @0 Finite element method @5 18
C03 12  3  FRE  @0 Etude expérimentale @5 25
C03 12  3  ENG  @0 Experimental study @5 25
C03 13  3  FRE  @0 0630F @2 PAC @4 INC @5 56
N21       @1 336
N82       @1 PSI

Format Inist (serveur)

NO : PASCAL 02-0566827 INIST
ET : Cryogenic dual-mode resonator for a fly-wheel oscillator for a caesium frequency standard
AU : TOBAR (Michael E.); HARTNETT (John G.); IVANOV (Eugene N.); CROS (Dominique); BILSKI (Pawel)
AF : University of Western Australia/Crawley, WA, 6009/Australie (1 aut., 2 aut., 3 aut., 5 aut.); IRCOM, UMR 6615 CNRS, Faculté des Sciences/Limoges/France (4 aut.)
DT : Publication en série; Niveau analytique
SO : IEEE transactions on ultrasonics, ferroelectrics, and frequency control; ISSN 0885-3010; Coden ITUCER; Etats-Unis; Da. 2002; Vol. 49; No. 10; Pp. 1349-1355; Bibl. 13 ref.
LA : Anglais
EA : A dual-mode, sapphire-loaded cavity (SLC) resonator has been designed and optimized with the aid of finite element software. The resonance frequency was designed to be near the frequency of a Cs atomic frequency standard. Experimental tests are shown to agree very well with calculations. The difference frequency of two differently polarized modes is shown to be a highly sensitive temperature sensor in the 50 to 80 K temperature range. We show that an oscillator based on this resonator has the potential to operate with fractional frequency instability below 10-14 for measurement times of 1 to 100 seconds. This is sufficient to operate an atomic clock at the quantum projection noise limit.
CC : 001B00F30F
FD : Mesure fréquence; Césium; Horloge atomique; Résonateur cavité; Température cryogénique; Etalon atomique; Saphir; Stabilité fréquence; Modélisation; Méthode numérique; Méthode élément fini; Etude expérimentale; 0630F
ED : Frequency measurement; Cesium; Atomic clocks; Cavity resonators; Cryogenic temperature; Atomic standard; Sapphire; Frequency stability; Modelling; Numerical method; Finite element method; Experimental study
SD : Temperatura criogénica; Patrón atómico; Método numérico
LO : INIST-222G9.354000109274900010
ID : 02-0566827

Links to Exploration step

Pascal:02-0566827

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Cryogenic dual-mode resonator for a fly-wheel oscillator for a caesium frequency standard</title>
<author>
<name sortKey="Tobar, Michael E" sort="Tobar, Michael E" uniqKey="Tobar M" first="Michael E." last="Tobar">Michael E. Tobar</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of Western Australia</s1>
<s2>Crawley, WA, 6009</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hartnett, John G" sort="Hartnett, John G" uniqKey="Hartnett J" first="John G." last="Hartnett">John G. Hartnett</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of Western Australia</s1>
<s2>Crawley, WA, 6009</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ivanov, Eugene N" sort="Ivanov, Eugene N" uniqKey="Ivanov E" first="Eugene N." last="Ivanov">Eugene N. Ivanov</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of Western Australia</s1>
<s2>Crawley, WA, 6009</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cros, Dominique" sort="Cros, Dominique" uniqKey="Cros D" first="Dominique" last="Cros">Dominique Cros</name>
<affiliation>
<inist:fA14 i1="02">
<s1>IRCOM, UMR 6615 CNRS, Faculté des Sciences</s1>
<s2>Limoges</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bilski, Pawel" sort="Bilski, Pawel" uniqKey="Bilski P" first="Pawel" last="Bilski">Pawel Bilski</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of Western Australia</s1>
<s2>Crawley, WA, 6009</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">02-0566827</idno>
<date when="2002">2002</date>
<idno type="stanalyst">PASCAL 02-0566827 INIST</idno>
<idno type="RBID">Pascal:02-0566827</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">005572</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Cryogenic dual-mode resonator for a fly-wheel oscillator for a caesium frequency standard</title>
<author>
<name sortKey="Tobar, Michael E" sort="Tobar, Michael E" uniqKey="Tobar M" first="Michael E." last="Tobar">Michael E. Tobar</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of Western Australia</s1>
<s2>Crawley, WA, 6009</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hartnett, John G" sort="Hartnett, John G" uniqKey="Hartnett J" first="John G." last="Hartnett">John G. Hartnett</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of Western Australia</s1>
<s2>Crawley, WA, 6009</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ivanov, Eugene N" sort="Ivanov, Eugene N" uniqKey="Ivanov E" first="Eugene N." last="Ivanov">Eugene N. Ivanov</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of Western Australia</s1>
<s2>Crawley, WA, 6009</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cros, Dominique" sort="Cros, Dominique" uniqKey="Cros D" first="Dominique" last="Cros">Dominique Cros</name>
<affiliation>
<inist:fA14 i1="02">
<s1>IRCOM, UMR 6615 CNRS, Faculté des Sciences</s1>
<s2>Limoges</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bilski, Pawel" sort="Bilski, Pawel" uniqKey="Bilski P" first="Pawel" last="Bilski">Pawel Bilski</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of Western Australia</s1>
<s2>Crawley, WA, 6009</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title>
<title level="j" type="abbreviated">IEEE trans. ultrason. ferroelectr. freq. control</title>
<idno type="ISSN">0885-3010</idno>
<imprint>
<date when="2002">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title>
<title level="j" type="abbreviated">IEEE trans. ultrason. ferroelectr. freq. control</title>
<idno type="ISSN">0885-3010</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atomic clocks</term>
<term>Atomic standard</term>
<term>Cavity resonators</term>
<term>Cesium</term>
<term>Cryogenic temperature</term>
<term>Experimental study</term>
<term>Finite element method</term>
<term>Frequency measurement</term>
<term>Frequency stability</term>
<term>Modelling</term>
<term>Numerical method</term>
<term>Sapphire</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Mesure fréquence</term>
<term>Césium</term>
<term>Horloge atomique</term>
<term>Résonateur cavité</term>
<term>Température cryogénique</term>
<term>Etalon atomique</term>
<term>Saphir</term>
<term>Stabilité fréquence</term>
<term>Modélisation</term>
<term>Méthode numérique</term>
<term>Méthode élément fini</term>
<term>Etude expérimentale</term>
<term>0630F</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A dual-mode, sapphire-loaded cavity (SLC) resonator has been designed and optimized with the aid of finite element software. The resonance frequency was designed to be near the frequency of a Cs atomic frequency standard. Experimental tests are shown to agree very well with calculations. The difference frequency of two differently polarized modes is shown to be a highly sensitive temperature sensor in the 50 to 80 K temperature range. We show that an oscillator based on this resonator has the potential to operate with fractional frequency instability below 10
<sup>-14</sup>
for measurement times of 1 to 100 seconds. This is sufficient to operate an atomic clock at the quantum projection noise limit.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0885-3010</s0>
</fA01>
<fA02 i1="01">
<s0>ITUCER</s0>
</fA02>
<fA03 i2="1">
<s0>IEEE trans. ultrason. ferroelectr. freq. control</s0>
</fA03>
<fA05>
<s2>49</s2>
</fA05>
<fA06>
<s2>10</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Cryogenic dual-mode resonator for a fly-wheel oscillator for a caesium frequency standard</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>TOBAR (Michael E.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HARTNETT (John G.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>IVANOV (Eugene N.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>CROS (Dominique)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BILSKI (Pawel)</s1>
</fA11>
<fA14 i1="01">
<s1>University of Western Australia</s1>
<s2>Crawley, WA, 6009</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>IRCOM, UMR 6615 CNRS, Faculté des Sciences</s1>
<s2>Limoges</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>1349-1355</s1>
</fA20>
<fA21>
<s1>2002</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>222G9</s2>
<s5>354000109274900010</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2002 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>13 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>02-0566827</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A dual-mode, sapphire-loaded cavity (SLC) resonator has been designed and optimized with the aid of finite element software. The resonance frequency was designed to be near the frequency of a Cs atomic frequency standard. Experimental tests are shown to agree very well with calculations. The difference frequency of two differently polarized modes is shown to be a highly sensitive temperature sensor in the 50 to 80 K temperature range. We show that an oscillator based on this resonator has the potential to operate with fractional frequency instability below 10
<sup>-14</sup>
for measurement times of 1 to 100 seconds. This is sufficient to operate an atomic clock at the quantum projection noise limit.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00F30F</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Mesure fréquence</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Frequency measurement</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Césium</s0>
<s2>NC</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Cesium</s0>
<s2>NC</s2>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Horloge atomique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Atomic clocks</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Résonateur cavité</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Cavity resonators</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Température cryogénique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Cryogenic temperature</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Temperatura criogénica</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Etalon atomique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Atomic standard</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Patrón atómico</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Saphir</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Sapphire</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Stabilité fréquence</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Frequency stability</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Modélisation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Modelling</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Méthode numérique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Numerical method</s0>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Método numérico</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Méthode élément fini</s0>
<s5>18</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Finite element method</s0>
<s5>18</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>25</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>25</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>0630F</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fN21>
<s1>336</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 02-0566827 INIST</NO>
<ET>Cryogenic dual-mode resonator for a fly-wheel oscillator for a caesium frequency standard</ET>
<AU>TOBAR (Michael E.); HARTNETT (John G.); IVANOV (Eugene N.); CROS (Dominique); BILSKI (Pawel)</AU>
<AF>University of Western Australia/Crawley, WA, 6009/Australie (1 aut., 2 aut., 3 aut., 5 aut.); IRCOM, UMR 6615 CNRS, Faculté des Sciences/Limoges/France (4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>IEEE transactions on ultrasonics, ferroelectrics, and frequency control; ISSN 0885-3010; Coden ITUCER; Etats-Unis; Da. 2002; Vol. 49; No. 10; Pp. 1349-1355; Bibl. 13 ref.</SO>
<LA>Anglais</LA>
<EA>A dual-mode, sapphire-loaded cavity (SLC) resonator has been designed and optimized with the aid of finite element software. The resonance frequency was designed to be near the frequency of a Cs atomic frequency standard. Experimental tests are shown to agree very well with calculations. The difference frequency of two differently polarized modes is shown to be a highly sensitive temperature sensor in the 50 to 80 K temperature range. We show that an oscillator based on this resonator has the potential to operate with fractional frequency instability below 10
<sup>-14</sup>
for measurement times of 1 to 100 seconds. This is sufficient to operate an atomic clock at the quantum projection noise limit.</EA>
<CC>001B00F30F</CC>
<FD>Mesure fréquence; Césium; Horloge atomique; Résonateur cavité; Température cryogénique; Etalon atomique; Saphir; Stabilité fréquence; Modélisation; Méthode numérique; Méthode élément fini; Etude expérimentale; 0630F</FD>
<ED>Frequency measurement; Cesium; Atomic clocks; Cavity resonators; Cryogenic temperature; Atomic standard; Sapphire; Frequency stability; Modelling; Numerical method; Finite element method; Experimental study</ED>
<SD>Temperatura criogénica; Patrón atómico; Método numérico</SD>
<LO>INIST-222G9.354000109274900010</LO>
<ID>02-0566827</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005572 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 005572 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:02-0566827
   |texte=   Cryogenic dual-mode resonator for a fly-wheel oscillator for a caesium frequency standard
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024